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Abstract

Fangfang Zhu

Interference is an important issue for wireless communication systems where multiple unco-

ordinated users try to access to a common medium. The problem is even more crucial for

next-generation cellular networks where frequency reuse becomes ever more intense, leading

to more closely placed co-channel cells. This thesis describes our attempt to understand

the impact of interference on communication performance as well as optimal ways to handle

interference. From the theoretical point of view, we examine how interference affects the

fundamental performance limits, and provide insights on how interference should be treated

for various channel models under different operating conditions. From the practical design

point of view, we provide solutions to improve the system performance under unknown

interference using multiple independent receptions of the same information.

For the simple two-user Gaussian interference channel, we establish that the simple Fre-

quency Division Multiplexing (FDM) technique suffices to provide the optimal sum-rate

within the largest computable subregion of the general achievable rate region for a certain

interference range.

For the two-user discrete memoryless interference channels, we characterize different inter-

ference regimes as well as the corresponding capacity results. They include one-sided weak

interference and mixed interference conditions. The sum-rate capacities are derived in both

cases. The conditions, capacity expressions, as well as the capacity achieving schemes are

analogous to those of the Gaussian channel model. The study also leads to new outer bounds

that can be used to resolve the capacities of several new discrete memoryless interference

channels.

A three-user interference up-link transmission model is introduced. By examining how

interference affects the behavior of the performance limits, we capture the differences and

similarities between the traditional two-user channel model and the channel model with more

than two users. If the interference is very strong, the capacity region is just a simple extension

of the two-user case. For the strong interference case, a line segment on the boundary of the
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capacity region is attained. When there are links with weak interference, the performance

limits behave very differently from that of the two-user case: there is no single case that

is found of which treating interference as noise is optimal. In particular, for a subclass

of Gaussian channels with mixed interference, a boundary point of the capacity region is

determined. For the Gaussian channel with weak interference, sum capacities are obtained

under various channel coefficients and power constraint conditions. The optimalities in all

the cases are obtained by decoding part of the interference.

Finally, we investigate a topic that has practical ramifications in real communication sys-

tems. We consider in particular a diversity reception system where independently copies of

low density parity check (LDPC) coded signals are received. Relying only on non-coherent

reception in a highly dynamic environment with unknown interference, soft-decision combin-

ing is achieved whose performance is shown to improve significantly over existing approaches

that rely on hard decision combining.
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Chapter 1

Introduction

1.1 Introducing the background

The mathematical theory of communication was born out of Claude E. Shannon’s classic

paper in 1948 [1]. Shannon introduced the concept of channel capacity: the maximum rate

that can be achieved over a channel with asymptotically small probability of error. The

simple yet elegant notion has established for the first time that reliable communications

at a nonzero rate through noisy channels are possible. Shannon’s original work has been

the cornerstone of all the major breakthroughs in telecommunications, especially in systems

where point-to-point communications can be studied in an isolated manner.

However, telecommunication systems have evolved dramatically over the past couple of

decades and current and future wireless systems often involve multiple transceiver pairs. As

such, interference is inevitable as multiple users try to access a common medium. In most of

the existing systems, the interference is dealt with either by interference avoidance, in which

the communication links are orthogonalized in time or frequency, or by treating interference

as noise, often assisted by power control at the transmitters. These approaches are typically

not optimal, and often lead to the loss of degrees of freedom. One long-standing problem

1



Chapter 1 2

in information theory is to study the theoretical communication limits when operating in

the presence of interference. The basic model that captures the essence of interference is

the so-called interference channel (IC), which mathematically abstracts the situation where

the transmitters communicate concurrently with their intended receivers while generating

interference to unintended receivers.

Despite decades of intensive research, the capacity region of the two-user IC remains un-

known except for a few special cases. Nevertheless, recent progresses have been made to-

wards characterizing the sum-rate capacity for certain Gaussian ICs (GIC). A GIC, as to

be defined in the next chapter, is a linear channel model where the received signal at each

receiver is a superposition of the intended signal, interference, and additive Gaussian noise.

Close examination of the literature reveals a strong parallel, both in terms of capacity region

and capacity achieving coding schemes, between two classes of interference channels: the

discrete memoryless interference channel (DMIC) and the GIC. This is manifested in the

analogous results when the interference is strong or very strong relative to the strength of

the intended signal. This bears the question about whether some very recent breakthrough

in characterizing the sum-rate capacity may also have counterpart in the DMIC?

Current and future cellular systems have seen exploding demand of wireless data transmis-

sions; as such, the need for spectrum reuse increases, which leads to ever decreasing cell

sizes and densely placed co-channel cells. Inter-cell interference can no long be neglected

for both down-link and up-link transmissions. The conventional way of modeling the down-

link transmission as a broadcast channel (BC) and up-link transmission as a multiple-access

channel (MAC) is no longer applicable. Indeed, inter-cell interference coordination (ICIC)

has been a active area of research in Long-Term Evolution (LTE) standard, and later ex-

tended to the enhanced ICIC (eICIC) in LTE-advanced (LTE-A). Naturally, fundamental

performance limits of either BC or MAC in the presence of co-channel interference becomes

highly relevant research problems from a practical perspective.
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At the other end of the spectrum, there exist systems where active interference management

(e.g., interference cancellation) is impossible due to the lack of user coordination or spectrum

pre-planning. An example is the DARPA Spectrum Challenge that took place from January

2013 through March 2014. For such applications, treating interference as noise is often out

of practical necessity despite of its sub-optimality for the interference network. Therefore,

the design objective to ensure robustness to the unknown interference is to attain the desired

balance and reliability in a highly dynamic transmission environment.

This thesis addresses interference in multi-user wireless systems from both a theoretical

perspective and a practical design viewpoint.

• For a two-user GIC, we examine the potential optimality in terms of sum-rate of

orthogonal transmissions in the moderate interference regime.

• For discrete memoryless interference channels, we derive parallel capacity results that

are inspired by recent breakthroughs in characterizing the sum-rate capacity of GICs.

• Compound ICs that capture the co-channel interference in up-link transmissions are

studied; fundamental performance limits are characterized under different interference

regimes.

• Diversity combining using soft-decision output of non-coherently modulated and LDPC

coded signals is studied that provides robust performance in the presence of unknown

interference.

1.2 Main contributions

This dissertation is devoted to the understanding and the management of interference in

multi-user networks. Major contributions are summarized below.
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1. The largest computable achievable region of the classic two-user GIC is examined. We

show that the näıve FDM/TDM turns out to be sum rate optimal for a certain range

of channel parameters within this class of computable achievable region.

2. The one-sided weak interference condition for the classic two-user discrete memory-

less interference channel is established, whose channel property resembles that of the

Gaussian interference channel with one-sided weak interference. Under the definition

of one-sided weak interference, the sum-rate capacity is derived, which is achieved by

letting the transceiver pair subject to interference communicate at a rate such that its

message can be decoded at the unintended receiver using single user detection. This

capacity achieving scheme, as well as the resulting capacity expression, are analogous

to that of the Gaussian case. In addition, it is established that this class of discrete

memoryless interference channels is equivalent in capacity region to certain degraded

interference channels. It yields an outer-bound of the capacity region using the associ-

ated degraded broadcast channels. The same technique is then used to determine the

mixed interference condition, and the sum-rate capacity under the defined condition.

The obtained outer-bound and sum-rate capacities can resolve the capacities of several

new discrete memoryless interference channels.

3. The capacity of an up-link network with co-channel interference is studied. By mod-

eling such networks using a multiple-access interference channel with one-sided inter-

ference, we have obtained an inner bound to the capacity region for both the discrete

memoryless case and the Gaussian case. The capacities are examined under differ-

ent interference conditions: the strong interference, the mixed strong interference, the

mixed interference, and the weak interference. The capacity region for the discrete

memoryless channel model with strong and very strong interference has been estab-

lished. For the Gaussian setting, we have 1) determined the capacity region for the

very strong interference case, and for the case in which one interference link is strong

and the other one is very strong; 2) obtained a boundary line segment of the capacity
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region for the strong interference case. For the mixed interference case, a boundary

point of the capacity region has been obtained. For the weak interference case, a

sum-rate upper bound has been established which gives rise to a sum-rate capacity

result under certain power constraints. Different from that of the two-user IC, partial

interference cancellation plays an essential part even in the weak interference regime

for the multiple-access interference channel model.

4. The last research topic in the thesis addresses a practical physical layer design problem.

It is motivated by the prevalent use of diversity receptions which multiple copies of

the same information are often available at the receiver end. A novel non-coherent

combining scheme is proposed, and the performance is simulated. It is shown that

the designed scheme using soft-decoding output is used that provides the noticeable

improvement over existing combining techniques, and is robust against fading and

interference environment.

1.3 Outline of thesis

The thesis intends to make progress toward a better understanding on addressing interference

problem along two directions: theoretical limitations through capacity analysis (Chapters 3,

4, 5, and 6); and improved solutions for practical design of information reception in wireless

interference networks (Chapter 7).

The rest of the thesis is organized as follows.

We start with a comprehensive overview of state of the art in interference channels in Chapter

2, which motivated most of the topics in this thesis.

Starting with the achievable rates for the two-user GIC, Chapter 3 shows that the widely

used technique - FDM/TDM, is actually optimal within the largest computable subregion

of the general achievable rate region in a specific parameter range.
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Chapter 4 is focused on extending the current sum-rate capacity results to the discrete

memoryless channel model. In particular, the condition for one-sided weak interference is

defined for the discrete memoryless channel model. This condition, which parallels that of

the GIC, leads to the sum-rate capacity. We move on to outer-bound the capacity region by

establishing the equivalence between this class of channels and certain degraded interference

channel. After that, some examples are provided showing the sum-rate capacities and outer-

bounds for a vast number of discrete memoryless interference channels. Some of the examples

lead to the whole capacity region by using the proposed techniques.

In Chapter 5, we further extend the technique to define the mixed interference for the

discrete memoryless channel model. For this case, we also derive the sum-rate capacity.

Then, examples are provided to use the new proposed techniques to resolve some simple

channels, in which some of them can lead to the full capacity region.

In Chapter 6, a three-user interference network is addressed. It is a much complex case than

the classic two-user case. Exact capacity results are derived for strong, very strong, mixed

and weak interference cases. In particular, for all the cases, we provide some insightful

discussions to analyze the distinction and analogies between the two-user and multiple-user

cases.

A non-coherent soft combining scheme is proposed in Chapter 7, in order to enhance the

information reception over wireless channels suffering from intense interference.

Chapter 8 concludes this dissertation and points out potential future research topics.



Chapter 2

Preliminaries and Background Theory

2.1 Two-user interference channels

2.1.1 Discrete memoryless interference channels

A discrete interference channel is specified by its input alphabets X1 and X2, output alpha-

bets Y1 and Y2, and the channel transition probabilities

p(y1|x1x2) =
∑

y2∈Y2

p(y1y2|x1x2), (2.1)

p(y2|x1x2) =
∑

y1∈Y1

p(y1y2|x1x2). (2.2)

The model is depicted in Fig. 2.1.

The discrete IC is said to be memoryless if

p(yn1 y
n
2 |xn

1x
n
2 ) =

n
∏

i=1

p(y1iy2i|x1ix2i). (2.3)

7
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X1

X2

Y1

Y2

p(y1|x1x2)

p(y2|x1x2)

.

Figure 2.1: The discrete interference channel model.

Let ⌈x⌉ be the smallest integer that is greater than or equal to x. A (n, 2⌈nR1⌉, 2⌈nR2⌉, λ1, λ2)

code for a DMIC with independent information consists of two message setsM1 = {1, 2, · · · , 2⌈nR1⌉}
and M2 = {1, 2, · · · , 2⌈nR2⌉} for senders 1 and 2 respectively, two encoding functions

f1 : M1 → X n
1 , f2 : M2 → X n

2 ,

and two decoding functions

ϕ1 : Yn
1 → M1, ϕ2 : Yn

2 → M2.

The average probabilities of error are defined as

λ1 =
1

|M1||M2|
2⌈nR1⌉
∑

w1=1

2⌈nR2⌉
∑

w2=1

Pr{ϕ1(y1) 6= w1|W1 = w1,W2 = w2},

λ2 =
1

|M1||M2|
2⌈nR1⌉
∑

w1=1

2⌈nR2⌉
∑

w2=1

Pr{ϕ2(y2) 6= w2|W1 = w1,W2 = w2}.

A rate pair (R1, R2) is said to be achievable for a DMIC if there exists a sequence of

(n, 2⌈nR1⌉, 2⌈nR2⌉, λ1, λ2) codes such that λ1, λ2 → 0 as n → ∞. The capacity region of a
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DMIC is defined as the closure of the set of all achievable rate pairs.

2.1.2 Gaussian interference channels

A two-user GIC, in its general form, has its outputs expressed as

Y1 = h11X1 + h21X2 + Z1,

Y2 = h12X1 + h22X2 + Z2,

where Xi is the transmitted signal; Zi is Gaussian noise; hij is the channel coefficient from

the ith transmitter to the jth receiver.

Carleial has shown that the received signals can be simplified into the standard from [3],

with equivalent capacity region:

Y1 = X1 + aX2 + Z1, (2.4)

Y2 = bX1 +X2 + Z2, (2.5)

where a and b are the channel coefficients corresponding to the interference links; Xi and Yi

are the transmitted and received signals with the input sequence Xi1, Xi2, · · · , Xin subject

to power constraints
n
∑

j=1

E [X2
ij] ≤ nPi, i = 1, 2; Z1 and Z2 are Gaussian noises with zero

mean and unit variance and are independent of X1, X2. The channel model is shown in

Fig. 2.2.

We review below the state-of-the-art results for the two types of interference channels.



Chapter 2 10

X1(P1)

X2(P2)

Z1

Z2

Y1

Y2

+

+

a

b

.

Figure 2.2: The Gaussian interference channel model.

2.1.3 The achievable rate region for the general two-user IC

The best achievable rate region for a two-user IC is still the Han-Kobayashi (HK) region [4].

It utilizes superposition coding at the transmitter and simultaneous decoding at the receiver

and the obtained rate region remains to be the largest to this date. Each encoder splits its

messages into two parts, which are referred to as private messages and common messages.

At the receiver sides, partial interference cancellation is facilitated by allowing the common

message to be decoded at the unintended receiver side. The general HK region, denoted by

RHK , is defined as

RHK = closure of
⋃

Z∈P(Z)

R(Z) (2.6)

where P(Z) is the set of all Z = QU1W1U2W2X1X2Y1Y2 ∈ P(Z) such that

• U1,W1, U2,W2 are conditionally independent given Q;

• X1 = f1(U1W1|Q), X2 = f2(U2W2|Q) where f1 and f2 are deterministic encoders;

• p(y1, y2|x1, x2) is the channel transition probability.
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For each q ∈ Q, where ‖Q‖≤ 11, fi(· | q) : Ui ×Wi = Xi, i = 1, 2 are arbitrary deterministic

functions. R(Z) is the set of all achievable (R1, R2) such that R1 = S1 + T1, R2 = S2 + T2,

and S1, T1, S2 and T2 are defined in [4, Equations (3.2)-(3.15)]. For the sake of completeness,

we include the inequalities in the following.

