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Efficient Maximum-Likelihood Based Clock and
Phase Estimators for OQPSK Signals

Antonio A. D’Amico

Abstract—In this paper we propose an algorithm for joint
carrier phase and timing estimation with OQPSK modulations.
The derivation is based on the maximum-likelihood criterion,
and exploits a very efficient algorithm for the detection of
differentially encoded M -PSK symbols already described in
literature. Though we are mainly interested in measuring the
phase and clock parameters, estimates of the transmitted symbols
are also obtained as by-products. The resulting scheme has a
feedforward structure and provides phase and timing information
in a fixed time, differently from closed-loop architectures. It
can be implemented in digital form and is particularly suitable
for burst mode transmissions. Its performance is investigated
by simulation and the results are compared with Cramér-Rao
bounds. It turns out that the estimation accuracy is very close to
the theoretical limits, even with short observation intervals and
small values of the excess bandwidth. In such conditions, the
proposed estimators largely outperform other schemes already
known in literature. Their superiority becomes less significant as
the signal bandwidth increases.

I. INTRODUCTION

Offset quadriphase modulation (OQPSK) is similar to con-
ventional QPSK, except that the information stream on the sine
carrier is delayed T/2 seconds from that on the cosine carrier,
with T being the symbol period. As a result, bandlimited
OQPSK signals present a maximum envelope variation of only
3 dB (70%), as opposed to 100% with QPSK. This is a very ap-
pealing feature, especially in those applications where power-
efficient amplifiers must be used. Indeed, with filtered QPSK
the amplifier nonlinearity causes a significant regeneration of
the signal spectrum due to the envelope variations, whereas
fairly limited sidelobe regrowth is observed with OQPSK [1]–
[3].

Differently from non-offset modulations, for which various
timing estimation algorithms with very good performance are
available [4]–[9], a few estimators have been proposed in
literature for OQPSK signals [10]–[13]. Essentially, the main
difficulties in synchronizing offset signals derive from the
clock recovery sensitivity to the carrier phase [10], and indeed
the best schemes known in literature for OQPSK are the joint
phase and timing estimators proposed in [12], [13]. They
both have a feedforward structure, and can be implemented
in digital form with a sampling frequency of 2/T for the
system in [12] and 4/T for the other. Though they have good
performance (in particular the clock estimator) with signals
whose excess bandwidth is greater than 0.5, their accuracy
considerably worsens as the rolloff decreases, especially with
short observation intervals. Good performance with small
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excess bandwidths can be obtained, in principle, with closed-
loop decision-directed architectures such as those described in
[14, Section 8.6]. However, in this case long acquisitions are
expected, due to the strong interactions between phase and
timing loops, which may not be compatible with short data
packets in burst mode transmissions.

In this paper we propose an algorithm for joint phase and
timing estimation (and data detection) with OQPSK signals. It
is derived by maximizing the likelihood function (LF) with re-
spect to all the unknown parameters contained in the received
signal, including the information bits transmitted on the in-
phase and quadrature channels. Despite the apparently expo-
nential complexity of the problem, it can be solved efficiently
using the algorithm proposed by Mackenthun in [15] for
the detection of differentially encoded M -PSK constellations.
The resulting scheme can be easily implemented in digital
form, and has a feedforward structure in which the timing
information is first extracted from asynchronous samples of
the received signal, in a phase-less fashion. Data detection and
phase estimation are then performed on synchronized samples
that can be obtained from the same asynchronous samples
previously used for clock recovery.

Compared to other algorithms already known in literature
(e.g. [10]–[13]), the proposed estimator has remarkably better
performance especially with short observation intervals and
small excess bandwidths. Hence, it is particularly appealing
for burst mode transmissions where rapid acquisitions are re-
quired. Though the present schemes are proposed for OQPSK
signals, they can be easily extended to M -PSK modulations.

The main result of this work can then be summarized
as follows: we show that efficient synchronization (i.e. with
estimation performance very close to the Cramér-Rao bounds)
of OQPSK signals is possible even with short observation
intervals and small excess bandwidths, with an acceptable
complexity.

The paper is organized as follows. In the next section we
introduce the signal model, and we derive the concentrated
likelihood functions (CLFs) for carrier phase estimation, data
detection and timing recovery. In Section III an approximate
procedure for maximizing the timing CLF is proposed and
discussed. The location of the maximum, which is expressed
in closed-form as a function of asynchronous signal samples,
is used as an estimator for the unknown timing parameter.
Simulation results and comparisons with existing algorithms
are reported in Section IV. Conclusions are finally drawn in
Section V.
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II. SIGNAL MODEL

An OQPSK signal can be written in complex form as

s(t) =
∑
i

aig(t− iT ) + j
∑
i

big(t− T/2− iT ) (1)

where g(t) is a real-valued signaling pulse with energy Eg , T
is the signaling interval, and a = {ai} and b = {bi} represent
the data symbols on the in-phase and quadrature channels.
They are independent, identically distributed and take on the
values ±1 with equal probability. Without loss of generality,
we assume Eg = 1.

After demodulation, the received waveform r(t) consists
of the signal in (1) plus noise w(t). The noise component
is modeled as a complex-valued white Gaussian process with
independent real and imaginary parts, each with two sided
power spectral density N0. We also assume a flat-fading
channel model, and hence the received waveform can formally
be written as

r(t) = hejθs(t− τ) + w(t) (2)

where the real parameters h > 0, θ, and τ are the attenuation,
phase shift, and time delay, respectively, due to the propagation
channel. It is assumed that the channel coherence-time is much
longer than the observation interval, so that h, θ, and τ can
be treated as constants.

