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Abstract 

In this thesis receiver architectures for an unknown, time-varying Rayleigh fading channel are investig-
ated. This includes fast fading scenarios, where the channel impulse response (CW) can change signi-
ficantly between two adjacent samples. Channel estimation based on the minimum mean squared error 
criterion (MMSE) applied to smoothing and linear prediction is considered. One of the key objectives 
in this thesis is the analysis of error propagation effects due to decision feedback. The studied receiver 
architectures are divided into two main parts: one-shot receivers which detect the received symbol on a 
symbol—by—symbol basis, and sequence detectors which jointly estimate and detect the entire received 
signal sequence. 

Considering one-shot receivers, a decision directed receiver is studied using differential modulation 
(DPSK). The receiver can significantly improve the fast fading performance of conventional DPSK, 
through linear predictive channel estimation. It is demonstrated through simulations that the performance 
of the decision directed receiver is better than that of an idealised reference receiver where channel 
estimation is not corrupted by decision feedback errors (e.g. by means of employing a pilot signal). 
Furthermore, a receiver employing coherent modulation is considered. The necessary phase reference 
is provided by time multiplexed pilot symbols. A receiver which exclusively uses these pilot symbols 
for channel estimation is the pilot aided receiver. The performance for slow fading is excellent, whereas 
the performance degrades as the Doppler frequency increases. The degradation is proportional to the 
spacing of the pilots. The performance of both the decision directed and the pilot aided receiver can be 
significantly improved by employing a second stage channel estimation filter, using a smoothing type 
estimation filter. 

Then, optimum maximum likelihood sequence detection (MLSD) was studied. An important feature 
of the optimum receiver is that a Wiener filter is the optimum channel estimation filter for detection. 
Based on a recursive formulation of the optimal receiver the receiver complexity can be drastically re-
duced by application of the Viterbi algorithm (VA). Performance bounds for the resulting receiver are 
derived, unfortunately, the obtained bounds are only tight for high SNR. In order to reduce the com-
plexity of MLSD employing the VA further, state reduction techniques are devised. This is firstly, state 
dependent decision feedback, yielding a receiver based on per-survivor processing (PSP). Secondly, the 
complexity may be reduced by the list-type Viterbi algorithm, which is a combination of the VA and 
the M-algorithm (a breadth first implementation for sequence detection). The performance of reduced 
complexity receivers using a predictive FIR and a first order 1W filter is investigated. Simulation results 
using time multiplexed pilots as a phase reference, suggest that the performance is dependent on the de-
gree of state reduction applied. It is shown that excessive state reduction can result in stability problems. 
Surprisingly, slow fading is identified the more critical scenario for the stability problems, whereas with 
increasing fading rates the receivers are found to be more robust. Close studies indicate that the length 
and nature of the channel estimation filter is responsible of the observed stability problems. Moreover, an 
analytical approach is presented, based on a hidden Markov model with two states, i.e. a good state and a 
burst state. This model, known as the Gilbert—Elliott channel (GEC), was used to analyse error propaga-
tion effects and was found to predict the stability problems well. To mitigate the stability hybrid receiver 
designs were proposed: first, a receiver was developed that consists of a robust reference receiver and 
the FIR—PSP running in parallel. The stability is maintained with an error propagation detector. Second, 
a hybrid receiver which switches between the FIR—PSP and a robust receiver, whenever conditions are 
identified to be unstable. PSP with 1W-type channel estimation offers an appropriate choice for the robust 
reference receiver, given the filter coefficient is constraint by an upper bound of approximately 0.5. 

Finally, the effects of multiple user interference (MAI) were considered, applying a more realistic 
model of a spread spectrum mobile radio link to the receiver structures mentioned previously. Simulation 
results for the downlink (the base-station to mobile link) on a frequency selective channel show a drastic 
degradation in system performance due to the near-far effect, even for modest MAT. 
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Chapter 1 
Introduction 

1.1 Wireless communication systems 
In recent years the development of VLSI (very large scale integration) technology made it possible to 

implement complex signal processing techniques within portable radio devices, which are fast, small 

and reliable. This has caused an explosion in interest of wireless communication services during the last 

decade. Wireless communication systems are now at the forefront of current research activities. There is 

a large number of communication products for a wide variety of applications, from wireless telephones 

to high speed wireless data networks, some of which are already reality. Current digital wireless systems 

were designed for low data rate speech services (e.g. 8 kbitls), while future systems will include higher 

data rate services [1]. The motivation of wireless is to allow any one to communicate without being 

limited to a fixed network. On the other hand, transmitting over a radio frequency (RF) channel implies 

that there is only a finite frequency band available. One of the key elements in designing a wireless 

communication system is the effective use of the available bandwidth, in order to maximise the capacity 

of the system. There are three major multiple access schemes which allow the same channel to be shared 

among several users: 

Frequency Division Multiple Access (FDMA) assigns individual RF channels to individual users. Each 

user is allocated an unique frequency band or channel. 

Time Division Multiple Access (TDMA) systems share the same radio spectrum at different time slots, 

and in each slot only one user is allowed to either transmit or receive. Each user occupies a 

cyclically repeating time slot. 

Code Division Multiple Access (CDMA) systems identify each user with an unique code, which is used 

to increase the bandwidth of the signal. This so called spreading code is usually chosen orthogonal 

to all other codewords. All users in a CDMA cell use the same carrier frequency and may trans-

mit simultaneously. For detection of the message signal the receiver must separate the signal of 

interest. 

While FDMA is commonly used for analog transmission, digital data and digital modulation are more 

popular with TDMA and CDMA. 

The need for a more efficient use of RF bandwidth prompted the adaptation of a cellular structure 

for wireless communication systems. The main advantage of dividing a certain area into cells is that a 

subset of the allocated frequency range can be re-used in each cell. Thus, the cellular concept offers high 

capacity in a limited spectrum allocation. It is a system level idea which calls for replacing a single, 

high power transmitter (large cell) with many lower power transmitters (smaller cells), each providing 
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coverage to only a small portion of the service area. Cell sizes differ from macro cells with a typical 

diameter of several miles, through micro cells with a diameter of a hundred metres or so, to pico cells 

which are the size of a room. To allow a mobile user to move to an adjacent cell without disconnecting, 

the call needs to be switched to another cell, termed hand-over. 

In a wireless communication system, it is often desirable to allow the subscriber to send and receive 

simultaneously information to the base station. This is called duplexing and may be done using frequency 

or time domain techniques. Frequency division duplex (FDD) provides two distinct frequency bands for 

every user. Time division duplex (TDD) uses time instead of frequency. If the split between the forward 

and reverse time slot is small, then the transmission and reception of data appears simultaneous to the 

user. The downlink provides traffic from the base station to the mobile, while the uplink provides traffic 

from the mobile to the base. 1  

The first generation cellular networks employed analogue FDMA. The number of RF channels spe-

cified the capacity of the system. The development of the second generation digital networks, such as 

the European GSM and the American Is- 136 standards, permitted large capacity increases. These digital 

systems employ a combination of TDMA with multiple RF carriers. Later, the American IS-95 standards 

was proposed, based on CDMA (see e.g. [2] for further discussion on second generation systems). Cur-

rently third generation mobile systems, known as UMTS in Europe and IMT-2000 in the ITU [3,4] are 

being developed. The UNITS terrestrial radio access (UTRA) includes two operating modes: UTRA-

FDD utilising wideband CDMA in FDD mode [5];  and UTRA—TDD employing time division CDMA 

(TD/CDMA) [6], which is a hybrid of TDMA and CDMA, operating in TDD mode. While second 

generation systems were designed mainly for voice-band applications, third generation are designed to 

offer variable data rates ranging from voice-band up to 144 kbitis for high-mobile users with wide area 

coverage, and up to 2 Mbitls for low-mobility users with local coverage. 

Future broadband mobile systems under investigation for the fourth generation will offer data rates 

up to 150 Mbit/s [1].  Alongside the desire for ever increasing data rates goes the requirement for the use 

of higher frequency bands. While third generation systems operate at frequencies around 2 GHz, systems 

utilising spectrum up to 60 GHz are being investigated [1]. A significant amount of spectrum is allocated 

for mobile communication services in these higher frequency bands. 

1.2 Objectives of the work 
Commensurate with the higher frequencies for future mobile systems are higher fading rates. Fading rates 

are proportional to both vehicle speed and carrier frequency; therefore, future systems could experience 

fading rates one or two orders of magnitude higher than those experienced by current wireless systems. 

Another key parameter is the symbol rate f5; it classifies whether time variations of the channel are slow 

or fast. In terms of the symbol duration T3  = i/f'  the time variations are specified via the normalised 

'Another notation commonly used in literature is reverse link for the uplink and forward link for the downlink. 
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Doppler frequency 

v'=VT' 	 (1.1) 

So, for low transmission rates, there is fundamentally a higher time variability in the channel. 

In this thesis, fast fading channels shall be considered, which are defined as channels where the phase 

of the fading process can vary significantly over a symbol period, i.e. where the symbol duration is 

a significant fraction of the coherence time of the channel [7]. This work will concentrate on channel 

estimation techniques in order to determine how the behaviour of communication systems are modified 

under such conditions. 

In order to allow a meaningful comparison between competing techniques, normalised performance 

measures need to be defined. For example, it would not be very meaningful to compare the symbol error 

probability as a function of the signal-to-noise ratio (SNR) unless this comparison was made on the basis 

of a fixed bandwidth, or equivalently a fixed data rate. The definition of spectral efficiency 

s= Rb 	[bids/Hz] 	 (1.2) 

relates the transmission bitrate Rb to the required bandwidth W. On the physical layer, the receiver 

causes reduction of spectral efficiency due to bandwidth allocation for channel estimation. Furthermore 

a reduction of power efficiency is observed, in terms of the required increase in SNR, associated with 

imperfect reconstruction of the channel parameters. Another distinguishing factor in the receiver design 

is the computational complexity of different algorithms and their robustness in worst case conditions. 

We shall investigate ways to optimise both the spectral and power efficiency, while also addressing com-

plexity and stability issues. 

1.2.1 Separation principle 

In the general case the received signal contains two random sequences from the receiver point of view: 

the useful data and the randomly varying channel parameters. Non-coherent detection techniques do not 

require information about the channel parameters. Therefore, they have no loss in spectral efficiency. 

However, the power efficiency may be poor, especially in a fast time-varying environment. On the other 

hand, coherent techniques, which may have favourable performance, cannot separate the two random 

elements of the received signal. For phase modulated signals with constant amplitudes, this results in a 

phase ambiguity at the receiver. This is termed the phase ambiguity problem and it necessitates use of a 

phase reference. Techniques to provide a phase reference are: 

Differential encoding A differential encoded signal [7],  d( k), gets its phase reference from the last 

transmitted symbol, such that d(k) = Ld(k)d(k - 1). The kth information bit is recovered by the 

demodulator: id(k) = d(k)d* (k—i). Since differential encoding is an non-coherent technique, there is 

no phase ambiguity in the received signal. The number of decision errors, however, is basically doubled. 

This is easily seen, because of the differential, decoding, every error in d(k —1) induces an error in the 
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Figure 1.1: Pilot symbol insertion technique. 

next sample through d(k). 

Pilot channel A coherent reference can be made available to the receiver by transmitting a sounding 

signal or pilot tone (see [8] and references therein). A common technique on the downlink for a mobile 

multiple access system is to allocate a pilot channel transmitting only known symbols. The pilot signal 

is shared for all users and is solely used for channel estimation. In a direct sequence (DS) CDMA system 

this would be a different spreading sequence than for any of the traffic channels. Both the information and 

pilot signal are transmitted through the same RF channel at the same frequency and they will therefore 

experience the same fading [9],  i.e. the channel impulse response of the pilot and traffic channel will be 

identical. For example, a pilot channel is employed in the IS-95 standard. Its drawback is that the pilot 

channel requires about 20% of the total transmit power of the system. 

Time multiplexed pilot symbols are another possibility to solve the separation problem. Here pilot 

symbols are periodically inserted in the data stream, giving the transmitted signal a frame or slot structure. 

This technique is used for the up- and downlink for UMTS. Another slot structure will be used in this 

thesis, proposed by Moher [10] and Cavers [11]. The basic idea is to multiplex one pilot symbol into the 

data stream by the rate 1: R, i.e. one pilot symbol is succeeded by R— 1 data symbols, as illustrated in 

Figure 1.1. Thus, the loss in spectral efficiency is hR. 

1.2.2 Information theoretic system model 

Before proceeding with studying receiver designs for the physical layer, it is instructive to look at the 

information theoretical approach, introduced by Shannon in 1948 [121.  Together with the availability of 

VLSI technology, the implementation of complex digital algorithms have become feasible. Viterbi [13] 

summarised the three basic lessons learned from information theory: 

Completely separate techniques for digital source compression (source coding) from those for 

channel transmission (channel coding), even though the first removes redundancy and the second 

inserts it. 

Never discard information prematurely that may be useful in making a decision until after all 

decisions related to that information have been completed. 

The performance of the transmission system is optimised if the signal is corrupted by white Gaus-

sian noise only. In other words, the receiver of the physical layer's optimal strategy is to make the 

4 
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Information theoretic channel 
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Figure 1.2: Information theoretic system model. 

channel look like an additive white Gaussian noise (AWGN) channel. 

These lessons immediately translate into the basic structure of the information theoretic system model, 

depicted in Figure 1.2. According to lesson 3, the task of the modulator/demodulator is to produce a 

sequence of symbols d that is seen at the outer receiver (the source and channel decoder) as a sequence, 

d, that is corrupted by white Gaussian noise, n. To accomplish this, the inner transmission system 

(the physical layer) must be adapted to the channel characteristics, if the physical channel itself is not 

an AWGN channel. One implication is that a interleaver/deinterleaver should be used to provide errors 

which are uniformly distributed in time, while a fading channel tends to produce error bursts [7].  Another 

implication is the use of diversity, discussed in the next section. 

It should be noted at this point, that according to lesson 2, the tasks of the inner receiver and the 

channel decoder should not be separated, instead they should be performed jointly. 

1.2.3 Diversity techniques 

Simple transmission of a carrier frequency over a time-variant multipath channel will suffer from fading 

effects which result in changes in signal power of as much as 20-30 dB [14].  If the channel attenuation 

is large, so that the channel is in a deep fade, the occurrence of errors can dramatically increase. Thus, 

transmitting over such a channel with a narrow-band signal alone is very inefficient. The idea of the 

diversity concept is to supply the receiver with several replicas of the same information signal, transmitted 

over independently fading channels. By virtue of its averaging effects diversity aids in bridging deep 

fades and hence approaches compliance with the information theoretic AWGN channel. The reason 

for this is, if the probability of a deep fade for one out of N independent fading component is p, then 

the probability that all N components are in a deep fade at the same time is p N. This means a N—

fold diversity gain is achieved. In theory, for an infinite number of diversity signals, the performance 

approaches transmission over an AWGN channel. A fundamental requirement for this, however, is that 

the CIR is known perfectly to the receiver. 

Diversity may be provided in the form of time, frequency, polarisation or spatial diversity [2, 7]. 

These diversity techniques may be arbitrarily combined with each other. Multipath reception over a 

frequency selective fading channel is one form of frequency diversity, in which information flows from 

transmitter to receiver via natural diversity [15].  One key advantage of direct sequence CDMA systems 

is that they can exploit the inherent diversity of a frequency selective fading channel through the use of a 

5 
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RAKE receiver [7]. 

1.2.4 Outline of the thesis 

Work in this thesis is limited to the physical layer, and so source and channel coding will not be con-

sidered. It has been stated before that detection and channel decoding should be performed jointly for 

optimal performance, so references are given for research aiming to link the detection and decoding prob-

lem. Techniques to improve channel estimation and data detection of digital signals transmitted through 

a fast fading channel are investigated. The focus of the thesis is to minimise the system overhead, while 

optimising the performance; thus optimising both the spectral and power efficiency. In order to achieve 

that, algorithms for estimation and detection can be systematically derived based on a mathematical 

model and a chosen performance criterion. Chapter 2 reviews principles of the estimation and detection 

theory, providing some performance criteria. Estimators chosen by the MMSE criterion are described, 

resulting in Wiener filters for the linear case. The detection techniques considered are the MAP and ML 

criterion. The mathematical model of the system investigated is defined in Chapter 3. Fundamentals of 

direct sequence (DS) CDMA systems are discussed briefly, followed by a more detailed description of the 

multipath fading channel and its mathematical model used for simulation work in subsequent chapters. 

In Chapter 4, one-shot receiver structures are investigated. These receivers require signals which comply 

with the separation principle, to avoid the phase ambiguity problem. This is achieved by either time mul-

tiplexing pilot symbols into the data stream (section 4.2) or differential encoding (section 4.3). Chapter 5 

surveys a more systematic approach, using joint channel estimation and data detection techniques. The 

optimum receiver which maximises the probability of detecting the whole sequence is given and a lower 

performance bound is derived. The optimum receiver is seen to be of prohibitive complexity, which 

necessitates sub-optimum derivatives. Receiver structures utilising the Viterbi algorithm, based on the 

principle of per-survivor processing (PSP) are discussed in Chapter 6. Employing PSP implies decision 

directed channel estimation to some extent, due to state dependent decision feedback. Thus stability 

issues are of paramount importance and they are thoroughly analysed. A performance bound based on 

a Markov model is analytically derived, explicitly taking these stability issues into account. Finally, the 

effects of multiple access interference (MAI) for receiver structures studied previously are investigated. 

Finally Chapter 7 draws the conclusions of the work. 



Chapter 2 
Principles of Bayesian Detection 

and Estimation 

In this chapter the principles of detecting data and estimating parameters are addressed. It is a brief 

overview of techniques which are used in subsequent chapters, which are applied to digital signalling 

over a time-variant multipath fading channel. For a more thorough study of detection and estimation 

theory see for example the textbooks [16-20]. This chapter divides into two main parts, after a brief 

introduction to the Bayesian philosophy, parameter estimation based on the minimum mean squared 

error (MMSE) criterion will be considered in section 2.1. In particular, its optimum solution for linear 

problems, the Wiener filter will be discussed in more detail. The second part of this chapter is dedicated 

to Bayesian detectors in section 2.2. Detection based on the maximum a posteriori (MAP) and the 

maximum likelihood (ML) decision rules, is considered. These decision rules can be used to either 

maximise the probability of choosing the correct sequence or a particular data symbol. 

The problem of estimation and detection is to extract values of parameters based on continuous time 

waveforms. Due to the use of digital computers to sample and store the continuous time waveform, 

the equivalent problem of extracting parameter values from a discrete time waveform or a time series 

is obtained. Mathematically, the observation is given by the K-point data set {y(l),... y(K)} which 

depends on an unknown parameter, denoted by 0. This time series is more conveniently expressed in 

vector notation as y = [y(l),... , y (K)IT. The objective of parameter estimation is to determine 0 

based on the data by means of an estimator: 0 = f[y], where f(.) is some function. The unknown 

parameter may itself depend on time or the data may be dependent on several parameters, cast in the 

vector 8. 

In determining good estimators the first step is to statistically model the data. Because the data are 

inherently random, they are described by its probability density function (pdf). In Bayesian estima-

tion/detection both the data y and the parameter 8 are assumed to be random variables. This is opposed 

to the classical estimation problem, where the parameters of interest are assumed to be deterministic but 

unknown. The Bayesian approach is so named because its implementation is based directly on Bayes' 

theorem. As such, the data are described by the joint pdf 

p(y, 9) = p(yI°) '(8) 
	

(2.1) 

where p(8) is the a priori pdf, summarising the information about 8 before any data are observed, and 

p(Y10) is a conditional pdf providing information about the observation y conditioned on knowing 9. 

The pdf p(y 8) is also called the likelihood function. In order to estimate 8, the a posteriori pdf p(8l) 

is of particular interest, since it provides information about 0 given the observation y. The a posteriori 
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pdf is again linked with the joint pdfp(y, 9) by Bayes' rule 

- p(y,°) - p(y9)p() (2.2) p(91y)- 	
- 	p(y) 

So the a posteriori pdf is the product of the likelihood function p(y 9) and the a priori information 

p(9) about the parameter 8, divided by p(y). Note that the denominator is just a normalising factor, 

independent of 9. 

In order to specify an estimator out of a given pdf, criteria need to be defined for which the estimator 

is aimed to be optimised. This is achieved by means of a cost function C(e), where c = 9 - 9 denotes 

the estimation error between the parameter 8 and its estimate 9. An estimator which minimises the risk 

E[ C(e)] is then the optimum estimator. For a quadratic cost function C(e) = e 2 , the so called minimum 

mean squared error (MMSE) estimator minimises the risk. Considering the noise filtering problem this 

yields the Wiener filter in the linear case, which will be discussed in more detail in the following section. 

Thus far, only the estimation problem has been considered. Estimation theory is concerned with the 

problem of finding the best value for an unknown parameter from a continuum of possible values. For 

detection, on the other hand, data from a finite set V of discrete values is to be extracted. Hence, the 

detection outcome may be seen as a random variable taken from the constraint set V. For detection, 

choosing another cost function C(c), the Bayesian approach leads to the maximum a posteriori (MAP) 

decision rule. That is, it assigns no cost if the received data is within a certain decision boundary and 

a cost of 1 for all e in excess of this cost function. Decision rules which can be derived from the MAP 

criterion are addressed in section 2.2. 

2.1 MMSE parameter estimation 
One desirable property of an estimator is that it is unbiased. An estimator is unbiased, if on the aver-

age the estimator will yield the true value of the unknown parameter. Mathematically, an estimator is 

unbiased if 

E[6] =9 
	

(2.3) 

That an estimator is unbiased does not necessarily mean that it is a good estimator, nor is a biased 

estimator necessarily a poor one. In searching for optimal estimators some optimality criterion needs to 

be adopted. A natural one is mean squared error (MSE), defined as 

	

C(O-9) =E[ 9-9I2] 	
(2.4) 

Minimising the MSE with respect to 8 yields the MMSE solution. The MMSE criterion will prove 

extremely useful in the receiver design in the following chapters and is widely used in many areas of 

digital signal processing. Since for a Bayesian estimator 8 is a random variable, the expectation operator 

is with respect to the joint pdf p(y, 9). The optimum estimator in the MIMSE sense is obtained by 

8 
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differentiating (2.4) and setting the result equal to zero, that yields [16] 

9 = fOp(Oly)dO = E[81y] 
	

(2.5) 

It is seen that the optimum estimator is the mean of the a posteriori pdfp(91y), which refers to 9 after 

the data have been observed. The a posteriori pdf is linked with the joint pdf p(y, 9) by Bayes' rule in 

(2.2). 

2.1.1 Jointly Gaussian distribution 

If the pdfp(y, 6) is a joint Gaussian pdf then a closed form of the estimator and the corresponding MSE 

is readily available. Let the multivariate Gaussian pdf be defined by 

p(y, 9) = 	
1 	

exp( 

Iy — E[y] 
T 	

IY_E[Y]]) 	(2.6) 
2det112() 	- [9_E{0]] 	[9E[9] 

where det denotes the matrix determinant operation. The covariance matrix 4 is given by 

= 	
41) YY 

4)y9 I 4 ey 4 OO 

The properties of the covariance matrices for the special case of a linear model will be discussed later 

on. In this case the conditional pdfp(9y) is also Gaussian with the conditional mean and corresponding 

MSE 

= E[9y] = E[8]+e(y—E[y]) 	 (2.7) YY 

= 48Iy = 4t oo - 6yyyy6 	 (2.8) 

where E[ OIy] = 9 is the MMSE estimate of 9 and 401y = 4 is the covariance matrix of the estima-

tion error e = 6 - 9. 

2.1.2 Wiener filters 

Under the jointly Gaussian assumptions the optimum estimator is easily found; in the general case of 

a non-Gaussian joint pdf, however, they are not. If the Gaussian assumption does not hold, the MMSE 

criterion leads to non-linear estimators which may be very complex. In this case, the MMSE criterion can 

be retained under the constraint that the estimator is linear. Then an explicit estimator can be determined 

which depends only on the first two moments of the pdf which are given by(2.7) and (2.8), respectively. 

Although the filter is sub-optimum it is the best linear filter in the MSE sense. This class of filters are 

generally termed Wiener filters [21] and they are extensively utilised in signal processing applications. 

The vector form of the linear model is defined by 

Y = Dh+n 
	 (2.9) 
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where y, h and n represent discrete time waveforms of length K, defined by x - [x(1),... , 

with x being a placeholder for y, h and n. The problem is to extract h from y. In digital communication 

the linear model is extensively used to describe a received base-band signal y. The random vector h 

describes the distortions by the channel which is to be estimated. The matrix D is a known K x K 

transformation matrix and n is a noise vector with zero mean. The quantities h and n are assumed to be 

uncorrelated. The MMSE criterion applied to this problem is to minimise the estimation error e = h - h. 

Then the linear MIMSE estimator h and the corresponding covariance 	are given by (2.7) and (2.8) 

respectively, where 

E[y] = DE[h] 

= D hh  D' + 	 (2.10) 

It hy = yh = 4 hhD 

The properties of the estimator are summarised by the Gauss-Markov theorem [16],  which states: 

Only the knowledge of the mean and covariance of h and n are required, the joint pdf p(y, h) is 

otherwise arbitrary. 

The estimator is unbiased, i.e. E[ h] = h. 

The performance of the estimator is measured by the error e = h - h whose covariance 4 = 

hy is given by (2.8). The diagonal elements of 4' yield the minimum MSE of particular 

samples of €, which is for the kth entry {€€}kk = E[Ie(k)12]. There is no linear estimator 

which has a lower MSE, regardless of the distribution of the error vector. 

If the noise vector n is zero mean, the estimate of y is given by: = Dh. 

An interesting property of the linear MMSE estimator is that the estimation error is orthogonal to 

the observations, thus the mean of their inner product is zero: E[ ey J = 0. Since the estimate 

h itself is a linear combination of y, it is also orthogonal to E. This is known as the principle 

of orthogonality, it is equivalent to h and e being uncorrelated, which is another interpretation of 

E[ €'h] =0. 

In the following discussion of Wiener filters some further assumptions for h and y are made. For 

the definition of the noise process, we assume a band-limited AWGN (additive white Gaussian noise) 

channel with bandwidth W. The power of the noise is therefore 0(0) = tr 2  = NO W in W, where 

No  denotes the spectral power density of the noise process in WIHz. With W 1 Hz the variance a 2  is 

normalised with respect to the bandwidth, yielding o.2 = N0. Since an AWGN process is uncorrelated, 

i.e. qf(i - j) = 0 for i 0 j, the covariance matrix is a diagonal matrix given by 4nn = No !. 

It is assumed that the observation y is a wide sense stationary (WSS) stochastic process with zero 

mean, hence E[h] = E[y] = 0. As such the complex K x K covariance matrix takes the Hermitian 

10 
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and Toeplitz form 1  

	

I ç(0 ) 
	

c5(K) 

	

uV( 1 ) 
	

c5uv(0) 	•.. 	OUV 	
(2.11) 

c(1—K) •.. 

with the coefficients çL,  (Lk) = E[ u(k - Lk) v (k)] for the time delay A k. That is the cross-correlation 

function (CCF) of two signal sequences u(k - k) and v(k). If u(k) = v(k), then 4' uu  denotes the 

auto-correlation matrix and 0 114  (ik) is the corresponding auto-correlation function (ACF) of a signal 

sequence with time delay Lk. The variables u and v are placeholders for combinations of y, h and n. 

For the further discussion in this section, the known transformation matrix D is assumed to be a K x K 

identity matrix, D = I. Hence the notation for the covariance matrices of (2.10) simplifies to 

yy = hh+NOI 	and 	'thy = hh 	 (2.12) 

There are two main problems that will be studied: smoothing and prediction. 

Smoothing is considered first. Estimation of h(k) involves the whole data set {y(l),... y(K)J, 

consisting of past, present and future samples. Clearly, for smoothing an estimate cannot be obtained 

until the entire sequence has been received. 

For linear MMSE smoothing, (2.7) can directly be applied, yielding the solution 

= hyyY = WY 
	 (2.13) 

where the K x K filter bank W is termed the Wiener smoothing matrix. The Wiener-Hopf equation for 

the set of estimation errors, e = h - h, is in the form 

W = hhyy = [_NoI]' yy 

= 	 yy 
	 (2.14) 

The Wiener filter matrix W is Hermitian, since it consists of a superposition of Hermitian matrices. 

Prediction is the application of a causal filter to the data. For x—step prediction h(k+x) is estimated, 

based on the data set {y(l),... y(k) }. Similar to (2.5), the MMSE estimate of h(k-l-a) is the conditioned 

mean of the observed data up to sample k, that is 

h(k+x)=E[h(k+x)y(1)," , y (k)] . 	 (2.15) 

1 A matrix is referred to as Hermit ian if the matrix is equal to its complex conjugate transposed, denoted by CJ,  =41~uv 
 = 

'F. A matrix is referred to as Toeplitz if all elements on its main diagonal are equal, and if the elements on any other diagonal 
parallel to the main diagonal are also equal. 

11 
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For x > 1 only past samples are used, while for x =0 past and present samples are used. The case when 

x = 0 is referred to as the filtering problem. Clearly, the larger x the larger becomes the MSE of the 

predictor, so the causality is traded with a poorer estimator, compared to the smoother. 

The estimator to predict h for 1-step linear prediction can be obtained through triangular decompos-

ition [22].  The derivation is based on the factorisation 4, = LJL H  where L is a lower triangular 

matrix and E is real diagonal matrix. This factorisation does exist since 4', is a Hermitian symmetric 

matrix. Then the estimation error becomes e = L 1 y. The rows of L' are the coefficients of a 1-step 

predictor for orders 0 through K - 1 and the elements of E are the corresponding error covariances, thus 

{}kk = o = E[Ie(k)1 2 ] + N0, i.e. the diagonal matrix E contains the MSE for 1-step prediction 

plus the variance of AWGN. Considering the k th  element, the prediction error e(k) may be viewed as an 

innovations process. The innovations approach [23] is an interpretation of 1-step prediction. According 

to the principle of orthogonality [18] c(k) is orthogonal to all past observations { y(l),... y(k —1) } and 

may therefore be regarded as a measure for new information in the random variable h(k) at time k; hence 

the name innovation process. Thus, the part of h(k) which is new is contained in the prediction error 

c(k) •2  The matrix L 1  may be regarded as a transformation matrix which transforms the observation y 

into the innovation e = L 1 y. 

The MMSE estimate of h(k) is very closely related to e(k), such that the kth  row of L 1  contains 

the coefficients of a (k_1)th  order linear predictor for the k th  sample: {—w 1 ,.. , 11, where 

the superscript k—i denotes the filter order. Thus, the following 1-step predictor is obtained 

(k) = 	[W ' ] 	(k) 
M=1 

where the filter w = [w,... , w]'' represents the 1—step predictor of order k. 

2.1.3 Moving average estimation 

For a long sequence length K neither optimal smoothing nor prediction using all available data is feasible 

due to the large matrix sizes. Furthermore, optimal estimation implies a time-variant filter response, thus 

the filter bank W in (2.14) is not a Toeplitz matrix. A common approach to reduce the filter length, is to 

assume that h(k) is a auto-regressive (AR) process of order M [24] 

h(k—k) = n(k) + E w(k) h(k—m+i) 	 (2.16) rn 

m=1 

where the process noise n (k) is complex valued white Gaussian noise. The coefficients {w m  (.)} specify 

the AR process. Now only M snapshots generate h(k), as illustrated in Figure 2.1. If iXk < 0 the CIR 

is causal, specifying an AR process for an x—step predictor, with x = —Lk. Otherwise, for Lk> 0, 

a non-causal AR process is obtained. Given an AR process the transfer function of the CW H(z) (the 

2 13ecause e(k) is a whitened transformation of y(k), the innovations approach is also referred to the whitening-filter method. 
However, this latter term is used only in the context of linear processing of stationary and Gaussian processes; whereas the term 
innovations approach is applicable to non-linear processing and non-Gaussian processes as well. 

12 
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Figure 2.1: Snapshots for the time frame of an (a.) smoother and (b.) x—step predictor 

z—transform of h(k)) consists of poles only, with M being the number of poles. Given an M th  order AR 

model, the transfer function H — 1(z) specifies a Mth order moving average (MA) filter [24,25]. Now 

only M snapshots are used to estimate h(k), giving the MA filter 

h(k—k) = 	w(k)y(k—m+1) = wH(k) y (k) 	 (2.17) 

where the filter w(Lk) = [w 1  (Lk),•.. , wM (LIk)]T corresponds to the AR model in (2.16), being either 

a smoother (0 <tX/c <M) or a x-step predictor (tXk < 0), with x = —/Xk, as illustrated in Figure 2.1. 

The vector y(k) {y(k),... , y(k - M+ i)]T is a sliding window of length M << K. The incentive 

in assuming an AR model, is that the optimal filter is an FIR filter with finite length M [24]. If h(k) is 

not an AR process, the MA filter in (2.17) is an approximation of the optimal filters of length K. The 

accuracy of the approximation is dependent on the choice of M. 

In practice, the the filter w(Lk) is usually unknown and needs to be estimated. In order to determine 

the tap weights for an arbitrarily distributed CIR, consider the cost function 

C[w(tXk)] = Ih(k) _wH(zk)y(k)I 2  

Minimising the risk E[C[w(tXk)]] is the MMSE criterion for the M th  order MA filter, w(tXk). One 

possibility to minimise the risk is to apply the principle of orthogonality [18], which states that E[ EH Y1 = 

0. The solution is the Wiener-Hopf equation, which comprises both the smoothing and prediction case, 

having the form 

w(tXk) = 
	 (2.18) 

where 4. (tXk) = E[ h*  (k - zXk) y (k)] denotes the cross-correlation vector of the time delay Ak. Un- 

less otherwise stated, all vector and matrix quantities will be of dimension M and M x M, respectively. 

13 
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The MMSE of the estimator w(Lk) becomes 

V(e,i.k) 	E[c(k) 2 ] = E[Ih(k) _w"(Lk)y(k+ik)I2] rnin

= 	1 - 	 4 Y (ik) 	 (2.19) 

2.1.4 Method of least squares 

So far, it has been assumed that the second order statistics in terms of the auto and cross-correlation 

matrices are perfectly known. In a practical situation this may not be the case, so these statistics need to be 

estimated. The method of least squares solves the linear filtering problem without invoking assumptions 

on the statistics of the inputs applied to the filter. Instead there is a given set of say N complex valued 

measurements { y(l),•.. , y(N)} made at times {t 1 ,.-. ,tN}  and the requirement is to fit these points 

in some optimum fashion. The criterion minimises the least squares between the desired response and 

the observed data set. Its solution is very similar to the Wiener-Hopf equation in (2.18), in the sense that 

the exact covariance matrices qt u, in (2.11) are replaced by estimates . Specifically, the coefficient 

of mth row and nth  column is given by 

E[ u(k) v *(k_k)] 

Ak 
N 

1 
N — Lk :i: 

u(k)v*(k_i.k) 

k=k 

So far, it has been assumed that the desired response h (k) is available to generate the estimation error 

e. In many applications however, the receiver does not have access to the desired signal h(k), only to 

the noise corrupted received signal y(k) = h(k) + n(k). Hence, the auto and cross-correlation matrices 

1 hh and 'hy  are not available, whereas the receiver may generate estimates of 4yy  and The 

auto-correlation vector ç5(zk) = 	 , 	(Ik_M+1)JT denotes the Lk th  row of 

With (2.12), the ACF of y(k) can be expressed as 	= O hy (k) + NO &k, where 8Ak  is the 

Kronecker 8—function. Thus, for Lk < 0 (the linear predictor case) we have ,(Lk) 4hY (Lk). 

This is the case for a linear predictor. In this instance, the estimator may be generated on the noisy signal 

snapshots y(k). Thus, in the decision for the estimation error, h(k) is replaced with y(k) = h(k) + n(k), 

yielding i(k) = h(k) - y(k). As n(k) is zero mean, the estimate is still unbiased, while its variance will 

increase due to additional noise. A smoother is on the other hand not implementable when the receiver 

has to estimate the channel statistics. It can however be modified, in the way that present samples (with 

time delay Lk) are omitted in (2.18) for calculating w(tXk). This can be achieved by cancelling the 

/.kth row and column of 4YY  and the Zkth  element of (zk) and replace them by zeros, yielding 

(Ak) and 4(zk), respectively. The smoothing filter is then determined by 

= 	[?il(k),... ,ik_1(k), 0, Wk+l(Lk),.. ,wM(Lk)] 

= k) 	(ik) 
	

(2.20) 

3The placeholders u and v take on the values y or h and combinations of the two. 
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Obviously, for prediction type filters with ik < 0, the covariances 	(Lk) and 	(Lk) are identical 

to 	and 	respectively. 

The filter *(/.k) can be generated adaptively, for instance by means of the adaptive least mean 

squares algorithm (LMS) or the recursive least squares (RLS) [ 1 8]. Generally, the RLS algorithm of-

fers superior performance at the expense of significantly increased complexity compared to the LMS 

algorithm. With these adaptive techniques the matrix inversion required to compute *(k) can be 

avoided, furthermore adaptive filters can cope with a non-stationary channel. Adaptive algorithms are 

distinguished between their performance, in terms of convergence time and the MSE, and their compu-

tational complexity. A comparison of the conventional least squares approach with the LMS and RLS 

algorithms, for fast fading channel estimation was studied in [26].  In general, the RLS algorithm offers 

better performance, while the LMS algorithm is easier to implement. 

2.1.5 11R-type filtering 

Another possibility is to predict (k + 1) dependent on the observations y(k) recursively, i.e. using 

information about the previous estimates. This type of filter is a generalised form of the Wiener filter, 

termed Kalman filter [27].  It is an application of the innovations approach to non-stationary second order 

processes. Its significance is the ability to accommodate vector signals and noises which additionally 

may be non-stationary. The theory of Kalman filters is studied in the textbooks e.g. [16, 18,20]. If the 

Gaussian assumption holds, Kalman filters are optimum in the MMSE sense. Otherwise they are the 

optimum linear estimator, given the linear model in (2.9). 

In order to keep the complexity to a minimum only the 1st  order 1W filter will be considered. Given 

a WSS channel, the the 1st  order 1W filter is specified by a real valued, scalar parameter a, independent 

of time. The recursive channel estimator can be expressed as  

i(k+1) = (1 - a) y(k) +a h(k) 	0 < a < 1. 	 (2.21) 

The filter has the form of a low-pass filter, thus it reduces the effects of noise at the expense of some 

imposed pass-band distortions. Thus, for rapid fluctuations of h(k), its estimate h(k + 1) experiences 

a phase lag, which degrades the filter performance. This implies that the actual channel dynamics, in 

particular a strictly band-limited fading process {h(k) }, can only be represented with sufficient accuracy 

by a high-order Gauss-Markov process model, which can be achieved by the use of Kalman filters. 

In [28] the gain a is approximated, by replacing the MMSE with a simpler criterion. The MSE is 

separated into two components: a noise error, o, which accounts for the gradient noise inherent to the 

stochastic-gradient based LMS algorithm, and the lag error, o, which accounts for channel dynamics: 

V 2  = E[Ih(k)_h(k) 2 ] = cT+ 

4The filter is commonly described by the well known least mean square (LMS) adaptive algorithm [18].  In some publications 

this filter is also referred to as a—tracker. 
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Generally, o,2  is a function of the channel dynamics, dependent on the parameter V ax , which is the 

maximum normalised Doppler frequency, 5  whereas the gradient noise o is a dependent on N0. 

The gain factor a is to be chosen to optimise the filter design, dependent on v 	and N0. Generally 

speaking, a large a reduces the impact of AWGN on the MSE, but increases the lag error induced by 

the phase lag of the filter, and vice versa. The IvIMSE V1  is approximated if o = o. In terms of the 

fading rate, ax'  and the noise power N0, the following approximation is obtained [28] 

m
CLNoax 
	max 

a0 1-3.6; 	<0.01 	 (2.22) 

This approximation is based on the assumption that the lag error, o 2  is an uncorrelated noise process. 

Since cr is coloured, this approximation is only valid if thermal noise dominates the effects of the chan-

nel estimation error. The white noise approximation breaks down for V'../NO < 0.01 [28], which 

effectively means modest fading rates and dominant noise power. For larger fading rates, aopt in (2.22) 

becomes negative. In this case, setting aopt = 0 is the best possible solution. Then h q (k+ 1) = y(k), 

which essentially means the received signal is not filtered at all. Instead only the previous sample is used, 

which is similar to conventional differential detection. Despite these restrictions, using this approxim-

ation for (2.22), q pt  is much easier to derive analytically, compared to the derivation using the true 

MMSE. Furthermore, the system performance is not critically dependent on a, thus the approximation 

in (2.22) will be used for simulation work in subsequent chapters, bearing in mind that this may be not 

the optimum choice for a. Finally it should be noted, that aopt can also be calculated adaptively [29,30]. 

2.2 Bayesian detectors 
In this section the detection problem is considered, specifically a sequence of K data symbols cast in 

the vector d = [d(1),. .. , d(K)]" transmitted over a radio channel, resulting in the received signal 

sequence y = [y(l),.. , y(K)f". The kth information symbol is taken from a finite discrete set V. the 

symbol alphabet. Let the cardinality of the alphabet be A m , then the receiver has to pick one out of A m  

possibilities or hypothesis, according to some optimality criterion or decision rule. The objective is to 

minimise the probability of error according to some hypothesis criterion: 

. This could either be the probability of a symbol or sequence error. 

The hypothesis criteria maybe the maximum a posteriori (MAP) or the maximum likelihood (ML) 

decision rule. 

• The received signal sequence may either be deterministic or of random nature, the former resulting 

in a one-shot receiver structure. For the latter case the whole sequence needs to be taken into 

account for optimum detection. 

5The channel model is characterised in more detail in section 3.2. 
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2.2.1 Detection of correlated signals 

The detection of random signals is considered first. In Bayesian detection the data d is regarded as 

random variable, described by the joint pdf p(y, d) = p(yld) p(d), according to (2.1). Applying the 

MAP criterion to p(y, d) yields the MAP sequence detector (MAP—SD). The MAP criterion maximises 

the probability that the sequence d was transmitted, conditioned on the observation y. A sequence 

hypothesis, denoted by d", is the MAP estimate of the actual transmitted sequence d, if its a posteriori 

probability is maximum 

MAP—SD: 

a = arg maxp(dIy) = arg max p(yId)p(d) (2.23) 
LEAK 	 LEAK 	P(Y) 

where AK is the total number of possible symbol sequences, which grows exponentially with the se-

quence length K. Note that the pdf of the observation p(y) is independent of the transmitted sequence 

and can therefore be neglegted to find the maximum of (2.23). For uncoded signals with a A-ary 

symbol alphabet AK equals A. The second equality follows from Bayes' rule in (2.2), where terms 

independent of d have been neglected. 

On the other hand, maximising the likelihood function p(yId) with respect to hypothesis £ yields 

the maximum likelihood sequence detector (MILSD) 

MLSD: 
d = arg max p(ydU)) 	 (2.24) 

LEAK 

The resulting receiver was proposed by the pioneering work of Kailath [31-34] in the 1960s. Later 

recursive solutions have been proposed based on the innovations approach [35-37]. 

It is seen that the MAP and ML criteria are closely related. The difference between the two is 

that the MAP criterion incorporates a priori information p(d) about the transmitted sequence. If all 

sequences are equally likely, as it is most often for uncoded systems, the a priori probability is simply 

p(d) = 11AK, independent of L In this case the MAP and ML criteria are equivalent. 

Next symbol-by-symbol detection is considered. The objective is to calculate soft a posteriori prob-

abilities for the symbol hypothesis £ at time k. The MAP estimate is 

MAP symbol-by-symbol detection: 

p(d(k)y) = max p(d(k)Iy) 	 (2.25) 
LED 

A solution was given by Bahl et al. [38]. The resulting receiver structure requires a much higher compu-

tational complexity than a corresponding sequence detector. When used for detection of uncoded signals 

or decoding a single stage code, the performance improvement of MAP symbol-by-symbol detection 

(MAP—SbSD) compared to MLSD is insignificant, and certainly insufficient to justify the increase in 

complexity. With the development of iterative decoding techniques, MAP—SbSD has become more pop-

ular since it offers the possibility of soft symbol estimates, in terms of the a posteriori probability. 

ML symbol-by-symbol detection (ML—SbSD) was described in [39].  It neglects a priori informa-

tion of the symbol hypothesis d"(k). Therefore it can not be employed for iterative decoding, while its 
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complexity approaches MAP detection. Hence, MLSD and MAP–SbSD are most often used in prac-

tice.6  Still, the computational complexity of both MLSD and MAP–SbSD are often prohibitive, so 

sub-optimum derivatives which trade complexity with performance are frequently used. The detection 

of signal sequences with an unknown Cifi is discussed further in Chapter 5. 

