31 research outputs found

    Performance Analysis of Optimum Receivers for Differentially Encoded \u3cem\u3eM\u3c/em\u3e-PSK in Low SNR

    Get PDF
    A recent paper has proved that the classical receiver for coherent detection of differentially encoded M-PSK in AWGN is optimum for the MAP sequence detection criterion. In this letter, we show that asymptotically, as SNR tends to zero, the MAP symbol detection criterion receiver is equivalent to the classical differentially coherent receiver, for M greater than two. An asymptotic relative efficiency figure of merit is defined in order to compare the performances of the classical coherent receiver and the classical differentially coherent receiver

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Efficient Maximum-Likelihood Based Clock and Phase Estimators for OQPSK Signals

    Get PDF
    In this paper we propose an algorithm for joint carrier phase and timing estimation with OQPSK modulations. The derivation is based on the maximum-likelihood criterion, and exploits a very efficient algorithm for the detection of differentially encoded MM-PSK symbols already described in literature. Though we are mainly interested in measuring the phase and clock parameters, estimates of the transmitted symbols are also obtained as by-products. The resulting scheme has a feedforward structure and provides phase and timing information in a fixed time, differently from closed-loop architectures. It can be implemented in digital form and is particularly suitable for burst mode transmissions. Its performance is investigated by simulation and the results are compared with Cramér-Rao bounds. It turns out that the estimation accuracy is very close to the theoretical limits, even with short observation intervals and small values of the excess bandwidth. In such conditions, the proposed estimators largely outperform other schemes already known in literature. Their superiority becomes less significant as the signal bandwidth increases

    Multiple symbol differential detection of uncoded and trellis coded MPSK

    Get PDF
    A differential detection for MPSK, which uses a multiple symbol observation interval, is presented and its performance analyzed and simulated. The technique makes use of maximum-likelihood sequence estimation of the transmitted phases rather than symbol-by-symbol detection as in conventional differential detection. As such the performance of this multiple symbol detection scheme fills the gap between conventional (two-symbol observation) differentially coherent detection of MPSK and ideal coherent of MPSK with differential encoding. The amount of improvement gained over conventional differential detection depends on the number of phases, M, and the number of additional symbol intervals added to the observation. What is particularly interesting is that substantial performance improvement can be obtained for only one or two additional symbol intervals of observation. The analysis and simulation results presented are for uncoded and trellis coded MPSK

    A space communications study Final report, 15 Sep. 1966 - 15 Sep. 1967

    Get PDF
    Investigation of signal to noise ratios and signal transmission efficiency for space communication system

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included

    Fair and optimal resource allocation in wireless sensor networks

    Get PDF
    There is a large amount of research in wireless networks focuses on optimization of either network routing and power control alone. In contrast, this work aims at jointly optimizing the transmission power and routing path selection in order to optimize allocation of resources in interference constrained wireless environment. Moreover, we consider a multipath routing where multiple alternative paths are employed to transmit data between the end nodes. One of modern communication techniques that it applies to a network coding, though not explicitly implemented in this work. The proposed approach is first analyzed theoretically using Lagrangian optimization for a three-node scenario. We analyze this basic scenario, as it is essential for development of the overall multi-path routing schemes for multi-hop networks. The optimal solution for the three-node topology is replicated throughout the network to converge to a network-level solution. In contrast to existing studies, we explicitly consider interference from adjacent links, which varies with traffic flow thus optimizing the routing, and flow control decisions. The results and conclusions provide guidance as to the optimum routing decisions and a corresponding theoretical performance limits. The optimization of the throughput of the wireless network scenario is considered as a multi-variable optimization problem subject to flow and power constraints. Numerical analysis performed in Matlab-Simulink indicates that, given loose outage constraints, an optimal trade-off between the channel parameters renders optimum results even when the gain of the channel varies with time. The theoretical analysis and simulations demonstrate and validate that the channel capacity and efficiency are maximized when the routing decisions consider the network performance trade-offs. Next, the proposed routing and power control scheme is experimentally evaluated in hardware using universal software radio peripheral (USRP2). The USRP testbed utilizes the proposed multi-variable optimization algorithm. The communication system is implemented using GNU Radio software where the physical layer employs two direct-spread spectrum variants: (a) binary phase shift keying (DS-BPSK) and (b) orthogonal frequency division modulation (DS-OFDM) schemes. The experimental results are compared with the simulation results --Abstract, page iii

    Capacity Analysis for Gaussian and Discrete Memoryless Interference Networks

    Get PDF
    Interference is an important issue for wireless communication systems where multiple uncoordinated users try to access to a common medium. The problem is even more crucial for next-generation cellular networks where frequency reuse becomes ever more intense, leading to more closely placed co-channel cells. This thesis describes our attempt to understand the impact of interference on communication performance as well as optimal ways to handle interference. From the theoretical point of view, we examine how interference affects the fundamental performance limits, and provide insights on how interference should be treated for various channel models under different operating conditions. From the practical design point of view, we provide solutions to improve the system performance under unknown interference using multiple independent receptions of the same information. For the simple two-user Gaussian interference channel, we establish that the simple Frequency Division Multiplexing (FDM) technique suffices to provide the optimal sum- rate within the largest computable subregion of the general achievable rate region for a certain interference range. For the two-user discrete memoryless interference channels, we characterize different interference regimes as well as the corresponding capacity results. They include one- sided weak interference and mixed interference conditions. The sum-rate capacities are derived in both cases. The conditions, capacity expressions, as well as the capacity achieving schemes are analogous to those of the Gaussian channel model. The study also leads to new outer bounds that can be used to resolve the capacities of several new discrete memoryless interference channels. A three-user interference up-link transmission model is introduced. By examining how interference affects the behavior of the performance limits, we capture the differences and similarities between the traditional two-user channel model and the channel model with more than two users. If the interference is very strong, the capacity region is just a simple extension of the two-user case. For the strong interference case, a line segment on the boundary of the capacity region is attained. When there are links with weak interference, the performance limits behave very differently from that of the two-user case: there is no single case that is found of which treating interference as noise is optimal. In particular, for a subclass of Gaussian channels with mixed interference, a boundary point of the capacity region is determined. For the Gaussian channel with weak interference, sum capacities are obtained under various channel coefficients and power constraint conditions. The optimalities in all the cases are obtained by decoding part of the interference. Finally, we investigate a topic that has practical ramifications in real communication systems. We consider in particular a diversity reception system where independently copies of low density parity check (LDPC) coded signals are received. Relying only on non-coherent reception in a highly dynamic environment with unknown interference, soft-decision combining is achieved whose performance is shown to improve significantly over existing approaches that rely on hard decision combining
    corecore