Parameters h, θ, τ , a, and b are all unknown at the receiver,
and must be estimated. Actually, in this study we are mainly
interested in the estimation of θ and τ , even though estimates
of h, a, and b will be obtained as by-products. This problem
is addressed by resorting to the maximum likelihood (ML)
criterion. For this purpose, we assume that the received signal
r(t) is observed in the interval [0, T0), where T0 = L0T with
L0 ∈ N. Then, the ML function for the estimation of the
unknown parameters takes the form [16]

Λ(ã, b̃, h̃, θ̃, τ̃) = 2h̃Re

e−jθ̃
T0∫
0

r(t)s̃∗(t− τ̃)dt


− h̃2

T0∫
0

|s̃(t− τ̃)|2 dt

(3)

where

s̃(t) =
∑
i

ãig(t− iT ) + j
∑
i

b̃ig(t− T/2− iT ), (4)

z∗ is the conjugate of z, and notations of the type p̃ are used to
indicate a possible value of parameter p. The ML estimates of
a, b, h, θ and τ , are found by maximimizing Λ(ã, b̃, h̃, θ̃, τ̃)
with respect to ã, b̃, h̃, θ̃ and τ̃ , i.e.

(â, b̂, ĥ, θ̂, τ̂) = arg max
ã,b̃,h̃,θ̃,τ̃

Λ(ã, b̃, h̃, θ̃, τ̃) (5)

To proceed further we fix ã, b̃, h̃, τ̃ and we search for the
maximum of (3) with respect to θ̃. To this end, we rewrite (3)

as follows

Λ(ã, b̃, h̃, θ̃, τ̃) = 2h̃Re

e−j[θ̃−ϑ(ã,b̃,τ̃)]
∣∣∣∣∣∣
T0∫
0

r(t)s̃∗(t− τ̃)dt

∣∣∣∣∣∣


− h̃2
T0∫
0

|s̃(t− τ̃)|2 dt

(6)

where

ϑ(ã, b̃, τ̃) = arg


T0∫
0

r(t)s̃∗(t− τ̃)dt

 (7)

and arg{z} is the argument of the complex number z. The
maximization of (6) with respect to θ̃ is straightforward

now. Indeed, since neither ϑ(ã, b̃, τ̃) nor

∣∣∣∣∣T0∫
0

r(t)s̃∗(t− τ̃)dt

∣∣∣∣∣
depends on θ̃ then the maximum of (6) is achieved for

θ̃ = ϑ(ã, b̃, τ̃) (8)

Using (8) in (6) gives the concentrated likelihood function
for the estimation of a, b, h and τ , i.e.

Λ(ã, b̃, h̃, τ̃) = 2h̃

∣∣∣∣∣∣
T0∫
0

r(t)s̃∗(t− τ̃)dt

∣∣∣∣∣∣− h̃2
T0∫
0

|s̃(t− τ̃)|2 dt

(9)
where, with a slight abuse of notation, we have denoted the
CLF by the same symbol Λ used in (6). Setting to zero the
first partial derivative of Λ(ã, b̃, h̃, τ̃) with respect to h̃, and
solving for h̃ yields

h̃ =

∣∣∣∣∣T0∫
0

r(t)s̃∗(t− τ̃)dt

∣∣∣∣∣
T0∫
0

|s̃(t− τ̃)|2 dt
(10)

which, used in (9), produces the concentrated likelihood func-
tion for the estimation of a, b, and τ , in the form

Λ(ã, b̃, τ̃) =

∣∣∣∣∣T0∫
0

r(t)s̃∗(t− τ̃)dt

∣∣∣∣∣
2

T0∫
0

|s̃(t− τ̃)|2 dt
(11)

The maximization of Λ(ã, b̃, τ̃) with respect to ã, b̃, and τ̃ ,
proves to be intractable, and we are forced to make some
approximations by dropping the integral at the denomina-
tor of (11). In principle this would be allowed only if it
were independent of all the unknown parameters. Actually,
it depends on ã, b̃, and τ̃ , but the dependence becomes
increasingly weaker with longer observation intervals, as is
shown in the Appendix. This means that the approximation is
asymptotically correct in the limit as T0 goes to infinity. The
effects of this approximation will be discussed in more detail
later, but we expect that doing so will result in the generation
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of data-dependent noise [17]. Dropping the above integral, the
likelihood function then reads

Λ(ã, b̃, τ̃) ≈

∣∣∣∣∣∣
T0∫
0

r(t)s̃∗(t− τ̃)dt

∣∣∣∣∣∣
2

(12)

Substituting (4) into (12) yields

Λ(ã, b̃, τ̃) =

∣∣∣∣∣∑
i

ãiXi(τ̃)− j
∑
i

b̃iXi+1/2(τ̃)

∣∣∣∣∣
2

(13)

where

Xi(τ̃) =

T0∫
0

r(t)g(t− τ̃ − iT )dt (14)

and

Xi+1/2(τ̃) =

T0∫
0

r(t)g(t− τ̃ − T/2− iT )dt (15)

From the above equations it is evident that Xi(τ̃) and
Xi+1/2(τ̃) can be viewed as the matched filter responses, at
the instants τ̃+iT and τ̃+T/2+iT , respectively, to the signal
received in the interval [0, T0).