Log-domain: If the likelihood function p(y Id"') is Gaussian distributed, most of the decision problems 

are solved in the log-domain. That is taking the logarithm and inverting the sign of the likelihood function 

or a posteriori probability, dependent whether ML or MAP detection is used. The decision variable in 

the log-domain is given by 

mm { - 1np(yId)} A = minp (y d() = 

which is now to be minimised. 

2.2.2 One-shot detection 

Suppose the received signal is deterministic (and the data sequence is uncorrelated), e.g. transmission 

over an AWGN channel [7], or a channel with prior knowledge of the CIR. Then the decision on the 

kth sample can be made on a symbol-by-symbol basis, based on information about sample k only. Thus 

the name one-shot detector. 

Consider the received signal y(k) = d(k) h(k) + n(k), where h(k) is an arbitrary but known impulse 

response and n(k) is AWGN. In this case the likelihood functionp(ylh, d) conditioned on the transmitted 

signal y and the impulse response h, can be used for detection. In the Gaussian case the pdf of the 

likelihood function is .Af(hd, o.21).  Now the detection of d(k) is statistically independent from the rest 

of the sequence, giving the pdf 

1  

p(y(k)lh(k),d(k)) = 1 
	[-ly(k) - d (k) h(k) 2 

—exp 	 2 27ro 	 j  

where cr 2  = No  denotes the variance of n(k). After taking the logarithm, inverting the sign and neg-

lecting terms which are independent of d(k), the decision variable A(t, k) = Iy(k) - d(k) h(k)1 2  is 

obtained. The decision upon symbol k is made by minimising A(t, k) over the symbol alphabet V. For 

constant amplitude or phase modulation, the Euclidean distance can be replaced by an inner product to 

yield the decision 

d(k) = minA(t, k) x max Re[y (k) d"(k) h(k)] 
L€D 	 LED 

In many practical systems prior knowledge about h(k) is not available. Then a reliable estimate h(k) may 

be used instead, usually aided by some side information. These sub-optimum receivers are addressed in 

6Since in most cases MAP and ML sequence detection are equivalent, the term MLSD will be used for sequence detection in 
the following. 
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Chapter 4. 
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Chapter 3 
System & Channel Model 

This chapter discusses the equivalent base-band model, which provides the framework for subsequent 

chapters. This chapter is divided into three main parts: first, mobile communication based on spread 

spectrum techniques will be considered concisely in section 3.1; second, the channel model used to 

simulate a time-variant multipath channel is addressed in section 3.2; finally, the receiver front-end is 

specified in section 3.3. 

3.1 System model 
A rather simple system model is adopted. The discussion is limited to the inner receiver, so source and 

channel coding are not considered. Digital signalling of linear phase modulated sequences with symbol 

rate f, = 1/T5  is considered, which is the reciprocal symbol duration T. Specifically, M-ary phase shift 

keying (MPSK) has been adopted. The transmitted signal of the kth  signalling interval can be expressed 

in the form 

d(k) = exp (j27ra(k)1A m ) E C 	 (3.1) 

where a(k) E {O, 1,.. , Am - 1} is the kth  information symbol containing 1092 A m  bits. 

3.1.1 CDMA - spread spectrum techniques 

This work considers direct sequence (DS) spread spectrum employed in a CDMA cellular radio system. 

The work presented in this thesis focuses on the base station to mobile link, termed the downlink or 

forward link. On the downlink all users transmit at the same time, giving a synchronous system. Further -

more, all signals are transmitted through the same channel. A simplified block diagram of the downlink 

of a DS—CDMA system is depicted in Figure 3.1. Spread spectrum signals are distinguished by the char-

acteristic that their chirp rate per symbol l/T is much larger than the information rate l/T 3  in symbols/s. 

In terms of the chip and symbol duration T and T3  respectively, the processing gain N = T3  /T for a 

spread spectrum signal is much greater than unity. A spreading sequence converts, d (k), the k th  inform-

ation symbol for user u E {l,... , U}, to a wide-band noise-like signal {s(t) = du  (k) c(t—kT 3 )} 

before transmission. The spreading sequence c. (t) = F,, cu  [n] g( - nT) identifies user u, where 

Tc  = 1 1 W is the duration of one chip and g (t) is the pulse shaping filter. The code for user u is specified 

by a code word of length N, having the coefficients 1c[1],. , cu  [Nc]}. As seen in Figure 3.1 the 
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Figure 3.1: Block diagram of the system model. 

signal of altogether U users are then transmitted simultaneously giving the base-band signal 

s(t) = >>du(k)cu[n]g(t-nTc-kTs) 
	

(3.2) 
u1 n=1 

where Nc  denotes the length of the code. After transmission, the receiver can recover the desired signal 

by applying the same code to the received signal of the equivalent low-pass channel x(i). This yields 

the received post-correlation signal, which is subsequently further processed to obtain the data estimate 

du  (k). 

Spreading codes: There are a number of families of codes which can be used to identify each transmis-

sion. The properties of the spreading codes are discussed fully in [40,41]. Although, there exist codes 

which are orthogonal, there are none which retain this property in presence of a multipath channel. The 

time dispersive nature of the channel destroys the orthogonality of the codes. Thus the unsynchronised 

properties of the codes are just as important as their auto and cross-correlation properties when there is 

no time delay. We distinguish between two types of spreading codes: 

Pseudo-random sequences such as rn-sequences [42],  generated by linear feedback shift registers. Un-

fortunately, there are only relatively few rn-sequences for a certain length which means that they 

are of only limited use for DS-CDMA systems. To gain increased capacity (at the expense of al-

tering the correlation properties slightly), a pair of rn-sequences may be used to construct a set of 

Gold sequences [43], which have the property that the crosscorrelation is always 1 when the phase 

offset is zero. Nonzero phase offsets produce a correlation value from one of three possible values. 

The choice of preferred pairs of rn-sequences is described in [41].  Since their synchronised char-

acteristics are good, while their unsynchronised characteristics are not excessive, Gold sequences 

offer a reasonable choice of spreading sequences for DS-CDMA systems. Since pseudo-random 

sequences aim to approximate the properties of white Gaussian noise, they are also referred to as 
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pseudo noise (PN) sequences. 

Orthogonal sequences such as Walsh codes [44]. They offer maximum capacity if synchronised, since 

they are mutually orthogonal. However, the auto- or cross-correlation of Walsh sequences can 

take on very high amplitudes when correlating them with time delayed versions of the same or 

different codewords. Thus, Walsh codes are not suitable for transmission through a multipath 

fading channel, since orthogonality of the codes cannot be maintained. 

The non-orthogonality of the spreading codes ultimately limits the channel capacity. The characteristics 

of spreading sequences can be improved by using a hybrid of PN and orthogonal sequences. For instance, 

Walsh codes may be scrambled by very long PN or random codes, which improves their cross-correlation 

properties. For instance, for UNITS the spreading codes on the downlink consist of an orthogonal code 

scrambled with a very long Gold code of length 218 - 1 [5].  The orthogonal codes have a variable 

spreading factor between 4 up to 256, to provide services with different data rates. 

3.2 Channel model 
This section will seek to define the characteristics of a typical mobile radio channel observed in urban 

areas. Specifically, environments containing a number of obstacles, such as buildings, walls and traffic, 

will be considered. For this case modelling the radio channel by a single line of sight (LOS) is in-

adequate, since there are usually many buildings between the transmitter and receiver. The radiated 

electro-magnetic (EM) waves are reflected randomly by a large number of obstacles until they finally 

reach the receiver. Many of these local propagation paths contribute to the radiation measured at the 

receiver's antenna. Moreover, if a EM wave is reflected on a rough surface, the reflected EM wave will 

be a superposition of many rays. The reflection and defraction on rough surfaces is termed scattering. Of 

all mechanisms by which the signal may propagate through an environment this occurrence is the most 

difficult to predict analytically [45].  The propagation channel is illustrated in Figure 3.2. 

In the following the properties of a multipath fading channel will be discussed. The channel simulator 

will be described which is used for simulation work in subsequent chapters. 

Base Station 

Figure 3.2: The urban radio channel. 
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Figure 3.3: The Doppler effect. 

3.2.1 The Doppler effect 

Suppose the mobile is in motion with respect to the base station, the nature of the propagation channel 

varies with time due to the Doppler effect. Suppose a sine wave with frequency f is transmitted from the 

mobile. The mobile is travelling with velocity v, with angle Q between the velocity vector and the vector 

to the first reflector, as illustrated in Figure 3.3. Then the receiver will observe a change in frequency ii 

called the Doppler frequency, given by 

IC 
Li = - V COS 

CO 
(3.3) 

where c 0  denotes the speed of light. Denoting the maximum Doppler frequency by Umax = Ic V/CO, 

changes of ii are in the range [—Umax, Umax], dependent on Q. 

3.2.2 Describing a multipath fading channel 

When transmitting a signal s(t) over a multipath channel, several time delayed copies of the signal will 

be observed, due to a large number of propagation paths. Hence, one characteristic of the multipath me-

dium is the spread in time. A second characteristic is due to the time variations of the channel caused by 

the Doppler effect. The propagation paths contributing to the received signal, appear random to the user 

of the channel. Therefore, it is reasonable to characterise the time-variant multipath channel statistically. 

The received signal is assumed to be wide-sense stationary (WSS). It is assumed that different propaga-

tion paths are mutually uncorrelated, which appears reasonable, since these paths are due to reflections 

located at different places. This effectively means that propagation paths with different time delays i-  (t) 

are uncorrelated. This is called the WSS uncorrelated scattering (WSS—US) assumption [46]. 

A large number of propagation paths are assumed to contribute to the received signal: associated 

with each path is a propagation delay r  (t) and an attenuation factor a. The overall received base-band 

signal is the summation over all propagation paths, given by 

X (t) = E an e_12jcT 	s(t - r(t)) + n(t) 	 (3.4) 
72 

where n(t) is a complex valued, additive white Gaussian noise (AWGN) of power 	= N0 . The 

amplitudes an  may be modified to include a log-normal term to simulate shadowing effects, due to 

the movement of the mobile of longer distances [47,48]. This long-term fading characteristic is due to 

propagation paths which might be suddenly blocked by an obstacle, while others may appear. However, 
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for time intervals of interest, i.e. only a few data samples T3 , the impact of shadowing is negligible and 

will not be considered. 

According to (33), the phase changes of path n are in the form 

ço(t) 	27rfr0(t) = 27n.t + 0 	 (3.5) 

where iç is the Doppler frequency of path n. The random phases 0,, are described by uniformly dis-

tributed random variables defined over [0, 27r]. According to (33), the Doppler effect causes a spectral 

broadening to the received signal within the range [vmax, Umax]. 

The phase of the nth propagation path (t) will change by 360 0  whenever t changes by 1/tc, which 

may be only a fraction of a 1 ms for a high carrier frequency .f  and mobile velocity v. For instance, for a 

carrier frequency of f, = 2 GFIz and a mobile velocity v = 120 km/h the maximum Doppler frequency 

becomes Umax = 222 Hz, according to (3.3). Thus, the time duration of a phase change of 3600  is at least 

t = 4.5 ms. 

These phase changes will result in signal fading. That is, the randomly time-variant phases ça(t) 

associated with the term c n e_i 7 (t) may result in adding up destructively. Then, the resultant received 

signal x(t) is practically zero. At other times, the terms aei'() add constructively, so that the 

received signal amplitude is large. 

The time variant channel impulse response (CIR) is obtained from (3.4) as follows 

h(r,t) = 	 (r - r(t)) 	 (3.6) 
n 

The Fourier transform of h(r, t) can be taken with respect to the time delay i-  and the observation time t, 

yielding the transfer functions H1 (f, ) and HD (r, U), respectively. This dependence of h(r, t) on two 

variables implies that the frequency components of the transmitted signal in general suffer from two 

independent types of fading: first different frequency components will generally not observe the same 

fading, termed frequency-selective fading. Second the fading is time variant with respect to the obser-

vation time t. In the Doppler frequency domain the time variant channel is dependent on the Doppler 

frequency U. The time variations caused by the Doppler effect, are characterised by a spectral broad-

ening, termed the Doppler spread. Since the Doppler spread is within the range [Umax, Umax], it is a 

strictly band limited process. The difference in observation time At where Hf(f, t), or correspondingly 

h(r, t), does not change significantly is denoted as the coherence time At,, given by the reciprocal of the 

Doppler spread. Clearly, a slowly fading channel has a large coherence time. 

The range of frequency translations where the autocorrelation of H1 (f, ) is high in the f variable 

is defined as the coherence bandwidth Af,. Thus, two sinusoids with frequency separation smaller than 

zf, will be affected by the channel in the same way. So, if signal bandwidth W of the transmitted 

signal is much smaller than the coherence bandwidth of the channel Lf, the channel is said to befre-

quency non-selective or flat fading [7].  This implies that the time-variant transfer function H1 (f, t) is a 

complex valued constant in the frequency variable, i.e. H1 (f, t) = Hf(0, t). On the other hand, if the 
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bandwidth W is larger than Af, the channel is frequency selective. An analogous characterisation of the 

channel is in the time domain. The multipath delay spread rd defines the range of time delays r were the 

auto-correlation function of the channel impulse response is essentially non-zero, and it is given by the 

reciprocal of the coherence bandwidth 

Mathematically, a fading multipath channel can be described by its auto-correlation function (ACF). 

Assuming a WSS—US channel the ACF is in the general form [46] 

E[ h(71 , t) h*(r2,  t+ At)] 	hh( 7-1, 7-2; Lit) = Ihh( 71, z) 8(7 1  - 72 ) 	(3.7) 

Note that the ACF can be written in a product form: 

hh (r1 , Lt) = Ohh (Lt) R(r1 ) 	 (3.8) 

where Ohh(L)  is mathematical equivalent to Ohh(O,  At). Thus the ACF consists of a term describing 

the time variations of the channel, due to the Doppler spread, c'hh(Lt);  and the power profile of the 

channel R(ri ). 

3.2.3 Tapped delay line model of the channel 

Using PN sequences to modulate the information bearing signal means that the assumption of a narrow-

band signal no longer holds. In this case, the bandwidth of the transmitted signals s(t) is significantly 

larger than the coherence bandwidth of the channel 

W>> d LVC 

As the bandwidth of the signal s(t) increases, the behaviour of the frequency components tend to become 

uncorrelated, because the electrical length of the propagation paths is different. This results in a disper-

sion of time delays of the propagation paths contributing to the received signal, which is larger than the 

delay spread rd of the channel. In other words, if two sinusoids, separated by a finite frequency range 

propagate in a medium, they will not be distorted in the same way. 

However, this does not affect two frequency components with only a small difference in frequency [ 1 5]. 

With the assumption that the duration of one chip-length T = 11W is much smaller than the delay 

spread Td,  s(t) can be approximated as a constant within T, such that 

s(t - r(t)) 	- q/W) ; 	for 	< 7,, (t) < 

Thus, the set of all r 's in (3.4) can be partitioned into Q disjoint sets Qq, q = 11, . . .  Q}. Since the total 

multipath spread is Td, for all practical purposes the number of sets can be truncated at Q = [TdW] + 1 
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SW 

X(t) 

Figure 3.4: Tapped delay line model of a frequency selective fading channel. 

taps. The standard frequency-selective multipath description of the fading channel obtained is 

Q 	 Nq 

x(t) = 	s(t - 7-q)a e_j(2 	+ n(); 	
Tq = q - 1 

W 
q=1 	n=1  

Q 
L= 	s( - rq ) h q (t) + n(t) 	 (3.9) 
q1 

where h (t) is defined as the CIR of subset Qq.  A frequency selective channel can be modelled by Q 

independent and time delayed flat fading channels. Thus, the channel may be modelled with a finite 

impulse response (FIR) filter having Q fingers or taps. This is called the tapped delay line (TDL) model 

of the channel and it is illustrated in Figure 3.4. In terms of the h. (t), the overall CIR of the channel 

becomes 

Q 
h(r,t) = >hq (t) 8(r_7-q ) 

q =1 

It is assumed that the CIR consists of a large number of propagation paths, so that the central limit 

theorem can be applied. That is, the number of paths approach infinity N. -+ oo, yielding a complex 

valued random variable h, (t)= ag (t) 

Where a line-of-sight (LOS) path exists between the transmitter and receiver, the CIR hq  (t) follows 

a Rician distribution [14]. Mathematically, the contribution of the LOS path corresponds to the mean 

of the CIR, E[hq (t)]. On the other hand, if there is no LOS path the CIR is zero mean and h q (t) is 

Rayleigh distributed, which is the worst case situation. Moreover, since E[ hq  (t) J = 0, Rayleigh fading 

is easier to describe mathematically. Thus, only Rayleigh fading will be considered in this thesis. The 

Rayleigh distribution is the most common statistical characterisation of the fast-fading envelope of the 

CIR, aq (t) = Ihq (t) I' and is given by 

1 = 	 (3.10) 

where d2 = E [ cr(i)]. The phases /) q  (t) = arg[hq  (t)] are uniformly distributed over [0, 27r]. Assuming 

independent Rayleigh fading of the diversity branches, the composite path weight a(t) = >q aq(t) 

follows a x 2—distribution with 2Q orders of freedom [7]. Another fading distribution, termed Nakagami- 
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m distribution [49,50] fit some experimental results more closely. 

3.2.4 Power profile of the channel 

In general, as the time delay increases the measured mean power of the received signal will decline. The 

mean power of a propagation paths measured at the receiver, arriving with relative time delay r with 

respect to the first path, is given by the power profile of the channel. The power profile determines the 

attenuation of tap q, which is R(7q ) according to its definition in (3.8), for a time delay of Tq  = (q-1) / W. 

Physically speaking, the power profile represents the mean attenuation factor of a group of propagation 

paths impinging within the time range [q/W, (q + 1)/W]. That in turn allows the determination of 

the tap weights, i.e. the mean loss of power a received signal suffers at the q tap. It also allows the 

determination of the number of significant taps Q, which is the time range over which R(7q ) is effectively 

non-zero. Note that hq (t) h(t) = a(t), thus the power profile simplifies to R(7q ) = ã. 

The channel model proposed for the UMTS terrestrial radio access (UTRA) [51] describes a number 

of different scenarios. For the vehicular model, these are "Vehicular A" and "Vehicular B". For Vehicu-

lar A the delay spread is Td 2.7 ps, the number of significant taps are Qo = 8. However, the number of 

channel taps can be lowered to 4-6 without significantly affecting the performance [51]. For Vehicular B 

the delay spread is significantly larger, rd 20 jis, whereas the number of significant taps are Qo = 6, 

with the number of significant taps being much smaller than Q = rd W. 

3.2.5 Fading distributions 

In this section modelling a fading channel will be considered, in order to describe the fading effects 

mathematically, in terms of the observation time I, or equivalently, the Doppler frequency ii. The Fourier 

transform of cbhh(rq , it) yields the Doppler power spectrum of the channel SD(Tq , v), which may be 

expressed in the product form SD (rq, i') = SD, q (u) R(rq ). The Doppler power spectrum of the q th tap 

SD,q (11) represents the Fourier transform of the ACF Ihh (Lt) in (3.8). 

V - max 	 Vm 

Figure 3.5: Power spectrum of the classical Doppler model. 

Classical Doppler model: In the UTRA channel model [51] the model due to Clarke [52] has been 

chosen for all channel taps, termed the classical Doppler model. For a carrier frequency of f = 2 GHz 

and a mobile speed of v = 120 km/h, resulting in a maximum Doppler frequency of 'max = 222 Hz. 
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Other studies of the profile, such as the COST-207 report [53], show two independent modes of scatter-

ing: near-in and far-out scattering. Near-in scattering refers to propagation paths due to buildings in the 

near vicinity of the mobile. The model assumes a carrier frequency of f = 900 MHz. For this frequency, 

near-in scattering is adopted for time delays r < 500 ns, or correspondingly the first two taps at the given 

frequency. 

Mathematically, the power spectrum has the following form [47,52] 

- ______ 
Ii.'I < V.". 	 (3.11) SD(rq,V) 

1 
- k;)

2 
 

The Doppler power spectrum of the classical Doppler model is depicted in Figure 3.5 This equation gives 

rise to singularities at 1/ = ± vmax ; however, the general form of the spectrum fits closely to observed 

power spectra. The Fourier transform yields the auto-correlation function of the impulse response at 

delay Tq  

hh(Tq,) =äq Jo(2irvmax L.t) 	 (3.12) 

This model is by far the most commonly used and will be employed to model the statistics of the CIR in 

the remainder of this thesis. 

SD(to,v) 

— V2 	 V1 

GAUSS 1 GAUSS2 
V1 08 max  0 7 max 

0 1 0.05l1max  0.1 11max  
112 0.411max  0'4'max 

O.11lmax  O.lSVmax  
A2 [dB] -10dB -15dB 

Figure 3.6: Doppler power spectrum of the Gaussian model. 

Gaussian fading model: A model for the far-out scattering is described in the COST-207 model [53]. 

The far-out scattering model is based on RF measurements on physical mobile channels. Measurements 

suggest that as time delay r increases a transition in the Doppler profile occurs. That is, most of the 

propagation paths are caused by isolated reflections such as large buildings or hills. In the COST-207 

model peaks in SD (rq , v) are approximated as a Gaussian distribution .N(V, v.2) = exp[— (v — V) 2 /20 2 ], 

where 17 denotes the mean Doppler frequency and o.2  is the standard deviation, which specifies the sharp-

ness of the peak. Fourier transform with respect to v yields the ACF 

= exp [ji7Lt — 0.2 L1/2] 	 (3.13) 
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The COST-207 models describe two types of Gaussian model, each of which is the summation of two 

Gaussian profiles .1V(i, o- ), dependent on the time delay Tq  (see Figure 3.6), defined by 

SD(Tq ,U) = a [JV(i'i,oi) +A2.N(i72,o2)] 	 (3.14) 

The type 1 model, termed GAUSS!, is deemed appropriate for time delays of 'rq  = [500 ns, 2 ps], 

while the type 2 model (GAUSS2) is used for excess time delays greater than 2 Its. The parameters for 

the models GAUSS 1 and GAUSS2 are given in the table of the right hand side of Figure 3.6. 

Note, this type of filtering is much more difficult to simulate, as its Doppler power spectrum is not 

symmetrical about the y—axis, giving rise to a complex ACF in (3.13). 

Rectangular spectrum: The simplest approximation of the Doppler power spectra is to assume a uni-

form distribution within the interval ii = [ iimax, i/max], defined by 

{ 	L. 
kuIi1rnax 

	

SD(Tq,V) 
- 	2v,,,, 

	

- 	
(3.15) 

0; 	elsewhere  

The ACF becomes 4'hh ( 7-q, At) = ã sin(27r UmaxL\t)1(27r max1i). The rectangular Doppler power 

spectrum is commonly used to model the indoor multipath fading channel. 

In general however, the distribution of the Doppler frequency is of less importance to assess the 

system performance. What matters is the maximum Doppler frequency umax;  it specifies the variations 

in time of the received signal and hence indicates how fast the fading is. 

3.2.6 Simulating the channel response 

For computer simulations carried out in this thesis, the fading distributions discussed previously were 

approximated by filtering a noise source according to [54,551. Let Gq (p) denote the transfer function of 

h q  (t) (the Laplace transform with respect to the observation time t), then the Doppler power spectrum 

can be expressed as [25] 

SD(rq ,v)=Gq(p)G(— p) 
p=227rv 

Following [54,55], the transform function is chosen such that SD (rq , ii) is closely approximated, using 

a 4th  order hR filter. As the fading distributions are a strictly band limited processes, Gq  (p) is clearly a 

low-pass filter. In particular, the filter employed to adopt the classical Doppler model is constructed as 

a cascade of two second order Butterworth low-pass filters. One is a standard filter, while the other is a 

modified version that rings at the cut-off frequency, to accommodate the singularities at ± max 

Modelling discrete-time waveforms In order to implement digital filters for the use in computer sim-

ulations, the continuous-time waveform h q  (t) is modelled as a discrete-time waveform hq  (k) = hq  (t = 

kT3 ). The term 11T3  denotes the sampling frequency. 
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Since Gg (p) is the transfer function in the Laplace domain, it needs to be adopted for the implement-

ation as a digital filter. The bilinear z—transform [25] was used to transform Gq (p) into the z—domain, 

yielding Gq  (z). The filter coefficients { gn  2 land {g }, representing the nominator and denominator of 

Gq  (z), respectively, yield the 4 th  order hR filter which generates the CR 

4 	 4 

hq(k) = Egd,i h q (k_i) + Eg., j n(k—i) 
1=1 	 irO 

where n, (k) is a complex valued white Gaussian noise process. The above equation implies that the CR 

is modelled by a 4th  order auto-regressive moving average process (ARMA). 

It is useful to define the normalised Doppler frequency in terms of the sampling frequency l/T, as 

ii' = vT'3 . This notation will be used throughout this thesis. For discrete-time waveforms the ACF of the 

channel from (3.8) can be rewritten as 

	

E[hq (k)h(k+Lk)] 	çbi,g (ik) 	ächh(Zk) 	 (3.16) 

where Lk = Lt/T,. For instance, assuming a classical Doppler model from (3.12), the ACF becomes 
d2 J0 (27rv k). This notation for the ACF will be extensively used in this thesis to generate the 

covariance matrix 4hh  defined in (2.11). For a flat fading channel ä can be normalised to one, hence 

qShh (k) suffices to describe the channel statistics. For the frequency selective case the tap weight of 

the qth tap relative to the first one was set to = i.e. the average power of this tap is 3 d 

less than tap q-1. To allow fair comparison between channels with different numbers of diversity taps, 

the mean d2  is chosen such that the the sum of all tap weights added together always equals the signal 

energy E, of duration I',: 

	

Q 	Q 
E, 	 = 221—q 	 (3.17) 

	

q=1 	q=1 

3.3 RAKE Receiver front-end 
Multipath reception over a frequency selective fading channel is one form of diversity reception, in 

which information flows from transmitter to receiver via natural diversity. Thus instead of regarding the 

rnultipath receiver as a nuisance disturbance whose effects are to be suppressed, it should be regarded as 

an opportunity to improve system performance. A RAKE receiver is an application of a diversity receiver 

used in spread spectrum systems. RAKE reception has received much attention since its introduction in 

the late 1950s by Price and Green [56]. Theoretical and practical aspects have been extensively studied 

since, the results are summarised in e.g. [7, 15]. A RAKE filter can be split into two main parts: first 

a tapped delay line (TDL) to despread the received signal; and second a weighted combination of the 

diversity branches. If the number of multipath component is higher than the receiver can process, the 

TDL approach becomes too complex. This problem may be handled by some sort of selection diversity, 

where RAKE fingers are placed on a subset of decision delays. In order to do that, the delay of the main 
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Figure 3.7: Block diagram of the receiver front-end. 

multipath components needs to be estimated. 

In this section the receiver front-end including the despreading unit using a TDL is described. The 

RAKE combining of the diversity taps will be discussed in subsequent chapters. 

After low-pass filtering the received signal x(t) at the input of the despreader consists of several time 

delays copies of the transmitted signal s(l) which fade independently, due to the frequency selective 

channel. Taking the spread transmitted signal s(l) = Et, d(k) c(t—kT 3 ) and put it into (3.9), which 

represents the tapped delay line model of the channel, yields the pre-correlation received signal 

Q  

= 	h (t) d (k) c (i—kT 5  —Tn ) + n(t) ; 	r, = (p— 1)T 	(3.18) 
P=1 v1 

The signal of the desired user u can be recovered by applying the spreading sequence c (t) to time 

delayed copies of the received signal. This may be achieved by feeding x(t) through a TDL [56] shown 

in Figure 3.7. The signal after despreading and sampling is for RAKE finger q = {1,'•• , Q} 

kT 

yqu (k) yu (kTs  — rq) 
= JT. 	

x(t) c u (t—kT s —rq ) dt; 	= (q-1)Tc  
 (k—i) 

The code sequences are constructed such that they are cyclo-stationary, that is c (I ± N T) = c (I), 

with NT = T3  being the symbol duration. For the evaluation of the integral it is assumed that h(t) 

from (3.18) is approximately constant for one symbol interval 1'. This idealised assumption allows all 

subsequent processing to be carried out on the symbol level. Although, for very fast fading this assump-

tion does not hold any longer, thus y ( k) must be processed at chip level. This however, increases 

the computational complexity by the processing gain N. Therefore, chip level processing will not be 

considered further on. Furthermore, inter-symbol interferences (1ST) of the data bearing symbol are neg-

lected, which is a reasonable assumption for modest delay spreads and large processing gains. Now the 
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post correlation received signal can be expressed as 

Q U 	 T, 

yqu (k) = 	>dv(k)hp(k) f c(t—r,) c u (t —rq ) dt +n'(k) 	(3.19) 
P=1 V=1 	 11

0  

p,,(p-q) 

where n'(k) = f n(t)c(t—kT 3  _rq ) dt is a white Gaussian noise process with A([0, Nop(0)]. The 

term Pv (p - q) represents the correlation coefficient between codes u and v with the relative delay 

(T-n  _rq ). Recall the definition of the spreading sequence c. (t) = En  cu[n] g (t—nT) from section 3.1.1. 

Given the pulse shaping filter g(t) satisfies the Nyquist criterion, the code correlation can be expressed 

as 

p(p—q) = E c[np] cu [n—q] 
	

(3.20) 

Note that cases where n+p—q < 0 and n+p—q > Nc  result in 1ST. This means there are Q chips out of 

Nc  chips per symbol involved. MAT, i.e. the interference from other users, ultimately limits the system 

performance, which results in an error floor. Therefore the choice of code families with low correlation 

coefficients puv(•)  becomes crucial. The effects of MAT will be further discussed in section 6.6. 

3.3.1 Single user case 

Consider the case when there is no MAT present. This may be achieved by a genuine random code which 

has the properties of white Gaussian noise, that is 

	

1, 	u=v and i=q; 
puv (iq) = 	

0, 	elsewhere. 

Unfortunately, there exists no such code. Thus, this idealised assumption serves as a lower bound for 

systems with non-zero correlation coefficients Puv (.). If all interference due to other users is cancelled 

out the received signal simplifies to 

yg (k) = d(k)h q (k) + n(k) 
	

(3.21) 

where the subscript n to identify a certain user has been dropped. The single user case, which is a general 

order Q diversity system will be assumed in the Chapters 4-6. 

For realisable codes the effects of MAT can be taken into account by assuming that the interference 

is a white noise process in (3.21). Then the variance of the noise term n(k) is adapted to include thermal 

noise and the interference caused by other users. This simplified assumption is known as the Gaussian 

assumption. 

To allow fair comparison between receivers with different numbers of diversity taps, the tap weights 

= E[ Ih q (k)I 2 ] are chosen such that the average signal-to-noise ratio (SNR) always is = E3 1N0. 
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This is achieved by defining 

= a q  (3.22) 
No 	No 

q=1 

where the symbol energy E3  was defined in (3.17), and the noise power 	= No  was defined in sec- 

tion 2.1.2. 
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Chapter 4 
One Shot Receivers 

In this chapter sub-optimum but realisable receiver structures are discussed. Here detecting the received 

signal is carried out independently from estimating the CW. The correlation of adjacent samples is ex-

ploited for estimation. These estimates are used to decorrelate the received signal, such that detection can 

be performed on a symbol-by-symbol basis. The receiver follows the separation principle for detection 

and estimation discussed in section 2.2.2. 

4.1 The RAKE receiver 
In this section receiver structures are discussed for diversity reception of Q independent fading taps of the 

received signal. The single user case is considered, which according to section 3.3.1 yields the received 

signal of the q th  diversity tap yq (k) = d(k) h q (k) + n(k) with q E {1,... , Q}. Assuming that all Q 

taps fade independently, the estimate of the k th  information bit d(k) is given by 

(Q 

d(k) = max A(E,k) = maxRe[y(k) d(kIh q (k)1} 	 (4.1) 
LED 	 LED 

.. q=1 

where A(, k) denotes the decision variable and V represents the symbol alphabet. For binary modula-

tion, the decision of(4.1) can be achieved simply by extracting the sign, that is 

~q=l

d(k) = sgn 	Re[yq (k)h(k)]{-1,1} 

where sgn denotes the sign operator. For the case where the receiver has perfect measurement of the 

Cifi, (4.1) corresponds to maximal ratio combining (MIRC) [57].  The considered receiver structures 

are deduced from the conventional RAKE receiver [7], where hq (k) is replaced by its estimate hq (k), 

termed generalised MRC [58].  A block diagram of the RAKE receiver for binary signalling is depicted 

in Figure 4.1. 

Due to imperfect channel estimation, the SNR of the qth  tap, yq  (k), decreases in terms of the pre-

diction error f q  (k) = h (k) - hq  (k). The average SNIR of the signal of the q th  diversity tap, after 

multiplication with i(k), but before diversity combining, has the mean 

Re{E[ hq (k) h*;(k)] 
} 

q = 	No+E[Icq(k)121 	
(4.2) 

Optimising the estimate hq  (k) in the MMSE sense calls for minimising the estimation error EEl E q  (k) 1 2] = 

The tap weights &2 = E[ 1i g (1c)1 2 ], which accounts for the tap weights of the tapped delay line 
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Figure 4.1: Block diagram of a RAKE receiver with Q diversity taps for binary signalling. 

model of the channel, described in section 3.2.4, is chosen such that the average input SNIR always is 

= E3  /N0, according to (3.22). After diversity combining the average SNR at the receiver output is in 

the form 

Q 

7out=>J7q 	 (4.3) 
q =1 

Given the receiver has perfect knowledge of the CIR, i.e. h q  (k) = hq  (k) and Eq  (k) = 0, the output equals 

the input SNR, i.e. ut = E3 /N0 . The SNIR per tap from (4.2) accordingly simplifies to q = 

Otherwise, if only imperfect estimates of the CuR are available, the average output SNIR ut  is degraded 

by the MSE E [ IE q  (k) 1 2]  of the estimation error. 

With the output SNR, ut defined in (4.3), it is possible to evaluate the probability that d(k) is 

detected as an error, following e.g. [7, chp. 141. The probability of a decision error Pe  (yout)' conditioned 

on xut,  is given by the probability of a received signal error transmitted over an AWGN channel, with the 

SNR y. The SNR -)b ,,t is a sum of Q squared complex valued Gaussian distributed random variables, 

7q  (k), described by a non-central X 2—distribution with 2Q degrees of freedom [7], p (ut). To obtain 

the average probability of error, the conditional error probability, Pe  (i,ut), is averaged with the pdf of the 

multipath fading channel, PX 2  (yout)' over all 'y  ~! 
0, given by 

Pe = j PX 2  (but) Pe (fout) d70 	 (4.4) 

Considering BPSK, the error probability conditioned on fQut  is' P(- ) = erfc(/). After 

'The complementary error function is defined in [7]: erfc(x) 	=. f°° exp(—u) du 
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solving the integral in (4.4), the average probability of a bit error for BPSK is obtained 

Pe Hg{1_ F+ 	
Q - 

- 	- 	for BPSK 	(4.5) 1 ' 	 llq=fl 7q 
,=j fq - 7 

The case where the CIR is known a priori serves as a lower bound which will be used for comparison 

purposes throughout this thesis. The effects of imperfect channel estimation can be taken into account 

by inserting /q  from (4.2), into the above equation [59].  Alternatively, the bit error probability for binary 

modulation can be determined by using the characteristic function of (4.4). A general error formula for 

the pairwise error probability of a random signal disturbed by Gaussian noise was given by Barrett [60]. 

Barrett's formula will be applied to determine the error probability for BPSK in section 4.2.1. 

Two cases are considered for DPSK: the DPSK demodulation can be performed before or after the di-

versity combining in the RAKE receiver. The solution of the former case is described in e.g. [7, chp. 14], 

which will be coined conventional DPSK in the following. Since demodulation is done before com-

bining, the receiver is non-coherent. Hence, no channel estimation is required. The channel estimate 

is simply given by the received signal of the previous sample hq (k) = yq (k —1). Thus the correla-

tion E[hq (k) h(k)] equals the correlation of the CW E[hq (k) h(k_1)] = hh,q( 1 ) with the MSE 

E[ eq (k) 2 ] = 1— Ihh,q (1)1. Consequently, the mean SNR of tap q from (4.2) becomes 

Re{hh,q(1) } = 
NO + 1— 

With the conditional error probability for DPSK, Fe  (7out) = e /2, the average probability of a bit error, 

after averaging with pX 2  (ut) according to (4.4), becomes [7] 

Q- 1 Q-1-m 
2Q 1 	II / - 	

m+1 
Fe = 21-2Q 	 - 	 ' 	q 	 conventional DPSK 	(4.6) 

M=0 n=O 	
n ) q=i  q 1+ q ) 

where 11q was defined in (4.5). 

In the latter case the differential decoding is performed after diversity combining. In this case detec-

tion is performed in analogy to coherent PSK and the receiver output d(k) of (4.1) is then differentially 

decoded. This approach will be termed differentially encoded P5K (DEPSK) in the following. The di-

versity taps are combined coherently, thus a reliable estimate of the CW is essential. The benefit of this 

approach is that, given a sufficient channel estimate, the receiver performance can be improved. The 

performance improvements of such receiver structures will be assessed in section 4.3. An approximation 

of the error probability for that case was derived in [61]. 

Numerical results for BPSK and DEPSK with perfectly known CIR (labels "ideal BPSK" and "ideal 

DEPSK" respectively), and for a conventional DPSK receiver (label "DPSK"), are shown in Figure 4.2. 

The statistics of the channel are specified by the classical Doppler power spectra, having the ACF 

hh,q( 1 ) = Jo (2irz4ax),  due to Clarke [52] (see also section 3.2.6). Figure 4.2 shows the conventional 

DPSK receiver of (4.6) for some fading rates 1'i'nax  It is seen that the penalty of differential encoding of 
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Figure 4.2: BER vs SNR for some receiver types with different fading rates, v; Q = 1. 

the data bits is roughly 2.5 dB. For slow fading, there is little difference between the coherent combining 

DEPSK receiver with perfect knowledge of the CW and the conventional DPSK receiver. For fast fading 

however, the conventional DPSK receiver experiences an error floor, which increases with growing Vnax. 

It is the purpose of this chapter to lower the error floor of the conventional DPSK receiver with 

receiver structures which do not assume a priori knowledge of the channel response. The CIR can be 

estimated in various ways, dependent on the system model. If a pilot is provided, the detection and 

estimation task can be completely separated. This leads to pilot aided channel estimation discussed in 

the following section. For differential encoding of the transmitted signal, on the other hand, the CW can 

be estimated in a decision directed manner, discussed in section 4.3. 

4.2 Pilot aided channel estimation 
In this section techniques where channel estimation is performed by using pilots are considered, i.e. 

signals without data modulation. The CW estimate, hq (k), is not dependent on the decisions of past 

or future samples. The pilot symbols may be provided either in form of a parallel pilot channel or 

pilot symbols are multiplexed in the data stream, as described in section 1.2.1. If a pilot channel is 

employed, channel estimation is straightforward; the received pilot signal is identical to 4(k), given the 

pilot and the traffic signal are transmitted through the same physical channel and therefore undergo the 

same fading distortion. Performance comparisons between time-multiplexed pilot channel and parallel 

pilot channel were carried out for DS-CDMA systems in [62]. No considerable differences were found 

between the two techniques. However, one feature of the 3rd  generation WCDMA that is distinct from 

the IS-95 CDMA standard is that instead of a separate pilot channel several dB stronger than the user 

data channels, pilot symbols are embedded in the data stream, in both the up- and downlink. 

This section concentrates on pilot symbol-assisted channel estimation schemes where known symbols 

are periodically time multiplexed in the data stream for carrier recovery. So, one in R symbols is known 
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to the receiver followed by R —1 data symbols, corresponding to the ratio 1 : R. Proposed pilot aided 

receivers were based on a low order Gaussian interpolation [10,63,64] and Wiener filtering [11].  A pilot 

aided receiver applicable to 3 rd  generation mobile standards such as UMTSIIMT-2000 was investigated 

in [65].  There a short sequence of pilot symbols is embedded in the data stream, instead of a single 

pilot. The channel estimation technique involves using pilot symbols of several slots and weighing them 

dependent on the distance from the time slot to be detected. 

From the sampling theory point of view, the sampling rate of the received pilots is fp = 1/(RT3 ). 

This is R times less the sampling rate of the received signal, f = 1/T3 . Provided that the CuR is a band-

limited process, the sampling theorem [66] states that the CIR hq (k) can be recovered perfectly from 

noise free samples h q (icR), given that the samples are taken at least the Nyquist rate Rv maxTs  < 0.5. 

Then the fading characteristics are determined by the interpolation filter 

00 

hq (k) = 1: h q (nR) sinc(ir[k/R— ic]) 	 (4.7) 

where sinc(x) =A  sin(x)/x. If {h(icR)} is replaced by the noisy pilots {yp q (lc)} some degree of 

oversampling must be allowed to average over the noise. Introducing an oversampling factor of /3> 1, 

R can be determined by [66] 

R 	
2/3Lhi'nax 
	 (4.8) 

where U = llmaxTs  is the maximum normalised Doppler frequency. An oversampling factor of 3 = 1 

means that hq  (ER) is sampled at Nyquist rate. Hence, there is no redundancy but the noise bandwidth is 

large. For instance for a maximum normalised Doppler frequency of inax = 0.005 the maximum spacing 

of two adjacent pilots is R = 100 symbol intervals. Practically however, R should be much smaller than 

that, to allow some degree of oversampling in order to average over the additive Gaussian noise. The 

optimisation of the pilot symbol symbol spacing R is analysed in [67].  As a rule of thumb /3 = 10 offers a 

good compromise between redundancy and noise reduction. For the above example an oversampling of 

/3 = 10 leads to a multiplexing rate of R= 10. In [64] the CIR estimate h q (k) is obtained by applying an 

interpolation filter (4.8) to the pilots {ypq (K)). This is clearly sub-optimum for filtering of noisy signals, 

furthermore the filter is non causal, thus inducing a long decision delay. 

42.1 Pilot symbol based Wiener filtering 

A more sophisticated approach to estimate h q  (k) is to use a Wiener filter, which estimates hq  (k) based 

on the pilot symbols only. Let the received signal without data modulation be defined by y1q  (k) = 

hq (k) + n(k). To describe pilot symbol-assisted channel estimation it is useful to define a subset of 

the received signal sequence containing only the pilots, {yp q (K)} = {14(KR)), sampled at a R times 

lower rate K = [k/Rj. After the reception of a pilot symbol, a whole block of R - 1 data samples, 

{Y q  ([,c—zic]R + r)} with r = {1,... , R-1}, can be processed. One pilot followed by a block of R-1 

data samples is called a frame. The time delay An specifies which frame is to be processed. Thus, the 

38 



Chapter 4: One Shot Receivers 

AK 

r1 	
RH 

IJ1IIHIII 	Hil 
1 	ft 	I 	I 

K—AK 	K—I 	 K 	 K+l 

k, =R(K—AK) +r 

data 
stream 

K?] 
pilots 

Figure 4.3: Pilot symbol insertion (PSI) technique. 

desired bit which is to be detected, is accordingly k = (,c—i.a)r. Figure 4.3 illustrates how the pilots 

are placed in the data stream. 

Let the vector containing the recent M received pilots be denoted by YPq () = [Y'pq (ic - M + 

1),... , 4, ()]T of dimension CM.  With this definition, the covariance matrix of the pilots 4'p = 

E [ YPq 
(it) ypH(,) } can be specified. The entry of the mth  row and nth  column of the covariance matrix 

is given by 

{p}m n = E[ypq (K—n)y, q (l—m)] = E[y'(k—Rn)y'(k—Rm)] 	k = R (4.9) 

Furthermore, define the cross correlation vector between the desired sample Y'q  (k r ) and the pilots YPq 

The mth  entry of the cross correlation vector 	= E [ y * (k r ) YPq (ii)] can be expressed as 

{4Pr  }m 
= E[y*(k)Jpq(_m)] = E[y*(kr)y(k_Rrn)] 	kr=(Ic—Lk)R+r 

(4.10) 

The quantities (4.9) and (4.10) are necessary to evaluate the channel estimator. 