S1 ≤ I(U1; Y1|W1W2Q), (2.7)

T1 ≤ I(W1; Y1|U1W2Q), (2.8)

T2 ≤ I(W2; Y1|U1W1Q), (2.9)

S1 + T1 ≤ I(U1W1; Y1|W2Q), (2.10)

S1 + T2 ≤ I(U1W2; Y1|W1Q), (2.11)

T1 + T2 ≤ I(W1W2; Y1|U1Q), (2.12)

S1 + T1 + T2 ≤ I(U1W1W2; Y1|Q), (2.13)

S2 ≤ I(U2; Y2|W1W2Q), (2.14)

T2 ≤ I(W2; Y2|U2W1Q), (2.15)

T1 ≤ I(W1; Y2|U2W2Q), (2.16)

S2 + T2 ≤ I(U2W2; Y2|W1Q), (2.17)

S2 + T1 ≤ I(U2W1; Y2|W2Q), (2.18)

T1 + T2 ≤ I(W1W2; Y2|U2Q), (2.19)

S2 + T1 + T2 ≤ I(U2W1W2; Y2|Q). (2.20)

For the Gaussian channel model, additional power constraints are added to the distribution

of X1 and X2:

• E(X2
1 ) ≤ P1, E(X2

2) ≤ P2.
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2.1.4 The capacity region for the very strong interference case

Carleial [3] defined the very strong interference for a GIC in the standard form as one

satisfying

a2 ≥ 1 + P1, (2.21)

b2 ≥ 1 + P2 (2.22)

in Eqs. (2.4) and (2.5). In this case, interference can be decoded first and subtracted

from the received signals, resulting in interference-free signals for the intended receivers.

This sequential decoding scheme under the very strong interference condition achieves the

following rate region

R(P1, P2) =







(R1, R2)

∣

∣

∣

∣

∣

∣

0 ≤ R1 ≤ 1
2
log(1 + P1)

0 ≤ R2 ≤ 1
2
log(1 + P2)







.

This rate region is also a natural outer bound, hence is indeed the capacity region of the

GIC under very strong interference, and is achieved with Gaussian input. For Gaussian

input, the condition in (2.21) and (2.22) implies that

I(X1; Y1|X2) ≤ I(X1; Y2), (2.23)

I(X2; Y2|X1) ≤ I(X2; Y1). (2.24)

Sato in [5] imposes the above condition on a DMIC with the additional requirement that it

hold for all product input and obtained the capacity region for a DMIC with very strong

interference to be

R =







(R1, R2)

∣

∣

∣

∣

∣

∣

0 ≤ R1 ≤ I(X1; Y1|X2)

0 ≤ R2 ≤ I(X2; Y2|X1)







.
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Sato alluded in [5] that (2.23) and (2.24) hold for all product input may be too restrictive,

i.e., “This is a sufficient condition for the coincidence of the bounds, but may not be neces-

sary.” In [6], it was established indeed that for a DMIC, the very strong interference can be

relaxed to be such that conditions (2.23) and (2.24) need to be satisfied only for input dis-

tribution achieving the boundary points of the capacity region. This simple generalization

broadens the class of DMIC with very strong interference and is also consistent with the GIC

counterpart - it was shown in [6] that (2.23) and (2.24) may be violated with non-Gaussian

input even if (2.21) and (2.22) are satisfied.

2.1.5 The capacity region for the strong interference case

Han and Kobayashi [4, Theorem 5.1] and Sato [7] independently obtained the capacity region

of a GIC under strong interference, defined to be that satisfying a ≥ 1 and b ≥ 1 in Eqs. (2.4)

and (2.5), as the following

R(P1, P2) =































(R1, R2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ R1 ≤ 1
2
log(1 + P1)

0 ≤ R2 ≤ 1
2
log(1 + P2)

R1 +R2 ≤ min{1
2
log(1 + P1 + a2P2),

1
2
log(1 + b2P1 + P2)}































. (2.25)

Clearly, this capacity region coincides with that of a compound multiple-access channel

(MAC) where both receivers are expected to decode both messages. Notice that in the case

of a2 ≥ 1+P1 and b2 ≥ 1+P2, the sum rate bound in (2.25) is inactive thus (2.25) includes

(2.23) as its special case. Nevertheless, to achieve (2.25) under the strong interference

condition, joint decoding instead of sequential decoding is required at each receiver.

In [7] Sato also conjectured the condition as well as the capacity region of DMICs under

strong interfernce, which was eventually proved by Costa and El Gamal in 1987 [8]. The

strong interference for a DMIC is referred to the condition that the inputs X1 and X2 and
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corresponding outputs Y1 and Y2 satisfy

I(X1; Y1|X2) ≤ I(X1; Y2|X2), (2.26)

I(X2; Y2|X1) ≤ I(X2; Y1|X1), (2.27)

for all product probability distribution on X1 ×X2.

The corresponding capacity region was shown to be the union of the rate pairs (R1, R2)

satisfying

R =































(R1, R2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ≤ R1 ≤ I(X1; Y1|X2Q)

0 ≤ R2 ≤ I(X2; Y2|X1Q)

R1 +R2 ≤ min{I(X1X2; Y1|Q),

I(X1X2; Y2|Q)}































, (2.28)

where Q is a time-sharing parameter of cardinality 4, and the union is over all probability

distributions of the form p(q)p(x1|q)p(x2|q)p(y1y2|x1x2), with p(y1y2|x1x2) specified by the

channel. It was established in [6] that the condition in (2.23) and (2.24) are consistent with

the strong interference condition for a GIC. That is, for a GIC in stardard form, a ≥ 1 and

b ≥ 1 is equivalent to (2.23) and (2.24) for all product input distribution for a GIC.

2.1.6 Sum-rate capacity results for GICs

It was proved in [9–11] using some extremal power inequalities that the sum-rate capacity

for GICs whose channel parameters satisfy

a(b2P1 + 1) + b(a2P2 + 1) ≤ 1
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is

Csum =
1

2
log

(

1 +
P1

1 + a2P2

)

+
1

2
log

(

1 +
P2

1 + b2P1

)

.

Clearly, this sum-rate capacity is achieved using the simple scheme of treating interference

as noise at each receiver; hence the corresponding interference regime is referred to as the

noisy interference.

Sason [12] proved that the sum-rate capacity for GICs with one-sided weak interference,

defined to be that satisfying a ≤ 1 and b = 0 in Eqs. (2.4) and (2.5), is

Csum =
1

2
log(1 + P2) +

1

2
log

(

1 +
P1

1 + a2P2

)

.

This sum-rate capacity is achieved by letting the transceiver pair subject to interference

communicate at a rate such that its message can be decoded at the unintended receiver

using single user detection, and the interference-free transceiver pair communicate at the

maximum rate. The GIC with one-sided interference is often referred to as the Gaussian Z

interference channel (GZIC).

Motahari and Khandani [11] established that the sum-rate capacity for GICs with mixed

interference (a ≤ 1 and b ≥ 1) is

Csum = min

{

1

2
log

(

1 +
P1

1 + a2P2

)

,
1

2
log

(

1 +
b2P1

1 + P2

)}

+
1

2
log(1 + P2).

To achieve this sum-rate capacity, the transceiver pair subject to strong interference com-

municates at a rate as if there is no interference, while the transceiver pair subject to weak

interference communicates at a rate such that its message can be decoded at both receivers

using single user detection.
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The results for the strong and the very strong interference cases reveal a strong parallel,

both in terms of capacity region and capacity achieving encoding schemes, between DMICs

and GICs. However, no analogous sum-rate capacity results have been reported for discrete

memoryless interference channels with noisy, mixed, and one-sided weak interference.

2.2 Managing interference to achieve capacities

Clearly, capacity studies for ICs reveal the not so surprising fact that interference ought

to be treated differently depending on its relative strength. When the interference is very

strong, i.e., stronger than the intended signal plus the noise, the interference is fully decoded

first which is subsequently subtracted, leading to a cleaner version of the intended message

that is only affected by the channel noise.

When the interference is strong, i.e., stronger than the intended communication link, it is

better to decode the full interference with the intended receivers.

When the interference is very weak, i.e., weaker than the intended signal and the noise floor,

it is proven that the simple way of treating interference as noise gives the best performance.

This strategy is also widely used in many communication systems, in which it is so designed

that the interference is typically very weak. Therefore, it makes engineering sense to ignore

the presence of the interference.

When the interference is moderate, rate splitting at the transmitters derived the best achiev-

able rate regions [4]. Rate splitting, together with superposition, enables the unintended

receiver to decode part of the interference. As splitting can be done with varying weights,

this approach essentially includes the two extreme cases as its special cases: completely de-

coding interference and completely ignoring the interference. While general optimality has

yet been established, rate splitting, facilitated by time sharing, gives the largest achievable

rate region to date.
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Orthogonal transmissions, such as Frequency division multiplexing (FDM) and time division

multiplexing (TDM), are also commonly used in communication systems. The available

degrees of freedom are divided into non-overlapping slots in time or frequency. Different users

are assigned orthogonal channels. Hence, the interference is completely avoided. Though it

gives rises to spectral inefficiency, it is easy to implement in practice because of its simplicity

and it is known to be optimal under certain conditions.

2.3 Modeling interference in current wireless networks

In a cellular system, co-channel cells are strategically placed to ensure that interference

is kept at a minimum. As such, the down-link transmission within each cell is typically

modeled as a broadcast channel (BC) while up-link transmission is modeled as a multiple

access channel (MAC). This effectively isolates each cell from all the other co-channel cells

and makes it feasible to characterize the performance limits as the capacity regions for the

Gaussian BC and the Gaussian MAC have been completely determined (see [13]).

However, for current and next-generation wireless cellular networks, the intra-cell inter-

ference is mitigated by separating subscribers in orthogonal time, frequency or spatial di-

mensions, by user scheduling, orthogonal frequency-division multiple access (OFDMA), and

beam-forming coordinations. On the other hand, the inter-cell interference caused by trans-

mission in neighboring cells remains a major impairment that limits throughput. This issue

becomes even more acute as the cell size is shrinking and the cell density is increasing for

improved frequency reuse. In addition, hierarchical cellular structures such as pico-cells,

femto-cells, etc. heavily overlap with macro-cell deployment. The inter-cell interference is

no longer negligible in both down-link and up-link transmissions. It is therefore of inter-

est to examine the fundamental limits on up-link and down-link transmission models with

co-channel interference.
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For down-link transmissions, the Gaussian broadcast-interference channel model has been

studied in [14–16] with an emphasis on the one-sided interference model. The capacity region

of such a channel with very strong and slightly strong interference, and some boundary points

on the capacity region of that with moderate and weak interferences were determined. It

was shown that the capacity is achieved by fully decoding the interference when it is strong,

partially decoding the interference when it is moderate, and treating the interference as

noise when it is weak.

Up-link transmission models have also been investigated in [17] and [18], both of which

considered the two-sided interference between the two cells. The authors in [17] derived the

capacity region for the very strong and some of the strong interference cases, and provided

an upper-bound of the sum-rate for the weak interference case which is nearly optimal in

low signal-to-noise ratio regime, while [18] characterized the capacity region in the form of

interference alignment under the weak symmetric interference assumption.

The authors in [19] studied the two-user Gaussian X channel and characterized the sum

capacity and generalized degrees of freedom (GDoF) for the symmetric case. However, the

major differences between the X channel and the traditional IC are: 1) the message in an X

channel is split into two parts with each part intended for one receiver, while the message in a

IC is intended for only one receiver, and 2) the interference at each receiver can be dependent

on the desired signal in an X channel, while it is always independent in an IC. The dirty

multiple-access channel was explored in [20]. Unlike the IC model, the interference signal is

the state information that is available at the transmitter side, and no separate interferer is

involved. The proposed lattice strategies strongly depend on the state information. Other

similar models include the interference-multiple-access channel considered in [21], where one

of the receivers is required to decode messages from both users in the same physical channel

as that of the two-user interference channel. A semi-deterministic channel was considered

and the gap between the inner bound and the outer bound was characterized. Moreover, a
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class of multiple access interference channels was studied in [22], which consists of a multiple-

access channel and a point-to-point link. The transmitter of the point-to-point link mutually

interferes with only one of the transmitters of the multiple-access channel. The gaps were

characterized for semi-deterministic model as well as the scalar Gaussian model.

All the listed works are mostly focused on interference alignment or lattice codes approach.

Capacity studies of these channel models are scarcely reported. In particular, the perfor-

mance limit of uplink models with weak interference is less well studied.

2.4 Useful properties of Markov chains

The following properties of Markov chains are useful throughout the dissertation [23]:

• Decomposition: X − Y − ZW =⇒ X − Y − Z;

• Weak Union: X − Y − ZW =⇒ X − YW − Z;

• Contraction: (X − Y − Z) and (X − Y Z −W ) =⇒ X − Y − ZW .



Chapter 3

The Sum Rate Optimality of the

Näıve FDM for the Gaussian

Interference Channel within the

Computable Han-Kobayashi

Subregion

3.1 General Han-Kobayashi Inner Bound and its sub-

region

As introduced in Chapter 2, G∗ in (2.6) is not computable due to the unknown optimal dis-

tributions as well as the involvement of the time sharing variable. As such, some alternative

achievable subregions which are more amenable to evaluation were given in [4]:

20
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• With time sharing replaced by convex hull formulation

G = cvx
⋃

Z∈P(P1,P2)

R(Z),

where Z ∈ P(P1, P2) if and only if Z ∈ P∗(P1, P2) and Q = φ.

• With Gaussian input, fixed f1 and f2, and without time sharing

G ′ = cvx
⋃

Z∈P ′(P1,P2)

R(Z),

where Z ∈ P ′(P1, P2) if and only if Z ∈ P∗(P1, P2), Q = φ , U1, U2,W1,W2 are all Gaussian

and X1 = U1 +W1, X2 = U2 +W2.

Only G ′ can be computed, as G still requires exhausting all possible distributions. The

following propositions can be found in [24]:

Proposition 3.1. For a symmetric GIC with 0 < a = b < 1, the maximum sum rate of G ′

is described as follows:

CG′(P1, P2) =































1
2
log
(

1 + P1

1+aP2

)

+ 1
2
log
(

1 + P2

1+aP1

)

, if P1 ≤ 1−a
a2

, P2 ≤ 1−a
a2

1
2
log(1 + aP1 + P2), if P1 ≤ 1−a

a2
, P2 ≥ 1−a

a2

1
2
log(1 + aP2 + P1), if P1 ≥ 1−a

a2
, P2 ≤ 1−a

a2

max
{

r(P̂1), r
(

min
(

P1,
P2

k

))

, Rs

}

, if P1 ≥ 1−a
a2

, P2 ≥ 1−a
a2

(3.1)
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where

P̂1 = (1− a) + (1− a2)P1 (3.2)

k =
1 + (1 + a)P2

1 + (1 + a)P1
, (3.3)

r(p) =
1

2
log

(

1 + aP2 + P1

1 + aP2 − akp

)

+
1

2
log

(

1 + aP1 + P2 − ap− kp

1 + aP1 − ap

)

, (3.4)

Rs =







r(P ∗); if AP ∗2 +BP ∗ + C = 0 and P ∗ ∈
[

P̂1,min
{

P1,
P2

k

}

]

,

0; otherwise
(3.5)

A = −a2k(a+ k), (3.6)

B = 2a2k(1 + aP1 + P2), (3.7)

C = −a3kP 2
1 − a2P 2

2 + (ak − 2a2k)P1 − aP2 + (k − ak). (3.8)

3.2 The Modified FDM/TDM Method and the New

Achievable Rate Region

Sato first introduced the idea of modified (or non-näıve) FDM/TDM method for the de-

graded GIC [5], where the total bandwidth is divided into two sub-bands; in each sub-band

one user is transmitting at the maximum rate while the other is transmitting at a rate that

both users can reliably decode its message. Later, Sason used the same idea for the general

GIC in [12] and obtained a new achievable rate region:

D=
⋃

α,λ1,λ2∈[0,1]







(R1, R2)

∣

∣

∣

∣

∣

∣

R1 ≤ αR
(1)
1 + ᾱR

(2)
1

R2 ≤ ᾱR
(1)
2 + αR

(2)
2







,

(3.9)
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where

ᾱ , 1− α, (3.10)

R
(1)
1 = γ

(

λ1P1

α

)

, (3.11)

R
(2)
1 = min

{

γ

(

λ̄1P1

ᾱ + aλ̄2P2

)

, γ

(

bλ̄1P1

ᾱ+ λ̄2P2

)}

, (3.12)

R
(1)
2 = γ

(

λ̄2P1

ᾱ

)

, (3.13)

R
(2)
2 = min

{

γ

(

λ2P2

α + bλ1P1

)

, γ

(

aλ2P2

α + λ1P1

)}

. (3.14)

and

γ(p) ,
1

2
log(1 + p). (3.15)

Based on the HK subregion G ′ and the same non-näıve FDM/TDMmethod, an improvement

of Sason’s region was given in [24], repeated below.