A preliminary observation is now in order before approach-
ing the maximization of Λ(ã, b̃, τ̃). As it is seen from (13),
neither a lower nor an upper limit has been specified for the
summation index i because, in principle, it ranges from −∞
to +∞. Actually, if g(t) is assumed to have a finite duration
DgT , with Dg ∈ N, it can be easily shown that the summations
in (13) can be limited to only L0 +Dg terms. In addition, if
we take g(t) causal, (13) becomes

Λ(ã, b̃, τ̃) =

∣∣∣∣∣∣
L0−1∑
i=−Dg

ãiXi(τ̃)− j
L0−1∑
i=−Dg

b̃iXi+1/2(τ̃)

∣∣∣∣∣∣
2

(16)

Henceforth, without loss of generality we focus on (16). To
proceed further, we assume that τ̃ is fixed, and we consider
the maximization of Λ(ã, b̃, τ̃) with respect to ã, b̃. Despite
its apparent exponential complexity, this task can be efficiently
performed by resorting to the Mackenthun’s algorithm [15] (a
similar algorithm can also be found in [18]).

Mackenthun’s algorithm solves the following problem: Find
the sequence of M -PSK symbols ck = ejφk , with φk ∈
{0, 2π/M, . . . , 2π(M − 1)/M}, that maximizes the function

η(c0, . . . , cP−1) =

∣∣∣∣∣
P−1∑
k=0

c∗kyk

∣∣∣∣∣
2

(17)

where the yk are given complex numbers. Setting

c2i = ã−Dg+i

c2i+1 = b̃−Dg+i
(18)

and
y2i = X−Dg+i(τ̃)

y2i+1 = −jX−Dg+i+1/2(τ̃)
(19)

for i = 0, 1, . . . , L0 + Dg − 1, it is evident that (16) has the
same form as (17) with M = 2 and P = 2(L0 +Dg).

Mackenthun’s algorithm provides two binary antipodal se-
quences, say {âi(τ̃)}L0−1

i=−Dg
and {b̂i(τ̃)}L0−1

i=−Dg
, that maximize

Λ(ã, b̃, τ̃) for a given value of τ̃ . The concentrated likelihood
function for the estimation of τ is finally obtained by replacing
in (16) ãi and b̃i with âi(τ̃) and b̂i(τ̃), respectively. This yields

Λ(τ̃) =

∣∣∣∣∣∣
L0−1∑
i=−Dg

âi(τ̃)Xi(τ̃)− j
L0−1∑
i=−Dg

b̂i(τ̃)Xi+1/2(τ̃)

∣∣∣∣∣∣
2

(20)
The maximization of (20) with respect to τ̃ provides the

ML estimation of τ as

τ̂ = arg max
τ̃

Λ(τ̃). (21)

No closed-form expression exists for τ̂ . Accordingly, its
value must be searched for by resorting to numerical algo-
rithms. This issue will be addressed in the next section.

III. APPROXIMATE CLOCK ESTIMATION.

In this section we deal with the numerical evaluation of the
location of the maximum of Λ(τ̃). Specifically, this is done
by first computing Λ(τ̃) over a discrete set of points T . As a
result, we obtain a set of Λ-values L = {Λ(τ̃); τ̃ ∈ T }. Then,
an estimate of τ̂ is determined in closed-form as a function of
the elements of L.
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Fig. 1: Typical shapes of Λ(τ̃).

To proceed further, we observe that Λ(τ̃) is an (approxi-
mately) T/2-periodic function. Indeed, setting âi(τ̃ +T/2) =
−b̂i(τ̃) and b̂i(τ̃ + T/2) = −âi+1(τ̃) one easily gets

Λ(τ̃+T/2) =
∣∣jY (τ̃)− â−Dg

(τ̃)X−Dg
(τ̃)
∣∣2 ≈ |Y (τ̃)|2 = Λ(τ̃)

where

Y (τ̃) =

L0−1∑
i=−Dg

âi(τ̃)Xi(τ̃)− j
L0−1∑
i=−Dg

b̂i(τ̃)Xi+1/2(τ̃)
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The difference between Λ(τ̃+T/2) and Λ(τ̃) becomes smaller
and smaller as L0 increases, and it is negligible at all practical
values of the observation interval. The periodicity of Λ(τ̃) is
also evident from Fig. 1, which shows typical shapes of Λ(τ̃),
normalized to the maximum value, obtained with a rolloff
factor α = 0.1, an observation length of L0 = 100 symbol
intervals, and a signal-to-noise ratio Es/N0 = 30 dB, where
Es = h2. The clock offset τ assumes two different values,
namely τ = 0 (solid line) and τ = 0.2 T (dashed line).
As expected, the maximum of Λ(τ̃) is attained for τ̃ = τ .
The CLF Λ(τ̃) can then be approximated by its Fourier series
expansion (FSE) given by

Λ(τ̃) ≈
∑
k

Λke
j4πkτ̃/T (22)

with

Λk ,
2

T

T/2∫
0

Λ(τ̃)e−j4πkτ̃/T dτ̃ . (23)

Fig. 2 shows the modulus of Λk, for k = 1, 2, . . . , 16. Two
different values of the rolloff factor have been considered,
namely α = 0.1 and α = 1.0. It is seen that the amplitude
of Λk increases with the rolloff, and in both cases the first
harmonic is by far the most significant (such a conclusion
holds in general, for values of α different than those of Fig. 2).
This suggests to approximate Λ(τ̃) by only considering the
first harmonic, i.e.,

Λ(τ̃) ≈ Λ1e
j4πτ̃/T + Λ−1e

−j4πτ̃/T (24)

The validity of the above approximation will be assessed later
by computer simulations. Since Λ1 = Λ∗−1, the maximization
of (24) with respect to τ̃ yields

τ̂ = −arg{Λ1}
4π

T + `
T

2
(25)

for an arbitrary integer `. Equation (25) shows that the timing
estimates are ambiguous by multiples of T/2. This is expected
in view of the T/2 delay between the I and Q signals.
Since in the absence of additional information the receiver
cannot resolve this ambiguity, without loss of generality we
henceforth assume τ̂ ∈ [0, T/2).