A positive An imposes a time delay of LKR symbols at the receiver output. Then the estimation 

filter is a smoothing type filter. On the other hand, setting An = 0 specifies a linear prediction receiver 

without an induced time delay due to channel estimation, at the expense of a somewhat poorer estimate 

of the CIR. With these definitions the CIR at time k, can be estimated as follows 

M-1 
H() 

i g (k r) = 	w"yp q (Ic—m) = W, 	yp q (?c) ; 	 k/Rj 	 (411) 
m=O 	 k, 	(K—)R+r 

r 	= 	{1,... ,R-1} 

(sic) 	 (sic) 	() 	(Aic) 	 MxR-1 where Wm,. is a coefficient of the matrix W 	= [w 1 	WR 1] of dimension C 	. The 

filter bank w() is the Wiener filter matrix of the data block to be processed. The column vectors 
(L.ic) 	(Ac) 	() T 	 th w, 	= [w1 ,. 	w,. ] are the estimators for the r symbol in the block, corresponding to the 

rth column of w(). In analogy to 2.19, the MSE of the estimation errors is minimised, E[ I fq (k,) 2], 

as a function of the weight vector 	with 

H() 
eq (k r ) 	y'(k,) - Ji g (k r ) = y'(k,.) - Wr 	yp q (?c) 

iE 
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()  

	

According to (2.18) the solution in the MMSE sense is, Wr 	= 	 , being the well known 

	

P 	Pr 

Wiener-Hopf equation. The auto- and cross-correlation quantities are defined by (4.9) and (4.10). It is 

desirable to find an expression for detection of an entire frame. The received signal of one frame is then 

processed by the filter bank w() . Now the estimation of a whole data block with delay Ar. is given 

by 

,hq ((ic_K+l)R)] T  = 	 yp g (k) 	 (4.12) 

The MMSE of the channel estimator, in analogy to (2.19) is 

H() 

	

n , q (r, LuI) = E[ k q (1 r )I 2 ] = E[ Iy(kr) - Wr 	
ypq(ic)12J 

.H() 	-1 () = lPPr  'P 4'Pr 

The smallest MSE is obtained by estimating the channel response with a delay of AK = M/2 pilots. The 

MSE monotonically increases towards estimating the channel response when A  tends to zero. 

Performance analysis In this section the evaluation of the error probability for pilot aided channel 

estimation is addressed. Its application to pilot aided channel estimation for a similar receiver was carried 

out by Kaasila and Mämmela [68]. The derivation of the error probability due to Barrett [60], was 

originally derived for maximum likelihood sequence detection (MLSD) for binary modulated signals. 

However, Barrett's formula can be applied to a wide range of different receiver structures. For a more 

thorough discussion of Barrett's formula, see the performance analysis of MLSD in section 5.1.5. 

Note, the probability of a bit error is dependent on its position relative to a pilot, since the MSE of 

the channel estimate, V2 (r), is a function of r. For binary modulation we have d(k) = 1-1, 1}. The 

decision variable from (4.1) can be rewritten as A(k, r) = Eq Re { Yq (k) (k) }, and choosing d(k) = 1 

if A(k, r) is positive and (k) = — 1 otherwise. Assuming that d(k) = 1 was transmitted, a negative 

A(k, r) equals a decision error. Thus, the probability of error is the probability that A(k, r) < 0, i.e. 

Pe  (r) = P (A(k, r) <0). In order to determine the error probability, the decision variable is cast into a 

quadratic form 

Q 

A(k,r) =>Re{yq (k)h(k)} =u"(k,r)Q(r)u(k,r) 	 (4.13) 
q1 

The column vector u(k, r) = {uT(k, r),... , UT k, r)JT  of dimension CQ(M+1),  contains the bit to be 

detected and the pilots used for channel estimation for all Q diversity taps. Its qth  entry Uq  (k, r) of 

dimension CM+1  is defined by uq (k, r) = [yq(k_M1R), ypq()]T.  The filter matrix Q(r) as well as 

= E{u(k, r) u"(k, r) ], which is the covariance matrix of u(k, r), are derived in Appendix A.M. 
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Applying Barrett's formula determines the probability of a bit error as a function of r, yielding [60] 

N N 1 
P. 	= 	

1 - 	
(4.14) 

A. (r)<0 '*n 

where the set {A, (r), n = 1,•• , N} are the eigenvalues of the matrix (r)Q(r). The average prob-

ability of error can be obtained by averaging Pe  (r) over r, that is 

R-1 N 	N 1 
Pe = R-1 	 1—(r)/A(r) 	

(4.15) 

)( - )<O .'*' 

Note that (4.15) is not valid if two or more eigenvalues are equal. For instance, this case occurs if 

the average powers of the diversity taps are equal and they have the same statistics, and therefore filter 

coefficients. It is assumed that the sequences are equally likely, so the error probability is the same for 

all hypotheses. The dimension of the matrices is N x N, with N = Q(M + 1). It should also be noted, 

that ,(0) Q is in general not a Hermitian matrix. The eigenvalue decomposition of a non-Hermitian 

matrix is a non trivial task. A solution to this problem is described in Appendix A.2. The eigenvalue 

decomposition was evaluated with a C function given in [69]. 

Numerical Results Some numerical results for the pilot aided receiver are presented in this section. 

The error probabilities are computed using (4.14) and (4.15) and are compared with Monte Carlo simula-

tions to prove their validity. Unless otherwise stated the results presented in this section, are based on the 

specification in Table 4.1 operating in a complex baseband urban channel according to section 3.2.6. The 

performance of the system was evaluated for one and two diversity taps. The statistics of the qth diversity 

tap are specified by the classical Doppler power spectra from (3.12), due to Clarke [52], described by the 

ACF Ohh,q (k) = JO(27iZ1 ax Lk). Generally, curves labelled "ideal" show the results when the CW is 

known a priori to the receiver, given by (4.5). 

Filter order M 4 
PSI rate R 10 
Number of diversity taps Q 2 
Mean SNR 5' 10 dB 
normalised Doppler ax 0.005 
Modulation BPSK 

Table 4.1: System & simulation parameters for the pilot aided RAKE receiver. 

In Figure 4.4 the average bit error rate (BER) is presented as a function of the average signal-to-

noise ratio (SNR) in a system with Q = 1 and Q = 2 diversity taps. The results which are obtained by 

applying (4.15), are compared with Monte Carlo simulations. It is seen that the performances improves 

significantly when the delay Aic is increased, since additional future samples are taken into account, 

which improve the channel estimate. Diversity is seen to improve the performance significantly. The 

difference between the lower bound where the CW is known to the receiver and the PA—RAKE is seen 
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Figure 4.4: BER vs SNR for different numbers of diversity taps Q of a smoother (sic = M12) and linear predictor 
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Figure 4.5: BER vs normalised Doppler frequency, ii, for pilot multiplexing rates, R; 
(a.) An = 0 (linear predictor) and (b.) A r. = M12 (smoother). 

to be constant relative to Q, if the SNR is reasonably high ( ~ 5 dB), being approximately 3 dB for 

An = 0 and 1 dB for An = M/2. For low SNR values ( < 5dB), however, the difference between the 

PA—RAKE and the lower bound increases as diversity is introduced to the system, comparing the graphs 

for Q = 1 and Q = 2. This is because, increasing the number of diversity taps Q, effectively means 

a decrease of the SNIR per tap, q  of (4.2), due to a constraint input SNR = E3 /No. This results in 

an increased MSE E [Ic q  (k) 1 2 ], since channel estimation is performed for every tap separately, which 

will in turn reduce out  according to (4.3). This affects the system performance of the PA—RAKE for low 

SNR,' <5dB. 

The bit error probability degrades, however, when the maximum Doppler frequency, Umax, is in-

creased, as shown in Figure 4.5 for different numbers of multiplexing rates R. For low Doppler fre-

quencies ( max  < 0.01 for R = 10), the dependence on R is more pronounced for the linear predictor 

in Figure 4.5.a, with respect to the smoother in Figure 4.5.b. So, less system overhead, i.e. a lower 

multiplexing rate R, may be achieved at the expense of a larger decision delay zicR by using a smoother 
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instead of a predictor. For large Doppler 'ax,  however, the PA—RAKE breaks down. The reason is, 

the PA—RAKE performs channel estimation with a R times lower sampling rate, i.e. if the data rate is 

1 1T., the sampling rate for the pilots becomes 1 / (RT5 ). Moreover, if the Doppler frequency exceeds 

i' ~
: 

1/(2R), aliasing effects occur. It is seen that by doubling R, the maximum Doppler frequency, 

11nax' to achieve the same error probability, is approximately halved. On the other hand, for low Doppler 

('-'max < .001) there is little difference between the smoother and linear predictor and the performance 

is also hardly dependent on R. The curve labelled R = 1 shows the performance of a reference sys-

tem which uses every sample for channel estimation, i.e. each sample is a pilot (this may be achieved 

by a pilot channel, or to neglect decision feedback effects), serving as a lower bound for the system 

performance. 

4.2.2 Iterative channel estimation 

Iterative channel estimation (ICE) is a method that uses both pilot and data symbols to estimate the CIR. 

The word iterative indicates that the received signal is processed in two (or more) stages. In the 1st  stage 

an initial channel estimate is made using only the pilot symbols, and then channel estimates are refined 

in one or more iterations by using both pilot and data symbols. Iterative channel estimation for a frame 

structure used for UMTS was developed by Schidl et al [70],  and it was shown that the quality of the 

channel estimates can be significantly improved with ICE compared to non-interative channel estimation. 

Due to the sampling rate of the pilots fp = 11(RT3 ), being a factor R under-sampled with respect to the 

data rate, channel estimation may be improved by incorporating data symbols in the estimation process. 

In order to do that, the modulation of the data symbols is to be removed by means of decision feedback, 

thus introducing error propagation. 

With a 2—stage receiver, data decisions concerning the future symbols of the 2nd  stage are provided 

by the output of the 1 11  stage. In the 1st  stage the pilot aided receiver discussed in the previous section 4.2 

is employed, to make tentative decisions on the symbols. For the 2nd  stage a smoothing type FIR filter 

is employed, using M/2 tentative decisions {d'(k)} of the Pt  and the final decisions { 2)(k)} of the 

2u1 stage, respectively, given by 

M 1, m<M/2 
(k—M12) = E  w 	(k—m+1) yq(km+l); 

= { 2, m > M12 
m 1 

m~ M1 2  

= w (2)T 3q (k) 	 (4.16) 

where the superscript i = 1 1, 2) denotes the decision output of the Pt  and 2nd  stage, respectively. The fil-

ter w° = [w,... ts I21 , 0, w/2+i,... , W2 denotes denotes the vector containing the filter weights 

of the 2nd  stage estimation filter of dimension CM+1 . The 2nd  stage smoother can be calculated using the 

Wiener-Hopf equation in (2.20). According to the discussion in section 2.1.4 the filter in (4.16) omits the 

coefficient w 12 . This enables the receiver to generate the filter w° based on noisy snapshots. A block 

diagram of the filter is shown in Figure 4.6. Finally, the decision variable of the 2nd stage is 
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Figure 4.6: The 2nd  stage channel estimation filter. 
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Figure 4.7: BER vs SNR of an PA-RAKE with ICE for different numbers of diversity taps Q. 
(a.) AK = 0 (linear predictor) and (b.) zic = M12 (smoother); 	M = 4, M2  = 8. 

Q 
(2)(k) = 	 h121 

q=1 

and is then passed to the decision circuit to obtain 2)(k). 

Simulation Results For simulation work the same system model as in the previous section was used, 

defined in Table 4.1 and section 3.2.6. The benefit of ICE is assessed with computer simulations and 

compared with results from the previous section. For the 1 1t stage a PA-RAKE receiver with M = 4 

coefficients was employed. The estimation filter was either (a.) a predictor with LK = 0, or (b.) a 

smoother with An = 2. For the post-processing in the 2nd  stage a smoothing type filter with M2 = 8 

coefficients for (a.) and (b.) was used. Simulation results of the system performance against the SNR 

are shown in Figure 4.7. Iterative channel estimation particularly improves the BER at high SNR. This 

is an expected result since the decisions of the 15t  stage are more reliable and decision errors have less 

impact on the processing in the subsequent stages. The improvement of the receiver labelled (a.) is 

particularly impressive, bearing in mind that the linear predictor in (a.) of the 15t  stage has no decision 

delay, compared to the smoother in (b.) which induces Rz.k =20 symbols decision delay. However, in 

order to improve the performance the BER of the 1St  stage needs to be below approximately Pe,jst 10-2. 

25 
	

30 

(4.17) 
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Figure 4.8: Block diagram of the qth tap of a decision directed (DD) diversity receiver. 

Consequently, with ICE the performance cannot be improved at low SNR or fast fading. 

It was pointed out in [70] that the extra complexity to implement ICE is very modest compared to 

other DSP requirements in a mobile handset. Hence, ICE is easy to accommodate with today's DSP 

technology and is very attractive for applications in future mobile systems. 

4.3 Decision directed channel estimation 

If the transmitted signal is differentially encoded, a decision directed type of receiver may be used. 

Clearly, differential encoding of the data bits does not essentially require any knowledge of the Cifi. 

However, in a fast fading environment, a conventional differential receiver suffers from an irreducible 

bit error rate (IBER), due to the induced phase lag of two adjacent samples (see Figure 4.2). The per-

formance of conventional DPSK receiver in a fast fading environment may be significantly improved by 

means of DEPSK, if an accurate estimate of the CIR is available. For DEPSK detection is performed in 

analogy to coherent PSK and the receiver output d(k) of(4.1) is then differentially decoded. Employing 

a decision directed receiver, the data modulation of the received signal is removed by using decision 

feedback. The motivation behind this is, that for sufficiently high SNR, virtually all decisions are correct 

in the feedback loop. Using decision feedback the pre-multiplied received signal is y ' , (k) = ãk) Yq  (k), 

where d(k) is the output from the decision circuit after the diversity combining. The pre-multiplied 

received signal, y(k), is then used for channel estimation. 

4.3.1 Linear predictive channel estimation 

For channel estimation, a 1—step linear predictor from (2.17) is employed, having the form 

M 

hq (k) = >w n y'q (k_m)=w"y'q (k_1) 	 (4.18) 
M= 1 

where the filter w = [w 1 ,... WM]T  is determined by the Wiener-Hopf equation in (2.18). The neces-

sary phase reference is given by differentially encoding of the transmitted signal. Thus, the information 

bit is extracted from (k) in (4.1) by zã(k) = d(k) i(k-1). The obtained receiver is termed de-

cision directed RAKE receiver (DD—RAKE). A block diagram of the DD—RAKE is shown in Figure 4.8. 

Another possibility of performing an one-step prediction is to use an infinite impulse response (1W) fil-

ter (see section 2.1.5). The 1St  order 1W filter applied to decision directed diversity reception has been 
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Figure 4.9: Phase of the channel estimate arg [i(k)] vs time k, compared to the CIR with and without AWGN. 

studied for example in [61]. Unfortunately, the IBER of a conventional differential receiver cannot be 

lowered with that technique [61]. 

In the following, the work of Laurenson and Povey [55,71] is continued to study the effects of error 

propagation, due to decision feedback. In order to assess the decision feedback effects, the DD—RAKE 

is compared with a receiver where all the decisions are correct in the feedback loop, i.e. 14(k) = 

d(k) y q (k). The hypothetical decision d(k) has been replaced with the true transmitted symbol, d(k). 

This is termed the decision aided RAKE receiver (DA—RAKE). The assumption d(k) = d(k) is often 

made for analysis purposes, as decision feedback effects are difficult to analyse. In a practical situation 

this may be achieved by employing a pilot channel . 2 

The phase slip effect Since channel prediction is performed on a decision directed basis, error propaga-

tion effects occur, which may lead to a so-called phase slip. Figure 4.9 illustrates a phase slip of the 

estimated CIR, arg [(k)], in the time domain, compared to the true CIR with and without AWGN. It is 

seen that the receiver can be locked in a false state, where the channel estimator phase is flipped (shifted 

1800 relative to the CIR phase) i.e. arg [(k)] = arg [h(k)] + ± ir, where çp, denotes the prediction 

error phase. This can be observed in the graph between samples k [17, 331. In this interval the sign of 

the detected bit is the conjugate of the actual transmitted bit, that is d(k+n) = —d(k+n). The receiver is 

entering the false state after an error burst, i.e. a series of decision errors, which may occur during a deep 

fade. Such an error burst causes the decision directed predictor in (4.18) to lose track of the CW phase. 

After the occurrence of a phase slip the predictor remains locked until the following phase slip, as shown 

in the graph. While this effect causes severe degradation for a coherent receiver, no such implications 

are observed for differential encoding, since only the difference of the phases of two consecutive bits are 

considered and not its absolute values. 

Simulation Results The theoretical analysis of a decision directed receiver is somewhat difficult as 

the number of decision errors and their distribution is of crucial importance for the system performance. 

Thus, the error probability is assessed by means of Monte Carlo simulations. As a lower bound a DD—

RAKE receiver with a priori knowledge of the CIR was employed (for a closed form expression see 

2 Note, although such a receiver does not need to employ differental modulation as it is assumed here. This has been done solely 
for comparison purposes with the DD—RAKE. 
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Figure 4.10: BER vs SNR for different receiver realisations; (a.) Q = 1, and (b.) Q = 2. 

25 	30 

e.g. [61]). Simulation work is based on the specification in Table 4.2 for a complex baseband urban 

channel, defined in section 3.2.6. The performance of the system was evaluated for one and two diversity 

taps. The statistics of the qth diversity tap are specified by the classical Doppler power spectra from 

(3.12), due to Clarke [52],  described by the ACF cbhh, q (k) = JO(27t1/ ax Lk). The normalised max-

imum Doppler spread was chosen to be = 0.05. Generally, curves labelled "ideal DEPSK" show 

the results when the CIR is known a priori to the receiver, which serves as a lower bound. An upper 

bound is given by a conventional DPSK receiver in (4.6) (label "DPSK"). 

rNumber of diversity taps Q { 1,2) 
Mean SNR 5' 15 dB 
Doppler frequency 1'nax 0.05 
Modulation DEPSK 

Table 4.2: System & simulation parameters for the decision directed (DD) receiver. 

The performance drawn against the SNIR, of a receiver using a linear prediction filter, for Q = 1, 2 

diversity taps, is considered in the Figures 4.10 and 4.11. It can be observed from Figure 4.10 for both 

parts (a.) and (b), that the DD—RAKE significantly lowers the error floor of the conventional DPSK 

receiver. If the SNR exceeds 5' 10 dB the M = 4 predictor performs considerably better than the one 

with M =2 coefficients. Only for high SNR (5' > 20 dB) can an improvement be achieved for M > 4. 

For low SNIR the DD—RAKE cannot improve the performance of the conventional DPSK receiver, until 

the latter runs into its irreducible error floor. 

By comparing Figure 4.10 part (a.) for a flat fading channel and (b.) for channel with double diversity, 

it is seen that the BER performance of the system can be improved by employing diversity techniques. 

For low SNR values (5' < 10 dB), however, the difference between the DD—RAKE and the receiver with 

a priori knowledge of the CIR increases as diversity is introduced to the system, in analogy to the PA—

RAKE plot in Figure 4.4. This is because, increasing the number of diversity taps Q, effectively means 

a decrease of the SNIR per tap 5'q  of (4.2), due to a constraint input SNR 5' = E3  /N0. This results in an 

increased MSE E[ kq (1c)1 2 ], since channel estimation is performed for every tap separately, which will 
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Figure 4.11: BER vs SNR performance of a decision directed DD and DA—RAKE receiver; (a.) Q = 1, and (b) 
Q=2. 

in turn reduce ut  Moreover, a decreasing q  results in more and longer error bursts, leading to more 

severe error propagation. Thus, the benefit of diversity is partly cancelled out by the enlarged estimation 

error. For larger SNR values, on the other hand, error propagation is not a major source of decision 

errors. The MSE of the channel estimate hq  (k) is dominated by the induced phase lag of h q  (k) relative 

to the CIR hq (k). Thus for high SNR, the difference between the DD—RAKE and the receiver with a 

priori knowledge of the CW, does not significantly increase as diversity is introduced to the system. 

The receiver performance of a DD—RAKE receiver with filter order M = 2 and M = 4 is shown 

in Figure 4.11, for Q = 1 and Q = 2 taps. It is seen that the DD—RAKE performance with the same 

number of coefficients is never worse than the corresponding DA—RAKE. Furthermore, the DD—RAKE 

performance is significantly better for low SNR values ( <20 dB for M = 4). In particular, the fewer 

coefficients M the predictor has, the more significant is the difference between the DD and DA—RAKE. 

This effect was investigated in [72,73] and will be analysed in the following. Note that for differential 

modulation, an error in is likely to cause two consecutive errors in Ad—(k) and Ld(k+ 1), since 

Ad(k) = ã(k) d(k —1). However, for the DD—RAKE, the subsequent error caused by ã(k+ 1) may be 

cancelled out by a phase slip. Recall that for binary modulation a phase slip translates into an alternation 

of the sign, such that d(k + ii) = —d(k -- n) for n > 0. So, consider the detection of z.d(k + 1) = 

d(k+1) d1(k): here the additional error induced by differential modulation due to (k), may be cancelled 

out by a phase slip in d(k + 1); since 2 consecutive errors result in a correct detection of Ld(k + 1). 

In other words, a single error may be sufficient to cause a phase slip, particularly for a short predictor. 

Thus, the phase slip effect is more pronounced for M =2 compared to M = 4. For higher SNRs, a phase 

slip becomes less likely due to the decreased occurrence of error bursts. Hence the DD and DA—RAKE 

curves merge. 

Figure 4.11 .b shows the BER against the SNR of a DD and DA—RAKE receiver with Q =2 taps. Similar 

results are observed as in the flat fading case, for the DD—RAKE relative to the DA—RAKE. 

Figure 4.12 shows the above described effect in the frequency range. The BER performance of a 

Q =2 tap DD and DA—RAKE receiver are plotted against the normalised Doppler frequency vmaxTs on a 

___ (b.) 
deal  
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Figure 4.12: BER vs v performance of a DD and DA—RAKE with two diversity taps; Q = 2, = 15 dB. 
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Figure 4.13: Probability of an en-or burst of length Lb =1, 2 vs SNR for a M = 2 predictor. 

SNR of 5 = 15 dB. It can be observed that the DD—RAKE performs always better than the DA—RAKE, 

for arbitrary Doppler frequencies. The difference starts to become significant for a Doppler spread of 

1'nax > 0.02 (M = 2) and 0.01 (M = 4). Furthermore, for modest Doppler (li nax  < 0.02), the 

DD—RAKE performance with M =2 and M = 4 merge. 

Error propagation analysis The fact that decision feedback effects improve the system performance 

is an interesting and unexpected result. In the literature, where the performance of similar receivers was 

derived analytically, the assumption of no feedback errors was referred to be a lower bound [28,35,74], 

which it is obviously not, according to these results. Note that this only applies to binary differential 

modulation. It should also be noted, that if there's a phase reference available, i.e. a pilot, coherent 

detection for the DA—RAKE can be employed with superior performance. The reason why a coherent 

receiver has not been implemented here is to assess the effects of error propagation. 

Figure 4.13 illustrates the statistical analysis of the phase slip effect. There the probability of an error 
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H M 	 Lb 	 M 

correct decisions 	error burst 	correct decisions 

Figure 4.14: Definition of an error burst. 

burst of length Lb is drawn against the SNR, for a M =2 predictor. The number of bits Lb between two 

consecutive error-free regions, that are at least M bits in length, are defined as an error burst, shown in 

Figure 4.14. The probability that an observed error burst has the length Lb,  is defined by 

p(L6) = Prob{L = Lb} 	 (4.19) 

where {L1} is a set of randomly distributed error bursts obtained by Monte Carlo simulations. This 

calculation of p(Lb) was repeated for a number of SNRs. 

By examining Figure 4.13 it is seen that a single error burst is far more likely for the DD than for the 

DA system for a SNR somewhat smaller than 25 dB. In particular for SNRs 5' 15 dB, the probability 

that an error burst is a single error reaches 80%, while the corresponding probability of the DA—RAKE 

is negligible. For high SNR values virtually all errors are 2 consecutive errors for both systems. The 

probability for an error burst larger than 2 is for both systems the same, being small for low and negligible 

for high SNRs. 

4.3.2 Iterative channel estimation 

According to the pilot aided (PA) receiver, an improved approximation of the CIR of the DD—RAKE 

can be made, if a smoother rather than a linear predictor is employed for estimation the Cifi [73].  The 

phase lag, and therefore the mean squared error (MSE) of the channel estimate becomes smaller if future 

samples in addition to the past samples are used. The DD—RAKE however, needs a causal estimation fil-

ter, so future samples cannot be used straight away, since a decision upon a data symbol needs to be done 

prior to estimation. The data symbol is needed in the feedback loop to demodulate the received signal. 

The solution is provided by post-processing of the received signal via iterative channel estimation [39]. 

With a 2—stage receiver, data decisions concerning the future symbols of the 2 nd stage are provided by the 

output of the 1St  stage. In the 1St  stage the linear predictor discussed in the previous section is employed, 

to make tentative decisions on the symbols, using for each symbol only the past received signals. The 

estimated CW for the 2nd  stage, using M12 tentative decisions {t1)(k)}  of the 15t  and the final decisions 

{d 2 (k)} of the 2nd stage, respectively, is given by (4.16). After an added decision delay of M/2 sym-

bols, differential decoding of the decision variable in (4.17) yields the decision of the desired information 

symbol. A block diagram of the resulting receiver structure is depicted in Figure 4.15. 

For the reference system in the form of the DA receiver, no 2—stage processing is necessary, as the 

unmodulated received signal, 4 (k), is assumed to be available. For comparison purposes the receiver 

output is again DEPSK modulated, in accordance to the linear predictor DA—RAKE. 

50 



Chapter 4: One Shot Receivers 

linear predictor: A 

y 

_M12 	
combining 

	

A 	
output 

.......................... J 2tage 

Figure 4.15: Decision directed 2-stage receiver structure of the qth diversity tap. 
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Figure 4.16: BER vs SNR performance of a 2-stage DD-RAKE and the reference DA receiver with a smoothing 
type estimator, with one and two diversity taps; M = 4. 

Simulation Results For simulation work the same system model and parameters as in the previous 

section were used, defined by section 3.2.6 and Table 4.2. The BER versus mean SNR for the 2-stage 

receiver is shown in Figure 4.16. If the SNIR is somewhat larger than 10 dB, processing yq (k) in 2 

stages becomes worthwhile. For instance, the difference towards the conventional linear predictor with 

the same number of coefficients exceeds 2 dB for BER - iO -  and Q = 2 taps. For high SNR values, 

the difference between the linear predictive and the 2-stage receiver gets larger as the phase lag of the 

1st stage (the linear predictor) becomes the major source of errors. The 2-stage receiver, on the other 

hand, has a smaller phase lag. Moreover, error events occur mainly as single errors, leading to negligible 

error propagation. Hence, the BER of the 2 nd  stage relative to the 1st  stage is significantly lowered. 

Unlike for the linear predictor plotted in Figure 4.11, the receiver performance of the 2-stage DD-RAKE 

is not superior compared to the corresponding DA-RAKE, shown in Figure 4.16. Obviously, decision 

errors are no longer beneficial to the performance. As mentioned earlier, a phase slips at the output of the 

1 st  stage result in a phase change of 1800,  i.e. arg{h(k)} = arg{h(k)} ± ir, as shown in Figure 4.9. The 

2nd stage filter smoothes this sudden phase change into a gradual one which may last several samples, 
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Figure 4.17: BER vs v performance of a (a.) DD-RAKE and (b.) DA-RAKE with two diversity taps; = 15 dB. 

resulting in additional decision errors. 

Figure 4.17 shows the benefit of the 2ndstage processing as a function of Vax.  It is seen that the 

benefit of the 2-stage processing for the DA-RAKE (Figure 4.17.b) is much higher than for the DD-

RAKE (Figure 4.17.a). In particular, in Figure 4.17.a the DD-RAKE for M = 2 shows virtually no 

different between 1st  and 2nd  stage outputs, unless the Doppler spread is very high. 

To summarise, the higher the SNR and Doppler spread, the greater the improvement in system per-

formance by using a 2-stage receiver. However, the improvement of the 2d  stage processing is partly 

cancelled out due to decision feedback effects. 

4.4 Summary and conclusions 
Receiver structures were discussed in this chapter which detect the received signal on a symbol-by-

symbol basis. Channel estimation was performed using either time multiplexed pilot symbols or in a 

decision directed manner. Due to the characteristics of the obtained receivers they are applicable to 

different fading rates: the pilot aided (PA) receiver is suitable for modest fading rates, whereas the 

decision directed receiver (DD) receiver can improve the performance compared to conventional DPSK 

significantly for high fading rates. The features of the PA and DD-RAKE are summarised below. 

PA-RAKE: Only pilot symbols are used for channel estimation, so no decision feedback is employed. 

Therefore this receiver is robust if the fading rate Vax allows some degree of oversampling. For ap-

plications limited to fading rates which allow an oversampling factor of 3> 10, the PA-RAKE yields 

significant improved performance compared to conventional DPSK, due to coherent detection. With 

a time delay A tc 0 a smoothing-type estimation filter can be employed which further improves the 

performance, at the expense of an imposed decision delay of LicR samples. 
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DD—RAKE: The receiver performs decision directed channel estimation. Differential encoding of the 

data bits is required to ensure the receiver is robust. This means that the slow fading performance is 

inferior to the PA—RAKE and the performance compared to conventional DPSK can only be marginally 

improved. For fast fading, however, the DD—RAKE considerably lowers the error floor seen for conven-

tional DPSK. As an unexpected result, decision feedback effects did improve the performance compared 

to a reference receiver, which always used correct decisions for channel prediction. 

Post processing by means of iterative channel estimation (ICE) further improves the performance of 

both the PA and DD—RAKE, given the BER of the 1St  stage is reasonably low (BER <5• 10_ 2 ). 
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Chapter 5 
Joint Detection & Estimation 

In this chapter optimal and near optimal algorithms for data detection and parameter estimation on a 

Rayleigh fading channel are examined. Following previous work on detection and estimation theory, the 

optimum estimator—detector receiver is derived. This chapter focuses on the methodology and funda-

mental insights rather than on details of implementation; these are addressed in the following chapter on 

realizable receiver structures. Although the optimal algorithms suffer from an extremely high complex-

ity, the ideas and strategies worked out here can be applied to the systematic development of suboptimal 

but realizable algorithms, which will be addressed in Chapter 6. 

Even for uncoded modulation and no inter-symbol interference (1ST) present, the optimum receiver 

involves the entire transmitted sequence in the detection—estimation process, exploiting the high correla-

tion of adjacent samples of the channel impulse response (CW) to form its estimate. 

Design criteria on how to optimise the receiver were discussed in section 2.2. The main part of this 

chapter is dedicated to maximum likelihood sequence detection (M1LSD). First the estimator-correlator 

receiver structure studied by Kailath [3 1] will be reviewed in section 5.1. Then recursive realisations of 

optimum MLSD, and the application of a sequential decoding algorithm, known as the Viterbi algorithm, 

are addressed in section 5.2. Finally, the maximum a posteriori (MAP) symbol-by-symbol detector will 

be discussed very briefly in section 5.3, where the similarities between algorithms for MLSD and MAP 

symbol-by-symbol detection will be pointed out. 

5.1 Optimal maximum likelihood sequence 
detector 

The basic idea of joint detection and channel estimation is the search for the best overall fit between 

the model output (hypothetical data sequence transmitted over its associated hypothetical channel) and 

the observation (received signal), often aided by some side information on the channel dynamics. The 

receiver structure addressed in this section is based on the work of Kailath [31-34]. In [31-33] the 

optimum receiver was derived based on a discrete-time model assuming Gaussian statistics throughout; 

whilst in [34] a continuous-time model was adopted for the more general case of a random signal 

corrupted by white Gaussian noise. 

Bayesian detection has been addressed in section 2.2. In this section detection of the whole sequence 

is considered. Maximising the likelihood function p(yId) for the whole sequence d is termed max-

imum likelihood sequence detection (MLSD) and it was shown in 2.2 that the MAP criterion is equivalent 

to ML criterion, if all transmitted sequences are equally likely. The transmission of a linearly modulated 
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data sequence d°, perturbed by the time variant CIR h and noise vector n, is considered. Define the 

received signal, conditioned on the hypothesis that £ was transmitted as 

Y = Dwh + fl 
	 (5.1) 

The matrix D"I may contain several copies of the transmitted sequence d given the frequency selective 

nature of the fading channel (see Chapter 3). At this point the matrix D is not further specified, this will 

be done later on when more specific systems are considered. Assuming a complex Gaussian distribution 

for the CW vector h and the noise n, with both zero mean, i.e. E[ h] = 0 and E[ n] = 0 ; a multivariate 

Gaussian pdf for the received signal is obtained. The pdf of receiving y, conditioned on d being 

transmitted, v(I d), has zero mean and the data dependent covariance = E[yy" I d(l) ] of 
YY 

dimension CN, given by 

exp(_y,T' y) 	 (5.2) (I d) = 71.—N det 14(L) 1  

where N is the dimension of y and det denotes the matrix determinant operation. This is the pdf that 

describes the optimum receiver. To simplify the computations, the natural logarithm of p(yq I d) can be 

applied, giving the log-likelihood function 

A(s) = - ln(p(yI d°)) = Htl y - ln(irNdet [,]) 	 (5.3) 

Assuming a purely phase modulated signal, the determinant of 	is not data dependent, since all 
YY 

hypotheses have equal power, which can thus be neglected [28,31]. Hence, the ML criterion of the qth 

diversity tap corresponds to the decision variable [31] 

A() = 
	 (5.4) 

which is essentially the negative exponent of the pdf (I d). Since 	is a Hermitian matrix, the 
YY 

decision variable A(s) is a real function. The maximum ofp(yI d) over d" )  is equivalent to finding the 

sequence that minimises A (i). 

The decision variable A(s), which is a quadratic form, determines the operations that the receiver 

will have to perform. For the derivation of the decision variable the following assumptions have been 

made: 

The decision variable is optimum for linearly modulated signals where both the CW and the noise 

are Gaussian. Note that the receiver can be regarded as a generalised form of maximal ratio com-

bining (MRC) [32]. Since the structure of the matrix D" )  is arbitrary, this includes channels with 

inter-symbol interference (151). 

For constant envelope signals (5.4) applies, otherwise (5.3). For more general modulation schemes 

the second term in (5.3) is much smaller than the quadratic term 	y and is thus commonly 

neglected anyway [28]. 
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Here only the case where the CIR is Rayleigh distributed is discussed. For the more general case 

of a Rician distribution, where the CIR has the mean h = E[ h], the CW can be partitioned into 

a random part h and a deterministic part h, given by h r  = Ii + h. The receiver structure for that 

case is addressed in [31-33]. This also generalises the receiver to the case where the channel is 

deterministic, h = h, which is not covered in (5.4). 

Although the receiver is optimum if the noise n is coloured, it is desirable to pre-process y with 

a whitening filter such that n' is additive white Gaussian noise (AWGN) with covariance 4 rn 

N0 1 [31].  Thus, in the following the noise term n is assumed to be AWGN, since the case where 

the noise is coloured can always be transformed to a signal where the noise is white. 

The decision of the optimum MLSD receiver is done at the end of the sequence by finding the decision 

variable with the minimum distance metric: 

A = mill A(t) 
LEAK 

For equally likely sequences this is equivalent to the MAP criterion (see section 2.2.1). Close studies of a 

detector utilising (5.4) for short distances are carried out in [75].  Obviously, the receiver minimising A(t) 

is not implementable for long sequences, since AK grows exponentially with the sequence length K. 

Also, for continuous transmission, decoding at the end of the sequence is clearly not feasible, because 

of the induced decision delay for real time applications. For long sequences the computation of the 

quadratic form y has a vast computational complexity. A realization of (5.4) for a short 

observation interval, applied to DPSK, was developed by Dam [76]. 

5.1.1 Estimator—correlator structure of the receiver 

In this section the estimator—correlator structure of the decision variable is established, which is yet not 

apparent from (5.4). However, by rewriting (5.4) using the MMSE estimator discussed previously in 

section 2.1, the estimator—correlator structure of the receiver becomes obvious. Note, the underlying 

linear model in (5.1) conditioned on hypothesis £ is equivalent to the linear model in (2.9). In analogy to 

(2.10) in section 2.1.2, the covariance matrix of y can be expressed as: = D"> 4hh D(H + YY 

and 	= hh DH. Recall the notation for the Wiener smoothing matrix in (2.14), given by 

= hhD(L)H F() i-i = - I yyi 	 nfl yy 

With this notation the decision variable in (5.4) can be rewritten as [3 1] 

A(t) = 	y + yH;;1W(L) 

Considering AWGN the covariance of the noise term is 	= N0 1. Furthermore, since the first term 

of the right-hand side of the above equation is independent oft, only the second term needs to be taken 
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d 	Channel 	y 
h 	observation 

Model 	
d' 	Model 	

A(i) 	
Likelihood 	A(l) 
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ML sequence 

Output from other 
receiver branches 

Optimum Receiver 

Figure 5.1: Block diagram of the optimum estimator-correlator receiver. 

into account: 

A(s) = yHW() y  

= H ) = H 	h 	 (5.5) 

where the constant noise power No was also neglected. 

Hence, a Wiener filter minimises the probability of error in the optimum detector. The resulting receiver 

structure follows Kailath's separation theorem [31]. That is the receiver consists of an estimator that de-

livers the MMSE estimates of the fading distortion and a detector that utilises these estimates, referred to 

as estimator—correlator receiver. Figure 5.1 shows a block diagram of the optimum estimator—correlator 

receiver, for transmission of a data sequence perturbed by the time variant CIR h and noise vector n. 

The receiver can be divided into an estimation unit, a correlator and detector to decide upon the most 

likely transmitted sequence. The estimator models the channel, which is for a Rayleigh fading channel 

described by its covariance matrix, conditioned on hypothesis £ of the transmitted sequence. The model 

output is the estimated received signal , which needs to be computed for every hypothesis £. The cor-

relator subsequently measures the "similarity", i.e. the probability that hypothesis £ is the transmitted 

sequence, d, between model output I  and observation y. The scalar output of the correlator is termed 

the decision variable A(t), being a real number. The sequence which maximises this probability is then 

chosen by the detector, yielding the receiver output d. 

5.1.2 Nuisance parameters 

It was seen by the estimator-correlator interpretation of the MLSD that the estimation of h is carried 

out inherently in calculating the quadratic form y', '  y, without explicitly estimating h. The 

CIR h may be regarded as nuisance parameter [17],  since the prime interest is in detecting d rather 

than estimating h. Mathematically speaking, let p(y, hId) be the joint likelihood pdf for h and y, the 
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likelihood pdf for y is determined by 

p(yId) = 
	

p(y, h I d") dh 

= 
-00 p

(y  I h,d)p(h) dli 

This equation implies that nuisance parameters can be "integrated out" [16].  On the other hand, this 

expression may be used to design receivers which explicitly estimate h prior to detection of d. The de-

rivation for the optimum receiver applying this integral was used in [32,33] yielding the decision variable 

in (5.5). On the other hand, an explicit joint detection & estimation receiver, based on maximising the 

pdfp(y, hId"), was described in [28, Chapter 12]. 

In [77] an alternative solution was described. Choosing to estimate h prior to detection, the quadratic 

form may be rewritten as 

H 	)-1 	= [ - S?]H;1 [y - 

= 	
nn I H [i 

- y(O]H_l [J - 	y 	 (5.6) 

where t) = V(L)y  is the estimate of y. An evaluation of V" is given in [77],  such that the above equation 

holds. It should be noted that Vt is not a MMSE estimator, thus its MSE is higher than the MSE of the 

Wiener smoothing matrix W"; the detector, however, is optimal in respect of detecting d. However, the 

derivation of the receivers described in [28,77] are rather tedious compared to the estimator-correlator 

interpretation of the MLSD. Instead, the focus will be on receivers having a recursive joint detection & 

estimation architecture in section 5.2, being far more practical. 

5.1.3 Diversity reception 

Even if a receiver that matches the ML criterion could be provided, the output sequence remains de-

pendent upon the fading via the time varying SNR per symbol, which may deviate strongly from its 

average. As described in section 1.2.3 diversity can significantly improve the performance by virtue of 

its averaging effects, and hence approaches compliance to a more general optimum receiver design. An 

optimum receiver for diversity reception was derived and analysed by Turin in [78] and [79]. Kailath [80] 

showed how a diversity receiver can be derived as a special case of a multi-link channel, based on the 

results of a single link receiver as in [31].  In the special case of a spread spectrum communication sys-

tem, implying transmission through a frequency selective channel, diversity can be provided by means 

of a Rake receiver [56]. According to [33],  the optimum receiver can be interpreted as a generalisation 

of the Rake receiver due to Price & Green [56]. 

For the further discussion in this chapter the system model from section 3.3.1 is adopted, which is a 

rather general order Q diversity system. The received signal sequence of the q th  diversity tap of duration 

K can be expressed as 

Yq = D hq  + n 
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where D = diag[d(1),... , d(K)J is a diagonal matrix, containing the transmitted sequence. The matrix 

notation for an arbitrary signal x(k) is defined by the column vector x = [x(1),... , x(K)] T  . The diag-

onal structure of D implies that there is no 1ST present. For a brief discussion of signals corrupted by ISI 

and some references are given in section 5.2.5. Let y E CN of dimension N = QK, be the received 

signal sequence containing the received sequences of the Q diversity taps, each of length K, defined by 

T 	T 
y=[yi," ,yq]

T _ 
- [yi(l)  ... y 1 (K),... ,y(l)  ... yQ (K)JT 

The Q taps are assumed to be mutually uncorrelated, hence the likelihood function is statistically inde-

pendent with respect to the diversity taps. Accordingly, the likelihood function can be expressed as 

Q 

(I d) = p(yi 	YQ I d") = J•J P(y d°) 	 (5.7) 
q=i 

Since the Q taps are mutually uncorrelated, the covariance matrix of y can be written in the block 

diagonal form = As a result the decision variable in (5.4) breaks down 

to a sum of Q decision variables, given by 

Q 	 Q LA(t) = 	Aq(t) = 	 —' 
q 	yy,q 	Yq 
	 (5.8) 

q=1 	 q=1 

where A,  (t) = Yq represents the decision variable of tap q. 

5.1.4 Invariance over pre-multiplication 

The receiver complexity can be grossly simplified if, for each hypothesis £, the received signal is multi-

plied by the complex conjugate of the assumed transmitted signal, defined by [28,75] 

y () = Dyq 	 (5.9) 

where Dt = diag[d(1) 	V) (K)] is a diagonal matrix containing the assumed transmitted sequence 

d. The operation can be viewed as removing the assumed modulation from the received signal. Assum- 

ing a diagonal data matrix 	it is shown in Appendix A. 1 that A(s) is invariant over pre-multiplication' 

Q 
A(s) = 	yiH(e)[4hhq + NoI]_i y(t) 	 (5.10) 

q=i 
Y'9 

and this notation for A() is identical to (5.8). It is seen that the data dependence of the covariance 

matrix has been conveniently factored out. Thus, 4"y'q  can be pre-computed and stored, if the channel 

statistics are known, unlike computing and inverting a covariance matrix for every hypothesis £. The 

	

ime  constraint of the diagonal structure of D(t)  can be relaxed such that the product 	H D is constant, independent of 1. 
Unfortunately this is not the case for channels with ISI. 
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same is true for the Wiener smoothing matrix, which now becomes W q  = hh,q 4) y i1y,q , for the q 

diversity tap. In accordance to section 5. 1.1 the decision variable is of an estimator—correlator structure 

Q 	 Q 
A() = 	y'q () Wqy1(t) = 	 (5.11) 

q=1 	 q1 

The MMSE estimate of sample k and tap q, h 11 	is determined by the kth  entry of h. 

Suppose the receiver can estimate the CIR aided by some side information, such that h (k) becomes 

independent of £. Then the decision variable of sample k becomes A(e, k) = >1q Y1(, k) h q (k). Now, 

the estimation and detection tasks are clearly separated, consequently detection can be carried out on a 

symbol—by—symbol basis. This bridges the gap to one-shot receiver structures studied in Chapter 4. 

5.1.5 Performance analysis 

To analyse the performance of a maximum likelihood sequence detector, first the decision variable A(t), 

is cast into a quadratic form y"Q y, where Q will be defined below. Then the probability of a bit error 

can be calculated utilising Barrett's formula [60].  Only binary antipodal modulation, in the form of 

BPSK will be considered here, i.e. Am = 2. 

Let the actual transmitted sequence, d, be the all-one sequence denoted by 	and d"> be the se- 

quence which differs from d in N0  () symbols. Define the error signal by e"> (k) = ld">(k) - d°>(k) 1/2, 

which is e(k) = 1 for an error and e°(k) = 0 for a correct symbol. Then an error event 9 is said to 

extend from time k 1  to k 2  if e> (k) is equal to the correct sequence outside the interval k = {k 1 ,•.. , k2 } 

and e (" (k) = 1 fork = k 1 , k 2 . With this definition the length of the error event becomes Lb = k2 —k 1 , 

where Lb > N€ (e), with equality if all symbols within the burst are detected as errors. 