S=
⋃

α∈[0,0.5]
λ1,λ2∈[0,1]































(R1, R2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≤ αR
(1)
1 + ᾱR

(2)
1 ,

R2 ≤ αR
(1)
2 + ᾱR

(2)
2 ;

(

R
(1)
1 , R

(1)
2

)

∈ G ′ (λ1P1

α
, λ2P2

α

)

,
(

R
(2)
1 , R

(2)
2

)

∈ G ′
(

λ̄1P1

ᾱ
, λ̄2P2

ᾱ

)

.































,

(3.16)

where G ′(p1, p2) is the HK subregion G ′ for a GIC with power constraint p1 and p2. One can

show that S is an achievable region, since it is a subset of the general HK region. From the

FDM/TDM point of view, S is obtained by dividing the total bandwidth into two sub-bands,

one with α and the other with ᾱ fraction of the total bandwidth. The power is allocated

into each sub-band with a factor λi. Naturally D ⊂ S.
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One can generalize S by dividing the bandwidth into more than two subbands. In fact, the

following rate region S† is introduced in [24]:

S† = cvx
⋃

λi,αi,βi∈I3,λi≥λi+1

{

3
∑

i=1

λiG ′(
αiP1

λi

,
βiP2

λi

)

}

, (3.17)

where xi ∈ In means
∑n

i=1 xi = 1, xi ≥ 0.

Proposition 3.2. S† is unchanged by dividing the frequency band into more than three

subbands.

This proposition states that the three-band division is sufficient for a two user GIC. This

is because that the power allocation is only in two dimensions. The complete proof for the

above two propositions can be found in [24]. The same result was rediscovered in [11], albeit

for the more general m user GIC case.

3.3 Main Results

Theorem 3.3. For a symmetric GIC with 0 < a = b < 1 and power constraints P1, P2, the

näıve FDM/TDM is optimal in the range .5 < a = b < 1 within S†.

First, from the definition of S†, the maximal sum rate that S† can achieve is

CS† = max
λi,αi,βi∈I3

{

3
∑

i=1

λiG ′(
αiP1

λi

,
βiP2

λi

)

}

. (3.18)

Define CF to be the achievable sum rate using the näıve FDM for the above symmetric GIC,

i.e.,

CF(P1, P2) =
1

2
log(1 + P1 + P2). (3.19)
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From the concavity of the function 1
2
log(1+P1+P2), if in each subband, over certain range

of parameter a,

CG′(p1i, p2i) <
1

2
log(1 + p1i + p2i),

then,

3
∑

i=1
λi,αi,βi∈I3

λiCG′ (p1i, p2i) ≤
∑

i

λi

2
log(1 + p1i + p2i) =

∑

i

λiCF(p1i, p2i) ≤ CF(P1, P2).

Therefore, CS′ ≤ CF .

To this end, we only need to show CG′(p1i, p2i) ≤ CF(p1i, p2i) for a ∈ [.5, 1].

Since we have an explicit expression for CG′, We now compare CF(P1, P2) with CG′(P1, P2)

for all range of power constraint.

1. P1 ≤ 1−a
a2

, P2 ≤ 1−a
a2

. In this case, each receiver treats interference as noise to achieve

CG′ (cf. first line of Eq. (3.1)). For the sake of simplicity,

f1 ,
1

2
log(1 +

P1

1 + aP2
) +

1

2
log(1 +

P2

1 + aP1
).

It is easy to compute
∂f1
∂a

< 0,

for any 0 < a < 1. i.e., f1 is a monotone decreasing function of a. Moreover,

f1 ≥ CF

if and only if

0 < a ≤
√
1 + P1 + P2 − 1

P1 + P2
.
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Furthermore,
√
1+P1+P2−1
P1+P2

is a decreasing function of (P1 + P2), and

lim
P1→0,P2→0

√
1 + P1 + P2 − 1

P1 + P2

= .5.

Therefore, FDM/TDM is better than treating interference as noise when .5 < a < 1

within G ′.

2. P1 ≤ 1−a
a2

, P2 ≥ 1−a
a2

. This is a simple case, the maximal achievable sum rate charac-

terized by Eq. (3.1) is (cf. second line of Eq. (3.1))

1

2
log(1 + aP1 + P2) , f2.

Clearly, f2 ≤ CF for the entire range a ∈ [0, 1].

3. P1 ≥ 1−a
a2

, P2 ≤ 1−a
a2

. This is the same as the above case.

4. P1 ≥ 1−a
a2

, P2 ≥ 1−a
a2

. CG′ in this case is (cf. last line of Eq. (3.1))

max{r(P̂1), r(min(P1,
P2

k
)), Rs} , f3,

where r(·), k and Rs are defined in Eq. (3.1). There are three terms inside the operation

max(·). Let us solve them one by one.

(a) r(min(P1,
P2

k
)) , f 1

3 .

r(P1) =
1

2
log

(

1 + aP2 + P1

1 + aP2 − kP1

)

+
1

2
log (1 + P2 − kP1)

=
1

2
log(1 + aP1 + P2).

r(
P2

k
) =

1

2
log(1 + P1 + aP2).
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Therefore,

f 1
3 =







1
2
log(1 + aP1 + P2), ifP1 < P2,

1
2
log(1 + aP2 + P1), otherwise.

Those two functions have been discussed in above cases, thus f 1
3 ≤ CF for the

entire range a ∈ [0, 1].

(b) r(P̂1) , f 2
3 .

f 2
3 =

1

2
log

(

1 + P1 + aP2

1 + aP2 − akP̂1

)

+
1

2
log

(

1 + aP1 + P2 − aP̂1 − kP̂1

1 + aP1 − aP̂1

)

=
1

2
log

(

1 + P1 + aP2

1− a + a2 + a3P2

)

+
1

2
log

(

a2(1 + P2 + aP1)

1− a+ a2 + a3P1

)

.

Then we can verify that f 2
3 is indeed an increasing and then decreasing function

over a ∈ [0, 1] when P1 ≥ 1−a
a2

and P2 ≥ 1−a
a2

, and,

∂r(P̂1)

∂a
|a=.5 < 0 and r(P̂1)|a=.5 < CF .

From these two observations, one get

r(P̂1) < CF .

(c) Rs. First, we can solve the equation of P ∗ in Eq. (3.1). Since − B
2A

= P1 +
1

1+a
,

we want the root P ∗ ≤ P1, therefore,

P ∗ =
−B +

√
B2 − 4AC

2A
= P1 +

1

1 + a
− 1

a(1 + a)
√
k
.

By the same way, one can get the differential of Rs|a>.5 and compare Rs|a=.5 and

CF . Rs for the range a ∈ [.5, 1] is a decreasing function of a if P ∗ ∈ [P̂1,
P2

k
],

Rs|a=1 = CF and Rs|a=.5 < CF . The final result gives Rs < CF , if a ∈ [.5, 1].
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From all the above cases, TDM/FDM is optimal in each subband for the parameter range

a ∈ [.5, 1]. The proof is completed.

3.4 Summary

The work was motivated by careful examination of the achievable sum rates of various

computable rate regions for the Gaussian interference channel. As illustrated in Fig. 2, the

largest computable rate region, S†, becomes flat in its sum rate with a exceeding a certain

threshold. This constant sum rate turns out to be precisely that achieved by the näıve

FDM, which we proved in this chapter. Additionally, it is also easy to establish that for

completely symmetric GIC, i.e., both channel coefficients and power constraints are identical,

the maximum sum rate using S ′ results in equal power allocation among subbands for both

users, except using the näıve FDM.

This work established the sum rate optimality of the näıve FDMwithin a specific computable

subregion of the general HK region. At the present, it is only known that the naive FDM

is sum rate optimal within the general HK region at a singular point (i.e., a = 1) at which

the näıve FDM actually achieves the sum rate capacity.
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The DMIC with One-sided Weak

Interference

In Chapter 2, we have presented the sum-rate capacity result for the two-user GIC with one-

sided weak interference. Unlike the strong and very strong interference chase, the discrete

momeoryless counterpart has not been studied yet. This chapter attempts to derive parallel

sum-rate capacity result for DMICs with one-sided weak interference.

The rest of the chapter is organized as follows. Section 4.1 presents the channel model, and

defines the notation of “one-sided” as well as “one-sided weak” for the discrete memory-

less channel model. The sum-rate capacity is derived in Section 4.2. In Section 4.3, the

equivalence between the DMIC with one-sided weak interference and the discrete degraded

interference channel (DMDIC) is established which allows one to construct an outer-bound

of the capacity region for the DMZIC using the capacity region of the associated degraded

broadcast channel. Several specific DMIC examples are studied in Section 4.4 whose ca-

pacites or capacity bounds are obtained. Section 4.5 summarizes this chapter.

29
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X1

X2

Y1

Y2

p(y1|x1x2)

p(y2|x2)

Figure 4.1: The DMIC with one-sided interference model.

4.1 Channel model

Definition 4.1. For the DMIC defined in Chapter 1, if for all x1, x2, y2,

p(y2|x2) = p(y2|x1x2), (4.1)

or equivalently,

X1 −X2 − Y2 (4.2)

forms a Markov chain, this DMIC is said to have one-sided interference.

A general one-sided DMIC is depicted in Fig. 4.1. Clearly, the Markov chain condition (4.2)

holds for the GIC with b = 0 in (2.5). As with the Gaussian case, we refer to the DMIC

with one-sided interference as simply discrete memoryless Z interference channel (DMZIC).

From the definition, it follows that X1 and Y2 are independent for all input distribution

p(x1)p(x2).
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To define DMZIC with weak interference, we first revisit some properties of Gaussian ZIC

with weak interference. Costa [25] has shown that a Gaussian ZIC with weak interference

is equivalent in its capacity region to a degraded Gaussian ZIC satisfying the Markov chain

X2 − (X1, Y2)− Y1. (4.3)

This motivates us to define DMZIC with weak interference as follows.

Definition 4.2. A DMZIC is said to have weak interference if the channel transition prob-

ability factorizes as

p(y1y2|x1x2) = p(y2|x2)p
′(y1|x1y2), (4.4)

for some p′(y1|x1y2), or, equivalently, the channel is stochastically degraded.

A stochastic DMZIC with weak interference is shown in Fig. 4.2. In the absence of receiver

cooperation, a stochastically degraded interference channel is equivalent in its capacity to a

physically degraded interference channel. As such, we will assume in the following that the

channel is physically degraded, i.e., the DMZIC with weak interference admits the Markov

chain X2 − (X1, Y2)− Y1.

The channel transition probability p(y1y2|x1x2) for this class of channels factorizes as

p(y1y2|x1x2) = p(y2|x1x2)p(y1|x1x2y2)

= p(y2|x2)p(y1|x1y2). (4.5)

As a consequence, the following inequality holds

I(U ; Y2) ≥ I(U ; Y1|X1), (4.6)
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X1

X2

Y1

Y2

p′(y1|x1y2)

p(y2|x2)

Figure 4.2: The DMZIC with weak interference channel model.

for all input distributions p(x1)p(u)p(x2|u). To prove this inequality, it suffices to show that

the Markov chain X1Y1−Y2−U holds. First of all, from the memoryless condition, we have

the following Markov chain:

U −X1X2 − Y1Y2.

By the weak union property, we obtain the Markov chain

Y1 −X1X2Y2 − U.

Together with the weak interference condition

Y1 −X1Y2 −X2,

The following Markov chain can be attained by the contraction rule:

Y1 −X1Y2 − UX2.
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Then, by decomposition rule, the Markov chain

Y1 −X1Y2 − U

holds. Together with the Markov chain

X1 − Y2 − U

from the independence between X1 and (U, Y2), we establish the desired Markov chain by

the contraction rule.

We note that this condition is indeed what is needed in establishing the sum-rate capacity of

this channel and was used in [26] to define the weak interference for DMZIC. The definition

used in this paper, while stronger than necessary, is much more intuitive and easier to verify.

The above definition of weak interference leads to the following sum-rate capacity result.

4.2 Sum-rate capacity

Theorem 4.3. The sum-rate capacity of a DMZIC with weak interference as defined above

is

Csum = max
p(x1)p(x2)

{I(X1; Y1) + I(X2; Y2)}. (4.7)

Proof. This sum-rate is achieved by two receivers decoding their own messages while treating

any interference, if present, as noise.
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For the converse, we have

n(R1 +R2)− nǫ
(a)

≤ I(Xn
1 ; Y

n
1 ) + I(Xn

2 ; Y
n
2 )

(b)
=

n
∑

i=1

(

H(Y1i|Y i−1
1 )−H(Y1i|Y i−1

1 Xn
1 ) +H(Y2i|Y i−1

2 )−H(Y2i|Y i−1
2 Xn

2 )
)

(c)

≤
n
∑

i=1

(

H(Y1i)−H(Y1i|Y i−1
1 Xn

1 Y
i−1
2 ) +H(Y2i|Y i−1

2 )−H(Y2i|Y i−1
2 X2i)

)

(d)
=

n
∑

i=1

(

H(Y1i)−H(Y1i|Xn
1 Y

i−1
2 ) + I(X2i; Y2i|Ui)

)

(e)
=

n
∑

i=1

(

H(Y1i)−H(Y1i|X1iY
i−1
2 ) + I(X2i; Y2i|Ui)

)

=
n
∑

i=1

(I(UiX1i; Y1i) + I(X2i; Y2i|Ui))

=

n
∑

i=1

(I(X1i; Y1i) + I(Ui; Y1i|X1i) + I(X2i; Y2i|Ui))

(f)

≤
n
∑

i=1

(I(X1i; Y1i) + I(Ui; Y2i) + I(X2i; Y2i|Ui))

=

n
∑

i=1

(I(X1i; Y1i) + I(UiX2i; Y2i))

(g)
=

n
∑

i=1

(I(X1i; Y1i) + I(X2i; Y2i)), (4.8)

where (a) follows the Fano’s nequality, (b) is from the chain rule and the definition of

mutual information, (c) is because of the fact that conditioning reduces entropy, and that

Y2i is independent of any other random variables given X2i, (d) is due to the memoryless

property of the channel and the fact that Y1i is independent of any other random variables

given X1i and Y2i, then (Xn
1,i, Y1i)− (X i−1

1 , Y i−1
2 )−Y i−1

1 forms a Markov chain. By the weak

union property, the Markov chain Y1i− (Xn
1 , Y

i−1
2 )−Y i−1

1 holds. Moreover, define Ui , Y i−1
2
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for all i. Ui is independent of X1i since

p(x1i, y
i−1
2 ) =

∑

xi−1
2

p(x1ix
i−1
2 , yi−1

2 ) =
∑

xi−1
2

p(x1i, x
i−1
2 )p(yi−1

2 |xi−1
2 , x1i)

=
∑

xi−1
2

p(x1i)p(x
i−1
2 )p(yi−1

2 |xi−1
2 ) = p(x1i)p(y

i−1
2 );

(e) is because of the Markov chain (X i−1
1 , Xn

1,i+1) − (X1i, Y
i−1
2 ) − Y1i. This can be estab-

lished using the functional dependence graph (FDG) [27]. The formal proof is included in

Appendix A. Alternatively, we first note that the Markov chain

(X i−1
1 , Xn

1,i+1, Y
i−1
2 )− (X1i, Y2i)− Y1i

holds, since given X1i and Y2i, Y1i is independent of X i−1
1 , Xn

1,i+1, Y
i−1
2 . By the weak union

property, the following Markov chain is obtained:

(X i−1
1 , Xn

1,i+1)− (X1i, Y
i
2 )− Y1i.