Now, it remains to solve the problem of determining Λ1. As
a first step in this direction, we assume that the summation in
(22) can be limited to a finite number of terms as follows

Λ(τ̃) =

Q/2−1∑
k=−Q/2+1

Λke
j4πkτ̃/T (26)

where Q − 1 is the number of significant components in the
FSE of Λ(τ̃) (it is assumed that Q is an even integer). Now,
consider the Q samples of Λ(τ̃) taken at a rate Q/(T/2) and
given by

Λ

(
m
T

2Q

)
=

Q/2−1∑
k=−Q/2+1

Λke
j2πkm/Q (27)

for m = 0, 1, . . . , Q− 1. From (27) one easily gets

Λ1 =
1

Q

Q−1∑
m=0

Λ

(
m
T

2Q

)
e−j2πm/Q (28)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

500

1,000

1,500

2,000

2,500

k

|Λ
k
|

α = 0.1

α = 1.0

Fig. 2: Modulus of Λk for k = 1, . . . , 16. The rolloff factor is α =
0.1 or α = 1.0.

which provides Λ1 as a function of the elements of the set
L = {Λ(τ̃); τ̃ ∈ T } with T = {mT/2Q;m = 0, . . . , Q− 1}.

After that τ̂ has been computed using (25), the value of θ is
estimated as follows. We first apply Mackenthun’s algorithm
in order to determine the binary sequences â = {âi}L0−1

i=−Dg

and b̂ = {b̂i}L0−1
i=−Dg

, that maximize (16) with τ̃ = τ̂ . Then,
an estimate of θ is found through (8) by evaluating ϑ(ã, b̃, τ̃)
at ã = â, b̃ = b̂, and τ̃ = τ̂ , i.e.,

θ̂ = ϑ(â, b̂, τ̂). (29)

A final remark is now in order. It can be shown that, for
a fixed value of τ̂ , the phase estimates provided by (29) are
ambiguous by multiples of π. This is evident by observing that
both the pairs (â, b̂) and (−â,−b̂) maximize Λ(ã, b̃, τ̂), and
hence θ̂ = ϑ(â, b̂, τ̂) and θ̂ ± π = ϑ(−â,−b̂, τ̂) are both
valid phase estimates. The differential enconding/decoding
scheme discussed in [14, Sect. 8.6] can be used to resolve
such ambiguities.

A. Implementation issues.

i) The value of Q comes from a trade-off between perfor-
mance and complexity. Indeed, on the one hand we expect
that increasing Q may result in a better approximation of
Λ(τ̃) in (26), and hence in better performance. On the
other hand, the greater Q the higher the implementation
complexity. Fig. 3 shows the timing mean-squared esti-
mation error (MSEE) as a function of Q, for two different
values of the rolloff parameter, namely α = 0.1 and
α = 1.0. The observation length is L0 = 100, and the
SNR is either Es/N0 = 10 dB or Es/N0 = 30 dB.
It is seen that, for both values of α and Es/N0, MSEE
reduces as Q increases, as expected. Notice, however, that
only marginal improvements are observed when Q grows
above 8. Accordingly, in the following it is assumed
Q = 8 for the sake of complexity.
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Fig. 3: Normalized timing MSEE as a function of Q, for two different
values of Es/N0 and two different values of α. The observation
length is L0 = 100.

ii) Inspection of (20) reveals that the computation of
Λ(mT/2Q), for m = 0, . . . , Q−1, requires Xi(mT/2Q)
and Xi+1/2(mT/2Q). In principle, they can be obtained
by sampling the output of the matched filter at a rate
2Q/T , as indicated by (14) and (15). The main drawback
of this solution may be the power consumption of the
analog-to-digital converter (ADC) due to its quite high
sampling rate [19]. Various alternative schemes, with
a sampling rate lower than 2Q/T , can be devised for
generating Xi(mT/2Q) and Xi+1/2(mT/2Q). A pos-
sible architecture, that has been used for assessing the
performance of the proposed algorithm, is depicted in
Fig. 4. Here, the received waveform is first passed through
an anti-aliasing filter (AAF), and then it is sampled at
a rate 1/Ts = N/T , with N = 2Q/M (both N and
M are assumed integers). The zero-padding block inserts
M−1 zeros between two consecutive samples, and hence
the output rate is exactly 2Q/T . The resulting sequence
rZP [k] is finally passed through a digital matched-filter
g[−k] , g(−kT/2Q) which produces x[k]. It can easily
be shown that

x[k] =

T0∫
0

r(t)g(t− kT/2Q)dt (30)

so that

Xi(mT/2Q) = x[m+ 2Qi] (31)

and

Xi+1/2(mT/2Q) = x[m+Q+ 2Qi] (32)

iii) The estimation of θ through (29) requires the computation
of Xi(τ̂) and Xi+1/2(τ̂), which can be obtained from the
sequence r[n] at the output of the sampling device in the