Suppose the receiver has to decide between two hypothesis d" and d>°>. Then the ML decision rule 

corresponds to the likelihood ratio test, LRT = p(y I d")) /p(y I d°>), as described by Van Trees [17]. The 

decision is made by choosing d = d°> if LRT < 0, and d"> otherwise. By taking the logarithm and 

inverting the sign a log-likelihood function is obtained, and the LRT is given by the difference of the 

decision variables 

	

A" >  - A°> 
	

(5.12) 

and choosing d°> if LA is positive and d° otherwise. According to the assumption that A>0>  corresponds 

to the true sequence, a negative A() equals a decision error. In case that the receiver has to choose 

only between two sequences d>°> and d" to make the decision d, the pairwise probability of that error 

event becomes 

P0 (e) = P{zA(e)<0} = f p(AA(E)) d(AA(E)) 
0 

(5.13) 
00 
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The decision variable A(C) can be expressed in terms of a Gaussian quadratic form, defined by 

LA(&) = 	 = Y HQ(e) y 	 (5.14) 

where Q() = ( ,_ 1 - 	 denotes the filter matrix. Note one decision error has an impact on
YY 

the estimation/detection of the whole sequence. Since the covariance matrix 	is Hermitian, Q(E) is 
YY 

also Hermitian with dimension N x N and N = KQ. 

In [8 1],[7, Appendix C],  P, (9) was evaluated for pilot signal based channel estimation, by solving 

the integral in (5.13). Alternatively the bit error probability can be determined by using its characteristic 

function. The characteristic function of a complex normal multivariate pdf was derived by Turin [82]. 

Several solutions for the bit error rate are given in literature. Turin [79] derived the error probability 

for a binary hypothesis check in diversity reception. A general error formula for the binary error rate 

for a random signal disturbed by Gaussian noise was given by Barrett [60].  The analysis is based on 

extracting the eigenvalues of the quadratic form y" Q() y. Mammela [75] analysed the performance 

of the optimum receiver using Barrett's formula [60].  An analysis of the impact of estimation errors for 

a decision-feedback equaliser was presented by Stojanovic et al [83],  which also was obtained by ex-

tracting the eigenvalues of a quadratic form. Barrett's formula can also be deployed for the performance 

analysis of a coherent DPSK receiver, as described by Dam [76].  Sub-optimum realisations based on 

Barrett's formula were developed by Mämmelä and Kaasila [68, 74, 75]. 

In [76] it is shown that a statistically equivalent quadratic form to (5.14) is given by 

	

= v'() V 	 (5.15) 

with E(E) = diag[A i ,... AN]  being a diagonal matrix of the eigenvalues of Q() consisting 

of positive and negative real numbers. The components of v are independent unit-variance complex 

Gaussian random variables. The decision variable is thus reduced to a weighted sum of independent 

x 2 —distributed [7] random variables [7]. 

This receiver for binary signalling was analysed by Barrett [60] who derived an algebraic expression 

for the receiver's error performance through the use of residues. The pairwise probability of error which 

is obtained by evaluating (5.13), is given by  [60] 

N N Pe  (e)
= 	

1 

	

1 - A 	
(5.16) 

A,<o 

where the set {A, n = 1, •. , N} are the eigenvalues of the matrix 	Q(e). The matrix 	=
YY 

E[yyH ld(0) ] is the covariance matrix of y, given that hypotheses £ = 0 was transmitted. It is as-

sumed that the sequences are equally likely, so the error probability is the same for all hypotheses. The 

dimension of the matrices is N x N, with N = QK. It should also be noted, that is in gen-

eral not a Hermitian matrix. The eigenvalue decomposition of a non-Hermitian matrix is described in 

2The eigenvalues {A,} need to be mutually different. 
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Appendix A.2, using an algorithm given in [69]. 

In order to evaluate the probability of an error event over all transmitted sequences, the minimum 

distance needs to be found with respect to all possible sequences, not only the transmitted one as in (5.13). 

This results in the joint probability 

P(S)=P flA_A(i)<O 	 (5.17) 
I iEEE 

This means for the calculation of P, (E), the decision variable needs not only to be larger than the ac-

tual transmitted sequence but also larger than the decision variable for all other hypotheses. After 

averaging over all possible error events, ES, the average error probability is obtained 

Pe = E  P(S)P(d) Ne (S) 
eEEe 

where P(d) is the a priori probability that d was transmitted and N (5) are the number of bit errors 

associated with the error event S. The Evaluation of the exact error probability is very complicated, 

however the MLSD receiver can be upper and lower bounded [84]. For a channel with 1ST and known 

channel response these bounds are tight [85].  For the Rayleigh fading channel however, the upper bound 

is very loose [86,87]. 

In the literature the average probability of a bit error can be lower bounded by only taking the most 

significant error event into account, that is Pe  ~ P(Smax). This is commonly a single error, as its 

Euclidean distance is most likely the closest to the actual transmitted sequence. Let d denote the sequence 

which differs from d in only one bit, then the lower bound becomes Pe > P(1). 

An upper bound is obtained by an union bound, given by adding up the error probabilities of all 

possible error events 

Pe < E Pe (S)P(d) Ne (S) 	 (5.18) 
eE( 

where P, (.6) is the pair-wise error probability of the error event 5, given by (5.16). Strictly speaking, 

the set of all error events ES is unbounded for continuous transmission, but it can be truncated by a 

finite number, since the probability for an error burst with infinite length is zero. Even for a truncated 

upper bound there may be still too many sequences which must be calculated for (5.18). A further 

simplification is to take only the most significant error event 5max for a certain length Le into account. 

Thus, only one pairwise error probability Fe  (Smax ) is evaluated for an error burst of length Lb,  out of 2' 

possible error events. The dominant error event 5max  is deemed the error sequence with the maximum 

number of errors, which is Lb,  the length of the error burst. Hence, Ne  (Smax ) = Lb and P(d) = 

assuming all sequences are equally likely, which yields the following approximation of the upper bound 

Pe < 	Pe(Smax) 2—Lb 
Lb 	 (5.19) 

ems, E 
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Figure 5.2: BER vs SNR of the optimal receiver for different numbers of diversity taps Q, (a.) smoother and (b) 
linear predictor; K = 8, z' = 0.05. 

It turns out, however, that this upper bound may still be loose for low SNR because the error events are 

not disjoint [86].  An example for the upper bound is given in section 5.2.4. 

Numerical results This section concentrates on the evaluation of the lower bound, which corresponds 

to single error events with Lb = 1. The resulting log-likelihood test is the difference of the decision 

variables AA = A(1) - A(0). For continuous transmission (K —+ oo), the performance of (5.16) 

approaches the performance of a RAKE receiver with a priori knowledge of the CIR. Clearly for long 

sequences the computation of (5.14) is not feasible. Some results of the optimum receiver performance 

for a limited observation interval K, are presented. For a more thorough analysis of the optimum receiver 

performance the interested reader is referred to [75].  The sequence length K may be regarded as a short 

transmission burst, e.g. in a TDMA time slot, or a sliding window of the subsequence, in which case the 

receiver is of course not optimum. 

The assumption that only single errors are present has the interpretation that no decision feedback 

effects are present. This means that channel estimation becomes independent of the data hypotheses 

and detection can be performed on a symbol—by—symbol basis, as discussed in section 5.1.4. Such an 

idealised receiver can be implemented, by using the actual transmitted sequence to generate y = D1yq, 

independent of £. Monte Carlo simulations can be used to verify the lower bound P, (1) from (5.16). The 

lower bound is expected to match the true error probability for high SNR. 

Results are presented for detection of the bit in the middle and on either end of the sequence, respect-

ively. The smoother estimates the bit in the middle of the test sequence k 1  = k - K/2, while the linear 

predictor estimates the first or last bit of Yq'  i.e. k 1  = k or k 1  = k - K. The simulation results shown in 

Figure 5.2 match the theoretically predicted results very closely. Since the linear predictor in Figure 5.2.b 

estimates the unknown bit at the tail of the sequence, the performance is significantly poorer. 

The dependency of the error probability on the position of the unknown bit in the sequence Yq  is 

shown in Figure 5.3. Unless the unknown bit is near the tails of the sequence, its influence is negligible. 
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Figure 5.4: BER vs normalised Doppler frequency vr of the smoother for different channel models; 
y=1OdB, K=8. 

However, the dependence of Lk on the BER increases with the number of diversity taps Q. 

The effect of the choice of the channel model on the performance of the smoother is shown in Fig-

ure 5.4. The distributions of the Doppler spread for the channel models are described in section 3.2.5. The 

difference between the channel models becomes more significant as 'nax  and the diversity Q increases. 

It is seen that the classical Doppler model can be used as a worst case for the system performance. In the 

remainder of this thesis only the classical Doppler model will be considered further on. 

5.2 Recursive MLSD receiver 
The receiver structures (5.10) and (5.5) require future symbols to decide upon the kth  received signal 

sample. We now look at receiver structures employing present and past samples for estimation and de-

tection only, as studied in [35-37,88]. The first recursive MLSD receiver structure, applicable to slow 
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and fast fading channels was presented by Morley and Snyder [88].  The receiver consisted of a bank of 

parallel time-continuous linear filters. These filters were obtained by evaluating integral equations. Hab 

and Meyr [35] along with Lodge and Moher [36] derived a recursive formulation of the MLSD, inde-

pendently of each other, for the flat fading channel using a discrete-time signal system. Compared to [88] 

it has the usual advantages of digital signal processing as compared to analog signal processing. Later Yu 

and Pasupathy [37] derived an equivalent MLSD receiver by applying the innovations approach. They 

also generalised the results of [35,36] to the inter-symbol interference channel. Another interpretation 

of the recursive MLSD was presented by Makrakis et al. [90]. There the branch metric computation 

for phase modulated signals is performed through multiple differential detection. A comparison of this 

technique with the receiver in [36] was given in [91],  showing the similarities of the two approaches. The 

recursive MLSD decision rule provides a powerful tool to develop close to optimum or sub-optimum but 

realisable receiver structures. This has been made possible by applying the Viterbi algorithm (VA) to the 

recursively updated decision variable, first developed in [88] and further investigated in [36,37]. Later 

the approach of employing the VA to the problem of MLSD with unknown parameter estimation has been 

coined the principle of per-survivor processing (PSP) [92].  In that paper no claim concerning the op-

timality of the algorithm was made. The theoretical foundation of PSP was provided by Chugg [89,93], 

including the development of the receiver front-end providing sufficient statistics for the discrete-time 

received signal [93].  PSP is a general approach to joint detection and estimation by using a different 

channel estimation filter for every decoder state in the trellis. PSP furthermore employs the VA to search 

the trellis, as an in general sub-optimum decoding algorithm. In other words, it involves processing a 

separate channel estimate for each survivor in the trellis. 

After deriving the recursive receiver structure, the application of the VA to the problem according to the 

PSP principle, will be discussed in section 5.2.3. 

Let d(k) = [d°(1),... , d"(k)f" and y(k) = [y(k),... , y(k)f" E CcQ denote the data and 

received sequences of hypotheses £, up to the k th  sample, respectively, the likelihood function from (5.7) 

reads 

Q 
p(y(k) I d" (k)) = fJp(yq(k) I d" (k)) 	 (5.20) 

q1 

The set AK contains A possible sequences, and the sequence which maximises p(y(k) I d(k)) is the 

most likely transmitted sequence d. Let (t, k) {(y q (1),. .. , yg (k)), d} represent the observation 

up to time k and hypotheses £, and y, (k) = [yq (k_ 1), yq(k)]T.  Applying the definition of a conditional 

pdf, p(AIB)p(B) = p(A, B), to p(yq  (k) I d") (k)), the following is obtained [36] 

p(yq(k) I d')  (k)) = p(yq  (k) I (' k)) p(yq  (k — i) I d()  (k)) 	 (5.21) 

The term p(yq  (k) 	k)) is the pdf pertaining to the one-step prediction of the received sample 

Yq (k), given the past received signal vector Yq  (k - 1) and the data hypothesis d(')  (k) up to the present. 

3 1n [88] were some misleading claims about the optimality of the algorithm, these claims were corrected by Chugg [89]. 
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The observation of the qth  tap, y q (k), is a complex Gaussian i.i.d. random variable, hence the pdf 

P(yq (k) ,k—l)) is Gaussian distributed with conditional mean q  (t, k) and variance a2 
y, q (k), given 

by 

	

p(yq(k) I,k))=
exp 

- 	 2) 	
(5.22) 

	

1 	( yq(k)_ig(t,k) 

iro y, q (k) 	 o q (k) 

where o ,g (k) = E[ yq (k) - q (t, k) 2 ] denotes the variance between the received signal y, (k) and its 

estimate Yq (, k). With the presumption that the sequence dt(k) has been transmitted, the mean Y1q  (t, k) 

can be expressed as 

q (t,k) = E[yq(k) kVj-1)1 
= d(k) E[hq (k) 	(i,k-1)]+E[n(k)] 

	

ig(L,k) 	 =0 

where hq (, k) = E { h q  (k) 	(, k — i)] is the optimal linear prediction estimate of h q  (k). 

Recursive metric computation Following the discussion for diversity reception in 5.1.3 the pdf of 

the entire observation y (k) can be obtained by substituting (5.22) into (5.20). Taking the logarithm and 

inverting the sign, A(, k) = - in [p(y(k) I d(k))], the recursion for the decision metric is obtained 

Q A(t,k) =A(t,k—i)+> yq(k)_d)(k)hq(t,k)2 
+ln[iroy, q ] 

q1 	 yq 

Terms which are independent of the hypotheses £ can again be neglected, so the above simplifies to 

Q 

A(t, k) 	A(t, ki) + 	yq (k) - d(k) h q (t, k) 
1 2

(5.23) 
q=1 

where L(t, k) denotes the Euclidean distance between the received signal and the CIR estimate, con-

ditioned on hypothesis £. Repeated application of (5.23) starting from the end of the sequence k = K 

yields the decision variable, which is to be minimised 

KQ 

A= 
 

	

min A(,K) = min 	yq (k) d(k)h q (t,k) 2 	 (5.24) 
LEAK 	 LEAK 

k=1 q=1 

where the factors which are constant and independent of £ have been removed. The optimum receiver 

performs a tree search with respect to k, with a complexity growing exponentially with the sequence 

length K. The sequence {d"(k)h q (, k)} can be interpreted as the "model output" of the receiver, and 

it is to be compared with the observation {y q (k)} for all hypotheses £. According to (5.24), the model 

output with the minimum Euclidean distance is the most likely transmitted sequence d. A block diagram 

of the receiver structure with A m L = A parallel branches is shown in Figure 5.5. 
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Figure 5.5: Block diagram of the recursive MLSD receiver. 

Note the linear predictor estimate hq (, k) of (5.24) is clearly suboptimal with respect to the smoothed 

estimates of (5.5). That is because hq (e, k) from the pdf p(yq  (k) I Yq (k—i), &1  (k)) is conditioned on 

the past received signals and the hypotheses d"(k) up to the present only; unlike to the smoother in (5.5), 

which utilises the whole sequence to form an estimate. Nevertheless, the metric A(, K) at the end of the 

message remains optimal for detection. Therefore, the MSE as a performance measure for the optimum 

receiver is inadequate, since even though the two detectors optimise the performance in the sense that 

they minimise the probability of error, their corresponding estimators do have a different MSE. 

Innovation based MLSD An equivalent derivation for the recursive MLSD is given by the innovations 

approach [37].  The basic idea is to transform the decision variable for the optimum receiver 
1 

from (5.4) to a quadratic form such that its entries are mutually statistically independent. Recall from 

section 2.1.2 that the innovations approach provides exactly that, since it "whitens" y such that its entries 

are mutually uncorrelated. The innovations process of y is denoted by e which is a white noise process, 

given by the linear transformation e = L" 'y. The transformation matrix 	is a lower triangular 

matrix which is given through factorisation of 	= L ) 1L"". The rows of L' are the coefficients 
YY 

of a 1-step predictor for orders 0 through K - 1 and the elements of E are the corresponding error 

covariances. With this factorisation the decision variable becomes 

A(1, K) = Hl 	= 	()H.1 em 	 (5.25) 
YY 

K Q 

= 
k=1 q=1 0,2  q (k) 

Note that E q  (t, k) = Yq (k) - d () (k) hq (, k) denotes the estimation error of a one-step linear predictor. 

Furthermore, the error covariance o (k) from (5.22) is independent of the data and may therefore be 
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neglected. Thus, the equality of the innovations based approach to (5.23) follows readily. The equival-

ence of the innovations based MLSD in (5.25) and the linear predictive MLSD was pointed out in [94]. 

An extension of the innovations based MLSD [37] to a receiver employing Kalman filters was presented 

in [95]. 

5.2.1 Channel estimation 

The one-step prediction estimate of the CIR for a wide-sense stationary channel is given by a Wiener 

filter. For the more general case of a non-stationary channel, optimal one-step prediction is performed by 

a Kalman filter. The application of a Kalman filter to MLSD was studied for flat fading in [35] and for 

the frequency selective ISI channel in [96,97]. The Wiener filter for one-step prediction can be expressed 

in terms of the auto and cross-correlation matrices 

hq (t,k+1) = E[hq(k+1)y(k) I (e, k)] E[yq(k)y(k) I 
Wiener filter 	 signal 

where E[ hq (k+1) y'(k) 	k)] = D(k+1) E[hq (k+1) y'f(t, k)] denotes the cross correlation 

vector between the CIR, h q (k-l-1), and the observation y q (k), conditioned on hypothesis t. The term 

E[y q (k)y(k) k)] denotes the auto-correlation matrix of the observation up to the k th  sample, 

y q (k). According to section 5.1.3, the pre-multiplied received signal y(E, k) may again be applied to 

obtain the estimate 

q (t, k+1) = E[hq(k+1)y?(t,k)] . E[yW,k)y'(t, k)] 	k) 	(5.26) 

k—i 
(k)H 

= w' 
	
y'(t,k)= 	wy(e,k—m+1) 

rnl 

which follows from (A.1) in Appendix A.1. The filter (') is a kth order one-step linear prediction 

filter, with coefficients {w; m = 1,. . k}. The filter w(k)  is obtained from solving the Wiener-Hopf 

equation. The channel prediction from the pre-multiplied observation y'. (, k) have become entirely 

independent of the data d (k). 

FIR channel estimation The filter w can be pre-computed and used for all £ hypotheses, however 

there is a separate filter needed for every sample. In analogy to section 2.1.3, w can be truncated by 

a time independent moving average (MA) predictor, of order M. For the sake of simplicity the 

superscript (M),  to indicate the order of the filter will be dropped in the following. In analogy to (2.17) 

the prediction of the future sample k + 1 then becomes 

q (t, k+1) = 	w 	(t, k—m+1) = 	k) 	 (5.27) 
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where the vector Y'q  (t, k) is assumed to have the appropriate dimension CM.  Note, the second order 

statistics, such as the cross-correlation or the auto-correlation matrix become also time independent, thus 

the index k will be dropped in the following. According to section 2.1.3 a notation for the Wiener -

Hopf equation from (2.18) is obtained by defining: y'y',q = E[y(t, k) y'q"(t, k)] with dimension 

M x M for the auto-correlation, and = E[ hq (k+1) y'f(t, k) ] with dimension M for the cross-

correlation function; the MMSE filter can be determined 

Wq 	
_'1

=4hy',q 	E CM 	 (5.28) 

MLSD using linear predictive FIR filtering was studied for a flat fading channel in [36,94,98] and was 

extended to ISI channels in [37].  Clearly, this requires knowledge of the second order statistics of the 

Cifi. Ways to estimate the predictor w are described in section 2.1.4. Another, sub-optimal approach 

is to choose W q  such that it does not require any knowledge about the channel statistics. The predictor 

W q  is chosen a priori and does therefore not need to estimate the 2nd  order statistics of CIR. This may be 

achieved by modelling the fading process as a polynomial in time [99]. 

Next the variance is determined and related to the MMSE, V. The variance of the qth  diversity 

tap from (5.22) is: o- q  = E[ ly(t, k)—h 1 (e, k) 2 ] Furthermore, oj = = > q 0 y2 ,q  is equivalent to 

the MMSE plus the variance of AWGN. Therefore, (2.19) can directly be applied for one-step prediction 

of diversity tap q. For the variance of the Q th  order diversity system, the following is obtained 

Q 
0' = V1  + No = 1 + No - 	

OH 
jq 4',q  4y', q 	 (5.29) 

q=1 

For constant envelope signals 4hy'q  can directly be replaced with Oylyl,q  in (5.29), since 4y'y'q = 

d(k) dhy',q  Note that the error variance 	is independent off. 

hR estimation filter Another possibility of performing an one-step prediction is to use an infinite 

impulse response (1W) filter instead of a FIR filter, discussed in 2.1.5. According to (2.21) the recursive 

channel estimator for hypothesis £ can be expressed as 

	

k+1) = (1 - a) y1(,  k) + ah q (, k) 	0 < a < 1. 	 (5.30) 

The filter has the form of a low-pass filter. Thus, it reduces the effects of noise at the expense of some 

imposed pass-band distortions. The channel estimate needs to be generated for each tap separately, and is 

subsequently processed in the same way as the FIR filter estimate to obtain the decision variable A(t, k) 

in (5.23). This type of channel estimation may be viewed as a sub-optimum approximation of a Kalman 

filter, as suggested by Iltis et a! [97]. 1St order 1W filtering, also referred to as LMS filtering applied to 

MLSD, has been investigated further for the ISI channel in [93, 100] and for flat fading in [30, 1011. 
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finite state machine 

	

dW(k) 	 1 

Figure 5.6: Shift register model of the transmitted sequence. 

5.2.2 Finite state channel model 

Suppose the CIR estimated is approximated by a M th  order moving average (MA) filter. With this 

approximation the receiver can be realised by a trellis search. This sub-optimum approximation offers a 

solution for (5.23) with a complexity independent of the sequence length K but exponentially dependent 

on the predictor order M. Thus the Euclidean distance in I Yq  (k) - d(k) h, (f, k) 12 of (5.23) depends 

only on M + 1 samples; the present one plus M past samples used for channel estimation. Assuming an 

auto-regressive (AR) model for the channel, as described in section 2.1.3, the CW can be described by a 

finite state Markov process and is graphically represented by a trellis diagram. The following definitions 

are used to describe the trellis diagram: 

State: A state at time k is defined by 

	

(k) 	{a(k), . . . , a°(kM+1)} ; i E S 
	

(5.31) 

where a°(.) e V is the information symbol of state (k) = i. There is a one-to-one correspondence 

between a(k) and the transmitted signal hypothesis, that is for MPSK d°(k) = exp (j27r a(k)/A m ). 

Assuming aAm _ary symbol alphabet D, the set of states is denoted by  = {(k) : j = 	,A-11. 

There are L = 	states (k) E S per time instant, according to the memory of M time samples of one 

state. 

Transition: A transition or branch between the states (k— 1) = i and (k) = i'is defined by 

((k-1), X (k)) = (i, i') 	{a'(k), . . . , a°(k—IVI)} 	 (5.32) 

= 	a( ')  (k), X (k)} 

There are A m  transitions per state, which sums up to A m  L = A' transitions per sample in total. There 

is obviously a one-to-one correspondence between state sequences {(k) } and transition sequences, 

given by afinite state machine or a shift register process [84], since it can be modelled by a shift register 

of length M, depicted in Figure 5.6. By observing the trellis, the analogy of the trellis structure to equal-

isation of channels with ISI [85] becomes apparent, however, the branch metrics are defined differently. 

The metric of the branch is the Euclidean distance between the estimated and received signal, given by 
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Figure 5.7: Distance metric illustrated in a trellis for the recursive MLSD, M = 2. 

Q 
I7(' k+1) - i g (i, k+1)1 2 	 (5.33) 

q1 

QIM 	 2 

= 	:i: ; 7  4(i, 
k_m+1) 	

WqO = — 1 

q1 Im=0 	 j 	E 	(i, i') 

where 14(j, k-i-i) = d'(k+1) yq (k+1) denotes the pre-multiplied received signal of state  = {i, i'}. 

Associated to state x  (k —1) = i is the one step channel prediction h q  (i, k+ 1). According to section 5.2.1 

the CIR estimate is obtained by either an FIR or 1W estimation filter. 

Path: A path at time k is defined by 

a(i) (k) 	{(k),. .. , X(1)} 	 (5.34) 

= 	{a(k),... a' (2), x(1)} 	£ E Ak 

It is assumed that transmission starts at time k = 1 with a known initial state. With the defined transition 

metrics in (5.33), the metric of a path entering at state (k) is equivalent with the decision variable 

A((k)) = A((k-1)) +i((k-1),(k)) 	 (5.35) 

= m2 

which represents the decision variable in (5.23). 

This results in a trellis structure, illustrated in Figure 5.7 for a finite state machine of order M = 2. 

5.2.3 Application of the Viterbi algorithm 

It was stated earlier that number of paths a°(k) grow exponentially with time k. The prohibitive high 

complexity of ML sequence detection, can be reduced by employing the Viterbi Algorithm (VA) [84], ori- 

ginally proposed for the decoding of convolutional codes by Viterbi [102]. The VA is an asymptotically 
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M delay 	. A(11,k) 

k-M 	 k 	k+1 

Figure 5.8: Distance metric illustrated in a trellis for the recursive MLSD (Am = 2). 

optimum decoding algorithm, based on Bellman's optimality principle of dynamic programming [103]. 

Later the algorithm was applied for optimum equalisation of channel with inter symbol interference (1ST) 

by Forney [85],  multi user detection in multiple access channels by Verdü [1041, speech processing, and 

many more applications. The VA offers an efficient solution where maximum likelihood detection of a 

whole sequence is required. 

Optimality considerations Conditions for the applicability of the VA to MLSD with unknown para-

meter estimation were analysed by Chugg [89,93]. It was argued that the VA is the optimal decoding 

algorithm if the transition metric is fully described by (5.33). Otherwise the VA is the optimum decod-

ing algorithm for an incomplete and thus sub-optimum finite state representation of the received signal. 

Consequently, MLSD using the VA is a sub-optimum approximation to the optimal estimator-correlator 

receiver described in [31]. 

Generally speaking, the VA represents an optimum solution of MLSD for a finite state, discrete time 

Markov process observed in memoryless noise. The VA is only optimal as a decoding algorithm if the 

process is Markovian.4  That is the probability, P(x(k+1)Ix(1),. .. ,(k)), of being in state (k+1) 

depends only on the state (k) [84]: 

P((k+1) I x(l) 	,(k)) = P((k+1) Ix(k)) 

To apply this criterion to our problem consider Figure 5.8. Suppose the sequences say £=t and £=4 
are the same for at least M samples and they are different for at least one symbol with delay larger than 

M. The VA is optimum if and only if A (i, i') from (5.33) is identical for £ and 4. If that is not the 

case and the VA was applied at (k) = i and either of the candidates was discarded, the corresponding 

survivor may not be the ML path in the end of the sequence and the VA would therefore be sub-optimum. 

Note, with a M th  order linear predictor this condition is met such that the VA is optimum. The receiver 

itself, however, may be sub-optimum because of the truncation of the predictor from (5.26) to (5.27). 

In the following the application of the VA using the definitions in (5.3 l)—(5.35) will be discussed, 

according to the principle of per-survivor processing (PSP) [92]. This certain type of receiver will be 

referred to as VA—MLSD. Let i, Ic) denote the survivor path of state (k) = i. That is the metric with 

4A 1st  order Markov process is described as Markovian. 
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the minimum distance entering this state, which is obtained by minimising (5.24), given by 

	

i, k) = 	min{A(t, k)} 	 (5.36) 
IEi 

Associated with each survivor is the path 

	

â(k) = {ä(k), . 	V )  (2), x(l) } ; i E S 	 (5.37) 

where the past history {ã(k)} denotes the tentative decisions of state i. The Viterbi algorithm can now 

be described as follows: 

Storage: Survivor terminating inx(k): A(i,k) 0< i < L 

associated metric: 	 ã(k) 	0 < i < L 

Initialisation: 	k = 1 

x(') = 0 —4 ã(k) = 0 

A(i,1) = { c; iO0 

Recursion: To extend the survivors of (5.36) to sample k+1, the metric from state (k) = ito (k+1) = i' 

is computed, giving the trellis update A(i', k+ 1) = A(i, k) + (i, i'). 

The computation of L(i, i') involves the evaluation of the one-step channel prediction, h(i, k+l), 

associated to state (k) = i. From the branches entering at state i', the ones with the larger metric 

are discarded, giving the survivor at time k + 1: 

	

(i', k-fl) = 	(i, k) + min z(i, i') 	 (5.38) 
(,z') 

This is illustrated in Figure 5.7, where the VA calls for choosing between two transitions, A (i, i'), 

printed as dashed and solid lines. 

Complexity issues: Given the trellis is in its equilibrium, i.e. every state has A m  entering and A m  

leaving branches per time step for MIPSK, one survivor out of all the branches entering a particular state 

is to be determined. Note, for every state A m  new transitions need to be calculated. The trellis has 

A number of states, with A m  branches entering and leaving each state per sample, resulting in A 4  

transitions in total for the whole trellis. For each transition, Q CIRs must be estimated (one per diversity 

tap). The computational cost of a transition ((k - 1), (k)) is mostly dependent on the choice of the 

estimation filter, its order M, and the number of diversity taps. The complexity in terms of the number 

of survivors which are to be processed, which is here equivalent to the number of states in the trellis, can 

be classified by the order O(A). The complexity order O(A) states that the computational cost of 

VA—MLSD grows exponentially with M. 

Although the ML decision rule states that the final decision is taken at the end of the sequence, little 

degradation is expected if the definite decision on the most likely path is made after a delay of only a few 

samples. 
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4.1 

samples where 
M T AA(E) is non-zero 

estimation 	 Lb 	 M 
filter memory 	- 
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burst 	feedback 
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k 1-M 	 k 1 	k I+Lb 	 k2  

Figure 5.9: Effect of an error burst to the differential decision variable i.A(&). 

5.2.4 Performance analysis 

The performance of a maximum likelihood sequence detector is analysed, following the steps in sec-

tion 5.1.5, where the error probability of the non-causal receiver was evaluated. Similar expressions for 

the analysis of the recursive MLSD in a fading environment are discussed in [86, 87, 105]. An analysis of 

the performance for MLSD was given for a flat fading [86,87] and for a frequency selective fading chan-

nel [86, 105].  For the recursive MLSD receiver, the derivation of a quadratic form is not as straight for-

ward as in the previous case. Now the decision variable A () from (5.24) 5 is a sum of length K, approach-

ing infinity for continuous transmission. We shall see, however, that the LRT, AA(9) = A(t) - 

has only L e  <<K non-zero entries, since the estimation filter has finite memory M. For the derivation 

of the error performance of the recursive MILSD the LRT is cast into a quadratic form: 

= A(t) - A(0) = u" Q(S) u 	 (5.39) 

then the probability of error can be upper and lower bounded following the discussion from section 5.1.5. 

First the effective length L e  of an error event S is determined. Define e (k) = I d(k) —d° (k) 1/2 and 

the corresponding error state sequence x, (k) = {e(k),... , e(k—M)} with memory M. Assuming 

that the transmitted sequence is the all one sequence, d(k) = d°(k), the error state Xe  equals the state 

definition of x  in (5.31). An error event S is said to extend from time k 1  to k 2  if X, (k) is equal to the 

correct state sequence outside the interval {k 1 ,... , k 2 } and nowhere in between. Thus the length of the 

error event becomes L e  = k 2 —k 1 -1. Denoting the length of an error burst by Lb we have L e  = L&+M. 

The decision variable is affected by the burst S for L,,, t  = Lt+2M symbols. That is the duration in which 

an error burst of length Lb has an impact of the estimation - detection procedure. This is illustrated 

in Figure 5.9. The M - 1 samples prior the occurrence of k 1  are non-zero due to the estimation filter 

w. The effect of the error burst may persist for another M samples past k 1 , due to decision feedback. 

However, no subsequent errors are assumed to be induced after time kl+Lb. Figure 5.10 shows possible 

error events in a M = 3 state trellis. The shortest error event with Lb = 1 persists for M+ 1 samples 

before it again merges with the path for the transmitted sequence. This single error event will be used to 

5 For simplicity the time index of the decision variable from (5.24) is omitted, A(t) = A(t, K) as long as it is clear from the 
context. 
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Figure 5.10: Effect of an error burst to the differential decision variable A,(C). 

evaluate the lower bound, Pe  (1). In the following it is assumed that this is also the case for hR channel 

estimation. Due to the exponential decline of the terms contributing to k) from (5.30), this gives 

a reasonable approximation of the true lower bound for sufficiently large M. 

The test vector u = [ui, 	, UQ] '  of dimension 	containing the entries of the Q diversity 

taps, represents the subsequences of the symbols being affected by e. Its entry for the qth diversity tap 

is defined by 

U q  = [yq (kiM), 	,yq (kl+M+Lb)]T 	E 	 (5.40) 

To evaluate quadratic form uHQ(S)  u from (5.39) an expression for the matrix Q(C) is required. An 

expression for Q() is derived in Appendix A.3.2. 

For the pairwise error probability, Pe  (i), equation (5.16) needs to be evaluated 

P)= 	
1_L/.A 
	 (5.41) 

where the set 
{, 

n = 1,... , N} are the eigenvalues of the matrix 	Q(e). The matrix 	= UU 

E 
[ 

uuH I  d°1]  is the covariance matrix of u, given that hypotheses £ = 0 was transmitted. Some results 

are presented for MLSD with FIR and hR filter respectively. The theoretical performance of (5.41) will 

be compared to simulation results for implementations of the recursive MLSD in Chapter 6. 

Numerical results Generally, curves labelled "ideal" identify the case where the CIR is known a priori. 

The general assumptions for the results presented for the recursive MLSD are the same as in section 5.1.5. 

For results of the lower bound, P , (1) in (5.41), was evaluated for the single error event according to Fig-

ure 5.10. For the calculation of the upper bound (5.19) error bursts with length Lb < 8 were considered. 

Figure 5.11 shows the BER performance against the SNR for the recursive MILSD with a FIR-type pre-

dictor of order M = 4. A fading rate of '4nax = 0.05 is assumed. It is seen that the bounds are tight for 

high SNR ( 2 20 dB), while they are rather loose for low SNR values. Given that the upper bound in 
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Figure 5.11: BER vs SNR for the recursive MLSD with a FIR-type predictor of order M = 4. A diversity signal 
with Q taps is considered; i'. = 0.05. 
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Figure 5.12: (a.) MSE vs v for various M. 
(b.) BER vs ' of the lower bound for the recursive MLSD; ' = 15 dB, Q = 1. 

(5.19) is not a true upper bound (see the discussion in section 5.1.5), the lower bound will be mainly used 

in the following. Moreover, the lower bound will prove to be more useful for comparison purposes with 

receiver structures implemented for simulation work in Chapter 6. 

Figure 5.12 shows the MSE, V,, 	 ,,a from (5.29) against the normalised Doppler frequency ux,  of mi 

a linear predictor (part a.) and the BER of the lower bound (part b.), for various filter orders M. In 

Figure 5.12.b simulations were carried out  in order to confirm the evaluation of the pairwise error 

probability, P5 (1) in (5.41), which serves as lower bound. It can be observed in Figure 5.12 that the 

MSE of the receiver is not a reliable indicator for its error performance, although there is a rough relation 

between MSE and BER. For some combinations of M and ii the receiver performance employing a 

M th  order predictor is poorer than the corresponding receiver with a M —1 order predictor. This is most 

obvious for M = 2 at fading rates in the range v = [0.04, 0.12], where a M = 1 yields better results 

6For the simulations the VA–MLSD described by (5.36)–(5.38) was implemented, for details see section 6.4. In order to 
simulate the lower bound, which only accounts for single errors (Lb = 1), one unknown bit was followed by 2M known bits, to 
produce the required test sequences, Uq in (5.40). Due to the vast complexity of VA–MLSD for large M, simulation results for 
M > 4 are not included in the graph. 
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Figure 5.13: BER vs SNR for MLSD with FIR filtering with different filter orders M and diversity taps Q. 
(a.) slow fading: ii = 0.005; 	 (b.) fast fading: v = 0.05. 
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Figure 5.14: BER vs SNR for the recursive MLSD with some zi and Q. 
(a.) FIR filtering (M = 8); 	 (b.) III? filtering (a = 

than M = 2 in terms of the BER, whereas the corresponding MSE for M = 2 is never higher than for 

M = 1. Furthermore the BER is not a monotonic function for Vax  whereas the MSE is. 

To investigate further the recursive MLSD with a FIR-type predictor, in Figure 5.13 the lower bound 

of the bit error probability against the SNR is shown for different numbers of filter orders M and diversity 

taps Q. For slow fading (part a.) there is little difference in BER by varying M between 2 and 8. For 

flat fading the lower bound is very close to the case were the receiver has perfect knowledge of the 

dR. By introducing diversity, the difference between the lower bound and the receiver with known CR 

becomes slightly larger. That is to be expected since the mean SNR per tap, 1q, decreases by increasing 

the number of taps Q, since the average overall SNR is normalised, such that = E,/No = q=1 i. 

A degradation of q  increases the MSE, therefore the receiver performance becomes slightly poorer. For 

fast fading (part b.) and long filters (M > 4), there is little difference in performance. 

In Figure 5.14 the lower bound of the bit error probability is shown for FIR-type and Pt  order 1W-

type filtering in part (a.) and (b.) respectively. Considering part (b.), the filter constant a =crptwas 

chosen according to (2.22). For low Doppler the performance for both FIR and 1W-type filtering is 

very close to the case when the dIR is known a priori. If the Doppler frequency increases FIR filtering 

outperforms 1W-type filtering, which is an expected result, due to the simplicity of the 15t  order JR filter. 

Especially for high SNR the plots flatten out for JR filtering, due to an irreducible BER (IBER). 
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Figure 5.15: BER vs v. for the recursive MLSD; = 15 dB, Q = 2. 
(a.) FIR filtering and different M; 	(b.) BR filtering and different a. 
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Figure 5.16: BER vs SNR for MLSD with FIR filtering with different filter orders M for very fast fading v = 0.3. 

(a.) flat fading: Q=1; 	 (b.) double diversity: Q=2. 

Figure 5.15 shows the BER against the maximum normalised Doppler frequency Vax, for double 

diversity Q = 2. Again FIR-type and 1st  order hR-type filtering are compared in part (a.) and (b) 

respectively. In part (a.) different filter orders are shown, while part (b.) shows the dependence of 

the receiver on the filter constant a. For comparison purposes a plot of a receiver with a = a is 

also included in part (b.). It is observed that a = obpt  is not the best possible solution to minimise the 

error probability, as seen in Figure 5.15.b. This conforms with the discussion in section 2.1.5 as the 

approximations used to derive a pt  from (2.22) where only valid for slow fading and low SNR. On the 

other hand, MILSD using a FIR filter with M > 4 is superior for fast fading, while its performance is 

approximately the same for slow fading. 

Note that setting a = 0 is equivalent to M = 1 and both cases correspond to performing MLSD 

without estimating the CIR at all. The CW estimate is simply given by the pre-multiplied received 

signal of the previous sample, h> (k) = 14(e, k — i), similar to a conventional DPSK detector. It can be 

observed from Figure 5.15.b that for nax > 0.08 the BER of a receiver with a = 0 is superior to the 

corresponding BER for the receiver with a > 0. It can therefore be concluded that 1 1t  order IIR filtering 

is not appropriate for fast fading. 
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Error floor analysis: Figure 5.16 shows the performance for very fast fading, v.,,,= 0.3, to investigate 

the error floors for FIR-type prediction, dependent on the predictor order. As expected the the error floors 

in form of an 113ER decrease by employing a higher order predictor. The case M = 1, which is equivalent 

with a = 0 for hR filtering, is the worst case for a linear predictor. This conforms with [36],  where 

it was shown that MLSD employing a linear predictor experiences no IBER, if the predictor order M 

approaches infinity. The IBER can be considerably lowered by employing diversity, as shown for a two 

tap diversity receiver in part (b.) of Figure 5.16. As a result, for realistic receivers with FIR prediction 

filters of the size M > 4, the existence of an IBER does not affect the BER performance in ranges of 

interest, particularly if diversity is employed. A typical raw BER on a mobile radio link is in the range 

[10 2 , 10-3 ] dependent on the application. The IBER can be lowered if a higher order Kalman filter is 

used [95]. 

5.2.5 Extension to channels with inter-symbol interference 

The application of the VA to detection of signals transmitted through a multipath fading channel 

was originally derived for channels with inter-symbol interference (1ST) with perfectly known CIR. op-

timal detection may be realized according to various receiver structures. Forney [85] showed that the 

receiver may be divided into two distinct components: a front-end processor, called whitening matched 

filter (WMF); and a non-linear post-processor based on the VA. In an alternative solution proposed by 

Ungerbock [106], the front-end processor is reduced to a matched filter, requiring a modified metric 

computation. 

Moreover, a large part of the literature concerning MLSD with unknown parameter estimation is 

devoted to channels corrupted by ISI. Although ISI channels are not explicitly considered for simulation 

work, the generalisation of MLSD for 1ST channels is briefly discussed in the following, because it is 

closely related to the work carried out in this thesis. The work of Lodge and Moher [36] was extended 

to the frequency selective fading channel in [37,96,97]. Applications on Equaliser structures in wireless 

communications are summarised in [8, 107].  The design of the receiver front end, in case the CIR is 

unknown was addressed in [93, 107]. Consider the received signal at time h, corrupted with 1ST after 

sampling and matched filtering 

Qisi 

y(k) =d(k—q+1)h q (k)+n(k) 	 (5.42) 
q=1 

where the CIR h q  (k) is equivalent to the previous discussion in this thesis. It is assumed that one received 

sample is affected by Qisi  information symbols and the memory of the channel is M. In matrix notation 

the received sequence can be expressed as 

y(k) = D(k)h(k)+n(k) 

where y(k) and n(k) are of dimension M. The CIR vector is an M + Qisi dimensional column vector 

h(k) = [hT(k),.. h,(k)J 1', with the independent fading taps hq (k) of dimension M. The data 
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matrix is of the block diagonal form 

D(k) = diag[dT(k), . . dT(k - Qisi)] 

with the data vectors d(k) also of dimension M. 

Note, with this definition the received signal is still linear, hence the Gauss-Markov theorem still 

applies [16] (see section 2.1). Thus, Kailath's estimator-correlator receiver [3 1] with the decision variable 
H 
 ,, 1 y in (5.4) remains the optimal receiver for (5.42). However, pre-multiplication of the received 

signal (5.9) does not apply in this case. Accordingly, for the recursive MLSD, the recursion in (5.21) 

holds, but pre-multiplication does again not apply. Following [37],  the decision variable for an ISI 

corrupted signal is 

Qisi 	
2 

 

A(e,k) = A(,k-1) + y(k) - 	d(k—q+1)h q (e,k) 	 (5.43) 
q=1 

If the signal is corrupted by a known CW, the estimate hq (t, k) is replaced by the true CW hq (k). 

Normally, the receiver has no prior knowledge of the CW, so it needs to be estimated. In section 5.2, 

the conditional mean of the pdf pertaining to the one-step prediction of the received sample y(k), was 

identified to be hq (t, k) = E[ hq(k) I y(k-1), d(k)J. With the Gauss-Markov theorem from (2.10) 

the MMSE estimate of h q  (t, k) is obtained by applying the Wiener-Hopf equation 

= E[hq (k) y H(k_1) d" (k)] .E[ y (k) yH(k) d(k)[ '  .y(k-1) 

= E[hq (k)hH(k_1)1 [D(k)]H 	 (5.44) 

(D>(k) E[h(k) hH(k)] [D(k)}H + No!) 1  y(k-1) 

With equations (5.43) and (5.44) the Viterbi algorithm can be employed as sub-optimum decoding al-

gorithm [89,93], similar to section 5.2.3. However, due to 1ST the number of different channel estimates 

at any one time has increased to A mM +, compared to the A'' required for the 1ST free case. Moreover 

and equally important, the estimation filter 

w = [D (k)] 
H  (D(k) E [ h(k) h"(k)] [D(k)] H + No!) '  

has become data dependent. However, w still is time-invariant. Therefore, in most practical receivers 

the separation principle is used, that is the Cifi is obtained by a training sequence and subsequently used 

as if it was known a priori, termed trained MLSD [107, 108].  With this assumption the trellis reduces 

to AISI  states and the metric computation is also grossly simplified. For instance, a trained MLSD is 

used for the GSM standard. With this approach the receiver complexity is grossly reduced at the expense 

of some loss in spectrum efficiency. Furthermore, such a receiver is only applicable to a slow fading 

channel. The receiver developed by Fechtel and Meyr [109] extends Cavers work [11] to 1ST channels 

(see also [28]).  That receiver utilises time multiplexed pilots and thus extends the pilot aided receiver 

structures studied in section 4.2 to channels with 1ST. 
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Considering blind equalisation, adaptive MLSD algorithms were reported in [106, 110, 111]. This 

terminology implies that a single channel estimate is maintained and updated based on tentative decisions 

fed back from the VA. This also leads to a trellis with ASI  states, since only one channel estimate is 

kept a certain time. The VA decoding depth for providing tentative decisions to the channel estimator is 

a critical parameter for that type of adaptive MLSD. The design trade-off is that a large delay is required 

for reliable decision feedback, while a small delay is desirable in order to track channel dynamics. 