The independence between Y n
2 and Xn

1 gives the Markov chain

(X i−1
1 , Xn

1,i+1)−X1i − Y i
2 .

The above two Markov chains lead to the following Markov chain:

(X i−1
1 , Xn

1,i+1)−X1i − (Y1i, Y
i
2 )

by the contraction property. Again, using the weak union property and then the decompo-

sition property, we obtain the Markov chain

(X i−1
1 , Xn

1,i+1)− (X1i, Y
i−1
2 )− Y1i
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as desired. Since Ui and X1i are independent, then p(x1x2u) = p(x1)p(u, x2), thus (f) comes

from (4.6). Finally, (g) follows from the Markov chain Ui−X2i−Y2i. Finally, by introducing

a time-sharing random variable Q, one obtains

R1 +R2 ≤ I(X1; Y1|Q) + I(X2; Y2|Q) + ǫ

=
∑

q∈Q
p(q) {I(X1; Y1|Q = q) + I(X2; Y2|Q = q)}+ ǫ

≤
∑

q∈Q
p(q)

{

max
p(x1)p(x2)

{I(X1; Y1) + I(X2; Y2)}
}

+ ǫ

= max
p(x1)p(x2)

{I(X1; Y1) + I(X2; Y2)}+ ǫ. (4.9)

Remark 4.4. From the strong interference condition (2.27), it is perhaps tempting to define

the condition for weak interference as

I(X2; Y1|X1) ≤ I(X2; Y2), (4.10)

for all product input distribution on X1 × X2. Notice that the right-hand side is same as

I(X2; Y2|X1) given that this is one-sided interference channel. The Markov chain (4.3) is

a sufficient, but not necessary, condition for the mutual information condition (4.10). An

example is provided in Appendix B such that the mutual information condition holds but

the Markov chain is not valid. This is different from that of the Gaussian case; it can be

shown that the coefficient a ≤ 1 in a Gaussian ZIC is a sufficient and necessary condition for

(4.10) to hold. It is yet unknown if condition (4.10) is sufficient for the sum-rate capacity

result (4.7) to hold for the DMZIC.
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Remark 4.5. For a DMZIC with weak interference, an achievable rate region, C, is given by

the set of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(X1; Y1|U2Q), (4.11)

R2 ≤ I(X2; Y2|Q), (4.12)

R1 +R2 ≤ I(U2X1; Y1|Q) + I(X2; Y2|U2Q), (4.13)

where the input distribution factorizes as:

p(qu2x1x2) = p(q)p(x1|q)p(u2|q)p(x2|u2, q). (4.14)

Furthermore, the region remains invariant if we impose the constraints ‖Q‖ ≤ 5, ‖U2‖ ≤
‖X2‖ + 3. This can be readily obtained from the Han-Kobayashi region of the general

two-user IC [4, 28].

In the next lemma, we provide a simpler description for the above achievable rate region.

Lemma 4.6. The region C is equivalent to the set of all rate pairs (R1, R2) satisfying

R1 ≤ I(X1; Y1|U ′
2Q), (4.15)

R2 ≤ I(U ′
2; Y1|Q) + I(X2; Y2|U ′

2Q), (4.16)

where the input distribution factorizes as (4.14). Furthermore, the region remains invariant

if we impose the constraints ‖Q‖ ≤ 4, ‖U ′
2‖ ≤ ‖X2‖+ 3.

Proof. Let E denote the set defined in the above lemma. The fact that E ⊆ C follows simply

by setting U2 = U ′
2 and noticing that (4.15) and (4.16) imply (4.11)-(4.13). To prove that

C ⊆ E, we first note that for a given p(qu2x1x2), C is a pentagon with two extreme points
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in the first quadrant given by

p1 = (I(X1; Y1|U2, Q = q),

I(U2; Y1|Q = q) + I(X2; Y2|U2, Q = q)) , (4.17)

p2 = (I(U2X1; Y1|Q = q)− I(U2; Y2|Q = q),

I(X2; Y2|Q = q)) . (4.18)

It suffices to show that, for any given p(qu2x1x2) in (4.14), the corresponding p1 and p2,

belongs to the set E.

That p1 ∈ E follows from setting U2 = U ′
2. To show that p2 ∈ E, we use the following

inequality

I(U2X1; Y1|Q = q)− I(U2; Y2|Q = q)

= I(U2; Y1|X1Q = q)− I(U2; Y2|Q = q) + I(X1; Y1|Q = q)
(a)

≤ I(X1; Y1|Q = q)
(b)

≤ I(X1; Y1|U2, Q = q),

where (a) follows from (4.6); (b) is due to the independence between X1 and U2 conditioned

on Q. Hence, C ⊆ E.
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4.3 Capacity outer bound for DMZICs with weak in-

terference

4.3.1 Outer bound of the capacity region

Costa proved in [25] that a GZIC with weak interference is equivalent in capacity region to

a degraded GIC. As such, Sato’s outer-bound on degraded GIC [29] applies to that of GZIC

with weak interference. Sato’s outer-bound is in essence the capacity region of a related

Gaussian broadcast channel, which is a natural outer-bound to the interference channel due

to its implied transmitter cooperation. In this section, we use the same technique to obtain

a capacity outer-bound for DMZIC with weak interference, i.e., that satisfies the Markov

chain X2 − (X1, Y2)− Y1. Specifically, for any such DMZIC with weak interference, one can

find an equivalent (in capacity region) DMDIC whose capacity region is bounded by that of

an associated degraded broadcast channel.

We begin with the equivalence between the DMZIC with weak interference and the DMDIC.

Theorem 4.7. A DMZIC with weak interference with inputs (X1, X2) and outputs (Y1, Y2)

is equivalent, in capacity region, to a DMIC with the same inputs and outputs (Y1, Y
′
2), where

Y ′
2 = f(X1, Y2) such that the Markov chain (X1, X2)−Y ′

2 −Y1 holds and H(Y ′
2 |X1) = H(Y2)

(It is shown in Fig. 4.3).

The complete proof is given in Appendix C.

Theorem 4.8. For a DMZIC that satisfies the Markov chain X2 −X1Y2 − Y1, the capacity

region is outer-bounded by

ROB = co







⋃

p(u)p(x1x2|u)
(R1, R2)

∣

∣

∣

∣

∣

∣

R1 ≤ I(U ; Y1),

R2 ≤ I(X1X2; Y
′
2 |U)







,
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X1

X2

Y1Y ′
2

p(y′2|x1x2) p(y1|y′2)

Figure 4.3: The DMDIC model.

where co {·} denotes the closure of the convex hull operation, U −X1X2 − Y ′
2 − Y1 forms a

Markov chain and the rate region remains invariant if we impose ‖U‖ ≤ min{‖Y ′
2‖, ‖X1‖ ·

‖X2‖}+ 1.

Proof. As we have the equivalent DMDIC. By treating X1, X2 as a group, we can outer-

bound the capacity region of the DMDIC by the capacity region of the associated broadcast

channel.

Remark 4.9. A trivial choice of Y ′
2 is a bijection of X1 and Y2. It is easy to verify that the

Markov chain (X ′
1, X

′
2)− Y ′

2 − Y ′
1 holds for such Y ′

2 . However, other Y
′
2 can be constructed,

as long as the Markov chain (X ′
1, X

′
2) − Y ′

2 − Y ′
1 is satisfied. Nevertheless, the associated

broadcast channels would have the same the capacity region. In the following, an example

is shown that other choices of Y ′
2 are available.

4.3.2 Capacity region of a subclass of DMZICs

As we have proved that there always exists at least one DMDIC that has the same capacity

region with any DMZIC with weak interference, the capacity region of the DMZIC with
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weak interference can be resolved sometimes through its equivalent DMDIC.

Liu and Ulukus has proposed a single-letter characterization for the capacity region of a

class of DMDIC [30, Section II]. For this class of DMDICs, encoder cooperation does not

enlarge the capacity region. In the following, we apply this technique to DMZICs with weak

interference to resolve the capacity region of a subclass of DMZICs.

Let T denote the |Y1|× (|X1||Y2|) matrix of transition probabilities p′(y1|x1y2), and T ′ is the

compact form of T , in the sense that it only keeps all the distinct columns. If T ′ is different

from T , it is clear that we can find a Y ′
2 other than the one-to-one mapping of (X1, Y2)

that represents each column of T ′, i.e., |Y ′
2| is the number of columns in T ′. Hereafter, Y ′

2

corresponds to the one with the cardinality being the number of columns in T ′. Let Vx1 be

the |Y ′
2| × |X2| matrix of transition probability p(y′2|x1x2) for each x2 ∈ X2.

Lemma 4.10. If a DMZIC with weak interference with channel transition probability (p(y2|x2), p
′(y1|x1y2))

satisfies the following conditions,

1. T ′ is input symmetric1. Let the input symmetry group be G.

2. For any realization pairs x′
1, x

′′
1 ∈ X1, there exists a permutation group G ∈ G, such

that

Vx′
1
= GVx′′

1
.

3. H(Y ′
2 |X1 = x1, X2 = x2) = η, independent of x1 and x2.

4. p(y′2|x1x2) satisfies

∑

x1

p(y′2|x1x2) =
|X1|
|Y ′

2|
, for x2 ∈ X2, y

′
2 ∈ Y ′

2.

1For an m × n stochastic matrix T ′ (an n-input, m-output channel), the input symmetry group G is
defined as the set of permutation matrices G such that the column permutations of T ′ with G may be
achieved with corresponding row permutations. T ′ is input symmetric, if G is transitive, i.e., any element
of {1, 2, · · · , n} can be mapped to every other element of {1, 2, · · · , n} by some member of G.
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5. Let px1,x2 be the |Y ′
2|-dimensional vector of probabilities p(y′2|x1x2) for a given x1, x2.

Then, there exists an x̃1 ∈ X1, such that

{

∑

x1,x2

ax1,x2px1,x2 :
∑

x1,x2

ax1,x2 = 1, ax1,x2 ≥ 0

}

⊆
{

G

(

∑

x2

bx2px̃1,x2

)

:
∑

x2

bx2 = 1, bx2 ≥ 0, G ∈ G
}

,

the single-letter characterization of the capacity region is

⋃

p(u)p(x1x2|u)















(R1, R2)

∣

∣

∣

∣

∣

∣

∣

∣

R1 ≤ τ −
∑

u∈U
pU(u)H(Y1|U = u),

R2 ≤
∑

u∈U
pU(u)H(Y ′

2|U = u)− η















,

where the auxiliary random variable U satisfies the Markov chain U − (X1, X2) − (Y1, Y2),

and its cardinality is bounded by

|U| ≤ min (|Y1|, |Y ′
2|, |X1||X2|) ;

τ = max∆|Y′
2
|H(T’p), i.e., the maximum entropy of Y1 over all possible distributions of Y ′

2.

The conditions look complex, but they will be more clear in the examples provided in

Section 4.4. The proof follows exact the same fashion as in [30], and is omitted here.

An interesting observation is that when T = T ′, i.e., Y ′
2 is a one-to-one mapping from

(X1, Y2), the above lemma cannot apply. The reason is that Condition 5 is impossible to

satisfy. To illustrate this point, we set Y ′
2 = (X1, Y2) without loss of generality. Suppose

|X1| = k, |Y2| = l, |X2| = m, then the transition probability matrix of p(y′2|x1x2) is given by
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















[p(y2|x2)]l×m 0 · · · 0

0 [p(y2|x2)]l×m · · · 0
...

...
. . .

...

0 0 · · · [p(y2|x2)]l×m

















kl×km

.

px1,x2 corresponds to a column in this matrix, while px̃1,x2 corresponds to a column within

a sub-matrix with respect to x̃1. Given one particular x̃′
1, it is impossible to express the

convex combination of all columns with only permutation operations. It is because that

there is always (k− 1)l 0’s while the convex combination of all columns does not necessarily

contain 0 as its entry.

4.4 Examples

Example 4.1. Consider a DMZIC with input and output alphabets X1 = X2 = Y1 = Y2 =

{0, 1} and is defined by the equations: y1 = x1 · x2, y2 = x2, shown in Fig. 4.4 Etkin and

Ordentlich in [31] established the capacity region for this binary multiplier channel via a new

outer-bounds derived in their paper. As this channel satisfies the weak interference condition

in this paper, we can immediately get the sum-rate capacity to be

max
p(x1)p(x2)

I(X1; Y1) + I(X2; Y2)

= max
p(x1)p(x2)

{H(X1 ·X2)− Pr{X1 = 1}H(X2) +H(X2)}

≈ 1.3881.

Example 4.2. Let X1 = X2 = Y1 = Y2 = {0, 1} and

Y1 = X1 ⊕ Y2,

Y2 = X2 ⊕ Z,
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X1

X2

Y1

Y2

×

Figure 4.4: The binary multiplier channel model.

X1

X2

Z2 ∼ Bern(ǫ)

Y1

Y2

+

+

Figure 4.5: The binary degraded additive DMZIC model.

where ⊕ denotes the modulo 2 sum and Z ∼ Bern(ǫ). This channel is depicted in Fig. 4.5.

Clearly, the Markov chain X2 −X1Y2 − Y1 is satisfied. Let p = Pr(X2 = 1). Then,

I(X2; Y2) = h2 (ǫ(1− p) + (1− ǫ)p)− h2(ǫ),

I(X1; Y1) = H(Y1)− h2 (ǫ(1− p) + (1− ǫ)p) .
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The sum-rate capacity is

Csum = max
p(x1)p(x2)

{I(X1; Y1) + I(X2; Y2)} = 1− h2(ǫ),

which is achieved by any p(x1)p(x2) such that H(Y1) = 1. Additionally, both points (0, 1 −
h2(ǫ)) and (1−h2(ǫ), 0) are trivially achievable. Therefore, the capacity region of this channel

is the triangle connecting the two rate pairs (0, 1− h2(ǫ)) and (1− h2(ǫ), 0).