Zero-Padding

M

rZP [k]

2Q/T

g[−k]
x[k]

AAF
r(t) r[n]

N/T

Fig. 4: Generation of Xi(τ̃) and Xi+1/2(τ̃).

following way:

Xi(τ̂) =

NL0−1∑
n=0

r[n]gτ̂ [n− iN ] (33)

and

Xi+1/2(τ̂) =

NL0−1∑
n=0

r[n]gτ̂ [n−N/2− iN ] (34)

where gτ̂ [n] , g(nT/N − τ̂). Clearly, this also requires
storing the sequence r[n].
A different estimate of θ can be obtained by approxi-
mating ϑ(â, b̂, τ̂) in (29) as follows. During the timing
estimation step, the quantities Λ (mT/2Q) = |Ym|2 with

Ym =

L0−1∑
i=−Dg

âi(mT/2Q)Xi(mT/2Q)

−j
L0−1∑
i=−Dg

b̂i(mT/2Q)Xi+1/2(mT/2Q) (35)

are computed for m = 0, 1, . . . , Q − 1. This means
that, at the end of clock estimation, Ym is available
along with Λ (mT/2Q). Accordingly, ϑ(â, b̂, τ̂) can be
approximated by arg{Ym̂}, where m̂ is the value of the
index m corresponding to the minimum distance between
mT/2Q and τ̂ (with the distance being measured modulo
T/2). The resulting phase estimator then reads

θ̂a = arg{Ym̂} (36)

Clearly, the estimation of the phase by (36) requires
neither additional computational costs (apart the compu-
tation of the argument of a complex number) nor storing
the sequence r[n].

B. Computational complexity.

We now evaluate the computational complexity of the
proposed estimators.

1) Timing Estimation: We start with the computation of
Λ(mT/2Q) through (20). This requires:

a) Computing Xi(mT/2Q) and Xi+1/2(mT/2Q), for i =
−Dg, . . . , L0−1. Since 2(DgN +1) real multiplications
and 2DgN real additions are necessary for the evalua-
tion of Xi(mT/2Q) as well as of Xi+1/2(mT/2Q), a
total of 4(DgN + 1)(L0 + Dg) real multiplications and
4DgN(L0 +Dg) real additions are needed for this step;

b) Applying Mackenthun’s algorithm for the computation of
{âi(mT/2Q), b̂i(mT/2Q)}L0−1

i=−Dg
. Based on the results

in [15], this requires:
• Sorting 2(L0 + Dg) complex numbers according to

their phases;
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• 12(L0 +Dg)− 6 real additions;
• Computing the squared magnitude of 2(L0 + Dg)

complex numbers. This amounts to 4(L0 + Dg) real
multiplications and 2(L0 +Dg) real additions.

Once Λ(mT/2Q) has been computed for m = 0, 1, . . . , Q−
1, Λ1 is evaluated through (28). This step requires no more
than 4Q real multiplications and 2(2Q− 1) real additions.

Finally, estimating τ by (25) requires the computation of
the argument of Λ1, and a real multiplication.

2) Phase Estimation through (29): From the results of the
previous section, it can easily be shown that the computation
of (29) requires:
• 2(2DgN + 7)(L0 +Dg)− 6 real additions;
• 4(DgN + 2)(L0 +Dg) real multiplications;
• Sorting 2(L0 +Dg) complex numbers according to their

phases;
• Computing the argument of a complex number.
3) Phase Estimation through (36): In this case only the

computation of the argument of a complex number is required.
We now evaluate the computational complexity of the

feedforward joint clock and phase estimator proposed in [12],
henceforth referred to as DDM-EST. Assuming an oversam-
pling factor of N = 2 (as suggested in [12]), it is easily found
that DDM-EST requires: i) 8NL0(ND+1)−2 real additions;
ii) 4NL0(2ND + 3) + 2 real multiplications; iii) computing
the argument of 2 complex numbers. Parameter D is half the
duration (in symbol intervals) of the pulse q(t) whose Fourier
transform is given in [12, Eq. (16)].

The total number of real additions and multiplications for
the joint timing and phase estimators proposed in this paper
are summarized in the first two rows of Table I. In the
third row, the same quantities are shown for DDM-EST. As
an example, Table II reports the total number of operations
for each estimator assuming N = 2, Dg = 2D = 16,
Q = 8, and L0 = 50. It is worth noticing that the results
in Table II do not take into account the complexity due to
sorting in Mackenthun’s algorithm, which requires a number
of operations on the order of 2Q(L0+Dg)[1+log2(L0+Dg)].

IV. SIMULATION RESULTS

The performance of the synchronization algorithms de-
scribed in the previous sections has been assessed by simula-
tion and compared with that of other clock/phase estimators
proposed in literature. We have used the mean squared error
of the estimates (MSEE) as performance metric. An oversam-
pling factor N = 4 has been adopted, whereas g(t) has a root-
raised cosine Fourier transform with rolloff α and duration
Dg = 16 symbol intervals.