The per-survivor processing (PSP) technique eliminates this trade-off by providing parallel, zero-

delay decision feedback for per-path channel estimation [92].  As a result, PSP provides superior perform-

ance and robustness at the expense of increased computational complexity, requiring decoder 

states. PSP may be viewed as a generalisation of [37,96, 1121, although they were developed independ-

ently of [92].  The innovations based MILSD [37] was extended to Rician fading in [105], including 

the estimation of the second order channel statistics. Dai and Shwedyk [96] employed Kalman filters 

while [37] used a linear predictive receiver. A similar receiver to [37,96] was developed independently 

by Kubo et al. [112]. In that paper channel estimation was performed using the LMS algorithm. In [112] 

a comparison between the PSP based receiver and conventional adaptive MLSD is given, in terms of per-

formance complexity and implementation of the algorithms. Later Chugg and Polydoros [100] analysed 

PSP using LMS based channel estimators. There the channel estimation performance was analysed with 

regard to different receiver front-end approximations. 

Another approach to blind equalisation algorithm was proposed by Seshadri [113], which operates 

on a number of parallel trellises, where each correspond to a hypothesised estimate of the CIR. There 

however, equalisation on time-invariant channels was studied, while we are mainly concerned with an 

improvement of the tracking capability on fast time-varying channels. 

In general, the complexity of these algorithms grow exponentially with the length of the Cifi. Thus, 

for many applications, in particular when the number of channel taps Qisi  is large, these algorithms are 

not feasible. Therefore, reduced complexity variants of the VA have been devised. The number of states 

required due to 1ST, Qisi,  can be reduced if prior knowledge of the basic structure of the RF radio channel 

is used. This prior knowledge is used as side information, in terms of independently fading propagation 

paths or sky waves [114]. Suppose the impulse response {h q (k)} with a large number of fading 

taps, Qisi,  is a linear combination of Qo  orthogonal basis vectors, i.e. rank(E[h(k)h"(k)]) = Qo, 

where h(k) = [h1(k),.. . hQISI (k)JT . The estimator then predicts the Qo independent fading paths rather 

than the Qisi  taps of the Cifi {h q (k)}i. This approach requires Qo << Qisi in order to considerably 

reduce the complexity. In [115] a recursive MLSD is presented where the CW is expressed as a linear 

combination of polynomial basis vectors. 

Another approach is to reduce the number of decoder states in the trellis [116-119]. One such tech-

nique is the M-algorithm [116]. Hashimoto [117] combined the M-algorithm with the VA, leading to a 

list type reduced-constraint generalisation of the VA (LVA). The proposed algorithm contains the Viterbi 

and the M-algorithm as a special case. Another approximation of MLSD is reduced state sequence es-

timation (RSSE) developed by Eyuboglu and Qureshi [118, 119].  There subsets of states were merged 

to super-states and the number of transitions of these super-states were reduced with state dependent 
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decision feedback. The receiver is a combination of the traditional MLSD and decision feedback equal-

isation (DFE) [7].  Iltis et al. [97] implemented the recursive MLSD employing a bank of parallel Kalman 

filters by using RSSE. PSP is also a form of reduced complexity solution for MLSD. RSSE and PSP are 

very similar approaches, since they both exploit state dependent decision feedback. Thus, the proposed 

receiver in [97] may also be viewed as a PSP based receiver. 

5.3 Soft output detection 
Following the discussion in section 1.2.2, supplying hard decisions for subsequent processing contradicts 

Shannon's information theory, since information about the received signal is discarded prematurely. Im-

proved performance can be achieved by applying soft decisions to the channel decoder. These soft 

decisions may be used as a form of reliability information in subsequent receiver stages. With optimum 

sequence detector from (5.24) soft decisions may be provided with a channel state information (CSI), 

that is the CW estimate of the ML sequence hq  (k). An improved CSI can be obtained by a 2 nd  stage 

estimation filter [120], which is a smoothing type filter. This is similar to the iterative channel estimation 

from section 4.2.2 and 4.3.2. A system using MLSD to obtain tentative decision including a CSI, for 

decoding of Trellis modulated signals was investigated in [98, 120]. 

However, a more powerful approach is to compute the a posteriori probability p(d°(k) ly) from 

(2.25) which is provided by the MAP symbol-by-symbol detector (MAP—SbSD). Let a state at time k 

be denoted by x(k) = {d(k),... d(k - L)}, where L is the combined memory of the channel and 

modulator. By applying Bayes' theorem, the MAP probabilities can be expressed as 

	

p(d"(k) I y) = 1p(X(k-1) = i',(k) = i I 	 (5.45) 
i'ES 

where S is the set of states. The posterior probability of the state transition from state x(k - 1) = i'to 

(k) = iisin the form 

p((k-1) = i',(k) = i I y) = 	
1EAK(i',i) p(d 	

(5.46) 
>1LEAi.c p(d 

where AK denotes set of all hypothesis and AK (i', i) is the subset of hypothesis that traverse the trellis 

branch between states X (k-1) = i' and x (k) = i. Note, p(d I) represents the a posteriori probability 

for the sequence d, which is the sequence detector from the previous section. The above equation states 

that, for each branch in the trellis the following ratio needs to be computed 

Sum of MAP sequence probabilities which pass through a given branch 
Sum of MAP sequence probabilities of all paths through the trellis 

It is observed that the MAP—SbSD and the MLSD are closely related through (5.46) [121]. Since the 

MAP—SbSD consists of the sum of MAP sequence probabilities, the resulting receiver structure requires 

a much higher computational complexity than a corresponding sequence detector. 

A solution including forward and backward recursion was given by Bahl et al. [38].  This algorithm 
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was applied to a flat fading channel with unknown channel response in [122]. Optimum MAP—SbSD 

under the constraint of a fixed delay was developed by Abend and Fritchman [123]. This approach seems 

to be more suited for real time applications because it only requires forward processing. Unfortunately, 

the number of variables that need to be stored and updated grows exponentially. Recently, [124] refor-

mulated the Abend & Fritchman algorithm [123], with the result that the complexity grows only linearly 

with the sequence length. Their algorithm was extended to the case of unknown channel parameters by 

utilising PSP [125]. 

The development of iterative decoding techniques, can yield vast improvements in system perform-

ance compared to non-iterative systems [122]. There detection and decoding is performed iteratively, 

where soft decisions between decoder and detector are exchanged. This requires some sort of soft-in 

soft-out detection and decoding, performing an update of the a posteriori probabilities of both inform-

ation and coded symbols [126]. In particular the development of "turbo codes" [127, 128] has brought 

the code performance much closer to Shannon's channel capacity. This is achieved at the expense of 

increased complexity and coding delay, which may be unacceptable for real time applications, such as 

wireless telephony. 

Optimum MAP—SbSD may be too difficult to implement in practice, basically because of the oc-

currence of non-linear functions and and mixed multiplications and additions of these values, which 

make it difficult to transform them into the log-domain. Faced with the high computational complex-

ity of MAP—SbSD, sub-optimum approximations operating in the log-domain are commonly used. The 

Max—Log—MAP [129, 130] imposes the maximum rule to the Euclidean distance computation occurring 

in the log-domain: when paths merge only the one with the best metric contributes to the new state prob-

ability, such that the resulting recursion is exclusively additive. Techniques to reduce the complexity even 

further are [131]: state reduction by state dependent decision feedback; and reduced backward recursion. 

There has also been some research activity in extracting soft-outputs from MLSD with the VA, by 

producing so-called reliability informations. This has led to the concept of list-type Viterbi algorithm 

(LVA) [132], and the soft-output Viterbi algorithm (SOVA) [133]. For MLSD with unknown parameter 

estimation PSP techniques can be employed for both the LVA and SOyA. 

Algorithms providing soft-decisions and operating in the log-domain are compared and analysed 

in [134-136]. In [135] an adaption of the SOVA was derived which made it equivalent to the Max—Log-

MAP, while [134] modified the Max—Log—MAP such that it was equivalent to optimum MAP—SbSD but 

without its computational burden. 

5.4 Summary and conclusions 
In this chapter receiver architectures were reviewed which are optimal for linear modulated signals, trans-

mitted through a random time-variant channel described by a Gaussian pdf. The optimum ML sequence 

detector from section 5.1 follows Kailath's separation theorem [31]. That is the receiver consists of an 

estimator that delivers the MMSE estimates of the fading distortion and a detector that utilises these es-

timates, by decorrelating the received signal. It was shown that if the channel estimate can be determined 
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independently of the data sequence, the estimation and detection tasks are independent of each other. 

This has established a link between the estimator—correlator receiver and the one-shot receivers studied 

in Chapter 4. 

Unfortunately, the optimum receiver may be too complex for most practical application, since its 

complexity grows exponentially with the sequence length. The recursive formulation for M1LSD studied 

in section 5.2 provided a powerful tool to reduce drastically the complexity by application of the Viterbi 

algorithm (VA) to the problem. Although, the resulting receiver termed VA—MLSD is generally sub-

optimum, it is the best possible solution when the channel estimator is truncated by a M th  order moving 

average linear predictor. Alternatively, an 1W-type channel estimation filter can be applied to the VA-

MLSD. The application to diversity systems and the extension to signals with ISI and MAT was also 

addressed. The performance of the VA—MLSD was lower and upper bounded by an analytical expression 

to evaluate the pairwise error probability of an error event. Unfortunately, the bounds are only tight for 

high SNR. Thus, in the following chapter, the VA—TvILSD and reduced complexity derivatives based 

on per-survivor processing (PSP) will be extensively analysed by means of Monte Carlo simulations to 

examine the utility of the theoretical bounds. 

Finally, in section 5.3 an overview of algorithms deemed to implement the MAP symbol—by—symbol 

detector was given and similarities to MLSD were pointed out. 
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Chapter 6 
Implementation of MLSD with 

Unknown Parameter Estimation 

The techniques studied in this chapter are based on the recursive ML sequence detector [35-37] from 

section 5.2. The PSP based receiver applied to ISI free channels is examined, implemented according 

to section 5.2.3. PSP was used for detection of MPSK modulated signals transmitted over a flat fading 

channel in [98, 120],  using a predictive FIR filter. In [137] Kam eta! extended their PSP based receiver 

in [101] to the Rayleigh fading channel, using a 1st  order hR filter to estimate the channel response. 

Simulation results for both the FIR and 1W type channel estimation filter will be presented. 

Following section 5.2.3, the computational cost of VA-N11LSD (the Viterbi algorithm applied to re-

cursive MLSD) is of order 0 (A), which corresponds to the number of states in the trellis. In section 6.1 

state reduction techniques to reduce the complexity of the receivers will be discussed, involving decision 

directed techniques. This compromises the optimality of the receiver but drastically reduces its com-

plexity. The performance of PSP based on a two state trellis will be assessed through simulations in 

section 6.3. The robustness of the receiver will become an issue due to decision feedback effects. Con-

ditions which can cause stability problems due to decision feedback are addressed in section 6.3.3. A 

performance bound employing a Markov model is derived which matches the simulation results more 

closely than the lower bound from section 5.2.4. In section 6.4 simulation results for other state re-

duction techniques are presented. Receiver structures considered in that section offer generally better 

performance, are more robust, but are more complex than the receivers from section 6.3. Then hybrid 

receiver structures are proposed in section 6.5, which are less complex than the algorithms in section 6.4 

and are more robust than the algorithms in section 6.3. The major results of the simulations and analysis 

are summarised and discussed in section 6.7. 

6.1 State reduction techniques 
The number of decoder states of VA-MLSD (the Viterbi algorithm applied to recursive MLSD described 

in section 5.2.3) grows exponentially with the estimation filter memory M. Thus the computational cost 

of processing A m  states in the trellis may still be prohibitively large. From the reduced complexity 

variants of the VA, originally proposed for the ISI corrupted channel reviewed in section 5.2.5, there are 

two techniques which will be the focus of further investigation: 

(i.) State dependent decision feedback (SDDF) proposed by Eyuboglu and Qureshi [118]. Only the 

most significant states are taken into account, the remaining states are determined with decision 

feedback. PSP can be interpreted as an application of this technique. 
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(ii.) List type Viterbi algorithm (LVA) developed by Hashimoto [117]. States are merged to super-states. 

Then the M-algorithm [116] is performed on these super-states. 

6.1.1 State dependent decision feedback 

The complexity is reduced by means of state reduction [118]. Consider the cross correlation between the 

CIR and its estimate ch(0) = E[h q (k) h(k)J, which is a sum of correlation coefficients: 

M 	 M 

Tihh( 0) = 	q5j(m) = 	m 	 (6.1) 
M=1 	 m=1 

where Om  = Wqm  c6 hh (m) denotes the correlation coefficient of filter tap in. The number of states in 

the trellis can be reduced if only the most significant taps tJ.m which contribute in the calculation of the 

Euclidean distance, (i, i') from (5.33), are represented in the state description. All other conditional 

entries of the estimated CIR are determined by state dependent, tentative decisions, d°(k). These tentat-

ive decisions are given by the path history ã'(k) of state (k) = i. Decision feedback of d'(k) is then 

used to determine the decision variables of subsequent samples. 

The significance of a decoder state is given by the magnitude of the corresponding filter tap 0, For 

slow fading m  decreases monotonically with increasing Tn. Thus, the first D taps 100,  OD } are the 

most significant. For fast fading or long filters with a large M, there may be zeros in Im and therefore 

the most significant D taps will no longer be the first D taps. This particular form of state reduction was 

implemented by Mehlan et a! [131] for soft output equalisation. For the sake of simplicity the case of 

relatively short M will be considered, where 0, is a monotonic function of rn. With these assumptions 

a state description at time instant k in (5.31) changes to 

(k) 	{a(k), a(k-1), . . . a(k—D+1)} 	 (6.2) 

and the corresponding set of states changes accordingly to S = {( k) : i = O,. , L - 1}, where 

L=A  , D < M. The computational cost is of the order O(A), which has become independent on the 

filter order M. With the definition of (6.2) the CIR estimate from x(k) = ito (k + 1) = i'is obtained 

D-1 	 M-1 

ig (i, k+1) = > d*(k_m) yq (k—m) + 	 d((k—in) yq (k—m) 	(6.3) 
M=0 	 mD 

where d (k) and d"(k) are the state dependent hypothesis and the tentative decision of the transmitted 

signal, respectively. The first term in (6.3) represent the filter taps of the finite state machine in the trellis; 

the second term represents taps determined through the path history by decision feedback, specified by 

the survivor path a(k) of that state. The survivor for state (k + 1) = i' is obtained by extending 

the metric and applying the VA given by (5.36)—(5.38). Note that setting D = M gives the VA-MLSD 

described in 5.2.3. An interesting special case is D = 1, resulting in a L = Am state trellis. This technique 

has attracted considerable research interest recently [30, 101, 120] and will be analysed in section 6.3.2. 

Setting D = 0 results in a entirely decision directed receiver. Thus, all filter taps which contribute in the 

86 



6: MLSD with Unknown Parameter Estimation 

calculation of h q (i, k) and L(i, i'), are obtained through decision feedback. Note, PSP with D = 0 is 

closely related to the decision directed two stage receiver studied in section 4.3.2. 

The introduction of state dependent decision feedback provides an additional degree of freedom 

for the design of a PSP based receiver, since D and M can be chosen independently to optimise the 

receiver design. So higher order predictors may now be employed for a certain D, without significantly 

increasing the complexity. In the following discussion in this chapter, this more general description of 

the VA applied to MLSD will be assumed. 

6.1.2 List type Viterbi algorithm 

With some modifications state reduction techniques, previously applied to channels with 1ST and known 

dR, can be applied MLSD for an unknown channel. These techniques are based on the fact, that of the 
AD survivors, only a few have a sufficiently small metric to contribute to the overall best survivor path, 

and therefore the most likely sequence. The vast majority of the survivors can be discarded before the 

final decision is made, without compromising the system performance. The purpose of this algorithm is 

to keep the decoding complexity less than that of the VA while avoiding error propagation due to reduced 

state decoding. 

A large class of such algorithms are constituted by the list type Viterbi algorithm (LVA) [117, 132]. 

The LVA in [117], contains the VA and the M-algorithm [116], a breadth first sequential decoding al-

gorithm, as a special case. Every state retains a list of J best candidates and the M-algorithm is performed 

for each state to update the path metrics. The application of the M-algorithm for MLSD with unknown 

parameter estimation was proposed by Auer et al [138] and will be described in the following. 

Applying the LVA to MLSD involves building subsets 8*  of the full set of states S, termed super-

states X* (k). Let all states X (k) which are the same for the first D8  symbols, belong to a certain subset 

8*, with D8  <D <M. A super-state X*(k) then consists of all states within a certain subset 8*.  With 

this definition there exist A_)S*  of such subsets, each having As*  candidates. The LVA only keeps 

a certain number of candidates per super-state, J <A; while discarding all other survivor paths. The 

algorithm works as follows: 

Path extension: In order to extend the list to sample k + 1, A m  J candidates per state, i.e. A m  per 

list element j need to be computed. That involves calculating the transitions from X* (k) to X* (k + 1) 

including the dIR estimate for that transition, to obtain A m  J decision variables. Then the J best paths 

with the smallest metric are stored for each state. The remaining (A m  - 1)J paths are discarded. The 

principle of list type Viterbi processing is shown in Figure 6.1. It illustrates the process of updating 

the list, with the survivors and discarded paths drawn with solid and dashed lines, respectively. The 

M-algorithm is performed for the J candidates of each state. Thus, the LVA can be regarded as a state 

dependent M-algorithm. 

In order to find the J best paths of the A m  J candidates, sorting is necessary. However, since J should 

be a small number the particular choice of the algorithm and impact on the overall complexity should 
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Figure 6.1: List type survivor processing (J-SP) illustrated in a trellis with two states. 
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Figure 6.2: The ambiguity check for List type survivor processing (J-SP). 

be negligible. The list of J survivor sequences per super state X*(k) defines the J best candidates up to 

sample k. The jth  entry of the list is in the form 

= 	mill 	A(t, k) 	j = {1... , J} . 	 (6.4) 
LEAk 

L#{1 	i-'} 

The first list element, being the one with the minimum metric is computed first, then the second down 

to the j th  element. Note, the actual ML path may not be among the J candidates, a situation which 

becomes more likely with decreasing J. 

Ambiguity check: Note, for the transition from x (k) to x (k + 1), only previous samples with a time 

delay equal to or less than M, are of interest. Therefore, a further condition for a path to be within J is 

that all subsequences with time delay D <M are mutually different. An ambiguity check prevents the 

accidental storage of two paths with the same symbols [116]. Let the subset of paths with a maximum 

time delay D, where D < M, be defined by W. If two path maps differ once (as they do initially), they 

may become identical when the differing symbols are dropped, considering only time delays smaller 

than D, i.e. they are no longer with the sliding window defined by W. The basic idea of the ambiguity 

check is illustrated in Figure 6.2. If the sliding window W moves from time step k to k + 1, the path 

associated with either the dashed or solid line will be discarded by the ambiguity check, regardless all 

other survivor sequences being in the list. In other words, paths which are the same within W are 

deleted by the ambiguity check, as the path with the larger metric can never be the ML path. To justify 

this constraint consider two subsequences having the same path history for at least D = M samples. 
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The Euclidean distance of these two paths, I Em=O w* yq (, k - m) 1 2 , would be identical, hence no 

information is lost if the path with the larger metric is discarded. The LVA in [132] searches for the 

globally J best paths, however, here the local J best path are of interest. 

Computational cost Denoting the number of super states by L* = A_)s*+l, the overall number of 

paths at a given time is JL*.  Thus, the computational cost of the LVA is of the order 0 (L*  J) <Q (A D), 

where 0 (A g) denotes the computational cost of PSP with L = A states. Updating the trellis involves 

calculating A m JL* <A 1  transitions. The corresponding path extensions of these transitions are then 

sorted and updated finding the minimum A m  J paths. The cost of a transition is mostly dependent on the 

estimation filter type and its order. 

There are a number of interesting special cases: 

D5  = D, with S = S yielding a single super-state. The resulting algorithm is equivalent to the 

original M-algorithm [116]. In the simplest case when J = 1, the M-algorithm essentially reduces 

to the operation of a decision feedback equaliser (DFE) [7, 1391. 

D5  = D - 1, then A m  super-states per time step are obtained. The computational cost of the 

algorithm is of the order 0(A m  J). The super-states perform a generalised type of PSP, where 

a list of the J best paths is kept instead of a single survivor for the original PSP, which will be 

called J-survivor processing (J-SP) [138]. This case was investigated in [138], and accordingly 

simulation work in this thesis will be limited to this case. 

D* = 0, then the super-states become the same as the original states and J = 1, which is PSP with 

L = A D  states. Finally, if M = D the original VA-MLSD without state reduction is obtained. 

6.2 Reference phase tracking 
Per-survivor processing (PSP) can be applied in a straightforward manner if orthogonal waveforms, or 

non-coherent modulation such as differential encoding is employed [140]. Differential encoding of the 

data bits, however, potentially imposes a significant degradation in system performance. On the other 

hand, in order to perform coherent detection, a form of phase reference for the receiver must be provided. 

The idea of reference symbol phase tracking was introduced in [10, 111. These receivers only used the 

pilot symbols multiplexed in the data stream for channel estimation. Such a receiver was studied in 

section 4.2. The performance can be improved, especially for fast fading, if pilot symbols as well as 

data symbols are used for channel estimation, developed by Irvine and McLane [141]. The idea of pilot-

aided plus decision-directed channel estimation was further developed in [142]. Their receiver combined 

decision feedback and adaptive linear prediction. This essentially requires a more sophisticated receiver 

design and joint estimation and detection of the entire transmitted sequence becomes attractive. The PSP 

based receiver discussed in section 5.2.3 can be employed for the pilot symbol insertion (PSI) approach. 

PSP was applied to a pilot aided system in a flat fading channel by [98, 120]. For MLSD on a pilot 

symbol aided system, the data aided information is embedded in the VA. Since channel estimation and 
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detection are performed jointly, the combination of PSP and reference symbol phase tracking appears to 

be a particularly suitable concept. First of all, the spacing of the pilots can potentially be extended, since 

it is no longer primarily dependent on the fading rate. Hence, the spectral efficiency of the receiver may 

be improved, due to a reduction in system overhead, because less pilot symbols are required. Second, 

the recursive MLSD is derived as the optimum receiver, thus its performance is ultimately superior to the 

empirical approaches in [141, 142]. 

6.2.1 Differential modulation 

According to the discussion in section 4. 1, differential modulation can be applied to PSP in a straight-

forward way, by means of differentially encoded PSK (DEPSK). In this case detection is performed in 

analogy to coherent PSK and the receiver output d(k) of (4.1) is then differentially decoded. The differ-

ential decoding is done after the final decisions of the Viterbi processor, i.e. Ad(k) = k) ã(k —1). 

The VA-M1LSD itself remains unchanged and can be employed according to (5.36)—(5.38). 

Figure 63: BER vs SNR for the 2—stage decision directed receiver (DD—RAKE), compared with the linear predict-
ive DD—RAKE and the PSP based receiver with M = 4. Q = 2, v = 0.05. 

The receiver performance of the receiver is plotted in Figure 6.3, together with the decision directed 

(DD) receivers from section 4.3, these are the decision directed linear predictor and the 2—stage receiver 

from section 4.3.2. The curve labelled "ideal DEPSK" shows the receiver performance when the CIR is 

known a priori to the receiver, which serves as a lower bound. It is seen that for DEPSK, the performance 

of PSP with D = 1 is identical to the two stage receiver, discussed previously, while its complexity is 

approximately doubled. Moreover, simulation results suggest that some improvement is observed for PSP 

with D = 3, particularly for high SNR. For DPSK, the use of PSP cannot be justified because decision 

directed receivers with less complexity perform almost as well. So, PSP with differential modulation 

will not be pursued further. 

6.2.2 Pilot aided channel estimation 

The necessary phase reference is incorporated in the form of time multiplexed pilot symbols, named 

pilot symbol insertion (PSI). The multiplexing rate is R; one known symbol is followed by R— 1 data 
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Figure 6.4: Allowed transitions in the trellis when a pilot is being detected, D = 2. 

symbols. If a pilot is being transmitted, d°(k), is defined to be 1 and therefore states (k), which 

converge to V )  (k) = —1, are not allowed. The multiplexed pilots can be incorporated in (5.38), (5.27) 

and (5.30) by re-defining the pre-multiplied received signal 

- f h q (k) + n(k); k mod R = 0 Y/ ()(k) 	)\ 	 (.) 
( d(k) y q (k) ; elsewhere. 

The following M samples the pilot is shifted through the state machine, leaving half of the possible states 

in the trellis for M + 1 samples. This is illustrated in Figure 6.4, where a pilot is assumed to be received 

at sample k. In general, a state is not allowed because of a transmitted pilot symbol at time instant k—m, 

if the following relation is true: 

d(k—rn) 	1; 	(k—m) mod R = 0 

Pilot aided channel estimation combined with PSP and the LVA will be analysed in the remainder of this 

chapter. 

6.3 PSP based on a 2-state trellis 
In this section the performance of PSP with two states is investigated which is particularly attractive, due 

to its low complexity. The effect in terms of performance degradation and decision feedback effects are 

extensively analysed. 

In this section the decision delay inherent in the VA is truncated to D = 1, so a trellis with L = 2 

states is obtained. Following the discussion in section 6.3.1, the state (k) = i is defined by (k) = 

a°(k). So state (k) = i is identical to the information symbol a( ')  (k), which contains 1092 A m  bits. 

91 



Chapter 6: MLSD with Unknown Parameter Estimation 

That is, all filter taps which contribute to the calculation of (6.3) are obtained through decision feedback, 

consequently the Cifi estimate is obtained based entirely on the tentative decision of the transmitted 

signal d(k), i.e. hq (i, k) = f(d(I)(k - 1), 1( 1 )(k —2),... , - M)). Apart from that, the VA 

applied to recursive MLSD from (5.36)—(5.38) is employed with the parameters D = 1 and L = 2. This 

particular receiver was studied in [120, 137]. 

A block diagram of the resulting receiver structure and the corresponding trellis representation is 

depicted in Figure 6.5.1  The receiver structure may be separated into four parts, these are: 

Pre multiply the received signal to remove the data modulation of the received signal. 

Calculate the decision variable A(i', i, k+1) = A(i, k) + (i, i'). In general, there are A m  states, 

leading to A 2  possible transitions. For the diversity receiver, combining of the Q diversity taps is 

performed after calculating the Euclidean distances to obtain L(i, i') in (5.33). 

The Viterbi processor selects A m  survivors out of the A 2  candidates according to (5.38). Channel 

estimation is performed in a per-survivor fashion, i.e. the time delayed decision d°(k) is fed back 

and applied to the received signal. 

After a delay of R symbols only one survivor is left, yielding the final decision d(k—R). According 

to (6.5) it is assumed that d(k) = dt0 (k) = 1 if a pilot is transmitted. 

6.3.1 Simulation setup 

Simulation work is based on a complex baseband urban channel, described in section 3.2.6. The stat-

istics of the qth diversity tap are specified by the classical Doppler power spectra [52],  having the ACF 

hh,q (1) = J0 (271L/ ax). The bit error rate (BER) was obtained by simulating the MLSD receiver designs 

over a large number (between 106  to 10) of Monte Carlo runs. 2  Binary modulation (BPSK with A m  = 2) 

in the form of BPSK was used for all results presented in this chapter. Simulation results are compared 

to conventional DPSK, 3 . Generally, for the discussion throughout this chapter, curves labelled "ideal" 

identify the case where the Cifi is known a priori according to (4.5), and "theory" is the label for the 

lower bound of (5.41). Unless otherwise stated the results presented in this section, are based on the 

parameter specifications in Table 6.1. 

6.3.2 Results for FIR estimation filter 

The PSP based receiver employing a FIR estimation filter is considered in the Figures 6.6-6.8. The BER 

against the average SNR, ', for conventional DPSK and FIR—PSP, operating in a fast fading channel 

'For simplicity a binary non-diversity receiver is shown (Q = 1, Am = 2). The subscripts for the q diversity tap have 
been dropped, since no diversity is considered in the graph, e.g. yi  (k) = y(k). The generalisation to larger Q and Am are 
straightforward, however, it would rather obscure the receiver principles. 

2The number of runs necessary to achieve sufficient convergence is dependent on the particular receiver realisation and the 
simulation parameters, e.g. some receivers produce long error bursts which occur very occasionally, hence a larger number of runs 
is needed to average over a sufficient number of bursts. Or for slow fading there are longer but less deep fades, requiring more 
runs. 

3Conventional DPSK, where no attempt is made to estimate the CIR, was discussed in section 4.1 and the probability of error 
is given in (4.6). 
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Figure 6.5: Block diagram of the receiver structure for PSP, with Am = 2 states and flat fading, Q =1. 
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VA decoding delay 	D 1 
—+ Number of states 	L 2 
Modulation 	 BPSK 
Phase reference technique 	PSI 

Table 6.1: System & simulation parameters for 2—state PSP. 

Figure 6.6: BER vs SNR for FIR —PSP (solid lines) and conventional DPSK (dashed Imes) for different numbers of 
diversity taps Q. M=8, R=1O, v=O.O5. 
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Figure 6.7: BER vs SNR for different ratios of data to known symbols R. M = 8, 
(a.) slow fading: v=O.005, 	 (b.) fast fading: v=0.05 

('flax = 0.05), is shown in Figure 6.6. The difference between the two receivers is impressive, although 

the difference becomes smaller when the diversity increases (for Q = 3 and BER = 10 3  it is 5dB). This 

is because the irreducible BER (IBER) which is observed on a DPSK receiver becomes less the larger 

Q becomes. On the other hand the channel estimation for the coherent BPSK receiver gets poorer with 

larger Q. This is due to the decreasing signal power per tap. Since channel estimation is performed for 

each tap separately, the MSE rises. 

The effects of varying R on the system performance is shown in Figure 6.7. The BER is plotted 

against the SNR, for a receiver with M = 8, and Q = 1 and 2 diversity taps. For R > 5 the performance 

of the slow fading channel (Figure 6.7.a) is poorer than for the fast fading case (Figure 6.7.b). This is 
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Figure 6.8: BER vs SAW for different numbers of filter orders M; R = 10, Q = 1, 
(a.) slow fading: u=0.005, 	 (b.) fast fading: v=0.05 

a surprising and unexpected result, as normally channel estimation and the detection of uncoded signals 

transmitted over a slowly fading channel are considered to be less problematic. However, here, particu-

larly for low SNR and/or slow fading, the receiver with R > 5 is found to be not robust. These stability 

problems were identified by Auer et al [143, 144] and will be extensively analysed in the next section. In 

general, for both Figure 6.7 parts (a.) and (b), it is observed that the lower bound of (5.41) matches the 

simulated results for high SNR (5k> 20 dB) almost independent of R. For low SNR however (5 < 15 dB), 

long error bursts and error propagation cause the bound to become loose. Hence the single error assump-

tion for the derivation of the lower bound, described in section 5.2.4, is not valid. For the limiting cases 

of R —* oo the error probability approaches Pe  = 0.5 which is the expected asymptote, since then the 

receiver has no phase reference. If the pilot multiplexing rate R becomes smaller (R < 5), the theoretical 

bound becomes tight for all SNR values, as shown in Figure 6.7. This is because, a smaller R breaks up 

long error bursts and therefore reduces error propagation. However, it is desirable to choose R as large 

as possible to maximise the spectral efficiency. 

The stability problems observed for slow fading are more likely to occur for large filter orders M, 

this is illustrated in Figure 6.8.a. It is seen that in slow fading conditions, only a receiver with M > 4 

performs poorly. Lower filter orders, on the other hand, degrade if the Doppler frequency becomes larger, 

as seen in Figure 6.8.b, because of the reduced ability of the estimator to track the fading fluctuations. 

The results from Figure 6.8 indicate, that an optimum value M for FIR—PSP, to operate in arbitrary 

fading conditions does not exist. Rather is there a trade-off dependent on the Doppler frequency nax 

and the SNR, from which the simulation results favour a larger or smaller M. The best compromise 

between stability for slow fading and phase tracking capability for fast fading appears to be a predictor 

with M = 4 coefficients. 

6.3.3 Stability analysis of the 2—state PSP algorithm 

In the following, the reasons for the stability problems described above are investigated. Close studies of 

the problem showed two main reasons. The first reason arises from decision feedback, since the decision 

variable of one state, x(k) = i, is dependent upon decisions concerning the previous M samples. For 
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Figure 6.9: Phase (a.) and magnitude (b.) of FIR —PSP vs time k, compared to the CIR with and without AWGN; 
v=O.005, 	10 dB, M=8. 

L = 2 states, the decision upon the survivor, A(i, k), of that state, however, is made with only one sample 

time delay. Thus, crucial information may be discarded by applying the VA. Since adjacent samples are 

more correlated in slow fading this loss of information becomes more important. 

The second reason is due to the nature of the predictor coefficients {Wm }. It has already been illus-

trated in Figure 6.8 how the filter length M affects the performance. In the following a comparatively 

long filter (M = 8) is employed in order to further examine these stability problems. Furthermore, a 

flat fading channel with Q = 1 will be assumed, so the subscript q to identify the diversity taps can be 

dropped, i.e. h(k) = hi (k). Figure 6.9 shows the phase (Figure 6.9.a) and magnitude (Figure 6.9.b) of 

the estimated dR, h(i, k), for FIR—PSP in the time domain, compared to the true CW with and without 

AWGN. It is seen that the receiver can be locked in a false state, where the channel estimator phase is 

flipped (shifted 1800  relative to the CIR phase) i.e. arg [h(i, k)] = arg [h (k)] + ± ir, where 4O denotes 

the prediction error phase. This can be observed in the graph between samples k [80, 170]. In this 

interval the error rate becomes virtually 100%. The receiver is entering the false state after a deep fade 

and stays locked until the following deep fade, as shown in the graph. During a deep fade, rapid phase 

changes and a signal to noise ratio up to 20dB smaller than the average SNR may cause the channel 

estimator to lose track of the received signal phase. Then the prediction error due to noise becomes large 

compared to the Cifi, h(k), resulting in a poor channel estimates. Subsequently, in a good reception 

area, the phase estimate of the CIR remains locked in the false state; despite the fact, that the estimated 

magnitude (Figure 6.9.b) deviates from the actual CIR, particularly if a pilot symbol is detected, seen 

as negative spikes in Figure 6.9.b. It appears the pilot symbols are not capable of providing a sufficient 

phase reference to the receiver. 

In order to understand the effects which cause these phase slips observed in Figure 6.9, consider the 

Euclidean distance metric L(i, i') = Ie(i, i', k) 
1 2  defined in (5.33), where the prediction error is defined 
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by e(i, i', k) = y' (i', k) - h(i, k). The estimation error depends on M + 1 samples, i(i, i', k), that is 

the current sample d(')(k), sample d()(k —1) and the tentative decisions on the previous M —1 samples 

{d()(k—m)}_ 2 . Clearly, two sequences which merged at least M + 1 samples ago will have identical 

prediction errors e(i, i', k) and consequently the same Euclidean distance L(i, i'). Furthermore, due to 

magnitude squared operation in calculating (i, i'), a conjugate sequence has also the same Euclidean 

distance, that is 

dist{d ( ' )(k), d(2)(k  —1), d()(k —2), . 	, 	- M) } 

= dist{—d(k), —d(')(k—l), _d(2)(k_2), 	, 

(6.6) 

This observation is analogous to the phase ambiguity problem [75]. Recall the definition of the path 

metric by A(, k) = L(i, i'). A sequence with a path metric of A(t, k) with k - 1 errors 

will have the same distance metric as a sequence with the path metric A(i, k) with a single error, where £ 

denotes the conjugate sequence of £. Now suppose the receiver is in a false state as depicted in Figure 6.9, 

then the phase reference of a pilot is rejected as noise (seen as negative spikes in the magnitude plot 

Figure 6.9.b), and the survivor is the sequence having R - 1 data errors per pilot symbol, while the true 

ML path has previously been discarded by the VA, before the receiver entered the bad state. However, 

Figure 6.9 does not indicate why this only happens for certain channel parameters, such as slow fading 

and low SNR. 

6.3.3.1 Identifying conditions for instability 

To investigate the effect of the nature of the predictor weights {Wm } consider the following experiment. 

The estimation filter w is determined by the Wiener-Hopf equation (2.18), dependent on V'.' and 5. It 

is shown in the following how w can degrade the performance of 2—state PSP, although its coefficients 

satisfy the MIMSE criterion. Let a channel estimation filter be matched to the parameters and ii, 
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operating in a scenario with the actual channel parameters 5' and nax'  and consider the BER performance 

shown in Figure 6.10. It is seen that a filter w matched to low Doppler, ii,, = 0.005, has very poor 

performance for all Doppler frequencies, while for filters with ii > 0.02, the filter shows no stability 

problems as long as u. This establishes a dependence of the stability of the 2—state PSP based 

receiver to the predictor weights w [143]. 

The previous example showed that the stability of the receiver depends critically on the filter weights 

{wm}. The next step is to consider the correlation between filter taps and the CW {m = w5hh(Tfl)}, 

defined in (6.1). By using lom 
 }, 

a rough indicator for the stability of the receiver is established. Consider 

a scenario where the receiver has been locked in a false state for at least M samples. Suppose a pilot has 

been detected at sample k = k. Since only one state is allowed at time k, a sole survivor with final 

decisions {d(k - m) = —d(k - rn)} is obtained, after applying the VA. In other words, assuming 

that R > M, there are M - 1 errors and one correctly received pilot, which contribute to the prediction 

of the CW, (i, k + 1). Simulations suggested that at reasonably high SNR of 'y = 10 dB, the majority 

of the survivor paths merge after a time delay of just one sample, at the output of the Viterbi processor. 

Since the observed phase slips persist over good reception areas, as observed in Figure 6.9.b, this high 

SNR assumption appears to be justified. Thus, the minimum sequence out of the two candidates at 

time k + 1 is likely to be the output of the VA. The correlation between h(i, k +1) and the CIR for 

that sample h(k + 1) from (6. 1), is given by h ( 0 ) = i=i ?,l'm. For this case 0 1  accounts for the 

proportion of pilot symbol on the correlation q5jh  (0), while EM  m=2 Om  accounts for the proportion of the 

corresponding M - 1 data symbols. The pilot to data ratio (PDR) is defined by 

PDR 	
- 	i4qhh(1) 	

(6.7) 
>1m

M
=2 	- >1rn=2 wçbhh(m) 

With this definition, a high PDR implies a strong phase reference with respect to the M - 1 data symbols. 

Qualitatively, for low SNR and/or low fading rates the PDR is rather low, due to the high correlation of 

{bm}. Furthermore, increasing the filter order M also results in a degradation of the PDR. Thus, the 

PDR can be used as an indicator for the stability of the receiver. Figure 6.11 illustrates the impact of pilot 

and data symbols on the correlation between h(i, k+1) and the CIR, h(k+1), for slow and fast fading. 

For slow fading, adjacent samples are more correlated, which is manifested in both {w m } and qfhh(m). 

Hence Om  becomes less dependent on rn (compared to the fast fading case, as indicated in Figure 6.11). 

Therefore past samples have more impact in calculating the metric L(i, i') and the sub-optimality of 

the receiver, in terms of state dependent decision feedback, becomes more significant. As a result, the 

ratio between received signal powers of pilot and data symbols decreases. This can cause the receiver to 

become unstable [143]. 

v•103  2.5 5 10 20 

/ dB 
12 0.182 0.281 0.517 0.798 
18 0.278 0.511 0.788 1.05 
24 [0.509 I 0.785 0.96 1.71 

Table 6.2: pilot to data ratio (PDR) of a FIR filter with M = 8 coefficients. 
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Figure 6.12: BER vs SNR for various Doppler frequencies ii. M = 8; Q = 1; R = 10. 

Table 6.2 shows PDR values for some channel parameters 'nax 	' and , for the classical Doppler fad-

ing model with ACF Ohh (in) = Jo (27ri'j',ax  m). Figure 6.12 shows the 2—state PSP receiver performance 

against the SNR, for some values of !i flax  Note, the higher the fading rate V ax  the less SNR is required 

for the receiver to be robust. Comparing Table 6.2 with Figure 6.12 shows, that if the FIR-PSP perform-

ance shows no sign of instability, the PDR is over a certain threshold PDR, 1  0. 5, for M = 8 and R= 10. 

The framed entries in Table 6.2 identify the threshold PDRj 1 . Thus, for a given filter order M and pilot 

multiplexing rate R, the FIR-PSP is always stable if PDR > PDRj 1 . So the lower the Doppler frequency 

nax the higher the required SNR, ', for stability. 
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6.3.3.2 Analysis using the Gilbert-Elliot channel (GEC) 

In this section the instability of the 2—state PSP is examined using hidden Markov models, so called 

because the model is characterised by a non-observable Markov chain [145]. In communications a hidden 

Markov model (HIvIM) can be employed to model burst errors in discrete-time channels, called finite 

state Markov channels. In such a channel, a binary symmetric channel (BSC) 4  [7] with a given error 

probability is associated with each state of the HMM. The study of finite state Markov channels emerged 

from early work of Gilbert [146] and Elliott [147]. They studied a 2—state Markov channel known as the 

Gilbert—Elliott channel (GEC). The error process is generated according to the following probabilistic 

mechanism: when the Markov Model is in state (k) = 0, the good state, the channel corrupts the 

transmitted bit with the error probability Pe  ((k) = 0) = Fe0. Otherwise, when the channel is in state 

1, the burst state, the channel produces an error with higher probability Pe ((k) = 1) = Pei. 

P('2) 

CK 1-P('7 0) 

P(qj0) 

lPeO 	 lPe i 

d>4a d> 
lPeO 	 lPei  

Figure 6.13: The Gilbert—Elliott channel (GEC). 

The GEC is illustrated in Figure 6.13, there the 2—state 11MM is depicted in the upper part of Fig-

ure 6.13, and the channels for the good and burst state are shown beneath. After every channel trans-

mission, the chain makes one transition of state according to the transition probability matrix P. Let a 

transition from state 0 to 1 and the corresponding transition probability be denoted by To,and P(T01). 

Since a constant Markov process has the property of stationary transitions, the transitions probability is 

independent of the time index k. With these definitions, the transition matrix can be written as 

1 - P(7 1 ) 	P(771) P 	 I 	 (6.8) 
P( 7j0) 	1—P('ljo) 

Furthermore, define the probability of the 11MM being in state 0 or 1, as Po  and p, respectively. Note that 

p, and P(7) must satisfy the equilibrium condition which states that for any given states i, j E 10, 1}, 

the incoming flow and outcoming flow must be equal [148], cast in a set of linear equations 

p p = p; with  p [p0, pu 

4The channel in this context is defined in a more abstract way, than the fading channel which has been used so far. The channel 
considered in association with Markov models is a discrete-input, discrete-output channel, similar to the information theoretic 
channel discussed in section 1.2.2. For binary modulation and the equal probability of error for each bit, the BSC is obtained. 
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The state probabilities of the 111MM and the error probabilities of the binary symmetric channel are related 

by 

PGEC = poPo + P1 Pe1 

In the analysis it is assumed that if the probability of error in the good state is Pe cj  = P, the burst-error 

probability is Pe i = 1 - Pe, according to the discussion in the previous section. The GEC is then 

uniquely defined by p, P and P,  giving the average probability of error for the GEC 

- 	- Pe P(7jo)+(1_Pe)P(Yoi) 
PGEC - 	P(7j0)+P(71) 	

(6.9) 

For the case P (To1) = 0, the GEC approaches the performance of the good state, thus PGEC = Pe . On the 

other hand, if P(T01) = P(7j0), the GEC has a probability of PGEC = 50%, which can easily be verified 

in (6.9). This is the case for a binary signal without a phase reference. Generally speaking, if P(7j0) 

is only marginally larger than P(T01), the error probability of the GEC, PGEC,  will be much higher than 

P. This is the case when the pilots cannot impose a sufficient phase reference on the receiver. On the 

other hand, the bigger the difference between P(7j0) and P(Toi) the more robust is the system and the 

better the performance. Thus, the GEC can be used to model the stability problems observed for 2—state 

PSP with appropriately chosen transition probabilities P(T10)  and P(T01), which will be specified in the 

following paragraph. 