This channel does not belong to any class of channels that have been studied in the literature.

The property of H(Y1|X1) = H(Y2) is similar to the deterministic interference channel

definition [32]. However, Y2 is not a deterministic function of X2.

This channel is equivalent, in the capacity region, to the following interference channel:

Y1 = X1 ⊕X2 ⊕ Z,

Y2 = X1 ⊕X2 ⊕ Z.

This can be proved in a similar way to that used in [25] for proving the equivalence between

the Gaussian ZIC and the Gaussian degraded IC. Notice that the capacity region of the

discrete additive degraded IC is solved by Benzel in [33], the capacity region of the DMZIC

can be obtained through the equivalent discrete additive degraded IC, i.e., the closure of the

convex hull of all the nonnegative (R1, R2) satisfying the following inequalities:

R1 ≤ I(X1; Y1),

R2 ≤ I(X2; Y2),

for all possible product input distribution on X1 ×X2.

Actually, the capacity region can be resolved for any modulo sum channel.
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Example 4.3. Let X1 = X2 = Y1 = Y2 = S = {0, 1, · · · , s− 1} and

Y1 = X1 ⊕X2 ⊕ V1 ⊕ V2,

Y2 = X2 ⊕ V2,

where V1 and V2 are independent noise random variables defined over S with distributions

pi = (pi(0), pi(1), · · · , pi(s− 1)), i = 1, 2.

This is a DMZIC with weak interference, as we can write Y1 = X1 ⊕ Y2 ⊕ V1. We can check

that T ′ is circulant, Conditions 1− 5 are satisfied.

Example 4.4. Let X1 = X2 = Y1 = Y2 = {0, 1} and

Y1 = X1 · Y2,

Y2 = X2 ⊕ Z.

This channel is similar to Example 4.2 except that Y1 is replaced by a multiplicative channel,

and is shown in Fig. 4.6.

The Markov chain X2 − X1Y2 − Y1 holds and the capacity region of this channel can be

obtained in a manner similar to that of [31]. We first upper-bound the two individual rates

R1 and R2. From the proof of Theorem 4.3, it is straightforward to obtain

R1 − ǫ1 ≤ I(UX1; Y1|Q),
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X1

X2

Z2 ∼ Bern(ǫ)

Y1

Y2

×

+

Figure 4.6: The binary degraded multiplicative DMZIC model.

where U is an auxiliary random variable satisfying p(ux1x2) = p(x1)p(ux2). For R2,

n(R2 − ǫ2) ≤ I(Xn
2 ; Y

n
2 )

≤
n
∑

i=1

(

H(Y2i|Y i−1
2 )−H(Y2i|Xn

2 Y
i−1
2 )

)

≤
n
∑

i=1

(H(Y2i)−H(Y2i|X2i))

=
n
∑

i=1

I(X2i; Y2i)

= nI(X2; Y2|Q). (4.19)

Let p1,q = Pr(x1 = 1|Q = q), p2,q = Pr(x2 = 1|Q = q), py2,q = Pr(y2 = 1|Q = q),

rq = H(Y2|U, q), note that

py2,q = p2,q(1− ǫ) + (1− p2,q)ǫ,

and

rq ≤ h2(p2,q),
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for each q. Then,

R1 − ǫ1 ≤ I(UX1; Y1|Q)

=

‖Q‖
∑

q=1

[H(Y1|q)−
1
∑

x1=0

p(x1|q)H(Y1|x1, U, q)]

=

‖Q‖
∑

q=1

[H(Y1|q)− p(x1 = 1|q)H(Y2|U, q)]

=

‖Q‖
∑

q=1

[h2(p1,qp
y
2,q|q)− p(x1 = 1|q)rq]

and

R2 − ǫ2 ≤ I(X2; Y2|Q)

= H(Y2|Q)−H(Y2|X2Q)

= h2(p
y
2,q)− h2(ǫ).

Compared with the expressions in [31, Eqs. (15) and (16)], the only difference is the constant

h2(ǫ), which does not affect the optimization. Therefore, the optimization process there can

be directly applied here. It follows that the capacity region of this channel is the convex hull

of R′, where

R′ =
⋃

0≤p1,p2≤1







(R1, R2)

∣

∣

∣

∣

∣

∣

R1 ≤ I(X1; Y1) = h2(p1py2)− p1h2(py2)

R2 ≤ I(X2; Y2) = h2(py2)− h2(ǫ)







,

where py2 = ǫ(1− p2) + (1− ǫ)p2. Clearly, the sum-rate capacity is

max
p1p2

{(p1py2) + (1− p1)h2(py2)− h2(ǫ)} .
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erasureX1

X2

V ∼ Bern(ǫ)

Y1

Y2

+

+

Figure 4.7: The degraded DMZIC model with an erasure channel.

erasure

X1

X2

V ∼ Bern (ǫ2)

Y1
Y ′

2

+

Figure 4.8: The equivalent DMDIC model with an erasure channel.

Example 4.5. ‖X1‖ = ‖X2‖ = ‖Y2‖ = 2, ‖Y1‖ = 3.

Y1 =







X1 ⊕ Y2, with probability 1− δ

e, with probability δ
,

Y2 = X2 ⊕ V1,

where V1 ∼ Bern(ǫ). The channel is shown in Fig. 4.7. Clearly, Y1 is the output of a erasure

channel with input X1 ⊕ Y2 and erasure proability δ.
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Define Y ′
2 = X1 ⊕ Y2. Thus, the DMIC with inputs X1, X2 and outputs Y1, Y

′
2 is a degraded

DMIC, depicted in Fig. 4.8. The capacity region of this degraded DMIC has been solved by

Liu and Ulukus [30], and can be expressed as

RI = co







⋃

p(x1)p(x2)

((R1, R2) : R1 ≤ I(X1; Y1), R2 ≤ I(X2; Y
′
2 |X1))







.

The corresponding capacity region for the DMZIC is

RZ = co







⋃

p(x1)p(x2)

((R1, R2) : R1 ≤ I(X1; Y1), R2 ≤ I(X2; Y2))







. (4.20)

That RZ being the capacity region comes from the fact that I(X2; Y
′
2 |X1) = I(X2; Y2) while

RI is naturally an outer-bound.

Example 4.6. Let ‖X1‖ = ‖X2‖ = ‖Y1‖ = ‖Y2‖ = 2 and the channel transition probability

be given by

p(y1y2|x1x2) = p(y2|x2)p(y1|x1y2),

where p(y2|x2) and p(y1|x1y2) are specified in Table 4.1. The channel is shown in Fig. 4.9.

Table 4.1: Channel Transition Probabilities

p(y2|x2) y2 = 0 y2 = 1 p(y1|x1y2) y1 = 0 y1 = 1
x2 = 0 .1 .9 x1y2 = 00 or 11 .75 .25
x2 = 1 .9 .1 x1y2 = 01 or 10 0 1

By Theorem 4.3, the sum-rate capacity is

Csum = max
p(x1)p(x2)

I(X1; Y1) + I(X2; Y2) ≈ .531.
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X1

X2

V ∼ Bern(ǫ)

Y1

Y2

+ 0

1

0

1

+

Figure 4.9: The DMZIC model with a binary Z channel channel degradation.

In addition, a simple outer bound can be constructed as follows

R1 ≤ I(X1; Y1|X2), (4.21)

R2 ≤ I(X2; Y2), (4.22)

R1 +R2 ≤ I(X1; Y1) + I(X2; Y2). (4.23)

We now use Theorem 4.8 to obtain a new outer bound. Construct Y ′
2 as follows

Y ′
2 =







0, if x1y2 = 00 or 11,

1, otherwise.

Then p(y′2|x1x2) is given in Table 4.2.

Table 4.2: P (Y ′
2 |X1X2)

p(y′2|x1x2) y′2 = 0 y′2 = 1
x1x2 = 00 .1 .9
x1x2 = 01 .9 .1
x1x2 = 10 .9 .1
x1x2 = 11 .1 .9
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Using Theorem 4.8, the capacity region of the DMZIC is outer-bounded by that of the asso-

ciated discrete memoryless degraded broadcast channel:

ROB = co







⋃

p(u)p(x1x2|u)
(R1, R2)

∣

∣

∣

∣

∣

∣

R1 ≤ I(U ; Y1),

R2 ≤ I(X1X2; Y
′
2 |U)







,

Let R2 to be fixed at x, then

max
R2=x

R1 = max
H(Y ′

2 |U)=x+h2(.1)
H(Y1)−H(Y1|U)

≤ log(|Y1|)− fT (x+ h2(.1)),

where fT (·) is a function defined by Witsenhausen and Wyner [34]. Fig. 4.10 depicts the

new outer-bound specified by

R′
OB =







(R1, R2)|
R1 ≤ log |Y1| − fT (x+ h2(.1)),

R2 ≤ x







. (4.24)

This new outer-bound significantly improves upon the simple outer-bound (4.21)-(4.23).

4.5 Summary

In this chapter, we have derived the sum-rate capacity for a class of discrete memoryless

interference channels whose channel property resembles that of the Gaussian interference

channel with one-sided and weak interference. Capacity outer bounds are also derived for

this class of channels. The capacity expressions as well as the encoding schemes that achieve

the sum-rate capacity are analogous to the Gaussian interference channel counterpart. These

results allow us to obtain capacity results for several new discrete memoryless interference

channels.
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Figure 4.10: Comparison of the outer-bounds.
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The DMIC with Mixed Interference

In this chapter, we further extend the technique used in the previous chapter to the mixed

interference case. Section 5.1 defines the mixed interference for the DMIC, and then derives

the sum-rate capacity result for this class of channels. Examples are provided in Section

5.2. Finally, Section 5.3 concludes this chapter.

5.1 Mixed interference and sum-rate capacity for the

DMIC

For the GIC with mixed interference (a ≤ 1 and b ≥ 1 in (2.4) and (2.5)), one can construct

an equivalent GIC with degradedness defined by the Markov chain X2 − (X1, Y2)− Y1:

Y ′
1 = (1− ab)X1 + aY2 + Z ′

1,

Y2 = bX1 +X2 + Z2,

where Z ′
1 ∼ N (0, 1− a2). This motivates us to define DMIC with mixed interference in an

analogous fashion, which leads directly to its sum-rate capacity described in Theorem 5.2.

54
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Definition 5.1. A DMIC is said to have mixed interference if it satisfies the Markov chain

X2 − (X1, Y2)− Y1 (5.1)

and

I(X1; Y1|X2) ≤ I(X1; Y2|X2) (5.2)

for all possible product distributions on X1 × X2.

Theorem 5.2. The sum-rate capacity of a DMIC with mixed interference, i.e., one that

satisfies the two conditions (5.1) and (5.2), is

Csum = max
p(x1)p(x2)

{I(X2; Y2|X1) + min{I(X1; Y1), I(X1; Y2)}} . (5.3)

Proof. In order to achieve this sum rate, user 1 transmits its message at a rate such that

both receivers can decode it by treating the signal from user 2 as noise; user 2 transmits at

the interference-free rate since receiver 2 is able to subtract the interference from user X1

prior to decoding its own message.

For the converse, we prove the following two sum-rate bounds separately:

n(R1 +R2) ≤
n
∑

i=1

I(X1iX2i; Y2i), (5.4)

n(R1 +R2) ≤
n
∑

i=1

I(X1i; Y1i) + I(X2i; Y2i|X1i). (5.5)

For (5.4), the derivation follows the same steps as Costa and El Gamal’s result[8]. For (5.5),

we apply similar techniques used in the proof of Theorem 4.3. First, notice that (5.1) implies

I(U ; Y1|X1) ≤ I(U ; Y2|X1) (5.6)
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for any U whose joint distribution with X1, X2, Y1, Y2 is

p(u, x1, x2, y1, y2) = p(u)p(x1x2|u)p(y1y2|x1x2). (5.7)

Therefore,

n(R1 +R2)− nǫ
(a)

≤ I(Xn
1 ; Y

n
1 ) + I(Xn

2 ; Y
n
2 |Xn

1 )

=

n
∑

i=1

(

H(Y1i|Y i−1
1 )−H(Y1i|Y i−1

1 Xn
1 ) +H(Y2i|Y i−1

2 Xn
1 )−H(Y2i|Y i−1

2 Xn
2X

n
1 )
)

(b)

≤
n
∑

i=1

(

H(Y1i)−H(Y1i|Y i−1
1 Xn

1 Y
i−1
2 ) +H(Y2i|UiX1i).−H(Y2i|X2iX1iUi)

)

=
n
∑

i=1

(I(UiX1i; Y1i) + I(X2i; Y2i|UiX1i))

=

n
∑

i=1

(I(X1i; Y1i) + I(Ui; Y1i|X1i) + I(X2i; Y2i|UiX1i))

(c)

≤
n
∑

i=1

(I(X1i; Y1i) + I(Ui; Y2i|X1i) + I(X2i; Y2i|UiX1i))

(d)
=

n
∑

i=1

(I(X1i; Y1i) + I(X2i; Y2i|X1i)),

where (a) is because of the independence between Xn
1 and Xn

2 ; (b) is from the fact that

conditioning reduces entropy and by defining Ui , (X i−1
1 Xn

1,i+1, Y
i−1
2 ); (c) is from (5.6); and

(d) is because of the memoryless property of the channel and (5.7). From (5.4) and (5.5),

we have

R1 +R2 ≤
n
∑

i=1

min{I(X1iX2i; Y2i), I(X1i; Y1i) + I(X2i; Y2i|X1i)}. (5.8)

Finally, by introducing the time-sharing random variable Q and following the same process

as in (4.9), one obtains (5.3) as desired.
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X1

X2

Y1

Y2

×

+

Figure 5.1: The DMIC with mixed interference example model.

We give the following example where the obtained sum-rate capacity helps determine the

capacity region of a DMIC.

5.2 Example

Example 5.1. Consider the following deterministic channel:

Y1 = X1 ·X2,

Y2 = X1 ⊕X2,

where the input and output alphabets X1 = X2 = Y1 = Y2 = {0, 1}. This channel model is

depicted in Fig. 5.1 Notice that this channel does not satisfy the condition of the deterministic

interference channel in [32]. Obviously, the Markov chain (5.1) holds. Moreover,

I(X1; Y1|X2) = H(Y1|X2) = p(x2 = 1)H(X1),

I(X1; Y2|X2) = H(Y2|X2) = H(X1).
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Therefore,

I(X1; Y1|X2) ≤ I(X1; Y2|X2),

for all possible input product distributions on X1 × X2. Thus, this is a DMIC with mixed

interference. On applying Theorem 5.2, we compute the sum-rate capacity to be

Csum = max
p(x1)p(x2)

[min(I(X1X2; Y2), I(X1; Y1) + I(X2; Y2|X1))]

= 1. (5.9)

Given that (1, 0) and (0, 1) are both trivially achievable, the above sum-rate capacity leads to

the capacity region for this DMIC to be {(R1, R2) : R1 +R2 ≤ 1}.

5.3 Summary

In this chapter, we combined the weak interference condition from the previous chapter

together with the strong condition derived by Costa and El Gamal [8] to form the mixed

interference definition. Then the analogous sum-rate capacity result is derived under this

condition. Several new DMICs were studied whose sum-rate capacities or the capacity region

were resolved.