Fig. 5 shows the mean squared error of the clock estimates
normalized to the symbol period T , as a function of Es/N0.
The rolloff parameter is α = 0.1, and the observation length
(in symbol intervals) is either L0 = 50 or L0 = 300. Circular
marks indicate simulation results whereas the thin solid lines
are drawn to ease the reading. The square marks in Fig. 5 are
for the MSEE obtained by maximizing (20) instead of (24). It
is seen that approximating Λ(τ̃) through (24) does not produce
any significant performance loss, for neither L0 = 50 nor

L0 = 300. As we shall see soon, the same conclusions hold for
α = 1.0 as well, meaning that (24) is a sensible approximation
of Λ(τ̃) as far as the estimation of τ is concerned. The straight
thick solid lines represent the modified Cramér-Rao bounds
(MCRBs) discussed in [20]. They are given by

1

T 2
MCRBτ =

1

8π2ξL0

1

Es/N0
(37)

with
ξ =

1

12
+ α2

(
1

4
− 2

π2

)
. (38)

Notice that ξ is an increasing function of α, and hence
MCRBτ decreases as the rolloff increases. This means that the
best estimation performance is to be expected for the highest
values of α. As can be seen from Fig. 5, the performance
of the timing estimator is very close to the theoretical limits
provided by (37) at SNR values in the range (7.5, 20) dB,
for both L0 = 50 and L0 = 300. This means that a good
estimation accuracy can be achieved even with quite short
observation intervals and small values of α. At low and high
SNRs (Es/N0 < 5 dB and Es/N0 > 25 dB, respectively) the
MSEE curves depart from the MCRB. In the former case, the
loss with respect to the limit (37) can be explained with the fact
that, as it is well known, MCRB is quite loose at low signal-
to-noise ratios or when the number of observed data is small.
In the latter case, it is probably due to approximating the true
likelihood function (11) by (12). This can be proved indirectly,
by observing that, in the absence of noise, the true set of
parameters h, θ, τ , a, and b, maximizes the likelihood function
(3). This means that, if no approximation were introduced,
the MSEEs would tend to zero as the signal-to-noise ratio
increases. Since it has already been shown that approximating
(20) with (24) has no impact on the MSEE, it can be concluded
that the floor in the MSEE curves, which is visible at high
SNRs, is due to the use of (12) in place of of the true likelihood
function (11). Evidence of the fact that dropping the integral at
the denominator of (11) results in data-dependent noise (also
called pattern-dependent jitter or self-noise [21]) can be found,
for example, in [17] and [14, Section 7.4]. Notice that the
approximation of the true likelihood function (11) by (12) is
more and more accurate as the observation length L0 increases,
as is shown in the Appendix. Indeed, the gap between the
MSEE curves and the relevant MCRBs reduces in passing
from L0 = 50 to L0 = 300. Finally, the straight dotted line in
Fig. 5 shows the Cramér-Rao bounds for clock estimation as
obtained by assuming a known training sequence and QPSK
symbols. In particular, an “alternating” pilot pattern has been
chosen, i.e., ai = (−1)i and bi = (−1)i. In [22] it has been
shown that such a sequence is optimal for the joint estimation
of τ and θ1. With the above choice, it is found [23]

1

T 2
CRBτ =

1

2π2L0

1

Es/N0
(39)

CRBτ allows us to measure the performance loss of the pro-
posed estimator with respect to an efficient data-aided clock
estimator. This loss depends on the rolloff factor, since CRBτ

1To the best of our knowledge, the problem of optimizing the training
symbols for OQPSK constellations has not been solved yet.
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TABLE I: Complexity of the investigated schemes.

Algorithm Real Additions Real Multiplications
(25) and (29) 2(Q+ 1)(2DgN + 7)(L0 +Dg)− 2Q− 8 4(Q+ 1)(DgN + 2)(L0 +Dg) + 4Q+ 1
(25) and (36) 2Q(2DgN + 7)(L0 +Dg)− 2Q− 2 4Q(DgN + 2)(L0 +Dg) + 4Q+ 1

DDM-EST 8NL0(ND + 1)− 2 4NL0(2ND + 3) + 2

TABLE II: Computational complexity for N = 2, Dg = 2D = 16,
Q = 8, and L0 = 50

Algorithm Real Additions Real Multiplications
(25) and (29) 84324 80817
(25) and (36) 74958 71841

DDM-EST 13598 14002

does not depend on α, differently from MCRBτ . In particular,
the ratio MCRBτ/CRBτ attains its maximum value of 3 for
α = 0; the minimum is equal to 0.75/(1 − 6/π2) < 2, and
is achieved for α = 1. Since the gap between MCRBτ and
CRBτ does not depend on L0, in Fig. 5 CRBτ has been
reported only for L0 = 300, in order not to crowd the figure.

Fig. 6 illustrates the phase MSEE as a function of Es/N0.
The simulation parameters are the same as in Fig. 5. The
performance of the proposed algorithm is compared with the
MCRB given by

MCRBθ =
1

2L0

1

Es/N0
(40)

As can be seen, the phase MSEE curves follow the same
trend as the corresponding curves in Fig. 5, and they are
very close to or coincide with the MCRB in a wide range of
SNRs. It is worth noticing that the Cramér-Rao bound for the
phase estimation corresponding to the “alternating” training
sequence considered above coincides with MCRBθ, as can be
easily shown by using the results in [23].
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Fig. 5: Normalized timing MSEE versus Es/N0 for α = 0.1 and two
different values of the observation length, L0 = 50 and L0 = 300.
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Fig. 6: Phase MSEE versus Es/N0 for α = 0.1 and two different
values of the observation length, L0 = 50 and L0 = 300.