The GEC described above, can be extended to a finite state Markov channel with more than two 

states, following e.g. [149]. This may enable modelling the PSP based receiver having L = 2D states, 

with a Lth  order finite state Markov channel. The generalisation of the GEC to a N—state Markov channel 

is the Fritchman channel [150], having Ng  good states and N - Ng  burst states. However, estimating 

the state and transition probabilities, p and P, becomes more complicated. An efficient algorithm to 

estimate p and P using a given observation sequence was developed in [151]. This algorithm was used 

to model error burst in a Rician fading channel in [152]. It should be noted at this point, that modelling 

2—state PSP receiver output with a 2—state HMM is not a sufficient model. The transition probabilities 

P(7) for i, j E 10, 1) clearly depend on the position of the detected bit relative to the nearest pilot. 

So, to precisely model the 2—state PSP, a higher order HMM is necessary. However, it will be apparent 

later on that it is possible to develop performance bounds with the GEC, which in many cases model the 

stability problems of the receiver well. For this reasons and for the sake of simplicity, for the analysis of 

2—state PSP only the GEC will be considered further on. 

To describe the 2—state PSP receiver with a 111MM we follow a different approach from [151, 1521 

to determine P: that is Barrett's formula to determine the pairwise probability of an error event S from 

(5.41) is used, derived for the recursive MILSD in section 5.2.4, to evaluate P(7) of the transition 

matrix P. Furthermore, according to the discussion in section 5.1.5, the calculation of the pairwise error 

probability is itself only an approximation of the actual error probability. Thus, to precisely model the 

receiver by a 11MM appears difficult using an analytically derived P (7,). On the other hand, results 

obtained for the GEC were encouraging; that the stability problems of the receiver are modelled rather 
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Transition from good to burst state: TOI 

	

state: 0 •__•____e 	• 	• 	• A(0O,k) 	 path of the good state TOO  

	

1 . 	. 	. 	. 	'.- - - - .- - - -. A(01,k) 	 transition path Tot  

Transition from burst to good state: '2J 

	

state: 0 o 	0 	0 	 A(10,k) 	 transition path q 0  

	

___X. 	---- o---- o A(11,k) 	 path of the burst state T1 I  
k-I 	k 

pilot 

Figure 6.14: Trellis diagram of transitions between the good and bad state of the GEC. 

well. 

To employ the GEC to the given receiver, some idealised assumptions must be made. The error 

probability of the good state is approximated by the lower bound, Pe = P (1). It is assumed that the 

transitions from the good to the burst state and vice versa, are dominated by two events, which exclusively 

account for the transition probabilities P (To') and P (T10).  The corresponding transition sequences are 

depicted in Figure 6.14. The first event, To,,  accounts for the transition from the good to the burst state, 

while the second, 7j0, accounts for the complementary transition. The difference to the definition of the 

error event e in section 5.2.4 is that the two considered sequences end up in different states. For the first 

event, T01   according to Figure 6.14, the sequence £ = 01 associated with A(01) is defined by: 

d°1 = {. d°°>(k—A4), . . , d°°(k— 1), —dt 00 (k) , 	, —d°°(k+IV[) ... } 

where d°° denotes the all one sequence, which is assumed to be the transmitted sequence. The prob- 

ability of a transition from 0 to 1, P(T01), equals the probability that A(01) < A(00), or accordingly 

= A(01) - A(00) being smaller than zero. The log-likelihood ratio A(To,) is essentially 

non-zero within the range [k - M, k + M], since transitions outside this interval have the same Euclidean 

distance. Assuming that a channel predictor of order M is employed, the branch metrics computed 

outside the above interval are not dependent on the transition from 0 to 1, and therefore (6.6) applies. 

To specify the transition from state 1 to 0, 7-1 0 from Figure 6.14, the sequence which enters the good 

state from the burst state, is defined by 

Tio : 	dt10 = {. . . - d°°(k,, - 	, —d°°(k, —1), d ("0)  (kp ), do')  (k + 1), . . . , dt00 (k +ltif) . . . } 

It is assumed that the event Yo  is triggered by a pilot at time k = k. Furthermore, it is assumed that 

the transmitted sequence d = d°°, was already discarded earlier on. Instead, suppose the survivor at 

sample k = k is the path associated with the decision variable A(11), which is the same as the 

transmitted sequence dt00t if a pilot symbol is detected (k = kr), but different for all other symbols. So, 

A(11) specifies the path of transition 7j 1 , that is the path which stays in the burst state after reception of 
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Figure 6.15: BER vs SNR for the GEC compared to simulations of 2—state PSP with different R; M = 8. 

	

(a.) slow fading: v = 0.005; 	 (b.) fast fading: i' = 0.05. 
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Figure 6.16: BER vs v for the GEC compared to simulations of 2—state PSP with different R; 
M=8, =10dB, Q=1. 

the pilot, defined by 

	

7-1 1 : 	 d" = {. . . - d °° (k,, —M), . , — d100> (k, —1), d °° (k), —d 100 (k + 1), 	, — d °°1  ( k +M) 	} 

With the assumption that R > M the log-likelihood ratio zA(7j o ) = A(1O) - A(11) is also only non-

zero within the range [k - M, k + M]. It is the definition of the path of A(11) which imposes the 

presence of the pilot at time k. 

The probability of the event 7 can be approximated by the pairwise probability that AA(7) is 

smaller than zero. Following the steps from section 5.2.4 the transition probabilities P('T01) and  P('T10) 

can be obtained by evaluating Barrett's formula in (5.41) and substituting T01 or 5Jj0 with e. Some 

numerical results for P(71) and P(T10 ) are presented in Appendix B.1.2. 

Now the GEC is fully specified by P(71), P(7j0) and P5 (1) and the average error probability of 

the GEC, PGEC,  can be calculated using (6.9). Numerical results for the GEC, compared to simulations 

of 2—state PSP with different R, are shown in the Figures 6.15-6.17. The graphs for the transition 

probabilities P(T01) and P (li o) used to calculate the predictions shown in Figures 6.15-6.17, are shown 

in Figures BA and B.5 in Appendix B.1.2. In Figure 6.15 the (a.) slow and (b.) fast fading performance is 

(a.) 

0.1 

Ir 
0.01 

Co 
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30 

rr 
Ld 	0.1 
Co 

0.05 
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Figure 6.17: BER vs SNR for the GEC compared to simulations of 2—state PSP with different R; M = 2. 
(a.) slow fading: v,,=O.QO5; 	 (b.) fast fading: v=0.05. 

plotted against the SNR. Considering slow fading in part (a.), the instability of 2—state PSP is accurately 

modelled by the GEC for low SNR (5 < 10 dB), while the GEC is too pessimistic for high SNR. For 

high SNR, the assumption that the transitions between the states 0 and 1 are caused by only two dominant 

events is less valid. Therefore, in order to model the low Doppler and high SNR scenario more precisely 

a higher order HMM may be beneficial. For fast fading (Figure 6.15.b) on the other hand, the GEC 

matches the simulation results for all SNR, and the GEC turns out to be a better approximation than the 

lower bound P, (1) (also shown in the graph). In Figure 6.16 where the BER is plotted against v, the 

GEC appears a good model for this receiver. 

In Figure 6.17 results for the GEC with M = 2 are shown, all other parameters correspond to Fig-

ure 6.15. The GEC correctly predicts that a receiver with M = 2 is more robust for slow fading (Fig-

ure 6.17.a). Figure 6.17.b illustrates the major limitation of the GEC: if the receiver performance depends 

significantly on R, the GEC is not a good approximation of the receiver. 

Note, no assumptions about R have been made in the derivation of the GEC parameters. This im-

plies that the GEC may only be expected to work well for scenarios where the dependence of R on the 

performance is not significant. This limitation may be overcome by employing a higher order HIVIM, 

which also accounts for R. This could be achieved by constructing a HMM and then trying to approx-

imate the transition matrix P from (6.8) analytically, similar of the approach for the 2—state case. On the 

other hand, estimating the transition probabilities based on the observation sequence d as suggested in 

e.g. [151], combined with some extra side information about the receiver may model the PSP based re-

ceiver more accurately. Note, a higher order model may also be used to analyse PSP based on a L = 

state trellis. 

Thus, Markov models may be used to deliver tighter performance bounds for receivers operating in 

fading channels. However, given the simplicity of the GEC, the predicted results match Monte Carlo 

simulations rather well. The GEC offers further insight in understanding error propagation mechanisms, 

since the dominating sources which may cause instability can be identified and modelled by a HIVIM. 
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6.3.4 Results for hR estimation filter 

In the following a PSP receiver based on a 2—state trellis employing an a—tracker (IIR—PSP) is con-

sidered. Except for the different channel estimation filter, the receiver and simulation set-up specified in 

section 6.3.1 was used, which is equivalent to the simulation parameters of previous section. Simulation 

results presented in Figures 6.18-6.20 are carried out on a frequency-flat fading channel (Q= 1). 
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Figure 6.18: (a.) BER vs ,.' with a = a, for different R. 
(b.) a = %pt as a function of ii obtained through analysis. 
Q=1; y= 15 dB. 

The BER performance of a receiver using an estimation filter with a = a pt  chosen according to 

(2.22) is shown in Figure 6.18, which plots the BER against for different pilot to data ratios R. It 

can be observed that the performance is highly dependent on R. For small R, the receiver performance is 

close to the lower bound for arbitrary fading rates. When R increases, however, the performance is poor 

for slow and fast fading, while it is relatively unaffected for medium fading rates Vax 0.01. Only for 

small R is the theoretical lower bound of (5.41) tight (label "theory"). For slow fading and R > 5, similar 

stability problems are observed as previously for FIR—PSP. The cut-off frequency of a filter with % pt  is 

not responsible for the poor slow fading performance, as it is still much larger than Otherwise, the 

performance of the lower bound should also degrade. The reason for this frequency dependent instability 

is similar to the discussion of the FIR—PSP. The filter parameter o, is a function of '1]ax  and ', such 

that the noise error equals the phase lag error [28],  as discussed in section 2.1.5. The approximation of 

a from (2.22) is drawn in Figure 6.18.b. Note, that the lower the fading rate, the larger a pt  becomes. 

So for slow fading, if a.,t becomes larger than a certain value, the influence of a transmitted pilot in order 

to estimate the CIR is not sufficient to track the phase of the fading fluctuations. This is in accordance 

with the discussion in section 6.3.3.1, if the pilot—to—data ratio (PDR) defined in (6.7) is over a certain 

threshold, the receiver becomes unstable. 

As a result of the previous graph, Npt  of (2.22) is not optimum to minimise the probability of error; 

this was already pointed out in section 5.2.4, where the lower bound of VA-MLSD using a 1t  order JR 

filter was studied. So, it is useful to investigate how to determine a filter constant which yields more 

satisfactory results. Thus, the effects of the choice of the filter constant a, are shown in Figure 6.19. 

The BER is plotted against Vax  for different values of a. Note, for the simulations in this graph, a 
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Figure 6.19: (a.) BER vs u, for different a; Q= 1, R= 10, y= 15 dB. 
(b.) %p  obtained through analysis and simulations. 

does not adapt to the changing fading conditions, but stays constant. Results shown in Figure 6.19 

are similar to those found for a mismatched FIR filter in Figure 6.10. This implies that similar effects 

are responsible for the stability problems. Comparison of Figure 6.18 with the graph for various a 

in Figure 6.19 indicates that for low Doppler, the poor performance is because a pt  is too large. It is 

seen in Figure 6.19, that for a > 0.5 the receiver performance is poor even for low Doppler. Thus, the 

performance can be improved simply by imposing an upper bound amax on o. Simulations have shown 

that a value of amax 0.5 is usually a good approximation to overcome the degrading effects at low 

Doppler. 

For fast fading on the other hand, the performance cannot be improved by means of adopting a011,. 

This is due to a run away phenomena of the receiver; the a—tracker is unable to track the carrier phase, 

which becomes worse with increasing R. Since for fast fading at in Figure 6.18 approaches zero, the 

performance is similar to a = 0.1 in Figure 6.19 (with R = 10). That small a perform better for 

high Doppler is an expected result, bearing in mind that with decreasing a the phase-lag error, which is 

dominant for high Doppler also decreases. 

The filter constant which minimises the BER can also be determined through simulations. In order 

to find this parameter, asjm  from Figure 6.19.a, that a is chosen, associated with the graph, which has 

the minimum BER for a certain Doppler frequency These parameters a = asim are drawn in 

Figure 6.19.b. It is seen in Figure 6.19.b, that the filter coefficient which yielded the best results in the 

simulations asjm, differs significantly from the analytically derived apt. The parameter asim as a function 

of nax  can be approximated by the quadratic function 

Clapp 	
av6 (11nax - "s); Vax 	

(6.10) 
- 	0; 	 elsewhere 

where a and v are constants chosen appropriately to approximate the simulation results for a. The 

pole v represents the Doppler frequency from which a = 0, i.e. for V J(  larger than v the receiver does 

not filter the received signal any longer, it simply takes its previous sample Yq  (k—i). Through comparison 
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Figure 6.21: BER vs SNR of a filter with a, for various Doppler frequencies v. R = 10. 

with Figure 6.19.a the constants v = 0.05 and a = 10 are obtained, yielding aapp = (20 Vna., 
— 1) 2 /2, for 

= 15 dB. Note, this approximation is only valid for a given SNR. 

Figure 6.20 (part a.) shows the performance obtained from different realisations of the filter constant 

a against 'nax• In Figure 6.20 (part b.) the filter coefficients c and c 1, are drawn as a function of Vax. 

Also shown in the graph is the case where nopt  is upper and lower bounded by 0 < a,t < 0.5. When o 

is upper bounded by amax= 0.5 the performance is virtually identical to the filter with aapp, although ci 

can differ from a,1, quite significantly, as seen in Figure 6.20.b. It can therefore be concluded that unless 

a > ainax the system performance is not critically dependent on the choice of a. 

In Figure 6.21 results are shown for IIIR—PSP with the filter coefficient a p  chosen according to 

(6.10). It can be observed that the receiver performance is excellent for slow fading. On the other hand, 

IIR—PSP degrades significantly for Doppler frequencies 1/max> 0.04. The observed irreducible bit error 

rate (IBER) is due to the induced phase lag of the 1W filter, which is essentially a low-pass filter and 

can be reduced by introducing diversity to the system. The I1R—PSP is therefore not suitable for fast 

fading. Although for Q = 2 the IBER is much lower, the fast fading performance is still significantly 
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Figure 6.22: BER vs v, for FIR —PSP and HR—PSP R=10,  ' =10 dB. 

poorer compared to the FIR—PSP from Figure 6.7.b. The fast fading performance can only be improved 

by reducing R (see Figure 6.18). 

Comparison: PSP with FIR and hR filtering Figure 6.22 shows the BER against LIIc]ax,  for various 

realisations of PSP based on a 2—state trellis. It is seen that IIR-PSP 5  is superior in slow fading condi-

tions, while the FIR-PSP with long predictor (M =8) shows better performance for high Doppler. 

To conclude this section, the restrictions of pilot aided plus decision directed channel estimation have 

been studied extensively, with the constraint of a 2—state trellis representation of the receiver. Stability 

problems of the considered receiver structures were investigated and analysed, by means of Monte Carlo 

simulations and theoretically by a Markov model. Conditions which indicate instability were identified, 

which were shown to be critically dependent on the Doppler frequency zi 5 , the filter order M and 

the pilot multiplexing rate R. Based on the knowledge of this parameters, stability problems can be 

anticipated on a run time basis. Furthermore, robust receivers applicable to both slow and fast fading 

channels, consisting of a hybrid filter will be addressed in section 6.5. 

6.4 PSP based on an expanded trellis structure 
The discussion in the previous section was restricted to PSP based on a 2—state trellis. Now other state 

reduction techniques discussed in section 6.1 are examined. Compared to 2—state PSP, the receiver now 

operates on an expanded trellis structure with L = 2D states. Apart from that, all other assumptions 

concerning the channel model or the simulation setup correspond to section 6.3.2. For the numerical 

results of the lower bound, equation (5.41) in section 5.2.4 has been evaluated. Generally, curves labelled 

"ideal" identify the case where the CW is known a priori according to (4.5), and "theory" is the label for 

the lower bound of (5.41). Binary modulation (BPSK with A m  = 2) was used for all results presented in 

5 with the modification that a < 0.5. 
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Figure 6.23: BER vs SNR for VA-MLSD with Q=1,2  and 3 diversity taps; D M = 4, R=10-  
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Figure 6.24: BER vs SNR for different numbers of D; M = 8, R = 10, Q = 2, 
(a.) slow fading: v=0.005, 	 (b.) fast fading: u= 0.05 

this section. 

6.4.1 FIR estimation filter 

Results for VA-MLSD with a full trellis described in section 5.2.3 with D = M = 4, are shown in 

Figure 6.23. The BER is plotted against the SNR, ', for a diversity receiver with Q = 1,2 and 3 taps. 

The BER performance of a system in a slow fading channel, with a normalised Doppler frequency of 

= i/maxTs  = 0.005, is shown in part (a.). It is seen that the simulations match the lower bound. 

Thus, it can be postulated that VA-MLSD without state dependent decision feedback is robust for slow 

fading. The BER performance of a system in a fast fading channel, with a normalised Doppler frequency 

of V i'nax  = VmaxTs  = 0.05, is shown in part (b.). It is seen that the simulation results (> 15 dB) match 

the lower bound of (5.41) for high SNR, independently of the number of diversity taps Q. For low 

SNR however, long error bursts and error propagation cause the bound to become loose. During an error 

event, the channel estimation process is corrupted, leading to an inaccurate CW estimate, thus subsequent 

symbols are more likely to be detected incorrectly. Hence the single error assumption for the derivation 

of the lower bound is not valid. It can be observed that adding diversity significantly improves the system 

performance, while the relative behaviour of the algorithms is independent of Q. 

In the following, the number of diversity taps is set to Q = 2. The effect of varying D on the BER as 
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a function of the SNR and the normalised Doppler frequency 'i'nax  is shown in Figures 6.24-6.25. The 

performance for various D as a function of the SNR, is shown in Figure 6.24 '6  for a slow (Figure 6.24.a) 

and a fast fading channel (Figure 6.24.b). For fast fading the difference of PSP in terms of D never 

exceeds 1 dB. The PSP performance with D <2 for the slow fading case (Figure 6.24.b), is seen to break 

down for low SNRs, an effect which was extensively analysed in section 6.3.3. Provided that D > 3, the 

simulated error probability closely matches the lower bound. 

In Figure 6.25, the BER is shown against i'flax,  again for different numbers of D. It is seen that receivers 

with low D have stability problems dependent on 

In Figures 6.26 and 6.27 simulation results of the BER against the pilot insertion rate R are shown for 

various trellis memory length D, and filter orders M. For slow fading (Figure 6.26), the short predictor 

(M = 4 in part (a.)) performance is better for short delays D. The long filter (M = 8 in part (b.)) the 

performance is marginally better. The performance of 2—state PSP (D = 1) is poor even for low R, which 

corresponds to the poor slow fading performance observed in section 6.3.2. 

For fast fading (Figure 6.27), increasing the filter order to M = 8, results in the receiver becoming less 

sensitive to variations of R. Clearly the BER degrades monotonically with R. For M = 8 the BER 

is considerably lowered by increasing D from 1 to 2. However, if D > 2, there is little performance 

gain to be obtained. For M = 4 on the other hand, the BER degradation is more severe for increasing 

R. The reason why shorter predictors are more affected by increasing R is due to their poorer phase 

tracking capability, leading to run-away effects of the estimated CIR phase. A relatively short predictor 

is more likely to suffer a phase slip and the receiver stays locked in a burst state, producing errors with a 

probability of virtually 100%, at least until the reception of the next pilot. Furthermore, this penalty can 

only be slightly reduced by expanding the trellis, i.e. setting D> 1. 

An interesting result in this context is, that expanding the trellis is more beneficial for slow fading than for 

fast fading. A possible explanation for this observation is described in the following. For 2—state PSP the 

path associated with the final decision may not be the ML path, since the receiver is only sub-optimum. 

However, the ML path may not be the actual transmitted sequence. For fast fading, due to poorer phase 

tracking of the predictor, this is more likely. Thus, even if the Mt path was correctly selected by the 

receiver, the performance of the receiver may still be poor, due to run-away effects of the estimated CIR 

phase. For slow fading it is easier to track the carrier phase, so run-away effects are less severe. Hence, 

provided the MI. path is chosen correctly, which is more likely for D> 1, the performance is close to the 

theoretical lower bound. 

6.4.2 hR estimation filter 

The expanded trellis MLSD receiver employing an hR estimation filter is considered in the following 

graphs. The filter constant nopt  was calculated using (2.22). The BER performance against 'i'nax  for 

different numbers of D is shown in Figure 6.28. The slow fading performance ('nax < 0.02) is only 

close to the lower bound for D = 5 and is seen to be similar to the receiver employing a FIR filter 

6Due to the exponential growth of the trellis with respect to D, values larger than 5 result in a vast computational complexity, 
while the performance is only marginally improved. Thus graphs with D> 5 have been omitted. 
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Figure 6.25: BER vsv for different numbers of D. M=8, R=10, Q=2, =1OdB. 

:::s 	 . .1 	________________________________ 

	

5 10 15 20 25 30 35 40 45 50 	 5 10 15 20 25 30 35 40 45 50 

R 	 R 

Figure 6.26: BER vs pilot insertion rate R for different numbers of D. 
Slow fading, v=O.005, Q=2, =1OdB; (a.) M=4 and (b.) M=8. 
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Figure 6.27: BER vs pilot insertion rate R for different numbers of D. 
Fast fading, ii=O.O5, M={4,8},Q=2, 1=1OdB. 
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Figure 6.28: BER vs i.' using an hR estimation filter for different numbers of D. 
M=8, R=1O,Q=2, 1 =1OdB. 
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Figure 6.29: BER vs i4.  for differentR, with: (a.) a receiver with hR filter and filter constant at < a; (b.) a 
receiver with FlR filter, M=8. D=3,Q=2,=1OdB. 

depicted in Figure 6.25. The fast fading performance (nax>  0.04) of IIR—PSP is absolutely unaffected. 

Thus, increasing the number of decoder states cannot improve the ability of the hR estimation filter to 

track the carrier phase, if Vrnax  is high. The error floor for fast fading experienced by IIR—PSP cannot be 

lowered, independent of D. The reason is that for fast fading the filter constant becomes negligible, i.e. 

0. Now the CW estimate becomes h q  (i, k) = y' (i, k — i) and the receiver is similar to FIR—PSP 

with a short predictor (in this case M = 1), described in the previous section. 

Note, it was shown that for IIR-PSP, the slow fading performance can be significantly improved by upper 

bounding the filter constant q p t  < 0.5. This is also shown in Figure 6.28, where the graph labelled 

"aopt :!~ crmax"  is shown for comparison purposes. It is seen that the performance for slow fading can be 

improved by expanding the trellis. However, this is achieved by considerably increasing the complexity. 

For the parameters chosen for the plots, with A m  = 2, the trellis has 2D  more states with also 2D  more 

transitions per time step. 
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Comparison of FIR and hR filtering In Figure 6.29.a the BER is plotted against vr. of an hR filter 

with %pt , for various values of the pilot multiplexing rate R. It is seen that the performance of the 1W-

PSP with D = 3 for fast fading is severely affected by the choice of R. For improved performance H 

must be decreased, note this is not desirable as this increases the system overhead. The slow fading 

performance of hR filtering, observed in Figure 6.28, can be improved by upper bounding Qopt umax, 

shown in Figure 6.29.a. The upper bound amax is chosen as a function of R. For R < 5 the filter 

parameter ctopt  does not need to be truncated, while for R > 10, a, was upper bounded byamax  = 0.6. 

These are similar observations as for the IIR-PSP (D = 1), hence expanding the trellis does not yield to 

a significant improvement in system performance. 

In comparison, the results for the same set of parameters for a receiver with FIR filter are shown in 

Figure 6.29.b. Unlike the hR filtering receiver, FIR filtering is not severely affected by the choice of R. 

To conclude, as for D > 3, FIR filtering does not suffer from stability problems, it appears to be the more 

appropriate choice, due to its advantages in fast fading conditions. 

6.4.3 List type Viterbi decoding 

In this section, the performance of the list type Viterbi algorithm (LVA) having L* = 2 super states is 

investigated. The LVA was described in section 6.1.2. Unlike the VA based PSP, the LVA has not been 

applied to MLSD with unknown parameter estimation yet. The performance of the LVA proposed by 

Auer et al [138] is investigated in this section. Simulation work concentrates on the effects of the choice 

of the following parameters: the list size J, which determines the complexity of the algorithm; and the 

time delay D, specifying the length of the time window for the ambiguity check (number of samples 

for which candidate sequences must be different). Note for J = 2D-1 the LVA operates on a full list. 

Setting the number of super states to L* = 2 results in a receiver complexity similar to PSP with L = 2J 

states. The LVA using an M th  order linear predictor was investigated in Figures 6.30 and 6.31. 
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Figure 6.30: BER vs v for 4-SP with various D. 
(a.) flat fading Q=1, (b.) diversity Q = 2. J=4, R=1O, M=8, 	10 dB. 

Figure 6.30 shows the BER against the normalised Doppler frequency 1' nax  for 4-SP, with various D. 

Part (a.) shows results for the flat fading and part (b.) for a double diversity channel (Q = 2). For low 

Doppler (Umax < 0.01) the performance improves with decreasing D. This means that J-SP performs 
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Figure 631: BER vs v for J-SP, with various J and fixed D=5. 
Q=2, R=10, '=10dB. 

better with a full list. The slow fading performance is relatively poor compared to medium fading rates 

(0.01 < vml ,, < 0.025). This can only be improved by increasing the list size J. However, J-SP is 

outperformed by PSP with D = 3 having approximately the same complexity, even if J-SP operates 

with a full list. Hence, the J-SP is found to be ineffective for slow fading. Similar results are obtained 

by employing the M-algorithm in the detector [153, 154].  In addition for the sub-optimality due to the 

reduced set of survivor sequences, the dominant mechanism responsible for this unsatisfactory behaviour 

is the fact that, on fading channels the received signal Yq  (k) may undergo deep fading. Since the noise 

part dominates the signal part of Y q  (k) there are many paths metrics which have virtually the same 

distance. In addition the number of contenders having virtually the same path metric may quickly grow 

when the deep fade continues. This is more likely to happen for slow fading, thus J-SP works well for fast 

fading, but degrades when the fading rate decreases. Furthermore, with diversity, the occurrence of deep 

fades is less likely, so the algorithm performs better with increasing diversity, as seen in Figure 6.30.b. 

For fast fading the situation changes as receivers with larger D are slightly superior. Now, with deep 

fades unlikely to persist longer than a few samples, the list size J is of less importance and the algorithm 

is able to slightly improve the performance for increasing D. 

Figure 6.31 shows the BER against 11'nax  for the same receiver, with various J and fixed D = 5. A 

list size of J = 4 appears to be required to allow good performance on arbitrary fading conditions. This 

receiver has approximately the same complexity as PSP with D = 3 (see e.g. Figure 6.30.b) but with 

poorer performance for slow fading and slightly better performance for fast fading. Again little is gained 

if the list size exceeds J >4. 

Differences between PSP and J-SP To conclude, reducing the complexity of VA-MLSD through list 

type decoding was seen to be ineffective, compared to PSP. The list type approach with J-SP has failed 

to reduce the decoder complexity compared to PSP based on a L = 32 state trellis (D = 5). Instead, for 

receivers with comparable complexity, the fast fading performance can be slightly improved. There are 

some profound differences of the list type algorithm and the PSP based receivers studied earlier on, the 
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main points are highlighted below. 

PSP with L = 2D states: 

The A m  candidate paths which are to be dis- 

carded were different for at least D samples. 

= The survivor of sample k +1 is found for 

the state sequences, (k), which differ on 

the last bit with delay, k—D+1, only. 

J-SP: 

The list of the J best paths is generated compar- 

ing all A m  J candidates of the previous sample. 

==> Paths which would remain with PSP may 

be discarded falsely. 

=> J-SP is not as selective as L = 2 D  state 

PSP. 

6.5 Hybrid receiver structures 
Thus far, several MLSD receiver structures have been discussed. The PSP based receiver from section 6.3 

is very sensitive to the normalised Doppler frequency i'nax. For 2—state PSP, depending on the choice 

of the estimation filter the system performance was poor either on slow fading for the FIR—PSP, or fast 

fading for the IIR—PSP. On the other hand, the FIR—PSP with an expanded trellis works well in both slow 

and fast fading conditions; with the drawback of a significantly increased complexity. 

In this section hybrid filtering techniques will be considered for PSP based on a 2—state trellis. Such 

techniques are based on the observation that FIR—PSP works excellently on fast fading channels. On slow 

fading conditions constructing an appropriate receiver is thought to be less difficult than for fast fading. 

Generally, the proposed hybrid receiver consists of PSP with FIR filtering and a second, robust receiver. 

The two hybrid receivers chosen for further investigation are: first, a combination of PSP with FIR and 

hR filtering, which was proposed by Auer et al [1441, and secondly, a hybrid of FIR—PSP and the pilot 

aided receiver (PA—RAKE), which exclusively uses pilot symbols for channel estimation, described in 

section 4.2. Such hybrid techniques are potentially less complex than the VA—MLSD, although suffer 

some degradation in system performance. 

The main problem for the poor performance of FIR—PSP for slow fading were stability problems 

caused by phase-slips after deep fades. The receiver was subsequently unable to recover during good 

reception areas and therefore the BER temporarily approached 100%, illustrated in Figure 6.9. In this 

section only flat fading receivers (Q = 1) are investigated. So the subscript q for the received signal 

variables is dropped. However, the results can be easily extended to diversity reception. 

Two different hybrid structures are investigated: 

The two receivers run in parallel continuously. The decisions of both receivers are compared, and 

if a phase slip between the reference receiver and the FIR—PSP is detected, the receiver simply 

inverts the output of the FIR-PSP, until the occurrence of the next phase slip. 

The receiver may switch from FIR-PSP to a robust technique whenever conditions are identified 

as unstable. 
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Figure 632: Block diagram of PSP with en -or propagation detector (EPD). 

6.5.1 Error propagation detector 

The hybrid design utilising an error propagation detector (EPD) consists of a robust reference receiver 

and the FIR-PSP, providing the tentative decisions ci(k). The pilot aided receiver of section 4.2, where 

channel estimation is exclusively based on the pilots, is used as the robust reference, delivering the 

reference output ã. (k). By comparing the corresponding outputs between { d(k - i) } and 1j, (k - i) } 

in the interval i = 10, - -. , I - Q, the number of the unmatched phases NA < I is recorded for every 

sample. Whenever NA is larger than a certain threshold Nth  < NA < I, the error propagation detector 

detects a phase slip and the receiver inverts the tentative decisions ci(k). After a delay of I samples the 

receiver output is given by 

ä(k—I) = e-3 
. 

11'c J(k—I) 	Pc = arg [d(k)] 	 (6.11) 

where p is the output of the EPD which conjugates {d(k - i)} if a phase slip is detected. A block 

diagram of the error propagation detector is depicted in Figure 6.32. A similar error propagation detector 

was proposed in [155]. 

The optimal length of the interval I and the threshold Nth  are determined through experiments. The 

total decision delay comprises to R+I due to the delay of R of PSP, thus I imposes an additional decision 

delay. On the other hand, it is possible that the error propagation detector gives a false alarm, i.e. the 

EPD falsely detects an error. In order to minimise the probability of a false alarm, the threshold Nth 

and the observation interval I need to be high. Hence, there is a trade-off in terms of I, between the 

imposed decision delay and the probability of a false alarm. Good results were achieved with I = 10 

and Nth = 8. Also, since for high nax  the reference receiver becomes unreliable, while FIR-PSP is then 

robust, the error propagation detector should be switched off for fast fading. The system performance is 

assessed through computer simulations. Results are shown in comparison with other hybrid techniques 

in Figure 6.34 studied in the next section. 

6.5.2 Hybrid filtering 

In order to circumvent the stability problems, the receiver may switch from FIR—PSP to the robust re- 

ceiver if conditions are identified to be unstable. This may be a gradual change from one filter to the 
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Figure 633: Average contribution of received signal samples for PA-PSP 

other or a binary switch. The CIR estimate of the hybrid PSP is defined by the piecewise linear equation 

hh(k) = 1uh&(k) + (1ji)ir (k) ; 	u E [0, 11 	 (6.12) 

where h(k) is the CIR estimate of a linear predictor and hr  (k) is the estimate of a robust reference. 

The estimated response hh (k) is subsequently processed with the VA, in per-survivor fashion. The 

parameter p is dependent on the channel statistics, i']]ax  and 1 . As it is difficult to find p analytically, the 

optimum values are to be assessed through computer simulations. Furthermore the particular choice of p 

is dependent on the filter which provides hr  (k). Two types of hybrid receivers were investigated, which 

are addressed in the following. 

6.5.2.1 Emphasise the pilot symbols for channel estimation 

FIR—PSP combined with the PA—RAKE, termed PA—PSP is considered first. Here the basic idea is to 

weight pilots more than data symbols for channel estimation, if FIR—PSP alone appears unstable. That 

means the pilots are "emphasised" through pilot aided channel estimation to maintain stability of the 

receiver at low Doppler. This may be achieved by using a receiver that uses the pilots only for channel 

estimation as the reference filter to provide hr  (k). The estimate hr  (k) = hp,, (k) is given by (4.11). As 

only pilot symbols are involved in estimating the CW the receiver is robust. On the other hand, without 

decision feedback errors h( k) the performance is superior compared to hpa  (k), since the sampling rate 

of the PA—RAKE is 1 I times the sampling rate of FIR—PSP. With decision errors, however, the situation 

might change, particularly at low SNR and low Doppler. The factor p is described by the linear piecewise 

equation 

: 	
= 	L/kVI 	

Vh 	(6.13) 

{ 0 ma 

< 

"I 	 Vh 	 1 	Vmlax >h1h 

where vi and vh are a lower and upper boundary. Since the receiver gradually changes between the 

reference and PSP it is termed soft PA-PSP. For low Doppler the pilot symbols have more impact on 
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Figure 634: BER vs normalised Doppler frequency, zi, for soft PA—PSPin comparison with PSP using EPD. 
(a.)R=1O, 	 (b.) R=20; 
M=8, Q=1, 	10 dB. 

channel estimation through a(k). The boundaries vi and vh may be adapted for changing 5. The 

concept of the PA—PSP is illustrated in Figure 6.33. The larger p, the more the receiver acts in a decision 

directed fashion. For p =0 channel estimation is performed by only using the pilots, while p = 1 results in 

ordinary FIR—PSP. For most applications appropriate values for the boundaries are: vi = 0 and vh = 0.02. 

soft PA-PSP: 	vi 0 
i/h 0.02 

PSP with EPD: 	N 10 
Nth 8 

PA-RAKE: 	M 8 
Mf 0 

Table 63: Hybrid filter parameters. 

Simulation results of the soft PA—PSP compared to PA— PSP with an error propagation detector (EPD) 

are shown in the following graphs. The filter parameters are given in Table 6.3. Figure 6.34 shows the 

BER against the normalised Doppler frequency, ax' for a pilot multiplexing rate of (a.) R= 10 and (b.) 

R = 20. In part (a.) the PSP with EPD is superior to the soft PA-PSP for slow fading. For R = 20 in 

part (b.) the results are similar, however the differences in BER are more pronounced. The performance 

for high Doppler can be improved by switching off the EPD for Vax>  0.017. Given that, PA—PSP with 

EPD appears preferable for implementation. 

6.5.2.2 Hybrid filtering MLSD 

In section 6.3.4 PSP based receiver structures were discussed which work well in slow fading, but not in 

fast fading. Those were PSP with hR filtering and linear predictors with short filters (M = 2). The pro-

posed hybrid filtering MLSD switches from FIR-PSP with high filter order, to a robust receiver whenever 

conditions are identified to be unstable. This is mainly the normalised Doppler frequency v 51, as seen 

in Figure 6.35, where the BER is plotted against Vmax ,  for some values of the SNR, 1. For slow fading 
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Figure 6.35: BER vs normalised Doppler frequency, v, for FIR —PSP and IIR—PSP 
R=10, M=8, Q=1. 

PSP with 1W filtering is slightly superior to the short predictor with M = 2. Thus the combination of 

1W and FIR—PSP will be referred to as hybrid PSP (HPSP). Hybrid FIR and 1W channel estimation 

r (k) = is provided by the IIR—PSP of equation (5.30) [138, 144]. Here a switch p = {0, 11 

appears to be more appropriate, so either 'jr(k) or h(k) is used to generate the CIR estimate, as also 

shown in Figure 6.35. There is a great overlap between FIR—PSP and IIR—PSP where both estimation 

filters have virtually the same performance. Hence, for the design of a receiver which can operate in ar-

bitrary fading conditions, a hybrid solution of combined FIR and IIR—PSP appears attractive. The HPSP 

simply switches on changing fading rates between the FIR and 1W estimation filter, dependent on "iciax. 

Only a rough estimate of Imax  is required, due to the large overlap of the FIR and IIR—PSP performance. 

For low SNR 5' the overlap between FIR and 1W filtering becomes smaller, which can also be ob-

served in Figure 6.35. Furthermore, the received signal power experiences vast changes compared to the 

average value, due to signal fading. Hence, it may be worthwhile switching between the FIR and 1W 

filter dependent on the instantaneous SNR 7(k) rather than the average 5'. A technique which aims to 

achieve that is described in Appendix B.1.2. Unfortunately, this approach was not successful and hence 

switching will be performed dependent on the average channel parameters 5' and Lhi'lIax  in the following. 

Figure 6.36 shows the BER against Vax  for some pilot multiplexing rates R. It is seen that for 

R > 20 both FIR and 1W filtering fail to produce reasonable performance for medium fading rates 

(0.01 <v <0.03). Hence HPSP is only applicable for R < 10 and a value of R = 10 will be assumed Ma 

in the following. 

6.5.3 Comparison of hybrid filters 

Hybrid techniques were applied to PSP with FIR filtering studied earlier in this chapter. The objective 

was to create a receiver to work in arbitrary fading conditions, being less complex than the VA-MLSD. 

The HPSP, being an 1W and FIR—PSP combination, and PA-PSP with an error propagation detector 
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Figure 6.36: BER vs v, for FIR —PSP and HR—PSP for various R. 
M=8, =10dB, Q=1. 

(EPD) appear to be appropriate choices for hybrid filter designs. Good results were achieved for both 

receivers at a pilot multiplexing rate of R = 10, however, as R increases the degradation in performance 

was significant. Note, the HPSP is far easier to implement, since most of the receiver components can 

be re-used for both receiver parts, while the PA—PSP requires a Viterbi decoder for fast fading in the 

FIR—PSP, and a significantly different receiver, i.e. a filter bank for the pilot aided channel estimation for 

slow fading. 

0.005 	0.01 	 0.05 	0.1 

normalised Doppler frequency 

Figure 6.37: BER vs normalised Doppler frequency, zi, for hybrid receiver structures. 
Q=2, R=10, '=10dB. 

Simulation results for a two tap diversity channel presented in Figure 6.37 show that the PA-PSP 

with EPD works very well, provided that the EPD is switched off for fading rates 'nax > 0.02. For 

comparison purposes the FIR—PSP with D = 5 is also shown in the graph. In fact, it is seen that for 

slow fading the error performance of PA-PSP with EPD approaches the expanded trellis PSP. Diversity 

particularly benefits the EPD technique, since the reference is more reliable and the error propagation 

detector can detect phase slips of the FIR-PSP more efficiently. IIR-PSP works better in slow fading than 
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the predictor with M =2 and so it is the preferable choice for HPSP. 

6.6 Assessing the effects of multiple access 
interference 

Thus far, diversity systems have been studied where the interference have been additive white Gaus-

sian noise (AWGN). However, on a direct sequence (DS) CDMA system, the interference caused by 

other users transmitting through the same channel, is coloured. Thus, the results for the diversity receiv-

ers of Chapters 4-6 cannot be applied to a RAKE receiver, without taking into account the interference 

caused by other users. The focus is on the the base station to mobile link (downlink), so all users trans-

mit through the same channel and the CIR of tap q, is the same for all users. Furthermore, synchronised 

transmission is assumed, which grossly simplifies the analysis. 

The optimum receiver for a system with MAT is very similar to the optimum receiver of an ISI 

channel [104, 156].  In this section, however, no attempt is made to reduce MAI other than through the 

choice of appropriate spreading codes. Instead the performance of the algorithms investigated so far will 

be assessed for non-Gaussian interference such as MAT. 

The limiting effects of multiple access interference (MAT) are examined in the following. In order 

to do so, section 3.3 where the RAKE receiver front-end was addressed is re-visited. In section 3.3 the 

receiver front-end was described, consisting of a tapped delay line of decorrelators for the desired user 

(see Figure 3.7) The received signal for user ti of the qth  RAKE finger tap, after despreading with the 

desired users' signature waveform is given by (3.19): 

Q U 

yqu (k) = du (k)hq (k) Puu(0)  + E  E d(k)h(k)p(p—q) +n'(k) 	(6.14) 
P=1 	=' 

~ flp*q 

MA! 

where Puv (p - q) denotes the cross-correlation between signature waveforms u and v, with relative chip 

delay p— q, which accounts for the interference user v has on the desired user ti. Subscripts identifying 

a certain user ti v E {1,... , U} have been introduced. This notation implies that inter-symbol interfer-

ence (ISI) caused by the multipath fading channel are not taken into account, according to the discussion 

in section 3.3. The discussion in this chapter is limited to the binary case, so the spreading codes take 

on the values 1 and —1, yielding puv() E R. It is seen that in addition to the term for the desired user 

and the background noise, we have to deal with a third quantity, the MAT term, i.e. the interference from 

other users. MAT ultimately limits the system performance resulting in an error floor. Therefore, the 

choice of code families with low correlation coefficients p t, (p —  q), for u v and q p, is of great 

importance for the performance of a DS—CDMA system. 

Subsequently, the received signal in (6.14) is processed according to the receiver structures studied 

in the previous chapters. The difference is that the channel estimator needs to be modified due to the 

increased noise term of MAT, which is coloured and data dependent. Hence, the channel estimation filter, 
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determined by the MMSE criterion E[ I  yqu (k) - d111  (k) Iq (t, k) 2 ], become dependent on the data bits 

of all interfering users. One way out of this dilemma is to jointly estimate and detect the signals for 

all users, rather than separately detect the signal for each user. Techniques aiming to achieve this are 

summarised in the next section. This section follows the conventional approach to detect each user's 

signal separately. The additional noise introduced by the MAT term can be taken into account by the 

Gaussian approximation, i.e. the binomial distributed sum E,, ,p  d (k) h (k) Puv (p - q) from (6.14) is 

replaced by a Gaussian pdf with identical variance 
, 

(p—q), where = E 
[ 

h (k) 2]  denotes 

the tap weight for the pth  channel tap. The Gaussian approximation implies that the auto-correlation of 

Yqu (k) as a function of the time k can be approximated as 

p,(p - q) ; Lk = 0 f ã+No+ 	i 	 2 

Op ~g 

E[yqu (k) y(k+Lk)] 	
E[hq (k) h ; (k+k)] 	 elsewhere 	

(6.15) 

where p (0) is normalised to one. Note that with the Gaussian approximation the contribution of 

the MAT term has become independent of the data. Thus, the Wiener filter w can now be determined 

according to (2.18) in section 2.1.3. 

Simulation Results Monte Carlo simulations were carried to assess the effects of MM. For results 

throughout this chapter Gold codes with a processing gain of N = 31 were used. A signal generated 

according to (6.14) on the symbol level was fed to various detectors studied in previous chapters. The 

receiver parameters of the investigated receivers, including a reference where a more detailed description 

can be found, are depicted in Table 6.4. Generally, results presented in this chapter concentrate on the 

comparison between different receivers which estimate the channel response in the presence of MAT. The 

stability of decision directed receivers under this conditions is of particular interest. Various decision dir-

ected receivers are compared with the pilot aided (PA) receiver, which only uses the pilots to estimate the 

channel response. This will allow a distinction between MAT and decision feedback related performance 

degradation. 