Chapter 6

Capacity Analysis of

Multiple-Access-Z-Interference

Channels

In this chapter, we focus on a 3-user uplink model with one-sided interference, where we

attempt to derive exact capacity results for strong, very strong, mixed and weak interference

cases.

The rest of the chapter are organized as follows. We give the problem formulation in Section

6.1. Section 6.2 gives an achievable rate region for the discrete memoryless MAZIC and the

result is extended to the Gaussian case. Capacity results for the strong, mixed and weak

interference cases are derived in Sections 6.3, 6.4 and 6.5 respectively. Section 6.6 concludes

the paper.

59
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Cell 1 Cell 2

RX1 RX2

TX1

TX2

Figure 6.1: Two-cell uplink transmission.

6.1 Model formulation

Fig. 6.2 is an abstract model of the above network. Transmitters 1 and 2 and receiver 1 form

a MAC. Transmitter 3 and receiver 2 form a single-user channel and receiver 2 is subject to

interference from transmitters 1 and 2. Specifically, the channel outputs are given by

Y1 = X1 +X2 + Z1, (6.1)

Y2 =
√
aX1 +

√
bX2 +X3 + Z2, (6.2)

where Xi and Yj are the transmitted and received signals of transmitter i and receiver j,

respectively, for i = 1, 2, 3 and j = 1, 2. For each j, Zj is Gaussian noise with zero mean

and unit variance and we assume all the noise terms are independent of each other and over

time. For channels with arbitrary coefficients and noise variances, standard normalization

can be applied such that its capacity is equivalent to the above channel, i.e., the gains for

X1, X2 in Y1 and X3 in Y2 are all assumed to be 1. The channel coefficients a and b are

fixed and known at both the transmitters and the receivers. Without loss of generality, we

assume a, b > 0, i.e., they are strictly positive. For transmitter i, the user/channel input

sequence Xi1, Xi2, · · · , Xin is subject to a block power constraint
∑n

k=1 E [X2
ik] ≤ nPi. We

denote the rates for messages W1, W2 and W3 by R1, R2 and R3, respectively. The channel
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X1(P1)

X2(P2)

X3(P3)

Y1
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Z1

Z2

b
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+

+

Figure 6.2: The Gaussian Multiple-Access-Z-interference Channel model

defined here is referred to as a Multiple-Access-Z-Interference channel (MAZIC). Unlike

the two-user Z-interference channel (ZIC), there are more than one interference signal from

multiple independent senders. For example, in the Gaussian case, the interference signals

are multiplied by different coefficients. One cannot claim equivalence to degraded channels

as in the two-user ZIC case. As such, capacity analysis becomes more complicated. Our

goal is to obtain capacity results for the strong, mixed1 and weak interference cases for the

MAZIC.

Mathematically, a discrete memoryless MAZIC is defined by (X1,X2,X3, p,Y1,Y2), where

X1,X2 and X3 are finite input alphabet sets; Y1 and Y2 are finite output alphabet sets; and

p(y1y2|x1x2x3) is the channel transition probability. As the receivers do not cooperate, the

capacity depends only on the marginal channel transition probabilities. Thus we can only

consider two marginal distributions (p(y1|x1x2), p(y2|x1x2x3)). The channels are memoryless,

i.e.,

p(yn1 y
n
2 |xn

1x
n
2x

n
3 ) =

n
∏

i=1

p(y1iy2i|x1ix2ix3i), (6.3)

1Here, the notion of mixed interference refers to the strengths of the two interference links with coefficients√
a and

√
b. It differs from the classical notion of mixed interference where the interference is imposed on

two different receivers.
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where xn
i = [xi1, xi2, · · · , xin] and ynj = [yj1, yj2, · · · , yjn], for i = 1, 2, and j = 1, 2, 3. The

message for transmitter i is Wi ∈ {1, 2, · · · , 2nRi}, i = 1, 2, 3. A (2nR1 , 2nR2, 2nR3, n) code

consists of three encoders:

f1 : {1, 2, · · · , 2nR1} → X n
1 , (6.4)

f2 : {1, 2, · · · , 2nR2} → X n
2 , (6.5)

f3 : {1, 2, · · · , 2nR3} → X n
3 , (6.6)

and two decoders:

g1 : Yn
1 → {1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2}, (6.7)

g2 : Yn
2 → {1, 2, · · · , 2nR3}. (6.8)

The error probability is defined as

Pe = Pr{g1(Y n
1 ) 6= (W1,W2), or g2(Y

n
2 ) 6= W3}. (6.9)

Assuming W1, W2 and W3 are all uniformly distributed, a rate triple (R1, R2, R3) is achiev-

able if there exist a sequence of (2nR1, 2nR2, 2nR3, n) codes for n sufficiently large such that

Pe → 0 when n → ∞. Throughout this paper, we make the assumption that all the trans-

mitters implement deterministic encoders instead of stochastic encoders as one can easily

prove, following the same approach as that of [35], that stochastic encoders do not increase

the capacity for a MAZIC.

6.2 An achievable region for the general MAZIC

We use superposition coding and joint decoding to derive an achievable rate region. Consider

the independent messages W1 and W2 generated by transmitters 1 and 2, respectively. We
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split them into

W1 = [W1c,W1p],

W2 = [W2c,W2p],

where W1c and W2c denote the common messages that are to be decoded at both receivers

1 and 2; and W1p and W2p represent the private messages that are to be decoded only at

receiver 1.

We first introduce the auxiliary random variables Q, U1, and U2, where Q is a time-sharing

random variable, and U1 and U2 contain the information W1c and W2c respectively. The

distribution of (Q,U1, U2, X1, X2, X3) factorizes as

p(qu1u2x1x2x3) = p(q)p(u1|q)p(x1|u1, q)p(u2|q)p(x2|u2, q)p(x3|q). (6.10)

The following achievable rate region can be obtained whose proof is given in Appendix D.
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Theorem 6.1. For a discrete memoryless MAZIC, an achievable rate region is given by the

set of all nonnegative rate triples (R1, R2, R3) that satisfy

R1 ≤ I(X1; Y1|X2Q), (6.11)

R2 ≤ I(X2; Y1|X1Q), (6.12)

R3 ≤ I(X3; Y2|U1U2Q), (6.13)

R1 +R2 ≤ I(X1X2; Y1|Q), (6.14)

R1 +R3 ≤ I(X1; Y1|U1X2Q) + I(U1X3; Y2|U2Q), (6.15)

R2 +R3 ≤ I(X2; Y1|U2X1Q) + I(U2X3; Y2|U1Q), (6.16)

R1 +R2 +R3 ≤ I(X1X2; Y1|U1U2Q) + I(U1U2X3; Y2|Q), (6.17)

R1 +R2 +R3 ≤ I(X1X2; Y1|U1Q) + I(U1X3; Y2|U2Q), (6.18)

R1 +R2 +R3 ≤ I(X1X2; Y1|U2Q) + I(U2X3; Y2|U1Q), (6.19)

R1 + 2R2 +R3 ≤ I(X2; Y1|U2X1Q) + I(X1X2; Y1|U1Q) + I(U1U2X3; Y2|Q), (6.20)

2R1 +R2 +R3 ≤ I(X1; Y1|U1X2Q) + I(X1X2; Y1|U2Q) + I(U1U2X3; Y2|Q), (6.21)

where the input distribution factors as (4.14). Furthermore, the region remains the same if

we impose the constraints ‖Q‖ ≤ 12, ‖U1‖ ≤ ‖X1‖+ 5, and ‖U2‖ ≤ ‖X2‖+ 5.

The MAC and the Z-interference channel (ZIC) are two special cases of a MAZIC. On setting

X3U1U2 = ∅, we obtain the capacity region for the MAC:

R1 ≤ I(X1; Y1|X2Q),

R2 ≤ I(X2; Y1|X1Q),

R1 +R2 ≤ I(X1X2; Y1|Q).
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Alternatively, on setting U2X2 = ∅, we obtain Han and Kobayashi’s achievable rate region

for the ZIC [4, 28, 36]:

R1 ≤ I(X1; Y1|Q),

R3 ≤ I(X3; Y2|U1Q),

R1 +R3 ≤ I(X1; Y1|U1Q) + I(U1X3; Y2|Q).

Theorem 6.1 allows us to obtain a computable achievable region for Gaussian MAZICs.

Remark 6.2. The MAZIC model looks similar to the many-to-one interference channel stud-

ied in [37]. A key difference, however, is that receiver Y1 in the MAZIC setting is a MAC

receiver. If one applies the same lattice codes described in [37], receiver 1 can only decode

the sum but not the individual messages from transmitters 1 and 2. To avoid such a scenario,

one may employ orthogonal transmissions for transmitters 1 and 2. Together with the fact

that at each level, only user 3 or users 1, 2 transmit as in the approach introduced in [37],

it will result in a simple TDM (Time-division Multiplexing) scheme, where only one user

transmits at a time. This is obviously included in the achievable rate region described in

Theorem 6.1. The same situation would occur if one applies interference alignment method-

ologies introduced in [38–40]. The interference channel in [40] is symmetric and each receiver

is required to decode its own message, while in our model the channel is asymmetric and

receiver 1 is required to decode messages from both transmitters 1 and 2. Therefore, apply-

ing the lattice coding scheme in [40] to our problem and aligning X1 and X2 at receiver 2

requires additional work to make both X1 and X2 distinguishable at receiver 1. Instead, the

real interference alignment [41] can be directly used here to achieve 1.5 degrees of freedom

(DoF). The detailed coding scheme is presented in the following:

For user i, the transmitter selects a constellation Ui to send the data stream. The constel-

lation points are chosen from integer points Ui ⊂ Z, and Ui ⊂ [−1
2
P

1−ǫ
2(2+ǫ) , 1

2
P

1−ǫ
2(2+ǫ) ], where

ǫ > 0 is arbitrarily small. To adjust the power, the transmitter multiplies the signal by a
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constant, the transmitted signals are x1 = A
√
bu1, x2 = A

√
au2 and x3 = Au3, where the

constant A is chosen such that the power constraint is satisfied at all three transmitters.

The received signals in this case are

y1 = A
√
bu1 + A

√
au2 + z1, (6.22)

y2 = A
√
abu1 + A

√
abu2 + Au3 + z2

= A
√
ab(u1 + u2) + Au3 + z2. (6.23)

It is clear that users 1 and 2 have distinct signals at the intended receiver Y1 while they

are aligned at receiver 2. Since the rational dimension of the interference signal is 1, the

multiplexing gain of the intended data stream is 1
2
. This is where the number 1−ǫ

2(2+ǫ)
comes

from.

Note that the sum rate inner bound proposed here is not DoF optimal. However, DoF

may not be a good fit in terms of the performance metrics under our problem setting, as

DoF becomes optimal only for large enough P1 and P2. The application studied herein is

the uplink transmission with inter-cell interference. As mobile units have limited power

constraints, it is better to consider lower power scenario and use the achievable sum rate

derived by random coding schemes. In addition, it will be shown in Lemma 6.23 that for

weak interference and bounded power constraints, treating interference as noise based on

random coding methodology achieves a sum rate that is within half a bit of the sum capacity.

Remark 6.3. The generalized Han-Kobayashi achievable scheme is introduced for the 3-user

full interference network in [42]. The codebook structure uses rate splitting and superposition

coding as in the traditional Han-Kobayashi scheme [4, 28, 36], as well as Marton coding

developed for the broadcast channel [43]. This layer of Marton coding is used to explore

the different interference structures in different receiving signals. However, in our MAZIC

model, another layer of Marton coding is not necessary, since only receiver Y2 is subject to

interference.
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Remark 6.4. We would like to explain the bound on R1+2R2+R3 in detail in the context of

deterministic model, where the transmitter is modeled as n bit vector for each user, and each

input bit is viewed as a “level”. Suppose we increase the rate of user 2 by a small amount δ

(take 1 level more). The slope implies that 2δ amount of rate for R3 is needed to balance it

out if one want to keep R1 unchanged, or we need to give away 2 levels. Intuitively speaking,

this is because one may need to change the transmission scheme of X1 in order to keep R1

the same, in addition to the impact from increasing R2. For example, in the deterministic

model setting, increase R2 by taking over a level which is interfered by X1 at receiver 1,

as well as X3 at receiver 2. To maintain R1, user 1 needs to take over another level which

is interfered with X3 at receiver 2. As a result, increasing R2 by one bit would essentially

make R3 to sacrifice two bits, in order to maintain R1 at the same rate, and facilitate R2 to

increase.
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Corollary 6.5. For any nonnegative pair [α, β] ∈ [0, 1], the non-negative rate triples (R1, R2, R3)

satisfying the conditions (6.24)-(6.34) are achievable for a Gaussian MAZIC.

R1 ≤
1

2
log(1 + P1), (6.24)

R2 ≤
1

2
log(1 + P2), (6.25)

R3 ≤
1

2
log

(

1 +
P3

1 + aαP1 + bβP2

)

, (6.26)

R1 +R2 ≤
1

2
log (1 + P1 + P2) , (6.27)

R1 +R3 ≤
1

2
log (1 + αP1) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1 + bβP2

)

, (6.28)

R2 +R3 ≤
1

2
log (1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (6.29)

R1 +R2 +R3 ≤
1

2
log (1 + αP1 + βP2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (6.30)

R1 +R2 +R3 ≤
1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1 + bβP2

)

, (6.31)

R1 +R2 +R3 ≤
1

2
log (1 + P1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + aαP1 + bβP2

)

, (6.32)

R1 + 2R2 +R3 ≤
1

2
log (1 + βP2) +

1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

,

(6.33)

2R1 +R2 +R3 ≤
1

2
log (1 + αP1) +

1

2
log (1 + P1 + βP2) +

1

2
log

(

1 +
aᾱP1 + bβ̄P2 + P3

1 + aαP1 + bβP2

)

.

(6.34)

Proof. Corollary 6.5 follows directly from Theorem 6.1 by choosing ‖Q‖ = 1, X1 ∼ N (0, P1),

X2 ∼ N (0, P2), and X1 = U1 + V1, X2 = U2 + V2, where U1, U2, V1 and V2 are inde-

pendent random variables with U1 ∼ N (0, αP1), U2 ∼ N (0, βP2), V1 ∼ N (0, ᾱP1) and

V2 ∼ N (0, β̄P2).

In the following, we discuss capacity results for different interference regimes for MAZICs.
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6.3 MAZICs with strong interference

6.3.1 Discrete case

Similar to [8], the discrete MAZIC with strong interference is defined as a discrete memory-

less MAZIC satisfying

I(X1; Y1|X2) ≤ I(X1; Y2|X2X3), (6.35)

I(X2; Y1|X1) ≤ I(X2; Y2|X1X3), (6.36)

I(X1X2; Y1) ≤ I(X1X2; Y2|X3), (6.37)

for all product distributions on X1 ×X2 ×X3.

The above single letter conditions imply multi-letter conditions as stated below.