Fig. 7 and Fig. 8 show the MSEE for clock and phase,
respectively, with α = 1.0. The observation length is either
L0 = 50 or L0 = 300. As expected, both the clock and phase
estimators have improved performance compared to the case
α = 0.1. In particular, the MSEEs coincide with the relevant
MCRBs with both L0 = 50 and L0 = 300 at almost all
the considered SNR values. Contrasting the curves of Fig. 5
and Fig. 7, it can be observed that, for a given observation
length L0, the gap between the MSEE curves and the relevant
MCRBs reduces in passing from α = 0.1 to α = 1.0. This
is due to the fact that the error in approximating (11) by (12)
decreases as the rolloff increases, as it could be inferred from
the results in the Appendix.

It is interesting to compare the performance of the present
estimators with that of other schemes already proposed in
literature. We first focus on clock estimation, and we con-
sider two synchronization schemes with a lower complexity
compared to (25). The first is the feedforward joint clock and
phase estimator DDM-EST, proposed and analyzed in [12].
The second is the closed-loop estimator suggested by Gardner
in [10] and also described in [14], where it is denoted as
I/Q-GAD. Fig. 9 shows the normalized timing MSEE with
α = 0.25. The observation length is L0 = 100 for both the
feedforward schemes considered in the figure, namely (25) and
DDM-EST. The normalized bandwidths are BτT = 5× 10−3

and BθT = 5× 10−3 for the I/Q-GAD clock and phase loops
(see [14]), respectively. They are equivalent to an observation
interval of L0 = 100 symbols, in a feedforward scheme. It is
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Fig. 7: Normalized timing MSEE versus Es/N0 for α = 1.0 and two
different values of the observation length, L0 = 50 and L0 = 300.
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Fig. 8: Phase MSEE versus Es/N0 for α = 1.0 and two different
values of the observation length, L0 = 50 and L0 = 300.

seen that estimator (25) largely outperforms both DDM-EST
and I/Q-GAD at all SNRs, and its performance is very close to
the MCRB. On the other hand, the superiority of the proposed
estimator becomes less marked as the rolloff increases. This
is evident from the results shown in Fig. 10 where the MSEE
of (25) is compared with that of DDM-EST and I/Q-GAD for
α = 0.75. The other simulation parameters are the same as in
Fig. 9.

Now, we turn our attention on phase estimation. Fig. 11
shows the MSEEs of (29), (36), and DDM-EST, with α = 0.25
and L0 = 100. In addition, the curve MA-EST illustrates
simulation results obtained with the clock-aided phase esti-
mator proposed by Moeneclaey and Ascheid in [11]. This

algorithm operates on the samples Xi(τ) and Xi+1/2(τ) at the
output of the matched filter taken at the instants iT + τ and
iT +T/2 + τ , respectively. This means that clock information
must be already available. The phase is estimated as

θ̂MA =
1

2
arg

{
L0−1∑
i=0

[
ej2 arg[Xi(τ)] − ej2 arg[Xi+1/2(τ)]

]}
(41)

It is seen that both (29) and (36) have considerably better
performance than DDM-EST and MA-EST at all SNRs. Also,
the loss of the approximate ML estimator (36) with respect to
(29) is negligible for Es/N0 < 25 dB.

Finally, Fig. 12 shows the effects of estimation errors on
the bit error rate (BER) performance. Specifically, in order to
cope with the ambiguities of the clock and phase estimates we
have considered the differential encoder illustrated in [14, Sect.
8.6]. Once τ and θ have been estimated, a coherent detection
scheme (with a two-symbols observation interval) have been
used for decoding the differentially encoded bits [24], [25].
The rolloff factor is α = 0.1, and the observation interval
for clock and phase estimation is L0 = 50. Circular marks
show the bit error rate as a function of Eb/N0 = h2/2N0,
when the clock and phase estimates are provided by (25) and
(29), respectively. Square marks are for the BER performance
obtained by using DDM-EST (but identical results have been
found with the clock and phase estimator described in [13]).
The thick curve represents the BER of an ideal system with
no estimation errors. It is given by

BERid = 2Q

(√
2Eb
N0

)[
1−Q

(√
2Eb
N0

)]
(42)

where function Q(·) is the tail probability of a standard
normal distribution. From the results in Fig. 12, it is seen that
the proposed estimator largely outperforms the conventional
synchronizers also in terms of BER (at least, for small rolloff
factors and short observation intervals). In addition, it virtually
provides the same BER performance as an ideal system with
no estimation errors.

V. CONCLUSIONS

We have proposed feedforward algorithms for phase and
timing recovery in OQPSK modulations. They have been
derived by ML arguments, and can be implemented in digital
form. The performance of the resulting schemes is very good
and close to the theoretical limits provided by the MCRB.
Accurate estimation is possible even with relatively short
observation intervals and small excess bandwidths. Compared
to other algorithms already known in literature the proposed
estimators have remarkably better performance, at the price of
a higher computational complexity. Though they have been
proposed for offset modulation formats, our schemes can
be extended to conventional PSK signals (with an arbitrary
dimension of the symbol constellation).

APPENDIX

In this appendix, we show that the denominator in (11) can
be written as the sum of a term independent of ã, b̃, and
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Fig. 9: Normalized timing MSEE versus Es/N0 with α = 0.25 and
L0 = 100.
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Fig. 10: Normalized timing MSEE versus Es/N0 with α = 0.75 and
L0 = 100.