Receiver FIR—PSP IIR—PSP DD—RAKE PA—RAKE 

Filter M=8 cYopt <0.5 M8 
Modulation BPSK BPSK DEPSK BPSK 
PSI rate R=10 R=10 - R= 10 
Section 6.3.2 6.3.4 4.3.2 4.2 

Codes: Gold codes: Processing gain N = 31 

Table 6.4: Parameters for the considered receiver structures. 

Figure 6.38 shows results for slow fading of the PA—RAKE from section 4.2. The BER is plotted 

against the SNIR for different numbers of active users, on (a.) a flat fading channel and (b.) a frequency 

selective fading channel with Q = 2. MAI is more severely affected by the frequency selective channel, 

than the flat fading counterpart, which indicates that the diversity benefit is reversed to a penalty. One 

reason for the observed performance penalty is the high cross-correlation values of not synchronised 

spreading codes, due to the imposed spread in time of the received signal by the frequency selective 
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Figure 6.38: BER vs SNR for the PA—RAKE with different numbers of active users U. 
Slow fading: v=O.005, M=8, iic=O; 
(a.) flat fading: Q = 1, 	 (b.) double diversity: Q = 2. 
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(a.) flat fading: Q = 1, 	 (b.) double diversity: Q = 2. 

fading channel. Gold codes with a processing gain of N = 31 take on the cross-correlation values 

Puv (p - q) = {-1/31, ±7/31, —9/31}, being up to 9 times higher in magnitude than synchronised 

codes, which always are p., (0) = - 1/3 1. In addition to the high cross-correlation values, receiving the 

codes asynchronously results in the near-far effect. That is, when the desired user's signal is in a deep 

fade, the signal strength of at least one interfering user may be several times stronger, with the effect 

that the desired user's signal is overshadowed by the interference, severely degrading the performance. 

On the other hand, since synchronous transmission is assumed, there is no near-far effect for flat fading, 

therefore the performance is far less compromised by MA!. 

In Figure 6.39 the performance of PSP based on a 2—state trellis from section 6.39 is shown for fast 

fading. Similar results as for the PA—RAKE shown in the previous figure are obtained. For flat fading 

there is relatively little degradation due to MAI observed, whereas the BER degradation for the 2 tap 

channel is very severe. Consider Q = 2, compared to the PA—RAKE in Figure 6.38.b, the performance 

of PSP is superior for low load (U < 15) despite the higher fading rate, whereas for heavy load the BER 

is slightly poorer. Note that error propagation due to decision feedback effects is not responsible for 
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(a.) flat fading: Q = 1 and U = 30 	 (b.) double diversity: Q = 2 and U = 10. 

the poor performance of PSP in this case, since the PA—RAKE which is a purely non-decision feedback 

receiver shows a similar behaviour. 

Various receiver designs specified in Table 6.4, are compared with each other as a function of V.I . 

in Figure 6.40. Part (a.) shows the performance of the flat fading case with heavy load U =30 and part 

a channel with Q = 2 taps was chosen with U = 10 users. With these parameters receivers of parts 

(a.) and (b.) work in the same BER region. Comparing the receiver structures on parts (a.) and (b.) 

indicates that the difference in BER of the investigated receivers becomes larger for the 2 tap diversity 

channel of Figure 6.40.b. Generally, the features of the shown receivers are similar. So, although MAT 

does affect the performance, the phase tracking characteristics of the single user case are retained, which 

are discussed in the following. The 2—state FIR—PSP (D = 1) is found to be unstable for low SNR. 

The stability problems can be overcome by expanding the trellis, shown in the graph for the 8—state PSP 

(D = 3). The IIR—PSP, with the filter constant chosen according to (2.22) and upper bounded c < 0.5, 

does work well for slow fading but breaks down for fast fading (lui'nax > 0.04). The difference in the 

BER between the 2—stage decision directed (DD) RAKE and the 8—state PSP is mainly due to usage of 

DPSK of the former receiver. The PA—RAKE has poor performance for fast fading, since the channel 

predictor works at a R = 10 times higher sampling rate compared to the decision directed receivers. The 

slow fading performance of the PA—RAKE can be improved by employing a smoothing type channel 

estimator with 0 < L&,c < M12. 

As mentioned earlier, work presented in this section is focused on the downlink. Note that on a flat 

fading channel the downlink degradation in performance is less severe than for the corresponding case on 

the uplink. On the uplink, the conventional RAKE experiences an error floor, even if the cross-correlation 

between codes is low, due to the near-far problem [157]. However, as it has been demonstrated, this may 

change when a frequency selective fading channel is considered, as much of the diversity benefit of the 

Q independently fading taps is lost through MAT. Amongst other techniques, on way to improve the 

downlink capacity may be multi-user detection. 
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Summary and Conclusions In this Chapter the effects of multiple access interference (MM) were 

investigated. In section 6.6 simulation results for the downlink of a DS—CDMA system suggest that the 

effects of MM are far more severe on a frequency selective channel, compared to a flat fading channel. 

The diversity benefit, due to independently fading taps hq  (k), was reversed to a penalty due to the near-far 

effect. Furthermore, the multipath fading channel destroys the synchronous transmission of the spreading 

codes. This degrades the performance further, since auto- and cross-correlation amplitudes of the codes 

for asynchronous transmission is several times higher in magnitude, than for synchronised transmission. 

This observation is independent of the chosen receiver structure. However, for the frequency selective 

channel (Q = 2) the differences between different receiver realisations become more pronounced. MAT 

does not inflict further stability problems for decision directed receiver architectures. 

6.7 Summary and conclusions 
A comparison of the main points of the addressed receiver structures in terms of performance and com-

plexity is now presented. The computational cost of receivers based on the VA, in terms of the number 

of survivor paths in the trellis, O(•), is shown in Table 6.5. 

Receiver: VA—MLSD 	PSP 	J—SP 
complexity order: 0(2M) 	0(2 D) 	0(2J) 

D<M 	J<2 D-1 

Table 6.5: Computational cost of the considered receiver architectures, for binary modulation (Am = 2). 

VA—MLSD States are defined incorporating the current and past M received signal samples. The 

receiver needs to process L = 2M states and as many survivor paths, resulting in a computational cost 

of order 0(2M).  FIR filtering appears to be more appropriate, due to its better fast fading performance. 

Complexity grows exponentially with the filter order M. The performance is close to the theoretical 

lower bound for a given M. 

FIR—PSP Compared to VA—MLSD the number of states in the trellis are reduced due to state dependent 

decision feedback, by introducing the parameter D. A trellis with L = 2' states is obtained, resulting in 

a computational cost of order 0(2 D) < 0(2M). For the considered system model, little is to be gained 

if D> 3. Alternatively, for a given D, longer predictors may be chosen than for VA-MLSD (D = M), 

then PSP outperforms VA-MLSD. 

The performance is only close to the lower bound for all receiver types, for a ratio of data to pilot 

symbols of R = 2, almost independent of D. On the other hand, for larger R, the performance is 

more dependent on D and M. Suppose M < 4: increasing R has degrading effects on fast fading 

performance, particularly for low SNR. Conversely, if M > 4 the receiver performance becomes generally 

less dependent on R, but more dependent on D. This is particularly true for slow fading, where choosing 

D < 3 results in stability problems. The effect that the dependence on R decreases is encouraging, since 

an increasing R maximises the spectral efficiency, by reducing the number of pilots per frame. However, 

the requirement for an expanded trellis PSP is not desirable due to the increased complexity. 
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HR—PSP This algorithm is similar to FIR—PSP, with the difference that a 1st  order Ilk filter is employed 

for channel estimation. The complexity is similar to FIR—PSP with M = 2. The performance is relatively 

independent of D, so a 2—state trellis PSP is usually sufficient. Generally, IIR—PSP has a good slow fading 

performance. However, increasing R drastically degrades the fast fading performance. The receiver 

experiences an error floor dependent on R, which cannot be mitigated by expanding the trellis. 

J-SP This receiver is a member of the family of the list-type Viterbi decoders. The decoder processes 

= 2 super states, each having a list of J candidates. The complexity is dependent on J, having the 

computational cost of 0(2J) < 0(2 D). The state dependent lists are updated using the M-algorithm. 

The J-SP has poorer slow fading performance than PSP with the same complexity. However, the fast 

fading performance can be slightly improved. 

Hybrid receivers can be employed to make FIR—PSP with a 2—state trellis (D = 1) work in arbitrary 

fading conditions. The receiver either switches to a robust reference when conditions are identified 

as unstable, or uses a second receiver as a phase reference, via an error propagation detector (EPD). 

Simulation results suggest that the HPSP, being an Ilk and FIR—PSP combination, and PA-PSP with an 

error propagation detector (EPD), both work well. 
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Conclusions 

This thesis has been concerned with the design of receivers for operation in an unknown, time-varying 

Rayleigh fading channel. Particularly, receiver structures being able to cope with a fast fading environ-

ment were investigated, where conventional techniques fail, due to the rapidly changing channel impulse 

response (CR). Channel estimation based on the minimum mean squared error (MMSE) criterion was 

investigated in conjunction with various receiver architectures. The studied receiver architectures are 

divided into two main parts: 

One-shot receivers: Here detection of the received signal is carried out independently from estimating 

the CR. For estimation, the correlation of adjacent samples is exploited. These estimates are 

subsequently used to decorrelate the received signal, such that detection is performed on a symbol-

by-symbol basis. 

Joint detection & estimation: Estimation and detection are performed jointly, taking into account the 

entire sequence. So, channel estimation is done for the purpose of detection. In contrast to one-shot 

receivers, more than one signal "hypothesis" (i.e. a possible transmitted sequence) are processed 

in parallel, which results in increased complexity. 

A key objective of the research has been the optimisation of the spectral efficiency, in terms of minimising 

the system overhead through a necessary phase reference. This was achieved by introducing decision 

feedback, such that data symbols were used for decision directed channel estimation. The resulting error 

propagation effects were extensively studied theoretically and through simulations of various receiver 

types. The final part of this thesis was dedicated to assess and mitigate the effects of multiple access 

interference (MAI), which is an inherent feature of a CDMA system and ultimately limits its capacity. 

This chapter will draw together the main conclusions of the work and briefly discuss its limitations. Some 

suggestions for further research in this area are also presented. 

7.1 Summary of the work 
In Chapter 2, estimation based on the MMSE criterion was reviewed, and an overview to Bayesian 

detection was given. In Chapter 3 the features of a mobile DS—CDMA were briefly sketched and the 

channel model, describing a mobile radio link in an urban environment was considered. The model 

assumed the equivalent baseband channel and the implementation used to generate a time-variant CR 

for computer simulations was also addressed. 

Chapter 4 considered one-shot receivers. If coherent modulation is employed, side information is 

required to estimate the CR. This side information was provided by time multiplexing known pilot sym- 
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bols into the data stream with rate 1/R. For the investigated pilot aided receiver no decision feedback 

was employed, instead pilot symbols were used exclusively for channel estimation. Therefore this re-

ceiver is robust if R is appropriately chosen to allow some degree of oversampling with respect to the 

fading rate. To estimate the channel response according to the MMSE criterion a filter bank of R Wiener 

filters is required. The system performance is dependent on whether a smoother or a linear predictor is 

employed as estimation filter, resulting in a trade-off between improved performance and an imposed 

decision delay for the smoother compared to the linear predictor. 

If a non-coherent modulation technique is chosen, channel estimation can be performed without side 

information in the form of a phase reference. Then the modulation technique inherently provides the 

phase reference. For differentially encoded signals a one-shot receiver with decision directed prediction 

of the channel response was investigated. It was found that decision directed prediction is robust and 

does not lead to a degradation in performance compared to a decision aided reference receiver, i.e. a non 

decision feedback receiver, which assumes that correct decisions for channel prediction are available. In 

fact, in many cases the decision directed receiver did outperform the decision aided reference receiver, 

an effect which has been thoroughly analysed in this thesis. 

Post processing by means of iterative channel estimation (ICE) improves the performance further 

of both the pilot aided and decision directed receiver, given the BER of the 1st  stage is reasonably low 

(BER < 5. 10 -2). 

The limitations of one-shot receivers are very much dependent on the particular receiver realisation. 

The pilot aided receiver with coherent modulation is ineffective for fast fading, since a high pilot insertion 

rate 1/R is required to allow a sufficient degree of oversampling, which in turn compromises the spectral 

efficiency. On the other hand, the decision directed receiver suffers an approximately 3 dB performance 

penalty due to differential modulation. These limitations can be overcome by combining the pilot aided 

with the decision directed receiver. However, this requires a more sophisticated receiver design, hence 

receiver architectures which jointly estimate the CW and detect the received signal become attractive. 

Before proceeding with the investigation of techniques for pilot symbol aided plus decision directed 

phase tracking, the optimal maximum likelihood receiver for the detection of the entire sequence was 

reviewed in Chapter 5. The optimum receiver can be separated into a correlator—estimator structure. 

That is the receiver consists of an estimator that delivers the MMSE estimates of the fading distortion 

and a detector that utilises these estimates, by decorrelating the received signal. Although the optimum 

receiver is very powerful and applicable for arbitrary linearly modulated systems operating in a channel 

described by a Gaussian distribution, it is in most cases too complex for implementation. 

Using Bayes' rule a recursive formulation of the optimum receiver has been derived. That receiver 

jointly estimates the Cifi and detects the most likely data sequence. The optimal channel estimator is 

a one-step linear predictor. Thus, a causal Wiener filter which minimises the mean squared error for 

one-step prediction is optimum for detection. Based on a recursive formulation of the optimal receiver 

the receiver complexity can be drastically reduced by application of the Viterbi algorithm. Although, the 

resulting receiver is generally sub-optimum, it is the best possible solution, when the channel estimator 
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is truncated by a M th  order linear predictor. Alternatively, an hR-type channel estimation filter can 

be applied to the receiver. Furthermore, performance bounds were derived for both a Mth order linear 

predictor and a Pt order 1W filter. Unfortunately, on a Rayleigh fading channel these bounds are loose 

for low SNR. Thus, Monte Carlo simulations were carried out to assess the receiver performance more 

accurately. 

In Chapter 6 the implementation of recursive maximum likelihood sequence detector (MLSD) util-

ising the Viterbi algorithm (VA) was studied. Even with the VA, recursive MLSD may still be too 

complex for implementation, since the number of decoder states grows exponentially with the estimation 

filter order, M. To circumvent this problem state reduction techniques were devised. These techniques 

employ decision directed techniques, by reducing the number of hypotheses (decoder states) which are 

processed in parallel, thus reducing the complexity. One possibility to reduce the number of states is by 

means of state dependent decision feedback, resulting in a receiver based on the principle of per-survivor 

processing (PSP). Alternatively, the list-type Viterbi algorithm (LVA) can be applied to the problem. The 

more decision feedback is employed, the less complex is the receiver, while compromising the optimal-

ity. The necessary phase reference was provided by time multiplexed pilot symbols, however, for channel 

estimation and data detection both pilot and data symbols were used. 

One of the main achievements in this thesis was that conditions were identified where a receiver 

utilising pilot symbol aided plus decision directed techniques can become unstable. Increasing the degree 

of state dependent decision feedback was shown to corrupt the robustness of the receiver under certain 

conditions. Specifically, consider the low complexity implementation of PSP based on a 2—state trellis. 

Rather surprisingly, the receiver was found to be more vulnerable for stability problems in slow fading 

conditions, which did severely degrade the system performance, whereas in fast fading the receiver was 

found to be more robust. The nature and order M of the channel estimation filter was shown to be 

responsible for the instability. For large M or low fading rates, the pilots were unable to impose a 

sufficient phase reference, causing the receiver to lose track of the CIR phase and to enter a burst state 

having a BER of virtually 100%. The occurrence of these stability problems can be successfully predicted 

analytically by means of error propagation analysis based on the Gilbert—Elliott channel (GEC). The GEC 

is a special case of a hidden Markov model having two states, a good state and a burst state. With the GEC 

the receiver performance can be predicted more accurately, compared to the conventional performance 

bounds suggested in the previous chapter. 

Employing 1W filtering, the same receiver was found to be more robust, given the filter constant aopt 

was upper bounded to a 0 max 0.5. Moreover, the performance was seen to be not significantly 

dependent on the receiver complexity, i.e. the number of states in the trellis, for slow fading. However, 

increasing R drastically degrades the fast fading performance, resulting in an error floor dependent on 

R. This effect was due to poor channel estimation of the 1W filter, resulting in insufficient phase tracking 

performance, which was entirely independent of the receiver complexity. 

Reducing decision feedback by increasing the number of states did improve the stability of PSP using 

FIR filtering. Furthermore, the choice of R did not have a significant impact in the receiver performance 
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(except for high Doppler frequencies in combination with low SNR), which allows the system overhead 

due to pilot symbols to be less than 10%, independent of the Doppler frequency. 

The receiver based on the LVA failed to improve the slow fading performance compared to PSP with 

comparable complexity, but the fast fading performance could be slightly improved. Similar conclusions 

concerning the stability of the algorithm can be drawn as for PSP with FIR filtering. 

Furthermore, hybrid receiver designs were proposed that made the receiver robust in arbitrary fading 

conditions. On the one hand, a receiver was developed that consists of a robust reference receiver and 

the FIR—PSP, running in parallel. The basic idea is that a compare unit, termed the error propagation 

detector, assisted by the robust reference receiver, detects when the FIR—PSP is entering the burst state. 

Then, the receiver simply inverts the decisions of the FIR—PSP until the receiver leaves the burst state. 

On the other hand, a hybrid receiver was proposed which switches between the FIR—PSP and a robust 

receiver, whenever conditions are identified to be unstable. These conditions are mostly dependent on 

the Doppler frequency. Since PSP with 1W-type channel estimation works very well for slow fading, it 

offers an appropriate choice for the robust reference receiver. 

Finally, in section 6.6 the base station to mobile link (downlink) of a DS—CDMA system was studied 

under more realistic assumptions, taking into account the effects of multiple access interference (MAT). 

A received signal corrupted with MM was applied to receiver designs investigated for a general diversity 

system (i.e. the single user case) from Chapters 4-6. Simulation results for the downlink suggest that 

the effects of MAI are far more severe on a frequency selective channel than for flat fading, due to the 

near-far effect and higher code correlation magnitudes of shifted spreading sequences. It was shown that 

MAT does not inflict further stability problems for decision directed receiver architectures. 

7.2 Suggestions for further work 

There are a number of points not covered within this thesis, which merit much more work. 

Adaptive channel estimation: Little work has been done in this thesis to estimate the 2,d order channel 

statistics. This may be done adaptively using the LMS or RLS adaptive algorithms [18].  It is desirable to 

update the coefficients of the channel estimation filter in a decision directed manner, otherwise periodic 

blocks of known pilots had to be transmitted to re-train the filter coefficients. However, decision directed 

training may cause degradation to the receiver performance which need to be assessed, and if necessary 

techniques are required which mitigate the effects due to decision directed training. Another possibility 

is the application of higher order Kalman filters [18].  Kalman filters do not require a priori information 

about the channel statistics, furthermore they are applicable to a non-stationary channel. Although Kal-

man filters have been applied to MLSD in several publications, for instance in [95-97], the study of error 

propagation effects may merit further research. 

Hidden Markov models: The analysis of error propagation effects in section 6.3.3.2 was limited was 

limited to a 2—state Markov model, known as the Gilbert—Elliott channel (GEC). However, the GEC does 
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not incorporate any assumptions about the ratio of data to pilot symbols R. Hence, if the performance of 

the receiver is significantly dependent on R, the GEC cannot be used for the burst error analysis. This 

limitations may be overcome by employing a higher order hidden Markov model, which also accounts 

for R. On the other hand, for cases where the dependence of R on the performance was not dominant, 

results for the GEC were quite encouraging, so that higher order Markov models may be able deliver 

tighter performance bounds for arbitrary decision directed receivers operating in fading channels. 

Extension to coded modulation: Virtually, every mobile radio system employs some kind of channel 

coding to improve the performance and thus increase the capacity. Particularly for soft-output decoding 

the task of the inner receiver and the channel decoder cannot be separated any longer and should be con-

sidered simultaneously. Moreover, due to the development of iterative decoding algorithms, the MAP 

symbol—by—symbol detector has gained more importance since it utilises and delivers soft inputs and soft 

outputs of the a priori and a posteriori probability of a symbol error, respectively. The MAP symbol-

by—symbol detector and MLSD are conceptually similar algorithms, so MLSD receiver structures in-

vestigated in Chapters 5 and 6 may be converted for implementation of the MAP symbol—by—symbol 

detector. 

Multi-user detection: The effects of MAT (see section 6.6) may be mitigated by means of multi-user 

detection. The algorithms for channel estimation and data detection addressed in this thesis may be 

combined with an multi-user detector. Moreover, the model for the received signal with multiple access 

interference, is idealised in the way that it does neglect inter-symbol interference (1ST) caused by the 

delay spread of the fading channel. The development of wideband CDMA [158] means that the delay 

spread of the multipath may not be negligible with respect to the symbol duration, resulting in significant 

1ST. Non-linear multi-user detectors, for instance based on radial basis functions (RBF), may also be 

combined with algorithms for channel estimation and detection in operating in a fast fading, frequency 

selective fading channels. Finally, the system model may be generalised to incorporate asynchronous 

transmission, thus extending the model to the uplink. 
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Appendix A 
Derivations for the Optimum 

Receiver 

A.1 Invariance over pre-multiplication 
Starting with the pre-multiplied observation y ', (f) = D" 1 y q  from (5.9) in section 5.1.4, it shall be 

shown that the decision variable of the optimum detector—estimator is invariant over pre-multiplication. 

Therefore, the equivalence of the quadratic terms y1 Jq 1  Yq and y") 	"",q y ( t) is to be shown. 

The covariance matrix of Yq' 	() according to (2.10), has the form [76] 

(t) 	- [D 	hh,q 
D(t)H + N0 1] yy,q - 

Provided that 	DH = I, which is always valid with the assumptions in section 5.1.4, the inverse 

Of4 y,q  can be rewritten as 

—1 - [ D hh,q DH + No  D> D(e)H] 
1 

yy,q 	- 
—1 

= [D (hh,q + No  I) D'] 

= [DH] —1 [hh,q + No I]_ i  D' 

= 	[hh,q + No I] D "  (A.1) 

where the dependence of the matrix 	on £ has been conveniently factored out. 

The quadratic form of (5.8) for tap q is given by 

—1 
Aq(t) = Y 	yy,q Yq 

With the definition of the pre-multiplied observation y () = D 1 yq  and inserting (A. 1) into the above 

expression for A (i),  the following is obtained 

—1 
Aq(t) = y 1  D> [hh,q + No!] D' 

= (D' Yq) H [hh,q + Nol] D" 

= Y  (i-)  ;"y  ',q  Y,  (f) 	 (A.2) 

Finally, with A(s) = EQ 1  A q (I?), the result of (5.10) is verified. 
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Appendix A: Derivations for the Optimum Receiver 

A.2 Generalised eigenvalue decomposition 

We are concerned with evaluating the eigenvalues of a product of two Hermitian matrices, being in 

general a non-symmetric matrix 4)Q. Its eigenvalues A must satisfy 

4)Qu = Au 

where u is the associated eigenvector. Since both matrices Q and 4) are Hermitian, the eigenvalue 

decomposition of 4' Q can be circumvented by the generalised eigenvalue problem,' giving the equivalent 

eigenvalue problem treated in [69] 

Qu = A4)u 	 (A.3) 

A symmetrical eigenvalue problem can be recovered by using the Cholesky decomposition [159] 

4) AAH 	4)—i = [AA"] 	BB  

where the matrices A and B have a lower triangular form, referred to as the square-root matrices of 4) 

and 4)1,  respectively. With this definition, the problem in (A.3) can be cast in the form 

C (B 'u) = A (B'u) 	v BHu 	 (A.4) 

C = B 1 Q[B 1 ]" =AIQA 

The eigenvalues, A, of the Hermitian matrix C are identical with the ones of the original problem in 

(A.3), with the associated eigenvectors v, yielding an equivalent eigenvalue problem 

Cv = Av , 	with u = Av 

The desired eigenvectors are obtained by u = Av. 

It can be observed that neither the square-root matrix B needs to be calculated nor the covariance 

matrix 4) to be inverted. 

A.3 Derivations of the quadratic form for 
performance analysis 

In this appendix the quadratic forms u"Qu and the filter matrix Q are specified for some receiver 

realisations. 

'The matrix 4bmust be non singular. A sufficient condition for that is its positive definiteness, which is given for virtual all 
noise corrupted covariance matrices [159]. 
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Appendix A: Derivations for the Optimum Receiver 

A.3.1 Pilot aided receiver 

The derivation of the quadratic form for the pilot aided (PA) receiver which entirely relies on pilot sym-

bols to estimate the channel response is considered. To evaluate the error probability the decision variable 

in (4.13) needs to be cast into a quadratic form. The derivation with the qth fading tap is considered first, 

later this is generalised to a diversity receiver. The decision variable of the q th  diversity tap is defined by 

Aq (k, r) = u'(k, r) Qq (r) uq (k, r) 

where the row vector uq (k, r) of dimension CM+1,  contains the bit to be detected and the pilots used for 

channel estimation. The observation uq (k, r) and the (M+1) x (M+1) matrix Qq (r) are defined by 

F yq (k_M1R) 1 
uq (k,i')= i 	 I 

L yPq(K) 	
] 

0 	W 	
1 H()  

[ 

Qq(r) = I 	(As) 	I 
[WI. 	0

. I 

The statistics of u q (k, r) are specified by its time independent auto correlation matrix 

uu , q (r) = E[uq (k,r)u'(k,r)} 

- I E[yq (k)y(k)] 	E[yq(k)yq(ic)] I 	I i+ 7i 	d(k)4 	1 

	

q 	 I 
-. [E [ ; (k) YPq (K)] E [ YPq k) Yq (K)] 

	= L d*(k) 	
] 

	

where 4p  denotes the covariance matrix of the pilots defined in (4.9) and 	is the cross correlation 

vector between the desired bit and the pilots YPq (ic) of (4.10). It is seen, that 4uu,q  (r) is dependent on 

the bit being transmitted, but as the test is symmetric, the error probability does not depend on d(k). 

Diversity reception Using the independent fading assumption for the combining of the Q diversity 

taps the following decision variable is obtained 

Q 	 Q 
A(k,r) = > A q (k,r) = >u'(k,r)Qq (r)uq (k,r) 

q1 	 q=1 

= u"(k,r)Q(r)u(k,r) 	 (A.5) 

and choosing d(k) = 1 if A q (k, r) is larger than zero and d(k) = — 1 otherwise. So, the probability 

of error for one bit in the sequence corresponds to the probability that d(k) = — 1 was chosen, when 

d(k) = 1 was transmitted. Denoting the dimension of u(k, r) by N = Q(M+1) the quantities u(k, r) 

and Q(r) are defined by 

	

I u i ( k,r) 1 	 1 Qi(r) 	0 	 0 	1 
I  

(k r) 	
u2(k,r) 	

Q(r) 	
0 	Q2(r) 	0 

u 	= 	. 	I 	 = 	
: 

	

uQ(k,r)] 	 [ 	0 	•.. 	0 	QQ(r)j 
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Appendix A: Derivations for the Optimum Receiver 

The covariance matrix of u(k, r) is 

o 	•.. 	 0 

= 
	0 
	

0 	
E (cNXN 

0 
	

0 4uuQ(r) 

A.3.2 Recursive MLSD 

Our aim is to transform the decision variable AA(C) of an error event to a quadratic form uHQ(()u 

as in (5.39). We begin our derivation with deriving an expression for a FIR channel estimation filter. 

Later an approximation for hR filtering will also be given. Furthermore, let us consider the qth  fading 

tap, the generalisation to a diversity receiver will follow later on. 

FIR filtering: The decision variable of the qth  diversity tap, A q (t), taken from (5.24) is given by 

	

A q () = E I yq(k) - d (k) q (,k) 2  = 	1 E q (,k) 2 	 (A.6) 

where Eq  (t, k) denotes the prediction error or the Euclidean distance. The mean squared value of E q  (t, k) 

is equivalent to the MSE used to find the estimation filter coefficients {w m  }. With the definition wo = —1 

the prediction error can be re-written as 

M 2 I 	 I 	I 

= 	wy(e,k) 	 (A.7) 
I m0  

With the filter matrix w = [-1, w1,.•. , w]", the prediction error can be more conveniently expressed 

in vector notation: e q (, k) = w'y(e, k). After straightforward transformations and recalling the 

definition of y' (f, k) = D°"  (k) y q (k) the following is obtained 

Eq(, k)12 = y(k) D(k) wwH  D(k) y q (k) 	 (A.8) 

where all used vector quantities are assumed to have the appropriate dimension of M+1, being truncated 

versions of the entire signals. The data matrix D>(k) of dimension M + 1 x M + 1 is defined as 

diag[d(k—M),... 

The LRT [17] of (5.39) calls for the difference of the two tested decision variables, IXA q (S). Using 

the result of (A.8), LA q  (E) can be expressed as 

LA q (e) = A q (t) - A q (0) 

= 	Y) q (e,k)Y q (k) 	 (A.9) 
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where 

= D"> (k) ww"D(k)_ D°(k) wwD0I(k)  e <M+1)x(M+1) 

The pairwise probability of detecting hypthesis £ in favour of hypothesis 0, is the probability that 

LA q  (E) <0. The notation in (A.9) is already a quadratic form, however, it is an unbounded sum. 

Note, LA q (S) is only non-zero, where the hypotheses W(k) is different from the transmitted sequence 

d(k). Recall the definition of the state sequence X, (k) = {e°(k),... , e (" (k - M)} as shift register 

process of the most likely sequence. By observing Xe  (k) it can be seen that the summation over k in (A.9) 

has only a finite number of non-zero elements. Let k1 denote the time where the first decision error is 

observed, then the samples where LA q  () is essentially non-zero, are in the range k E {k1, k1 + 

Lb + M}, as illustrated in Figure 5.9. Without loss of generality let k1 = M, then LAq () becomes 

L,, +M 

zA q () = 	y(k)1 q ((,k)y q (k) 	 (A.10) 

k =M 

with L 8  = Lb + M. 

A notation of zA q (e) = u Q q (4) Uq  of the required form of (5.39) can be obtained by re-

arranging (A. 10). The matrix containing the received signal samples, U q  = [Yq  (k 1  - M),... , Yq (k 1  + 

M + i)]T, is defined in (5.40). The matrix Q q (e) emerges from the set of matrices In, (E, k); k = 

M,... L e +M} in order to satisfy (A.9), that is 

L +M 

	

Qq(t) = 	[Dv(k)v'(k)D" - D>v(k)vH(k)D'I] 
k =M 

	

1 	 1L+M 

	

= 	 v(k)vH(k) I 	- D ° 	v(k)vhl(k)] D)H 	(A.11) 

k=M 	 J 	 Lk=M 

The matrix Q q (e) is seen to be a composition of the data matrix D and the vector v(k). Assuming the 

transmitted sequence is the all one sequence and d = the diagonal data matrix is now of the time 

independent form 

= diag[1,... , 1, d(M),... , d(M+Lb), 1,••• i] 

M 

The filter vector has become time dependent and is defined by 

v(k) = 

k-M 	 WT 	 L,,-k+M 

It can be shown that zA q (E) is not changed by the transformation from (A.10) to (A.1 1). The depend-

ency of time k has been changed from the received signal to the filter matrix. The filter vector w moves 

one step to the right every sample, within v(k), while U q  and on the other hand, are fixed relative to 

time k. All vector and matrix quantities are of dimension Lt,,t  and 1 0  x L t,, t  respectively. 
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hR filtering: If an a—tracker is used to generate the CIR estimate, hq (, k + 1) = (1 - a) y (, k) + 

ahg (e, k) one way to evaluate the MSE I cq(t, k)12  is to use an expression given [28].  However, this 

requires us to re-formulate the decision variable (A.6) for the FIR case. So it is desirable to expand the 

a—tracker estimate of (5.30) to a series 

1—a 
k 

i g (, k+1) = 	a'y' (f, k—in) ; 	0 < a < 1. 	 (A.12) 
a 

m=O 

It is seen that the influence of 14(e, k—m) decreases exponentially with delay in. Due to the exponential 

decline of the terms contributing to (A.12), the summation over k samples in (A.12) may be truncated 

after a M symbol delay, with M sufficiently large to obtain 

1—a 
M 

q(,k) 
= 	a 	

atm y(t,k—rn) 	0 <a <1. 	 (A.13) 
m=i 

Thus, the hR filter in (A. 12) may be viewed as a Mth  order FIR filter, with coefficients 

— 

Wm = 
1 a 
	= am_i - am 	 (A.14) 

a 

With this expression the recursive MLSE with 1W filtering can be cast into decision variable (A.6). The 

corresponding error probability for this case is obtained by proceeding in the same way as demonstrated 

for the FIR filter case. 

Diversity Reception: After an expression of the quadratic form for the flat fading channel has been 

found, these results can be easily generalised to the case of diversity reception. To accommodate the 

diversity receiver in the decision variable of (5.39) we employ Kailath's diversity receiver for multilink 

and multidimensional channels [80].  The quadratic form of the LRT of (5.39) for a Q tap diversity 

receiver is 

Q 
LA(e) = 	LAq() = 	Q() u 	 (A.15) 

q=1 

Following [80] the quantities u and Q(E) are given by 

U1 	 Qi(e) 	0 	•.. 	0 

U2 	 0 	Q2(9) 	0 
Q()= 	. 

uq 	 0 	 0 Qq() 

where the dimension of u and Q () are denoted by N = Q1 0  and N x N respectively. The matrix 

Q (E) has a block diagonal structures whose elements are themselves matrices. The elements Q  () and 

U q  are given by (A.11) and (5.40) respectively. 
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Appendix B 
Additional Plots 

B.1 Parameter optimisation for hybrid filters 

B.1.1 Emphasis the pilot symbols for channel estimation 

In order to find the optimum fiter parameters v and vh for the receiver studied in 6.5.2.1, the soft PA-PSP 

was employed in channels with different parameters. In general, the same parameters as in 6.5 apply. 

The performance of the PA—PSP is depicted in Figure B.1, for different filter parameters vi and vh. 

The constant v and v, are varied in part (a.) and (b.) respectively. The hybrid receiver is seen to be 

robust for arbitrary fading conditions. However, the hybrid receiver cannot outperform the entirely pilot 

aided (PA) receiver for slow fading. There is a slight performance advantage when the FIR—PSP and PA 

receiver performance are similar (0.01 < 1 nax  < 0.02). The constants vj and vh should be chosen such 

that the p is changing gradually between slow and fast fading receiver. Otherwise, if p switches on/off 

(vi = vh), the point where the performance of the fast and slow fading receiver are equal needs to be 

know precisely. This may result in a performance degradation around the switching point, as it is shown 

in the graph for vi = Vh = 0.02. 

B.1.2 Hybrid filtering MLSD 

We are interested to find the switching parameters in terms of the SNR, y(k), of hybrid per-survivor 

processing (HPSP) from 6.5.2.2. The SNR may strongly deviate from its mean 5. Furthermore, estimates 

of the current SNR, (k) can be generated easily as the channel statistics are monitored extensively 

(a.) 	0.1 

cc 
Iii 
Co 

0.05 

V1 =0.01 
vu= 0L.J02 

PSP< .... 
PA: A..- 

(b.) 	0.1 

Cr 
w 

0.05 

v=0.02 -4--• 

PSR3- 
PA 	.... 

0.005 	0.01 	 0.05 	 0.005 	0.01 
	

0.05 
normalised Doppler frequency 	 normalised Doppler frequency 

Figure B.1: BER vs normalised Doppler frequency, v, for PA—PSP. 
(a) 11h = 0. 02, various I/i; 	 (b.) Vj =0, various vh; 

R=10, M=8, Q=1, =10dB. 
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Threshold 

k 

Figure B.2: Switching between the FIR and IIR—PSP dependent on the threshold SNR, -th. 
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Figure B.3: BER vs SNR of the HPSP for different ratios of data to known symbols. 
0. 005, R=1O, M=8, Q=1; 

(a.) A = 10, various yth; 	 (b.) Yth= 6dB, various L. 

already for channel estimation. Thus for Doppler frequencies where the IIR—PSP is superior for low 

SNR and the FIR—PSP for high SNR, typically found in mid fading rates (0.01 > ii > 0.04), the 

receiver needs to switch between FIR and 1W filter. The SNR dependence of p in (6.13) is taken into 

account by the threshold yth. When the received signal is in a deep fade the receiver switches from FIR 

to 1W channel estimation. As the phase slips of the FIR—PSP may persist through the subsequent good 

reception area, an time delay A is imposed, in order to prevent that. This is illustrated in Figure B.2. 

In terms of the Doppler frequency Z1 na -bx, the threshold ' is lowered for increasing Doppler, since the 

FIR—PSP becomes more robust. 

Simulation results for some parameters pairs - and A are shown in Figure B.3. It can be observed 

that for the threshold ) iJ]  =6 dB and the delay A = 10 the best results are obtained. These are minimum 

values for - and L, as further increasing them doesn't change the performance. In fact, the HPSP fails 

to outperform the IIR—PSP even for high SNR (5 >20 dB). Thus it can be concluded that it makes little 

sense to choose p on a runtime basis, as the channel parameters V ax  and are assumed to change slowly 

compared to a symbol interval. 
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B.2 Transition probabilities for the Gilbert-Elliott 
channel 

Results of the transition probabilities of the Gilbert—Elliott channel (GEC), P(71) and  P(Tio), are 

shown in the Figures B.4 and B.5. In Figure B.4, the (a.) slow and (b.) fast fading performance is drawn 

against the SNR Considering slow fading in Figure B.4.a, if the transition probability from ito 0 (from 

the burst to the good state), P(7j0) is not significantly larger than the transition probability from 0 to 

1, P(T01), the receiver becomes unstable. This can be observed for low SNR ( 
< 10 dB) and long 

filters (M = 8), by comparing Figure B.4.a with Figure 6.15.a from section 6.3.3.2. On the other hand, 

if P(7j0) 1 the receiver is robust. This is seen for short filters (M = 2), by comparing the same 

graph with Figure 6.17. For fast fading in Figure B.4.b, P(7j0) is close to 1 for arbitrary SNRs, thus the 

receiver is always robust, for short and long estimation filter orders. Note that for  = 2, P(7-01 ) is above 

the ideal error probability where the CIR is known to the receiver. Even for longer filters, the transition 

probability of entering the burst state is in the range of the error probability. Similar conclusion can be 

drawn by observing Figure B.5, which shows P(Y01)  and P(7j0) against Vnax.  The receiver is robust if 

the difference between P(Tjo) and P(Y01)  is large, by comparing Figure B.5 with the error probability 

of the GEC in that case, shown in Figure 6.16. 
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Figure BA: Transition probabilities for the GEC, P(T01 ) andP(Tio) vsSNR;M = 12, 81. 
(a.) slow fading: v=O.005; 	 (b.) fast fading: v= 0.05. 
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Abstract-  The authors describe a robust channel prediction 

technique for a direct sequence spread spectrum (DS—SS) sys-
tem in a fast fading environment. For improved performance the 
RAKE filter taps are coherently combined, hence accurate chan-
nel estimation is required. A FIR type linear prediction filter for 
each RAKE filter tap is used to estimate the channel response. In 
order to do this, the data decisions are fed back to the prediction 
filter. The stability of the proposed system is achieved through 
differential encoding of the data bits. It is demonstrated through 
simulations that the performance of the proposed decision dir-
ected receiver is better than that of an idealised receiver where 
channel estimation is not corrupted by decision feedback errors 
(e.g. by means of employing a pilot signal). The channel estimate 
can be significantly improved by employing a second stage chan-
nel estimation filter. 

I INTRODUCTION 

Although differential encoding of the data bits does not essen-
tially require any knowledge of the channel impulse response (Cffi), 
the performance of the receiver may be significantly improved if an 
accurate estimate of the CIR is available. In a fast fading environ-
ment, a conventional differential receiver suffers from an irreducible 
bit error rate, due to the induced phase lag of two adjacent samples. 
One means of overcoming this problem is to use a predictive system 
where the CW for a particular symbol is estimated in advance using 
the previously measured signals. 

An optimal diversity receiver in a Rayleigh fading channel was 
proposed by Kam [1]. The resulting receiver consisted of an estim-
ator that delivered minimum mean square error (MMSE) estimates of 
the CIR and a detector that utiliseed these estimates. However, the re-
ceiver complexity was found to be too high. A suboptimal realisation 
of a decision directed two stage receiver was also suggested. 

The operation and performance of the receiver is compared with 
a system using a pilot signal for channel estimation. 

I 	Gunther.Auer@ee.ed.ac.uk  

II SYSTEM MODEL 

The transmitter uses direct sequence spread spectrum (DS—SS) 
modulation. The information data bits Ad(k) are DPSK modu-
lated [2] to maintain stability. In an typical urban environment where 
no line of sight between the mobile and the base station exists, the 
received signal typically consists of a large number of incoming scat-
terers, termed a Rayleigh fading channel. For simulation work, the 
time variant statistics of the channel are described by the classical 
Doppler model [3, 4]. The bandwidth of a DS—SS modulated sig-
nal can be much larger than the coherence bandwidth of the channel, 
in this case the mobile radio channel is frequency selective. This 
provides a form of diversity and can subsequently be used to combat 
the effects of fading [5]. 

A Receiver structure 

Due to the correlation properties of the spreading sequence, a 
RAKE type receiver can be applied to recover the received signal 
taps [5]. It is assumed that the correlation properties of the spreading 
sequence are ideal, in the way that the post correlation signal can be 
resolved perfectly into Q independent fading taps. After sampling 
and acquisition, the received signal at the qth tap of the RAKE re-

ceiver is in the form [2] 

y q (k) = d(k)Jh q (k) + n(k) 	 (1) 

where Eb represents the energy per transmitted data bit d(k) and 

h q (k) denotes the CIR of the qth tap. Finally, n(k) represents a 
sample of a complex additive white Gaussian noise (AWGN) process 
with zero mean and variance N0. 

In order to coherently combine the RAKE filter taps, the mag-
nitude and phase of the channel response needs to be estimated and 
applied to the received signal, yielding for the RAKE receiver output 

Q 
z(k) = L y q (k) i(k) 	 (2) 

q=1 

where A(k) is the complex conjugate estimate of the CIR of the 
qth tap, which should ideally match h(k). The estimate of the kth 
information bit d(k) is obtained after passing z(k) to the decision 
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(b.) 	 linear predictor 

(k) 

pilot channel 

traffic channel 	 DPSK demodulation 

ouuttfrom. 	Re[]  + 
	 d(k) 

taps 	 output 

Fig. 1: Block diagram of the qth tap of a (a.) decision directed (b.) decision aided RAKE receiver. 

circuit and performing DPSK demodulation 

= sgn[ Re{z(k)}] ; 	= k) (k-1) 	(3) 

where d( k) denotes the estimate of d( k). Two types of system models 

were investigated: 

• A decision directed (DD) RAKE receiver, where the estimated 
data bit d(k) is fed back to estimate the channel response. 

• the second system uses a pilot signal, termed decision aided 
(DA). Such a DA communication system transmits a different 
spreading code on the same carrier frequency. Thus, the pilot 
signal experiences exactly the same fading as the information 

bearing signal y q (k) and is therefore used to form an estimate 
of h q (k). The SNRs of the pilot and traffic signals are assumed 
to be equal. 

A block diagram of both system models are shown in Fig. 1 

B Linear prediction 

The estimate of the CIR is obtained by applying the estimates 

of the M previous samples to an linear prediction filter with filter 
coefficients { u', }, described by the equation  

where the superscript T  denotes the matrix transpose operation. To 

optimise the filter design, we choose to minimise the mean square 
value ofthe estimation errors E[I q (k)_w T 5'q (k-1)I 2 ], as afunction 

of the weight vector w, termed the MMSE criterion [6]. 

Decision errors caused by noise may increase the variance of 
the dR estimate and thus induce further subsequent errors, giving 
rise to error propagation. The effects of a decision error will persist 

for the next M consecutive decision instants. The number of bits L 
between two consecutive error-free regions that are at least M bits in 
length are defined as an error burst, shown in Fig. 2. An error burst 

of approximately the same length as the number of predictor coeffi-
cients can cause the channel estimator to converge to false value. This 
means that the estimate of the impulse response is the inverse of the 
actual channel response. By examining (2) and (3) it is observed that 
for this case the received data sequence will be complementary to the 

transmitted one, i.e. f d(k)} = — d(k) }. For DPSK such a cycle slip 
has no degrading effect, other than a single decision error, since the 
data decision depends on the difference to the previous sample only. 