Lemma 6.6. For a discrete memoryless interference channel, if (6.35)-(6.37) are satisfied

for all product probability distributions on X1 × X2 ×X3, then

I(Xn
1 ; Y

n
1 |Xn

2 ) ≤ I(Xn
1 ; Y

n
2 |Xn

2X
n
3 ), (6.38)

I(Xn
2 ; Y

n
1 |Xn

1 ) ≤ I(Xn
2 ; Y

n
2 |Xn

1X
n
3 ), (6.39)

I(Xn
1X

n
2 ; Y

n
1 ) ≤ I(Xn

1X
n
2 ; Y

n
2 |Xn

3 ). (6.40)

Proof. From the channel model, we have

I(Xn
1 ; Y

n
1 |Xn

2X
n
3 ) = I(Xn

1 ; Y
n
1 |Xn

2 ),

I(Xn
2 ; Y

n
1 |Xn

1X
n
3 ) = I(Xn

2 ; Y
n
1 |Xn

1 ),

I(Xn
1X

n
2 ; Y

n
1 |Xn

3 ) = I(Xn
1X

n
2 ; Y

n
1 ).
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The rest of the proof can be established using techniques similar to that of [8], hence is

omitted.

The above lemma leads to the following theorem.

Theorem 6.7. For a discrete memoryless MAZIC with conditions (6.35)-(6.37) for all

product probability distributions on X1 × X2 × X3, the capacity region is given by the set of

all the nonnegative rate triples (R1, R2, R3) that satisfy

R1 ≤ I(X1; Y1|X2Q), (6.41)

R2 ≤ I(X2; Y1|X1Q), (6.42)

R3 ≤ I(X3; Y2|X1X2Q), (6.43)

R1 +R2 ≤ I(X1X2; Y1|Q), (6.44)

R2 +R3 ≤ I(X2X3; Y2|X1Q), (6.45)

R1 +R3 ≤ I(X1X3; Y2|X2Q), (6.46)

R1 +R2 +R3 ≤ I(X1X2X3; Y2|Q), (6.47)

where the input distribution factors as

p(qx1x2x3) = p(q)p(x1|q)p(x2|q)p(x3|q). (6.48)

Furthermore, the region remains invariant if we impose the constraint ‖Q‖ ≤ 8.

The proof is given in Appendix E.
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6.3.2 Gaussian case

For a Gaussian MAZIC, the strong interference is defined as the case where a ≥ 1 and b ≥ 1,

which are sufficient and necessary conditions for (6.35) and (6.36), respectively. However,

it is hard to find a sufficient and necessary conditions for (6.37), and there are counter

examples in which condition (6.37) is violated even if a ≥ 1 and b ≥ 1. That is, there exist

input distributions such that (6.37) does not hold with a ≥ 1 and b ≥ 1. We provide a

counter example in [44, Example 1].

While Theorem 6.5 still applies, a better rate splitting strategy can be devised for this case.

If (R1, R2, R3) is an achievable rate triple, then receiver 2 can reliably recover X1 and X2

at these rates. Therefore, receiver 2 can decode whatever receiver 1 decodes. Thus, if we

choose the private message sets for users 1 and 2 to be empty, i.e., α = β = 0, we obtain an

achievable rate region.

In the following, we give an outer-bound on the capacity region.

Corollary 6.8. For a Gaussian MAZIC with conditions a, b ≥ 1, an outer-bound on the

capacity region is given by the set of all the nonnegative rate triples (R1, R2, R3) that satisfy

R1 ≤ 1

2
log (1 + P1) , (6.49)

R2 ≤ 1

2
log (1 + P2) , (6.50)

R3 ≤ 1

2
log (1 + P3) , (6.51)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) , (6.52)

R2 +R3 ≤ 1

2
log (1 + bP2 + P3) , (6.53)

R1 +R3 ≤ 1

2
log (1 + aP1 + P3) . (6.54)
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The proof of this corollary is very similar to the proof of Theorem 6.7, except for the bound

on R1 + R2 + R3. The reason is that with a ≥ 1 and b ≥ 1, I(X1X2;X1 + X2 + Z1) ≤
I(X1X2;

√
aX1 +

√
bX2 + Z2) is generally not true for every possible input distribution,

hence we do not have (6.37). Therefore, inequality (6.47) cannot be obtained.

Next, let us consider one interference link being strong, for example, 1 ≤ a ≤ 1+P3. In this

case, we can easily get the following outer-bound:

R1 ≤ 1

2
log(1 + P1), (6.55)

R2 ≤ 1

2
log(1 + P2), (6.56)

R3 ≤ 1

2
log(1 + P3), (6.57)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (6.58)

R1 +R3 ≤ 1

2
log(1 + aP1 + P3). (6.59)

On the other hand, by setting α = β = 0 in the achievable region for Gaussian MAZICs

in Corollary 6.5, one would have an achievable rate region with all nonnegative rate triples

(R1, R2, R3) that satisfy

R1 ≤ 1

2
log(1 + P1), (6.60)

R2 ≤ 1

2
log(1 + P2), (6.61)

R3 ≤ 1

2
log(1 + P3), (6.62)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (6.63)

R1 +R3 ≤ 1

2
log(1 + aP1 + P3), (6.64)

R2 +R3 ≤ 1

2
log(1 + bP2 + P3), (6.65)

R1 +R2 +R3 ≤ 1

2
log(1 + aP1 + bP2 + P3). (6.66)
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The following theorem summarizes the cases where some segment of the line: the intersection

of the two hyperplanes defined by

R1 +R2 =
1

2
log(1 + P1 + P2), (6.67)

R1 +R3 =
1

2
log(1 + aP1 + P3) (6.68)

is on the boundary of the capacity region.

Theorem 6.9. For a Gaussian MAZIC with 1 ≤ a ≤ 1 + P3, if

b ≥ 1 + aP1 + P3

1 + P1
, (6.69)

a segment of the line defined by (6.67) and (6.68), which starts at

(

1

2
log(1 + P1),

1

2
log

(

1 +
P2

1 + P1

)

,
1

2
log

(

1 +
P3

1 + aP1

))

, (6.70)

and ends at










1
2
log(1 + P1 + P2)− 1

2
log
(

1 + bP2

1+aP1+P3

)

,

1
2
log
(

1 + bP2

1+aP1+P3

)

,

1
2
log
(

1+aP1+bP2+P3

1+P1+P2

)











, (6.71)

is on the boundary of the capacity region of the channel.

Proof. Consider the rate triple (R1, R2, R3) on the line defined by (6.67) and (6.68). Any

achievable rate triple on this line that also satisfies (6.65) and (6.66) must appear on the

boundary of the capacity region as it belongs to both the inner and outer bounds.

Consider the rate triple defined by (6.70). It is achievable if

1

2
log

(

1 +
P2

1 + P1

)

≤ 1

2
log

(

1 +
bP2

1 + aP1 + P3

)

, (6.72)
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i.e.,

b ≥ 1 + aP1 + P3

1 + P1
, (6.73)

as receiver 1 first decodes X2, subtracts it, and then decodes X1; receiver 2 also first decodes

X2, subtracts it, and then decodes X3 by treating X1 as noise.

The other rate triple defined by (6.71) satisfies (6.66) with equality, and satisfies (6.65) if

1 ≤ a ≤ 1 + P3 and b ≥ 1+aP1+P3

1+P1
.

Therefore, the line segment between these two rate triples (6.70) and (6.71) is on the bound-

ary of the capacity region, and is achieved by time sharing.

Fig. 6.3 gives an example where a line segment defined by (6.67) and (6.68) is on the

boundary of the capacity region.

Increasing b even further for the case of a ≥ 1 will ensure that (6.65) and (6.66) are never

active. Specifically, we have

Corollary 6.10. For a Gaussian MAZIC with a > 1 and b > 1 + aP1 + P3, the capacity

region is the set of all nonnegative rate triples (R1, R2, R3) that satisfies

R1 ≤ 1

2
log(1 + P1), (6.74)

R2 ≤ 1

2
log(1 + P2), (6.75)

R3 ≤ 1

2
log(1 + P3), (6.76)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (6.77)

R1 +R3 ≤ 1

2
log(1 + aP1 + P3). (6.78)

Proof. With a ≥ 1 and b ≥ 1 + aP1 + P3, (6.65) and (6.66) are redundant in the achievable

region. As a result, the inner-bound and outer-bound coincide with each other.
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Figure 6.3: The line 2 defined in Eq. (6.67) and Eq. (6.68) appears as the boundary line
of the capacity region. (Plane 1 is defined by R1 + R2 +R3 = 1

2 log(1 + aP1 + bP2 + P3);
Region 3 is defined by inequalities (6.60)-(6.66)); Points 4 and 5 are the two endpoints
of the line segment that is on the capacity region. For this example, the corresponding

channel parameters are: a = 1.2, b = 3, P1 = P3 = 2, P2 = 3.

Remark 6.11. In general, for the strong interference case, we can conclude that the sum-

capacity is within a constant factor of 1.5 times the sum-rate achieved by the Han-Kobayashi

scheme. To show this, notice that the inner bound specified by (6.60)-(6.66) differs from

the outer-bound specified by (6.49)-(6.54) only in the additional sum-rate bound (6.66).

Suppose that the sum-rate specified by (6.66) is achievable and we can then choose the

upper-bound defined by 1
2
{(6.52) + (6.53) + (6.54)}. Is is easy to verify that the sum-rate

upper-bound is less than 1.5 times the achievable sum-rate defined by (6.66). If, on the

other hand, (6.66) is not achievable, this implies that the inner and outer bounds coincide

thus the sum capacity is determined by (6.52), (6.53) and (6.54). Thus in both cases, the

sum-capacity is within a factor of 1.5 times the achievable sum-rate.
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Remark 6.12. As a special case, we can define the very strong interference case as a discrete

memoryless MAZIC satisfying

I(X1; Y1|X2) ≤ I(X1; Y2|X2), (6.79)

I(X2; Y1|X1) ≤ I(X2; Y2|X1), (6.80)

I(X1X2; Y1) ≤ I(X1X2; Y2), (6.81)

for all product distributions on X1 ×X2 ×X3. By Theorem 6.7, one can immediately obtain

the capacity region of the MAZIC with very strong interference as the set of all nonnegative

rate triples (R1, R2, R3) that satisfy

R1 ≤ I(X1; Y1|X2Q), (6.82)

R2 ≤ I(X2; Y1|X1Q), (6.83)

R3 ≤ I(X3; Y2|X1X2Q), (6.84)

R1 +R2 ≤ I(X1X2; Y1|Q), (6.85)

with the input distribution factoring as

p(qx1x2x3) = p(q)p(x1|q)p(x2|q)p(x3|q). (6.86)

The region remains invariant if we impose the constraint ‖Q‖ ≤ 5.

Similarly, we can define the very strong interference for a Gaussian MAZIC as a, b ≥ 1+P3.

Notice that the condition a, b ≥ 1 + P3 is not a sufficient condition for (6.79) and (6.80), as

discussed in [6, Theorem 2]. A counter example is also provided in [6, Appendix]. Again, it

is a special case of the strong interference case, therefore, the capacity region can be readily

obtained from Corollary 6.8, which is the set of all nonnegative rate triples (R1, R2, R3) that
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satisfy

R1 ≤ 1

2
log (1 + P1) , (6.87)

R2 ≤ 1

2
log (1 + P2) , (6.88)

R3 ≤ 1

2
log (1 + P3) , (6.89)

R1 +R2 ≤ 1

2
log (1 + P1 + P2) . (6.90)

6.4 The MAZICs with mixed interference

6.4.1 Discrete case

The discrete MAZIC with mixed interference is defined as a discrete memoryless MAZIC

satisfying

p(y1y2|x1x2x3) = p(y1|x1x2)p(y2|x1x2x3)

= p(y1|x1x2)p
′(y2|x3x1y1), (6.91)

for some p′(y2|x3x1y1), and

I(X2; Y1|X1) ≤ I(X2; Y2|X1X3), (6.92)

for all input distributions that factorizes as p(x1)p(x2)p(x3)
2.

Condition (6.91) means that we can find another discrete memoryless MAZIC with (p(y1|x1x2), p
′(y2|x3x1y1))

that has the same capacity region as the original MAZIC. Furthermore, the alternative

2Condition (6.91) is referred to the link of weak interference, and condition (6.92) is referred to the link
of strong interference.
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MAZIC admits the Markov chain

X1 − (X2, X3, Y1)− Y2. (6.93)

For this class of channels, we can outer-bound the capacity region as follows.

Theorem 6.13. For a discrete memoryless MAZIC with mixed interference, an outer-bound

to the capacity region can be expressed as a set of nonnegative rate pairs (R1, R2) satisfying

the following inequalities:

R1 ≤ I(X1; Y1|X2U1Q), (6.94)

R2 ≤ I(X2; Y1|X1Q), (6.95)

R3 ≤ I(X3; Y2|X1X2Q), (6.96)

R3 ≤ I(U1X3; Y1|Q), (6.97)

R1 +R2 ≤ I(X1X2; Y1|Q), (6.98)

R2 +R3 ≤ I(X2X3; Y2|X1Q), (6.99)

where the input distribution is factorized as p(q)p(u1|q)p(x1|u1q)p(x2|u1q)p(x3|q).

Proof. Inequalities (6.95) and (6.96) are trivial outer-bounds, and (6.98) is the same as the

sum-rate upper-bound for the MAC. Moreover, (6.99) is the same as the sum-rate upper-

bound for the two-user IC with strong interference [8]. It remains to show (6.94) and (6.97).
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First, let us consider

n(R1 − ǫ)
(a)

≤ I(Xn
1 ; Y

n
1 )

(b)

≤ I(Xn
1 ; Y

n
1 |Xn

2 )

=
n
∑

i=1

I(Xn
1 ; Y1i|Xn

2 Y
i−1
1 )

=

n
∑

i=1

{

H(Y1i|Xn
2 Y

i−1
1 )−H(Y1i|Xn

2 Y
i−1
1 Xn

1 )
}

(c)
=

n
∑

i=1

{

H(Y1i|X i−1
2 X2iY

i−1
1 )−H(Y1i|X1iX2i)

}

(d)

≤
n
∑

i=1

{H(Y1i|X2iU1i)−H(Y1i|X1iX2iU1i)}

=

n
∑

i=1

I(X1i; Y1i|X2iU1i),

where (a) comes from Fano’s inequality; (b) is because of the independence between Xn
1

and Xn
2 ; (c) is because that conditioning reduces entropy and the channel is assumed to be

memoryless; for (d), first we identify U1i = (X i−1
2 , Y i−1

1 ) and also the memoryless property

induces the Markov chain U1i − (X1i, X2i)− Y1i.

Now, let us show X1i − U1i − X2i. Due to the memoryless property, the following Markov

chain holds:

(X1iX2i)− (X i−1
1 , X i−1

2 )− Y i−1
1 .

By weak union property, we obtain the following Markov chain:

X2i − (X1i, X
i−1
1 , X i−1

2 )− Y i−1
1 .
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Together with the Markov chain X2i − X i−1
2 − X1iX

i−1
1 , which due to the independence

between X i
1 and X i

2, we obtain the following Markov chain by the contraction property:

X2i −X i−1
2 − (X1i, X

i−1
1 , Y i−1

1 ). (6.100)

Hence, we get the Markov chain

X2i − (X i−1
2 , Y i−1

1 )−X1i (6.101)

by the weak union and then the decomposition property.