τ̃ , and whose value increases linearly with the observation
length L0, and other terms which depend on ã, b̃, and τ̃ , but
whose values are independent of L0, and do not change with
the observation interval. This means that the contribution of
such terms becomes more and more marginal as L0 increases,
and hence

∫ T0

0
|s̃(t− τ̃)|2 dt becomes asymptotically (i.e. in

the limit as L0 goes to infinity) independent of ã, b̃, and τ̃ .
Henceforth, it is assumed that g(t) has a root-raised-cosine
Fourier transform with rolloff α.
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Fig. 11: Phase MSEE versus Es/N0 with α = 0.25 and L0 = 100.
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Fig. 12: Bit Error Rate versus Eb/N0 with α = 0.1 and L0 = 50.

We start by writing the denominator in (11) as follows:

T0∫
0

|s̃(t− τ̃)|2 dt =

0∫
−τ̃

|s̃(t)|2 dt+
T0−T∫
0

|s̃(t)|2 dt+
T0−τ̃∫
T0−T

|s̃(t)|2 dt

(43)
which shows that the left-hand side of (43) is the sum of three
terms, one of which (the central term at the right-hand side)
is independent of τ̃ , and is clearly the most significant, as we
shall soon see. We first focus on this term. Taking (4) into

account, it is found that
T0−T∫
0

|s̃(t)|2 dt can be written as

T0−T∫
0

|s̃(t)|2 dt = 2(L0−1)Eg +A(ã′, ã′′) +B(b̃′, b̃′′) (44)
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where

A(ã′, ã′′) =

−1∑
i,k=−Dg+1

i 6=k

ãiãk

T0−T∫
0

g(t− iT )g(t− kT )dt

+

L0−2∑
i,k=L0−Dg

i 6=k

ãiãk

T0−T∫
0

g(t− iT )g(t− kT )dt

(45)

B(b̃′, b̃′′) =

−1∑
i,k=−Dg

i 6=k

b̃ib̃k

T0−T∫
0

g(t− T/2− iT )g(t− T/2− kT )dt+

L0−2∑
i,k=L0−Dg−1

i 6=k

b̃ib̃k

T0−T∫
0

g(t− T/2− iT )g(t− T/2− kT )dt

(46)

ã′ = {ãi(τ̃)}−1i=−Dg
, ã′′ = {ãi(τ̃)}L0−1

i=L0−Dg
, b̃′ =

{b̃i(τ̃)}−1i=−Dg
, and b̃′′ = {b̃i(τ̃)}L0−1

i=L0−Dg−1. From (45)-(46)
it is seen that A(ã′, ã′′) and B(b̃′, b̃′′) depend only on the
first and the last Dg symbols of the trial sequences ã and
b̃, but they do not depend on the central symbols. Also,
more importantly, A(ã′, ã′′) and B(b̃′, b̃′′) do not depend
on the length L0 of the observation interval. This means that
they become increasingly less important compared to the term
2(L0 − 1)Eg as L0 grows.

Now we turn attention to the terms depending on τ̃ in (43).
Simple calculations show that the following relationships hold:

0∫
−τ̃

|s̃(t)|2 dt+

T0−τ̃∫
T0−T

|s̃(t)|2 dt =

= 2Eg + C(ã′, ã′′, τ̃) +D(b̃′, b̃′′, τ̃)

(47)

where

C(ã′, ã′′, τ̃) =
−1∑

i,k=−Dg

i6=k

ãiãk

0∫
−τ̃

g(t− iT )g(t− kT )dt

+

L0−1∑
i,k=L0−Dg

i 6=k

ãiãk

T0−τ̃∫
T0−T

g(t− iT )g(t− kT )dt

(48)

D(b̃′, b̃′′, τ̃) =

−1∑
i,k=−Dg

i 6=k

b̃ib̃k

0∫
−τ̃

g(t− T/2− iT )g(t− T/2− kT )dt

+

L0−1∑
i,k=L0−Dg−1

i 6=k

b̃ib̃k

T0−τ̃∫
T0−T

g(t− T/2− iT )g(t− T/2− kT )dt

(49)

Replacing (44) and (47) into (43) yields

T0∫
0

|s̃(t− τ̃)|2 dt = 2L0Eg ×[
1 +

A(ã′, ã′′) +B(b̃′, b̃′′) + C(ã′, ã′′, τ̃) +D(b̃′, b̃′′, τ̃)

2L0Eg

]
(50)

from which, taking into account that A(ã′, ã′′), B(b̃′, b̃′′),
C(ã′, ã′′, τ̃), and D(b̃′, b̃′′, τ̃), do not vary with L0, one
readily gets

lim
L0→∞

T0∫
0

|s̃(t− τ̃)|2 dt = 2L0Eg (51)

The above equation shows that the denominator in (11) is
asymptotically (i.e. in the limit as L0 goes to infinity) inde-
pendent of ã, b̃, and τ̃ , meaning that the approximation of (11)
by (12) becomes more and more accurate as the observation
interval increases.

From (50) it is evident that the approximation error can
be measured by the ratio ρ = [A(ã′, ã′′) + B(b̃′, b̃′′) +
C(ã′, ã′′, τ̃) + D(b̃′, b̃′′, τ̃)]/2L0Eg . For fixed values of ã′,
ã′′, b̃′, b̃′′ and τ̃ , it is seen that ρ depends on the rolloff
factor through the integrals in (45), (46), (48) and (49). In
particular, simulation results (which have not been reported
for limitations of space) indicate that the absolute value of
these integrals increases as the rolloff decreases (as expected,
since the smaller the rolloff the larger the sidelobes of the
root-raised-cosine pulse). Accordingly, it can be guessed that
for a given observation length L0 the approximation error is
smaller with higher values of the excess bandwidth. This is
confirmed by the results shown in Section IV.
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