H M 	 L 	 M 

correct decisions 	error burst 	correct decisions 

Fig. 2: Definition of an error burst. 
q(k) = 	Wm g (k—m) 	 (4) 

where q (k) denotes the received signal on the input of the RAKE re-

ceiver without data modulation, that is 5(k) = h, (k)+ n(k). 
Therefore, (4) applies to the DA—RAKE. For decision directed chan-
nel estimation, however, p5 (k) is used. q (k) may be obtained by 

multiplying the data estimate d(k) to the received information bear-
ing signal y q (k), yielding for the qth tap 

q(k) = 
	

w, (k—m) y q (k—m) 	(5) 

Consequently, in addition to AWGN, decision errors corrupt the 
channel estimation process. The estimate needs to be calculated for 
each tap separately. Introducing matrix notation for input samples 

q (k) = [ q (k)..... q (k_M+1)]T  and the filter weights w  = 

[tvs ..... WM] T , both of dimension CM, (4) can be conveniently ex-
pressed as 

= wT q (k_1) 	 (6)  

C Second stage estimation filter 

An improved approximation of the dIR of the DD—RAKE can be 
made by processing the received signal in two stages, due to Kam [1]. 

It is based on the fact, that the mean squared error (MSE) of the chan-
nel estimate becomes smaller if future samples in addition to the past 
samples are used. In the proposed two stage receiver, data decisions 
concerning the future symbols of the second stage are provided by the 
output of the first stage. In the first stage we employ the linear pre-
dictor, discussed in the previous section, to make tentative decisions 
on the symbols, using for each symbol only the past received sig-
nals. The estimated dIR for the second stage, using M/2 tentative 

decisions i (k)) of the first and the final decisions {(k)) of the 

second stage, respectively, is given by 

Mf2 	 ( 

&,2 (k) = 	Urn d(k—m)y 5 (k—m) 	
= 1, m < 0 

2, m>0 
m*O 

(7) 
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where (urn } are the filter weights, chosen according to the MMSE 

criterion [6]. The subscript i = 11, 2 } denotes the decision output of 

the first and second stage, respectively. Clearly, this adds -a decision 

delay of M/2 symbols to the receiver. In matrix notation (7) can be 

expressed as 
hq ,2 (k_M/2) = uT (k) 	 (8) 

where u = [ttM/2 .....u_i, 0, t1 ..... UM/2] denotes the vec- 
tor containing the filter weights of the second stage estimation filter 
of dimension CM+1.  A block diagram of the filter is shown in Fig. 3. 

á'(k.Mi2) 

0.1 

0.01 

oem 

* 	 ideal -a--- 

10 	15 	20 	25 	30 	35 	40 
SNA (dB) 

Fig. 3: Decision directed second stage channel estimation filter. 

For the DA system no two stage processing is necessary. The 
received signal of the pilot channel can directly be applied to (8). 

III SIMULATION RESULTS 

Simulation work is based on the specification in Tab. 1 for a com-
plex baseband urban channel, defined by the COST-207 {4] report. 

To generate h(k), the complex filter response of a 4th order noise 
shaping HR filter is matched to the Doppler power spectra, as de-
scribed in [7]. The performance of the system was evaluated for one 
and two taps, both statistics being described by the classical Doppler 
model. The signal-to.-noise ratio (SNR) is defined by the sum of 
SNRs per tap, according to [2]. To allow fair comparison between a 
RAKE receiver with different taps, the average received signal power 

of all Q diversity taps was normalised to one. The SNIR of the second 

tap was set to be 3 d1 less relatively to the first one. The maximum 

Doppler shift was chosen to be 300 Hz, corresponding to a mobile 
moving with a maximum velocity of 180km/h. Only the single user 
case is considered and perfect properties of the PN sequence are as-

sumed. 

Carrier frequency 	f 1.8 0Hz 

Doppler frequency t'11,. 300 Hz 

Symbol rate f, 8 kbitls 

.-+ ,i,1f3  0.0375 

Modulation DPSK DS-SS 

Tab. I: Simulation parameters. 

To set up the M filter weights { Wrn } initially, the predictor for 

every tap was trained up with a block of 100 known data bits. Sub-
sequently, the channel eslimation is performed entirely decision dir -

ected, given the channel is stationary. On a wide-sense stationary 
channel, such as commonly assumed for mobile radio channels, the 
estimation process can be made adaptive [8]. 

Fig. 4: BER performance of a decision directed (DD) and decision aided 
(DA) single tap receiver. 

The system performance of the receiver using a linear predictor 
filter is considered in the Figs. 4-6. The bit error rate (BER) versus 

the SNR of a single tap RAKE receiver for M = 2 and 4 predictor 

coefficients, is shown in Fig. 4. The curve labelled "ideal" shows the 
results when the CIR is known perfectly to the receiver. It is seen 

that the DD predictor with the same number of coefficients is never 
worse than the DA predictor. Furthermore, the DD system performs 
significantly better for low SNR values. In particular, the fewer coef-

ficients M that the predictor has, the more significant is the difference 
between the DD and DA system. The reason is that for DPSK mod-

ulation, an error in d(k) is likely to cause two consecutive errors in 
as seen in (3). However, in the decision directed system, the 

subsequent error caused by d(k -1) may be cancelled out by a cycle 

slip. This is because a cycle slip results in a phase shift for z(k) of 

ir in (2), which causes another error in d(k). In other words, the er-

ror induced by the DPSK modulation is outweighed by the cycle slip 
caused by error propagation in the DD channel predictor. For higher 
SNRs, a cycle slip becomes less likely due to the decreased occur -

rence of error bursts. Hence the DD and DA curves merge together. 
It is also seen that, unless the SNR is either very high or low, the 

M = 4 predictor performs considerably better than the one with 2 
coefficients. While it is not shown in the graph, hardly any further 

improvement can be achieved for M larger than 4. 

Fig. 5 illustrates the statistical analysis of the cycle slip effect. It 
shows the probability of an error burst of length L against the SNR 

for a M = 2 predictor. The probability that an observed error burst 

has the length L, is defined by 

p(L) = Prob(L = L} 	 (9) 

where { L } is a set of randomly distributed error bursts obtained by 

Monte Carlo simulations. The calculation of p(L) was repeated for 

a number of SNIRs. By examining Fig. 5 it is seen that a single error 
burst is far more likely for the DD than for the DA system for a SNR 
somewhat smaller than 25 dB. Particularly for a SNR of 16 dB, the 
probability that an error burst is a single error reaches 80%, while the 

corresponding probability of the DA system never exceeds 10%. For 
high SNR values virtually all errors are 2 consecutive errors for both 
systems. The probability for an error burst larger than 2 is for both 
systems the same, being small for low and negligible for high SNRs. 
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Fig. 5: Probability of an error burst length L = 1, 2 respectively vs SNR for 
a M = 2 predictor. 
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Fig. 6: BER performance of a decision directed (DD) and decision aided 
(DA) RAKE receiver with 2 taps. 

The BER performance of the system can be improved by adding 
diversity to the system, as illustrated in Fig. 6. It shows the BER 
against the SNR of a DD and DA-RAKE receiver with 2 taps. Similar 
results are observed as in the former single tap case, in respect to the 
behaviour of the DD and DA-RAKE. The BER results however, are 
much better, allowing acceptable performance at far lower SNRs. 

Fig. 7: BER performance of a DD and DA two stage RAKE receiver with 
one and two diversity taps. M = 4. 

The BER versus mean SNIR curves for the two stage receiver are 

shown in Fig. 7. If the SNR is somewhat larger than 10dB, pro-

cessing y(k) in two stages becomes worthwhile. For instance, at 
an error probability of 10 the difference towards the conventional 
linear predictor with the same number of coefficients exceeds 2 dB. 
Unlike the linear predictor, the DD-RAKE does not perform better 
than the DA-RAKE. As diversity is induced to the system, the dif-
ference between the practical receiver and the one which has a priori 

knowledge of the CW increases. This is because the signal power per 
tap decreases and since channel estimation is performed for every tap 

separately, the SNR per tap decreases. 

IV CONCLUSIONS 

This paper has considered the performance of a DD compared to 
a DA-.RAKE receiver, in a fast fading environment. The DD receiver 
was shown to have no stability problems and the DD system outper -

formed the system employing a pilot tone. This, however, has been 
done at the expense of DPSK modulation, which means approxim-
ately 3 d poorer performance compared to BPSK [2]. Given that a 
DA-RAKE receiver has no stability problems when BPSK modula-
tion is applied, DPSK is not the optimal modulation technique for a 
DA system. A significant improvement in system performance can 
be achieved by the two stage estimation filter, on the expense of an 
induced time delay and higher complexity. 
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Abstract—Receiver designs for maximum likelihood sequence es-
timation (MLSE) of signals transmitted through a flat fading chan-
nel are described. This results in a receiver which jointly estimates 
the channel impulse response and detects the received data sequence. 
The receiver uses data as well as pilot symbols, embedded in the Vi-
terbi algorithm (VA). The VA operates on an expanded trellis struc-
ture, such that the states depend not only on the current symbol to 
be detected, but also on previous samples, due to the estimation filter 
memory. If the estimate of the channel output has a finite memory, 
then the receiver optimises the maximum likelihood (ML) decision 
rule. The principle of per-survivor processing (PSP) is shown to 
be a special case of the proposed receiver structure. The results 
are not limited to slow or fast fading channels. The PSP detector, 
having a comparable low complexity, does not suffer a significant 
performance degradation in fast fading compared to the expanded 
trellis MLSE; however, PSP performs very poorly in slow fading 
conditions.  

estimation, developed by Irvine and McLane [7]. This 
essentially requires a more sophisticated receiver design 
and joint estimation and detection of the entire transmit-
ted sequence becomes attractive. In this paper, the MLSE 
receiver embeds the pilot symbol aided signal in the VA 
itself. 

The transmission and channel model of the mobile ra-
dio link is described in section H. Section ifi considers 
optimum maximum likelihood detection with unknown 
parameter estimation. The realisation of an MLSE re-
ceiver based on an expanded trellis is discussed in sec-
tion IV. Simulation results are presented in section V. 

II. SYSTEM MODEL 

I. INTRODUCTION 

In this paper a realisation of MLSE for Gaussian sig-
nals in Gaussian noise studied by Kailath [1], is presen-
ted. Several approaches of performing MLSE in a time-
varying mobile communication link have been studied 
in literature, based on utilising the Viterbi algorithm 
(VA) [2]. Morley and Snyder [3] combined the gener-
alised likelihood-ratio formula with the VA. The result-
ing receiver structure follows Kailath's separation the-
orem [1]. That is, the receiver consists of an estimator 
which delivers the minimum mean squared error (MMSE) 
estimates of the fading distortion and a detector that util-
ises these estimates. More recently, the idea of per-
survivor processing (PSP) [4] was used for joint channel 
estimation and signal detection in a flat fading channel [5]. 

In order to perform coherent detection, a form of phase 
reference for the receiver must be provided. The idea 
of reference symbol phase tracking was studied by [6]. 
These receivers only used the pilot symbols multiplexed 
in the data stream for channel estimation. The perform-
ance can be improved, especially for fast fading, if pilot 
symbols as well as data symbols are used for channel 

We consider binary antipodal transmission, namely bin-
ary phase shift keying (BPSK). In the pilot symbol inser-
tion (PSI) technique [6], one of R data bits is known at 
the receiver and is used for carrier recovery. Hence one 
known symbol is followed by R— 1 data symbols, corres-
ponding to the ratio 1: R. 

The BPSK modulated signal, multiplexed with the pilot 
symbols, is then transmitted over an urban radio chan-
nel. As the mobile is in motion, the channel response 
changes with time due to multipath and the Doppler ef-
fect. The channel impulse response (CW) of time instant 
k is modelled as a complex time discrete random variable, 
hk, being a single realisations of a wide—sense stationary 
stochastic process with zero mean. For simulation work 
the classical Doppler power spectra was chosen, due to 
Clarke [8], having the auto correlation function (ACF) 

E[hk h+k] = E[IhkI2 ] 
J0(2 max tk) 	(1) 

where Jo(.) denotes the zero order Bessel function of the 
first kind, Vm is the normalised maximum Doppler fre-
quency. The superscript * denotes the complex conjugate 
operation. 
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After sampling and matched filtering, the received sig-
nal is in the form 

	

Yk = dk'/hk + nk 	 (2) 

The energy per transmitted data bit, dk,  is denoted by E&, 
and nk represents a sample of a complex additive white 
Gaussian noise (AWGN) process with zero mean and vari-
ance N0 . 

III. OPTIMUM ML SEQUENCE DETECTOR 

In this section optimum MLSE with unknown para-
meter estimation is considered. The detection and es-
timation of a whole sequence of the received signal is 
discussed in this section. The motivation behind this is, 
adjacent samples of {h k }, and hence {yk},  are highly 
correlated. Thus, to minimise the probability of error, the 
whole transmitted sequence has to be taken into account. 
Sequences of length K are denoted by column vectors, 
e.g. for the received signal sequence y = yrc'. 
We wish to find the sequence d which minimises the prob-
ability of error, out of all possible transmitted sequences 
{d°; £ E AK}. The set AK represent all 2K possible 
data sequences. All sequences are assumed to occur with 
the same a priori probability. According to the maximum 
likelihood (ML) decision rule, the likelihood functionof 
the observation y, conditioned on the Lth  transmitted data 
hypothesis, d, is to be maximised: 

p(y ) = max p(y I d°) 	(3) 
LEAK 

such that d is the most likely transmitted sequence. 
We consider a recursive formulation of MLSE employ-

ing present and past samples only. The decision variable 
of data hypothesis £ and time instant k, being essentially 
the log-likelihoodfunction of (3), is given by [9] 

= J 1(e) 
Y —h 2 -i-A.. 1  (4) 

() (L) (e)* where hk  is the estimated CIR and Y 'k = dk Ilk denotes 
the pre-multiplied received signal. Minimising over 
all possible hypothesis, £, at the end of the sequence k = K 
gives the ML estimate 

	

AK = min A") 	 (5) 
LEAK 

It can be observed that the ML sequence detector minim-
ises the Euclidean distance between the received signal, 
y, and the channel estimate, h°, in respect to all possible 
transmitted sequences {d}. This operation minimises 
the probability of error for detection of the whole data 
sequence, equivalent to the ML decision rule. The number 
of sequences, which have to be tested in order to find AK, 
grow exponentially with the sequence length K. Thus, 
this receiver cannot be implemented in this form, due to 
its prohibitive complexity. 

A. Channel estimation 

The CIR estimate conditioned on the L th  hypotheses, 
h, is obtained by minimising the mean squared of the 

prediction error E[Iht - k" I'). The optimum solution is 
a Wiener filter [10], which provides the IvIMSE estimate 
of the Cm. In a stationary channel the channel estimation 
filter can be truncated by a time independent, Mth  order, 
linear predictor, with the coefficients { W }. The channel 
estimate h then becomes 

M 

hk° 	
E * ,( t) 

= 	WmYk_m. 	 (6) 

The formulation of the decision variable in (4), cannot 
be employed in this form for coherent detection, such as 
BPSK, since the transmitted signal is not orthogonal. The 
resulting phase ambiguity at the receiver necessitates the 
need of a phase reference, which can be provided by pilot 
aided channel estimation. The multiplexed pilot symbols 
with rate R can be incorporated in (6) and (4) by re-
defining the pre-multiplied received signal 

1(0 	 + k k mod R = 0 

elsewhere. 	
(7) 1 

IV. REALISATION OF THE MLSE RECEIVER 

It has been described how an exhaustive search over 
all possible data sequences yields the desired joint ML 
estimate. In the following the problem of ML sequence 
estimation using the Viterbi algorithm is analysed based 
on the decision variable in (4). 

The VA represents an optimum solution of ML se-
quence detection of a finite state, discrete time Markov 
process observed in memoryless noise. The VA is 
only optimal as a decoding algorithm if the process is 
Markovian.' That is the probability, P(sk+1 Isi, 	, 
of being in state Sk+1 depend only on the state sk [2]: 

P(sk+1 I Sl, 	,Sk) = P(sk+1 I Sk) 

For PSP (e.g. discussed in [5]), the state sk is given by the 
current data symbol of hypothesis £, which is sk = f0, 11 -  
The estimated cm however, is dependent of the last M+1 
samples, as observed in (6). Hence, the transition from 
state Sk to sk+1 is a (M+ i)th order Markov process. 

This is illustrated in Fig. 1. The sequences £ = 4 
and £ = £, denote two particular realisations of possible 
transmitted data sequences. The Euclidean metric from 
the transition (Bk, sk+1) of hypothesis 4 and L may be 
different. Thus if the VA was applied on 8k  the corres-
ponding survivor may not be the most likely path in the 
end of the sequence. Note, there are 2M sequences per 
state which have a different path history. 

1A 1St  order Markov process is described as Markovian. 
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A. Receiver design based on an expanded trellis structure 

Morley and Snyder [3] derived a more general descrip-
tion of the problem, which will be used in the follow-
ing. Generally speaking, if the trellis is expanded to 
21+1 states per sample, then the underlying process is 
Markovian, and the VA is therefore optimal. This ap-
proach leads to a very similar solution as for signals trans-
mitted through channels with inter symbol interference 
(1ST) [11]. The proposed algorithm is only optimum for 
channels with a finite channel impulse response. Unfor-
tunately this is not the case on a Rayleigh fading channel. 
However, based on the approximation of the channel es-
timation filter to a Mth order FIR filter, the algorithm is 
the best possible decision rule. The only non-optimum 
approximation is to truncate the estimation of the CIR 
with a M ilt  order linear predictor. 

In the following, an expanded trellis structure is 
defined, where not only the current data symbol is taken 
into account, but also the previous symbols up to delay 

Let the state of the kth sample of a finite state Markov 
process be denoted by 

Sk { d 	d° - 	k' 	k-i' 	, 	}; 	£ E 8k 	(8) 

used for channel estimation 

where d is the current data symbol, the delayed versions 

{ m 1,•.• , D} are used for channel estimation. 

There are 2D+1  states {sk } per time instant, according to 
the memory of D+1 time samples of one state. The trans-
ition (8k, sk+1) is obtained in accordance to (4), which is 
the Euclidean distance between the estimated and received 
signal output of one sample, given by 

I -  (r) 12 . 	£ E Sk+i . (9) 

	

L(Sk, Sk+i) = IYk+1 	! k+1 

In the equilibrium there are two entering and two leaving 
branches per state. Initialisation of the trellis takes D + 1 
samples. There is obviously a one-to-one correspondence 
between state sequences {sk} and transition sequences 

(sk, sk+1), given by a finite state machine or a shift 
register process [2], since it can be modelled by a shift 
register of length D. This results in an expanded trellis 
structure, illustrated in Fig. 2. By observing the trellis, the 
analogy to equalisation of channels with ISI [11] becomes 
obvious. 

It is seen that there is nothing to be gained, if D is 
chosen larger than the estimation filter order M. Hence, 

D < M, with equality for the best possible decision rule. 

Fig. 2. Expanded distance metric illustrated in a trellis for the recursive 
MLSE, D=1. 

Note that if D = 0, the algorithm becomes identical to 
PSP [5]. 

Now that we have stated the problem, it is straight-
forward to implement the VA. Let A(sk) denote the sur-
vivor path of state Sk. That is the metric with the min-
imum distance entering this state, which is obtained by 
minimising(4) at sample k 

A(sk) = min{A}. 	 (10) 
LEok 

To extend the survivors to sample k + 1, we compute the 
metric from state 9k  to sk+1: 

A 10 	= A(Sk) + A(sk,sk+1) 	(11) 
k4-1 

and again applying (10) to A"' 1 . The decision variable 
up to sample k is already minimised, leaving only 2 trans-
itions i(sk, sk+1) to be minimised. From the branches 
entering at state 8k  the ones with the larger metric are 
discarded, giving the survivor at time k + 1: 

sk+i) = A(sk) + min A(Sk, Sk+i) . ( 12) 
(Ok , 8 k+') 

This is illustrated in Fig. 2, where the VA calls for choos-
ing between two transitions, printed as dashed and solid 
lines. 

Although the ML decision rule states that the final de-
cision is taken at the end of the sequence, little degradation 
is expected if the definite decision of the most likely path 
is done after a finite delay. For simulation work presented 
here, this time delay is set to R. 

The expanded trellis MLSE is closely related to list type 
Viterbi decoders studied in literature [121, [13]. The list 
Viterbi algorithm (LVA) constitutes a generalised class of 
the VA. Its basic concept is to find the L best paths instead 
of a single survivor. 

Now the necessary phase reference in form of the multi-
plexed pilot symbols needs to be incorporated. The multi-
plexing rate is R; one known symbol is followed by R— 1 
data symbols. If a pilot is being transmitted, d = 1, 
and therefore states 8k which imply that d = —1 are 

not allowed. The following D samples the pilot is shif-
ted through the state machine, leaving half of the possible 
states in the trellis for D+ 1 samples. In general, a state 
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is not allowed because of a pilot symbol at time instant 
k—rn, if the following relation is true: 

d' m  = — 1; 	(k—m) mod R=0. 

B. Computational cost of the expanded trellis 

Given the trellis is in its equilibrium, we have to find 
one survivor out of all the branches entering a particular 
state (for BPSK it is 2). Note, for every state 2 new trans-
itions need to be calculated. It is seen that MLSE has 
become independent on the length of the sequence, after 
initialisation of D+ 1 samples. 

The complexity for D = M may still be prohibitively 
large, due to the exponential growth of the trellis relat-
ive to D. The trellis has 2 1  number of states, with 
2 branches entering and leaving each state per sample, 
resulting in 22  transitions in total for the whole trellis. 

As implied before, the complexity can be further re-
duced by simply reducing D and therefore the number of 
states. This can be achieved by simply setting D < M. 
The principle of per-survivor processing (PSP) [4] turns 
out to be a special case of the proposed algorithm, by 
setting D = 0. The trellis is reduced to two states per 
sample. 

According to the similarity of the trellis with ISI cor-
rupted channels, other state reduction techniques (e.g. the 
LVA2  [12]), addressed in literature for channels with ISI, 
can be applied in a straightforward way. These techniques 
are based on the fact that only a small number of the 22 
survivors have a sufficiently small metric to become the 
overall best survivor path, and therefore the most likely 
sequence. The vast majority of the survivors can be dis-
carded before the final decision is made, without com-
promising the system performance. 

V. RESULTS 

Simulation work is based on a complex baseband flat 
fading channel, commonly described by a Rayleigh fading 
channel. To generate ht,  the complex filter response of a 
4th order noise shaping hR filter is matched to the Doppler 
power spectra of (1), as described in [14]. 

The bit error rate (BER) was obtained by simulating 
the MLSE receiver designs over a large number (106)  of 
Monte Carlo runs. The error probability, for the idealised 
case if the CW is known a priori [15, chapter 14], is used 
as a lower bound for comparison purposes. That is for a 
frequency-flat fading channel: 

Pe=[1_V] 	
(13) 

where = Eb/NO denotes the average signal-to-noise ra- 
tio (SNR). Generally, curves labelled "ideal" identify the 

2 1 [12] this algorithm is referred to as generalised VA (GVA), 
however the basic concept is the same as for the LVA in other public-
ations. 
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Fig. 3. BER vs SNR for different numbers of the pilot insertion rate R. 
M=D=4, s=O.O5. 
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Fig. 4. BER vs v for different numbers of D. M = 8, R = 10, 
=15dB. 

case where the CIR is known to the receiver. The Doppler 
frequency Vm ax5 normalised to the sampling frequency. 

The BER performance against the SNR, of a system 
with a trellis memory length of D = 4 in a fast fading 
channel (Vm = 0.05), is shown in Fig. 3. It is seen 
that varying the multiplexing rate R mainly affects the 
performance for low SNR, such that for small R the differ-
ence to the curve with known CW becomes smaller. This 
is because, a smaller R decouples the joint estimation-
detection structure of the receiver and therefore reduces 
error propagation. For a larger R however, the channel es-
timation process is severely corrupted during deep fades, 
leading to a poor CW estimate, so it becomes more likely 
that subsequent bits will be detected as errors as well. 

The system performance dependent on D, is shown in 
Fig. 4,3  where the BER is plotted against the normal-
ised Doppler frequency, The mean SNR was set 
to = 15 dB. It can be observed, that the PSP receiver 

3 Due to the exponential growth of the trellis in respect to D, values 
larger than 4 result in a vast computational complexity, while the per -
formance is only marginally improved. Thus graphs with D > 4 have 
been omitted. 
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ing D >2. This is a pleasing result for systems where the 
estimator order M is large, due to the exponential growth 
of the trellis. 

The principle of per-survivor processing (PSP) was 
shown to be a special case of the proposed receiver. Its 
performance is excellent for fast fading channels, while 
it is not robust for slow fading. On the other hand the 
receiver with D> 2 works for slow as well as fast fading; 
while having a considerable higher complexity than PSP. 
However, the complexity may be further reduced through 
reducing the number of survivors of the trellis, e.g. by 
means of the LVA [12]. The expanded trellis MLSE re-
ceiver may be generalised for channels with 151 and un-
known CIR, as the trellis structure is essentially the same. 

Fig. 5. BER vs SNR for different numbers of D on a slow fading 
channel. M=8, R=10,v=0.005. 

(D = 0) is not robust for low Doppler. The perform-
ance gradually breaks down for 1'max  somewhat smaller 
than 0.02. Expanding the trellis (.Djeql) does improve the 
system performance for low Doppler. However, if D > 2, 

virtually no performance gain can be achieved. This is 
true, even for higher order estimation filters. Hence, al-
most no performance degradation is observed if D = 2. 

For fast fading (Umax> 0.02), however, PSP performs 
almost as well as MLSE with D > 1. The reason is, the 
contribution of filter taps in (6), whose coefficients Wm 

are small, is rather insignificant. Especially for fast fading 
channels, where the correlation between adjacent samples 
becomes smaller, there are only a few coefficients wm  
which have a significantly large magnitude. So expanding 
the trellis has little benefit as signal samples with larger 
time delay have less impact on the channel estimation, due 
to their smaller weight w m . 

Note, the effect of varying D is also dependent on the 
SNR, as it is illustrated in the following graph. The PSP 
performance for the slow fading case, as shown in Fig. 5, 
is seen to have stability problems for low SNRs, while 
for SNR values above a certain trade-off, the PSP graph 
gets much closer to MLSE with larger D. It can therefore 
be concluded that the PSP detector is suitable only for 
for fast fading channels. However, the PSP performance 
for low SNR and slow fading improves, if M becomes 
smaller [16]. Provided that D> 2, the error probability 
closely matches the lower bound of the known CW. It is 
seen that there is a trade-off where the PSP performance 
breaks down dependent on Umax and the SNR, 5. 

VI. CONCLUSIONS 

A MLSE receiver, based on an expanded trellis struc-
ture, operating in a Rayleigh fading channel with un-
known impulse response, has been implemented. The 
performance of the MLSE receiver is highly dependent 
on the multiplexing rate R, if the SNR is low. The system 
performance cannot be improved significantly by choos- 
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Abstract—Receiver designs for maximum likelihood sequence es-
timation (MLSE) of BPSK modulated signals transmitted through a 
flat fading channel are described. This results in a receiver which 
jointly estimates the channel impulse response and detects the re-
ceived data sequence. The receiver uses data as well as pilot symbols, 
embedded in the Viterbi algorithm (VA), referred to as per-survivor 
processing (PSP). It is demonstrated through simulations that the 
performance of PSP is very sensitive to the choice of the channel 
estimation filter. PSP employing a FIR filter to estimate the channel 
impulse response (Cifi) is well examined for fast fading conditions. 
For modest fading rates however, stability problems due to pilot 
aided channel estimation occur. When channel estimation is per-
formed using an HR filter, the receiver shows superior performance 
for slow fading, while it is not suitable for fast fading. In this paper 
a hybrid realisation of PSP is proposed, using both a FIR and 1111 
filter, yielding a receiver suitable for slow and fast fading channels. 

I. INTRODUCTION 

In this paper a realisation of a maximum likelihood 
(ML) sequence detector for Gaussian signals in Gaussian 
noise studied by Kailath [1], is presented. That is, the 
receiver consists of an estimator which delivers the min-
imum mean squared error (MMSE) estimates of the fading 
distortion and a detector that utilises these estimates. Sev-
eral approaches of performing MLSE in a time-varying 
mobile communication link have been studied in literat-
ure, based on utilising the Viterbi algorithm (VA) [2]. This 
technique is sometimes referred to as the principle of per- 
survivor processing (PSP) [3]. 

PSP can be applied in a straightforward manner if or- 
thogonal waveforms, or non-coherent modulation such as 
differential encoding is employed. Differential encoding 
of the data bits, however, suffers a loss of 2 dB in sys-
tem performance. For coherent detection, on the other 
hand, a form of phase reference for the receiver must be 
provided. The idea of reference symbol phase tracking 
was introduced by [4], [5]. These receivers only used the 
pilot symbols multiplexed in the data stream for channel 
estimation. The performance can be improved, especially 
for fast fading, if pilot symbols as well as data symbols 

are used for channel estimation. This essentially requires 
a more sophisticated receiver design and joint estimation 
and detection of the entire transmitted sequence becomes 
attractive. 

PSP was used for joint channel estimation and signal 
detection for M1PSK modulated signals [6], [7],  [8]. Kam 
et al. [6] used a first order HR filter to estimate the chan-
nel response, while [7],  [8] used a FIR estimation filter. 
Simulation results suggest that the FIR estimation filter 
performs superior for fast; while the 1W filter yields better 
results for the slow fading channel. For slow fading, PSP 
using a FIR estimation filter experiences stability prob-
lems, due to pilot aided channel estimation. This is a 
rather unexpected result, as normally fast fading is con-
sidered to be the more difficult condition. In this paper 
the reasons for these stability problems are thoroughly 
analysed. 

A hybrid PSP detector is presented which employs both 
an 1W and FIR channel estimation filter. This enables 
the PSP based receiver to perform close to the theoretical 
minimum for coherent detection, on both slow and fast 
fading channels. 

II. SYSTEM MODEL 

We consider binary antipodal transmission, namely bin-
ary phase shift keying (BPSK). In the pilot symbol inser-
tion (PSI) technique [4], [5],  one of R data bits is known 
at the receiver and is used for carrier recovery. Hence 
one known symbol is followed by R - 1 data symbols, 
corresponding to the ratio 1: R. 

The BPSK modulated signal, multiplexed with the pilot 
symbols, is then transmitted over an urban radio chan-
nel. As the mobile is in motion, the channel response 
changes with time due to multipath and the Doppler ef-
fect. The channel impulse response (CIR) of time instant 
k is modelled as a complex time discrete random variable, 
hk, being a single realisations of a wide—sense stationary 
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stochastic process with zero mean. For simulation work 
the classical Doppler power spectra was chosen, due to 
Clarke [9], having the auto correlation function (ACF) 

E[hkht+kJ =E[1h1 1 2 ] Jo(27rvmaA Lk) (1) 

where J0 (.) denotes the zero order Bessel function of the 
first kind, Vm is the normalised maximum Doppler fre-
quency. The superscript * denotes the complex conjugate 
operation. 

After sampling and matched filtering, the received sig-
nal is in the form 

yk=dkhk\/+nk 	 (2) 

where E1 denotes the energy per transmitted bit, nk rep- 
resents a sample of a complex additive white Gaussian 
noise (AWGN) process with zero mean and variance N0 . 

III. RECEIVER STRUCTURE 

Optimum ML Sequence Detector 

The detection and estimation of a whole sequence of 
the received signal is discussed in this section. We wish 
to find the sequence { dk} which minimises the probab-
ility of error, out of all possible transmitted sequences 
{d>; £ E Al. The set A constitutes all possible transmit-
ted sequences of number 2K,  with K being the sequence 
length. The receiver is based on the estimator—correlator 
structure studied by Kailath [1]. We consider a recursive 
formulation of a ML sequence detector employing present 
and past samples only studied by [10].  The decision vari-
able of data hypothesis £ and time instant k, being essen-
tially the log-likelihoodfunction of the ML decision rule, 
is given by 

	

A°/ (
0 - h° + 	1 	(3) k = Yk 

where y' (') = d>* Yk denotes the pre-multiplied received 
signal and h is the estimated CIR. Minimising A> over 
all possible hypothesis in A, at the end of the sequence 
k = K gives the ML estimate 

	

AK = min M) 	 (4) 

It can be observed that the ML sequence detector minim- 
ises the Euclidean distance between the received signal, 
{y}, and the channel estimate, {h}, in respect to all 
possible transmitted sequences { d}. This operation min- k 
irnises the probability of error for detection of the whole 
data sequence, equivalent to the ML decision rule. 

Channel estimation 

The estimate of the CIR conditioned on the £th  hypotheses, 

h, is obtained by minimising the mean squared of the 

prediction error E[Ihk - hI2]. The optimum solution is 
a Wiener filter [11], which provides the MMSE estimate 
of the ClR. 

FIR estimation filter: The Wiener filter with k time de-
pendent coefficients can be truncated by a linear predic-
tion filter with M coefficients, w = [wi,••• , wM]', giv-
ing the channel estimate [10] 

M 

E Wm 
* 

= 	Yk_m. 	 (5) 
rnl 

In a stationary channel, w is time independent and can be 
pre-computed. 
HR filtering: Another possibility of performing an one-
step prediction is to use an infinite impulse response (HR) 
filter instead of a FIR filter. The optimal HR-type pre-
dictor is given by the Kalman filter [11]. In order to keep 
the complexity to a minimum let us constrain the Kalman 
filter to be a first order stationary HR filter with a real 
valued, scalar parameter a. 
The recursive channel estimator can be expressed as [6] 

=(1—a)y_ i +ah i ; 	0 a<  a, 	(6) 

where a m  is a positive constant, smaller than one. This 
filter is identical with the well known least mean square 
(LMS) adaptive algorithm [11]. On the other hand, the 
filter has the form of a low-pass filter. Thus, it reduces the 
effects noise on the expense of some imposed pass-band 
distortions. 
The gain factor a is to be chosen to optimise the filter 
design. Generally speaking, a large a reduces the impact 
of AWGN in the received signal, Yk  but increases the 
lag error induced by the phase lag of the filter, and vice 
versa. In [12] the gain a is approximated by means of a 
prediction error analysis and found to be 

aopt 1-3.6/ 	 (7) 

Note, the approximation is only valid for modest fading 
rates (vm < 0.04) and for reasonable high signal—to-
noise ratios (SNR) Eb > No [12]. For larger fading rates, 
aopt  in (7) becomes negative. In this case, setting acpt  = 0 
is the best possible solution. In [6],  [13] solutions how a 
can be calculated adaptively are given, without knowledge 
of the channel statistics. 

Pilot aided phase tracking 

The formulation of the decision variable in (3), cannot 
be employed in this form for antipodal modulation, such 
as BPSK, since the transmitted signal is not orthogonal. 
The resulting phase ambiguity at the receiver necessitates 
a phase reference, which is provided by multiplexing pilot 
symbols in the data stream. The multiplexed pilot symbols 
with rate R can be incorporated in (3), (5) and (6) by re-
defining the pre-multiplied received signal 

[ 
\/h + nk k mod R = 0 

Yk = 	d >tyk 	elsewhere. 	
(8) 

1 In some publications this filter is referred to as alpha tracker. 
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It has been described how an exhaustive search over all 
possible data sequences yields the desired ML estimate. 
However, the number of sequences grow exponentially 
with the sequence length. The prohibitive high complexity 
of the MLSE detection, can be reduced by employing the 
Viterbi Algorithm (VA) [2]. 

Let 	denote the survivor path of state sk,  that is the 
metric with the minimum distance entering at this state, 
which is obtained by truncating (4) at sample k 

1 
LEA 	

0, kmodR=0 
= mm {A} 	Sk = 	10, 1}, elsewhere (9) 

where the states Sk = 0 and Sk = 1 are equivalent to a 
transmitted 1 and —1, respectively. The subset A denotes 
the number of hypotheses entering state sk,  up to sample 
k. We have to distinguish between two cases, whether a 
data or a known symbol is being detected. A transmitted 
data bit results in as many survivors as states, i.e. for 
BPSK it is 2. If a pilot symbol was transmitted there is 
only one survivor, yielding a unique sequence. After a 
delay of R symbols only one survivor exists, giving the 
final data decision 4-R-  

To illustrate the idea of PSP it is appropriate to regard 
d as states in a trellis, as shown in Fig. 1. To compute 
the survivors to sample k + 1, we extend the metric from 
state sk to state 8k+1 and combine (3) with (9). From the 
two branches entering at state 8k+1,  the one with the larger 
metric is discarded, leaving one survivor per state 

I l) 	 2 	(10) A l =A+fl 1fllyk+t —  k+il 

IV. RESULTS 

Simulation work is based on a complex baseband flat 
fading channel. Such an environment is commonly de-
scribed by a Rayleigh fading channel. To generate hk, 

the complex filter response of a 4 1h  order noise shaping 
hR filter is matched to the Doppler power spectra of (1), 
as described in [14]. The pilot multiplexing rate is set to 
R= 10, throughout this simulations. For FIR filtering, the 
number of coefficients is set to M= 8. 

The bit error rate (BER) was obtained by Monte Carlo 
simulations. The error probability, for the idealised case 

Fig. 2. BER vs SNR for various Doppler frequencies 

if the CIR is known a priori, is used for comparison pur-
poses, and is labelled "ideal" in the diagrams. That is for 
a frequency-flat fading channel [15, chapter 14] 

(11) , = 
I  [ 1  — V, :,:+:,::y I - 

A. PSP using FIR channel estimation 

The performance of PSP with FIR channel estimation 
(FIR—PSP) is considered first. In Figure 2, the BER is 
plotted against the SNR, -y = E5/No, for various Dop-
pler frequencies ii. It can be observed, that the slow 
(L'majc < 0.02) and fast fading case has to be considered 
separately. For fast fading the system performance is seen 
to be better than for slow fading conditions. This is a 
rather unexpected result, as normally fast fading condi-
tions are more complicated to deal with. It is seen that 
the trade-off, from which the FIR—PSP performance be-
comes poor is also dependent on the SNR; the perform-
ance is able to recover when Vm and y are above a certain 
threshold. This effect is due to stability problems of the 
receiver and is discussed in more detail in the following 
graphs. On the other hand, for Doppler frequencies larger 
than i/max 0.02 the receiver is robust. 

The stability problems of FIR—PSP for low SNR and 
low Doppler are addressed in Figure 3. It shows the phase 
(Figure 3.a) and magnitude (Figure 3.b) of the estimated 
CIR, h, of FIR—PSP in the time domain, compared to the 
CIR with and without AWGN. It is seen that the receiver 
can be looked in a false state, that is the channel estimator 
phase is flipped, shifted ir relative to the Cifi phase, i.e. 
arg(h) = arg(hk d) + , where arg(d) = ±ir, and 

denotes the prediction error phase. This can be seen in 
the graph between samples k [80, 170]. That results in 
an error rate of virtually 100%. The receiver is entering 
the false state after a deep fade and may stay looked until 
the following deep fade, as it is shown in the graph. Dur-
ing a deep fade rapid phase changes and an up to 20dB 
smaller signal to noise ratio may cause the channel estim-
ator to loose track of the received signal phase. Then the 
prediction error due to noise becomes large compared to 
the Cm, hk, resulting in a poor channel estimates. Sub- 
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Fig. 3. Phase (a.) and magnitude (b.) of FIR—PSP vs time k, compared 
to the CIR with and without AWGN. v,, = 0.005; -y = 10 dB. 

sequently, in a good reception area, the phase estimate of 
the CuR is staying locked in the false state; despite the fact, 
that the estimated magnitude (Figure 3.b) diverges from 
the actual CIR, particularly if a pilot symbol is detected. 
The pilot symbols are not capable of providing a sufficient 
phase reference to the receiver. The decision feedback of 
the data symbols in estimating h corrupts the pilot sym-
bol phase tracking. This can cause the receiver to become 
unstable. 

These problems occur since the VA is only a sub-
optimum decoding algorithm for the described receiver. 
Note, the VA is only optimal as a decoding algorithm for 
a 1st  order Markov process. The estimated CIR in (5) 
however, is dependent on M samples, thus leading to 
a Mth order Markov process. Thus, crucial information 
may be discarded by applying the VA. For slow fading, 
adjacent samples are more correlated, which is manifested 
in the filter weights {w,,,}. Therefore past samples have 
more impact in calculating (5), and the sub-optimality of 
the receiver becomes more significant. As a result, the ra-
tio between received signal powers of pilot and data sym-
bols decreases. The phase tracking becomes less reliable 
and decision feedback effects may cause the receiver to 
lose track of the CIR phase. 

The reason why this occurs more likely in slow fading 
and low SNR conditions is further analysed in Figure 4. 
Close studies show, that the filter weights 1w } are re-
sponsible for the observed stability problems. The filter 
weights are a function of the fading statistics and the SNR, 

with the parameters Umax and y, determined by the MMSE 
criterion [11]. Part (a.) shows {wm} matched to different 
Doppler frequencies umax. The lower Umax becomes, the 
less is the gradient on the graph Figure 4.a. Note, the 
gradient, /Wm = WmWm+1, becomes smaller for slow 
fading and low SNR, since adjacent samples are more 
correlated. Suppose, a pilot is being detected; the smal- 

Fig. 4. The filter weights of the FIR estimation filter for various nor-
malised Doppler v, (a.) and SNR, -y (b.). In (a.) the SNR is set 
to y = 10 dB; while in (b.) the normalised Doppler frequency is 

= 0.005. M=8. 
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Fig. 5. BER vs normalised Doppler frequency Umax, for filters w 
matched tovw and -y.y = 10dB. 

ler the gradient .wm  gets, the less impact does the pilot 
symbol have on the channel estimation process, relative to 
the data symbols. Thus, the phase reference provided by 
the pilot may be insufficient to trace the random phase of 
the CIR, arg(hk). So, the estimated CW phase, arg(h), 
may ifip and stay locked at a false state, like depicted in 
Figure 3, leading to a high degradation in system perform-
ance. Higher Doppler frequencies or SNR values, on the 
other hand, as shown in Figure 4.b, increase the gradient 
LWm and hence the receiver becomes more robust. 

To prove this claim, let a channel estimation filter 
matched to the parameters and i.'50 , operate in a scen-
ario with the actual channel parameters and Umax, illus-
trated in Figure 5. It is seen that a filter w matched to low 
Doppler, i.'50 = 0.005, has very poor performance for all 
Doppler frequencies, while for filters with u > 0.02, the 
filter shows no stability problems as long as 1max < 
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Fig. 6. BER vs SNR for various Doppler frequencies v 	for IIR-PSP. 

Fig. 7. BER vs normalised Doppler frequency l'mea for FIR-PSP and 
IIR-PSP. 

PSP using IN channel estimation 

Different results are obtained when an 1W filter is used 
for channel estimation, shown in Figure 6. It can be ob-
served from Figure 6 that the ER—PSP performance is ex-
cellent for slow fading, under the constraint that am 

0.5, in (6). Simulation results for a,,ax 	0.5 suggest, that 
the IIR—PSP suffers from similar stability problems as the 
FIR—PSP discussed before. In the following crm  is set 
to 0.5. On the other hand, IIR—PSP degrades significantly 
for Doppler frequencies t/max > 0.04. The observed irre-
ducible bit error rate (IBER) is due to the induced phase 
lag of the 1W filter, being essentially a low-pass filter. The 
IIR—PSP is therefore not applicable for fast fading. 

Hybrid filtering PSP 

It has been shown that the FIR—PSP performs superior 
to the HR—PSP for fast fading, while the opposite is true 
for slow fading. Hence in order to design a receiver which 
can operate in arbitrary fading conditions a hybrid solu-
tion becomes attractive. This is shown in Figure 7. It is 
seen that there is an great overlap between FIR—PSP and 
IIR—PSP where both estimation filters have virtually the 
same performance. So, provided that there is a rough es-
timate of the maximum Doppler spread available, the 
hybrid receiver switches on changing fading rates between 
the FIR and 1W estimation filter. 

V. CONCLUSIONS 

A hybrid realisation of per-survivor processing (PSP) 
was studied, which yields very good performance for a 
large range of Doppler frequencies. The performance of 
PSP employing a FIR channel estimation filter is excellent 
for fast fading channels, while it is not robust for slow 
fading. The stability problems of FIR—PSP are a rather 
unexpected result. On the other hand hR filter channel 
estimation works very well for slow fading, but it is not 
suitable for fast fading. Simulation results also showed a 
large overlap, where the FIR and IIR—PSP have the same 
performance. The proposed hybrid PSP switches from 1W 
to FIR filtering dependent on the Doppler frequency and 
the SNR, requiring only rough estimates of the channel 
statistics. 
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