Next, we consider

n(R3 − ǫ)
(a)

≤ I(Xn
3 ; Y

n
2 )

(b)

≤ I(Xn
3 ; Y

n
2 |Xn

2 )

=
n
∑

i=1

I(Xn
3 ; Y2i|Xn

2 Y
i−1
2 )

=

n
∑

i=1

{

H(Y2i|Xn
2 Y

i−1
2 )−H(Y2i|Xn

2X
n
3 Y

i−1
2 )

}

(c)

≤
n
∑

i=1

{

H(Y2i|X2i)−H(Y2i|Xn
2X

n
3 Y

i−1
1 Y i−1

1 )
}

(d)
=

n
∑

i=1

{

H(Y2i|X2i)−H(Y2i|Xn
2X

n
3 Y

i−1
1 )

}

(e)
=

n
∑

i=1

{

H(Y2i|X2i)−H(Y2i|X2iX3iX
i−1
2 Y i−1

1 )
}

=
n
∑

i=1

{I(X3iU1i; Y2i|X2i)} ,

where (a) follows the Fano’s Inequality, (b) is from the independence between Xn
2 and
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Xn
3 ; (c) is because of the fact that conditioning reduces entropy; (d) is due to the mem-

oryless property of the channel, and the degradedness condition X1 − (X2, X3, Y1) − Y2,

hence Y i−1
2 is independent of any other random variables given X i−1

2 , X i−1
3 and Y i−1

1 , then

(Xn
2,i, X

n
3,i, Y2i)− (X i−1

2 , X i−1
3 , Y i−1

1 )− Y i−1
2 forms a Markov chain. By the weak union prop-

erty, the Markov chain Y2i− (Xn
2 , X

n
3 , Y

i−1
1 )−Y i−1

2 holds; (e) is because of the Markov chain

(X2,i+1, X
i−1
3 , Xn

3,i+1)− (X i
2, X3i, Y

i−1
1 )− Y2i. The easiest way to prove it is using the FDG

(Functional Dependence Graphs) and d-Separation [45, Section I-C]. Alternatively, we first

note that the Markov chain

(X i−1
2 , Xn

2,i+1, X
i−1
3 , Xn

3,i+1, Y
i−1
1 )− (X1i, X2i, X3i)− (Y1i, Y2i)

holds because of the memoryless property of the channel. By the decomposition property,

the following Markov chain is obtained:

(X i−1
2 , Xn

2,i+1, X
i−1
3 , Xn

3,i+1, Y
i−1
1 )− (X1i, X2i, X3i)− Y2i

Further by the weak union property, we obtain the following Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X1i, X
i
2, X3i, Y

i−1
1 )− Y2i. (6.102)

On the other hand, again because of the memoryless property of the channel, the Markov

chain

(X1i, X2i, X3i, X
n
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
1 , X i−1

2 )− Y i−1
1

holds. Using the weak union property, we obtain the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X1i, X2i, X3i, X
i−1
1 , X i−1

2 )− Y i−1
1 .
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Together with the markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 X2iX3i)− (X i−1

1 , X1i)

due to the independence among Xn
1 , X

n
2 and Xn

3 , we attain the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 , X2i, X3i)− (X i−1

1 , X1i, Y
i−1
1 )

by the contraction property. Then by the weak union property and the decomposition

property, the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 , X2i, X3i, Y

i−1
1 )−X1i (6.103)

holds. Combine (6.102) with (6.103) by the contraction property, we have the Markov chain

(Xn
2,i+1, X

i−1
3 , Xn

3,i+1)− (X i−1
2 , X2i, X3i, Y

i−1
1 )− (X1i, Y2i)

as desired. The rest of the proof is done by introducing the timesharing variable Q, similar

to the proof of the capacity region for MACs [13].

6.4.2 Gaussian case

The mixed interference case corresponds to the condition a ≤ 1, b ≥ 1 or a ≥ 1, b ≤ 1 for

the Gaussian MAZICs. As mentioned before, the notion of “mixed” differs from that of the

classical two-user GIC with mixed interference: here the two interferences go to the same

receiver.

First of all, we can extend the outer-bound for the general discrete memoryless MAZICs to

the Gaussian case.
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Corollary 6.14. For a Gaussian MAZIC with mixed interference (a ≤ 1 and b ≥ 1), an

outer-bound to the capacity region can be expressed as a set of nonnegative rate pairs (R1, R2)

satisfying the following inequalities:

R1 ≤ 1

2
log(1 + αP1), (6.104)

R2 ≤ 1

2
log(1 + P2), (6.105)

R3 ≤ 1

2
log(1 + P3), (6.106)

R3 ≤ 1

2
log(1 +

a(1− α)P1 + P3

1 + aαP1

), (6.107)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (6.108)

R2 +R3 ≤ 1

2
log(1 + bP2 + P3), (6.109)

Proof. This is a direct extension of Theorem 6.13. Inequalities (6.105), (6.106), (6.108) and

(6.109) comes from the corresponding inequality in Theorem 6.13 and the fact that given

the variance of random variables, Guassian distribution will maximize the entropy.

As for (6.107),

R3 ≤ I(UX3; Y2|X2Q)

= h(Y2|X2Q)− h(Y2|X2X3UQ)

= h(
√
aX1 +X3 + Z2|Q)− h(

√
aX1 + Z2|UQ)

(a)

≤ 1

2
log[(2πe)(1 + aP1 + P3)]−

1

2
log a

−h(X1 + Z1 + Z ′
2|UQ)

(b)

≤ 1

2
log[(2πe)(1 + aP1 + P3)]−

1

2
log a

−1

2
log

(

22h(X1+Z1|UQ) + (2πe)(
1− a

a
)

)

(c)

≤ 1

2
log(1 + aP1 + P3)−

1

2
log
[

a22R1 + 1− a
]

,
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where (a) is by the fact that Gaussian distribution maximizes the entropy for a given vari-

ance, and Z ′
2 ∼ N

(

0, 1
a
− 1
)

, independent of all other random variables; (b) is from the

entropy power inequality; (c) is because that from (6.94),

R1 ≤ I(X1; Y1|X2UQ) = h(Y1|X2UQ)− h(Z1)

= h(Y1|X2UQ)− 1

2
log(2πe).

Furthermore, since

0 ≤ R1 ≤ h(Y1|X2UQ)− h(Z1)

= h(X1 + Z1|UQ)− h(Z1)

≤ h(X1 + Z1|Q)− h(Z1)

≤ 1

2
log(1 + P1),

there exists an α ∈ [0, 1], such that

R1 =
1

2
log(1 + αP1). (6.110)

Then,

R3 ≤ 1

2
log(1 + aP1 + P3)−

1

2
log(1 + aαP1)

=
1

2
log

(

1 +
a(1− α)P1 + P3

1 + aαP1

)

.

Remark 6.15. The outer-bound in Theorem 6.13 is an extension of Kramer’s second outer-

bound [46, Thoerem 2] to the discrete memoryless case. To see this, we can consider a

special case of Corollary 6.14 by choosing R2 = 0, such that the remaining transmitters

1 and 3, and receivers 1 and 2, form a Gaussian ZIC. The outer bound in Corollary 6.14
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reduces to that consisting of only (6.104), (6.106), and (6.107) with the input distribution

factorized as p(q)p(u|q)p(x1|uq)p(x3|q). If we choose β = aαP1

P
, where P = aP1 + P3, we can

rewrite the outer bound as:

R1 ≤ 1

2
log(1 +

βP

a
),

R3 ≤ 1

2
log(1 +

(1− β)P

1 + βP
).

This is exactly Kramer’s second outer bound on the capacity region of a Gaussian ZIC [46,

Theorem 2]. Therefore, the outer bound in Theorem 6.13 is a generalization of Kramer’s

outer bound to the discrete memoryless case, and an extension from the ZIC to the MAZIC.

In the following, we consider a subclass of Gaussian MAZICs with mixed interference, and

we determine some boundary points of the capacity region.

Lemma 6.16. For a Gaussian MAZIC satisfying conditions a ≤ 1 and b ≥ 1 + aP1 + P3,

an achievable rate region is given by the set of all nonnegative rate triples (R1, R2, R3) that

satisfy

R1≤
1

2
log (1 + P1) , (6.111)

R2≤
1

2
log (1 + P2) , (6.112)

R3≤
1

2
log

(

1 +
P3

1 + aαP1

)

, (6.113)

R1 +R2≤
1

2
log (1 + P1 + P2) , (6.114)

R1 +R3≤
1

2
log (1 + αP1) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1

)

,

(6.115)

R1 +R2 +R3≤
1

2
log (1 + αP1 + P2) +

1

2
log

(

1 +
aᾱP1 + P3

1 + aαP1

)

, (6.116)

for α ∈ [0, 1].
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Proof. If b ≥ 1+ aP1 +P3, we know that receiver 2 can decode user 2’s message by treating

its own signal as well as the interference from user 1 as noise. Therefore, there is no need

to use rate splitting for user 2, i.e., β = 0. On applying Corollary 6.5 and removing all the

redundant inequalities, we get Lemma 6.16.

Remark 6.17. 1
2
log (1 + αP1 + P2) +

1
2
log
(

1 + aᾱP1+P3

1+aαP1

)

is an increasing function of α if

a(1 + P2) ≤ 1. Thus, the maximal achievable sum rate for the above achievable rate region

is attained when α = 1, which equals Rs =
1
2
log(1+P1+P2) +

1
2
log
(

1 + P3

1+aP1

)

. However,

since the expression of Rs is generally not a concave function of P1, we can achieve a larger

sum rate than Rs by time sharing.

From Lemma 6.16 and Corollary 6.14, we can directly get a corner point on the capacity

region.

Corollary 6.18. For a Gaussian MAZIC with a ≤ 1 and b ≥ 1+aP1+P3

(1+P1)
, the rate triple

(R∗
1, R

∗
2, R

∗
3) is on the boundary of the capacity region, where

R∗
1 =

1

2
log(1 + P1), (6.117)

R∗
2 =

1

2
log

(

1 +
P2

1 + P1

)

, (6.118)

R∗
3 =

1

2
log

(

1 +
P3

1 + aP1

)

. (6.119)

It is easy to see that this boundary point is achieved by fully decoding the interference from

transmitter 2 and treating the interference from transmitter 1 as noise.

Remark 6.19. For the general MAZIC with mixed interference, we conclude that the sum-

capacity is within 1.5 times the sum-rate achieved by the Han-Kobayshi scheme. To verify

it, one chooses the upper-bound to be

1

4

(

log(1 + P1 + P2) + log

(

1 +
P3

1 + aP1

)

+ min{log(1 + bP2 + P3), log(1 + P2) + log(1 + P3)}) ,
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which comes from the sum-capacity of the MAC, 2-user ZIC with weak interference, and

2-user ZIC with strong interference, respectively.

As for the achievable sum-rate, we can apply TDM for users 1 and 2. During half of the

time, let user 1 be silent, user 2 and 3 transmit at the sum-capacity of the 2-user ZIC with

strong interference, while in the other half, let user 2 be silent, user 1 and 3 form a 2-user

ZIC with weak interference. Consequently, the sum-rate achieved is

1

4
log(1 + P1) +

1

4
log

(

1 +
P3

1 + aP1

)

+
1

4
min{log (1 + bP2 + P3) , log(1 + P2) + log(1 + P3)}.

6.5 The MAZICs with weak interferences

6.5.1 Discrete memoryless case

Definition 6.20. A discrete memoryless MAZIC is said to have weak interferences if the

channel transition probability factorizes as

p(y1y2|x1x2x3) = p(y1|x1x2)p
′(y2|x2x3y1), (6.120)

p(y1y2|x1x2x3) = p(y1|x1x2)p
′′(y2|x1x3y1) (6.121)

for some p′(y2|x2x3y1) and p′′(y2|x1x3y1), or, equivalently, the channel is stochastically de-

graded.

In the absence of receiver cooperation, a stochastically degraded interference channel is

equivalent in its capacity to a physically degraded interference channel. As such, we will

assume in the following that the channel is physically degraded, i.e., the MAZIC admits the

Markov chains X1 − (X2, X3, Y1) − Y2 and X2 − (X1, X3, Y1) − Y2. As a consequence, the
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following two inequalities hold

I(U1; Y2|X2X3) ≤ I(U1; Y1|X2), (6.122)

I(U2; Y2|X1X3) ≤ I(U2; Y1|X1) (6.123)

for all input distributions p(x3)p(u1)p(x1|u1)p(x2|u1) and p(x3)p(u2)p(x1|u2)p(x2|u2) respec-

tively.

The above definition of weak interference leads to the following outer-bound.

Theorem 6.21. The capacity region of a discrete memoryless MAZIC with weak interfer-

ences is outer-bounded by the region determined by the following inequalites:

R1 ≤ I(X1; Y1|X2U1Q), (6.124)

R2 ≤ I(X2; Y1|X1U2Q), (6.125)

R3 ≤ I(X3; Y2|X1X2Q), (6.126)

R3 ≤ I(X3U1; Y2|X2Q), (6.127)

R3 ≤ I(X3U2; Y2|X1Q), (6.128)

R1 +R2 ≤ I(X1X2; Y1|Q), (6.129)

where the input distribution p(u1u2x1x2x3) = p(u1u2)p(x1|u1u2)p(x2|u1u2)p(x3).

The proof is similar to that of Theorem 4 and is hence omitted. We note that the auxiliary

random variables are defined as U1i = (X i−1
2 , Y i−1

1 ) and U2i = (X i−1
1 , Y i−1

1 ).

6.5.2 Gaussian case

The weak interference case for the Gaussian MAZIC corresponds to the condition with

a, b ≤ 1.
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First, Theorem 6.21 can be extended to the Gaussian case.

Corollary 6.22. For a Gaussian MAZIC satisfying conditions a, b ≤ 1, an outer bound to

the capacity region is given by the set of all nonnegative rate triples (R1, R2, R3) such that

R1 ≤
1

2
log(1 + αP1),

R2 ≤
1

2
log(1 + βP2),

R3 ≤
1

2
log(1 + P3),

R3 ≤
1

2
log

(

1 +
a(1− α)P1 + P3

1 + aαP1

)

,

R3 ≤
1

2
log

(

1 +
b(1− β)P2 + P3

1 + bβP2

)

,

R1 +R2 ≤
1

2
log(1 + P1 + P2).

The proof is very similar to that of Corollary 6.14, hence is omitted here.

For a two-user Gaussian ZIC, treating interference as noise is optimal in terms of sum-

capacity for the weak interference case. One may conjecture that a similar result holds for

the Gaussian MAZIC if both interferences are weak (a, b ≤ 1). Indeed, similar sum-rate

capacity result holds for the case with 0 ≤ a = b ≤ 1, i.e., for the Gaussian MAZICs

satisfying 0 ≤ a = b ≤ 1, the sum-rate capacity is

C =
1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1 + bP2

)

. (6.130)

This is a direct extension of the sum-capacity result of the two-user Gaussian ZICs with

weak interference by viewing X1 and X2 as a group. Notice that the DoF in this case is 1,

implying that DoF K/2 is not always achievable for a K-user interference channel.

The above sum-capacity result is not true in general with asymmetric interference. However,

it is within .5 bit of the sum capacity for a, b ≤ 1, and bounded power constraints.
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Lemma 6.23. If a ≤ 1, b ≤ 1, and

P1 ≤ P̄1 ,







2
√

a

1+a
−
√
b

√
b−√

a
if b > a

√
b√

a−
√
b

if b < a
(6.131)

then the following achievable sum rate is within half a bit of the sum capacity:

R1 +R2 +R3 =
1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1 + bP2

)

. (6.132)

By swapping a and b and indices 1 and 2, we obtain the same constant gap when P2 ≤ P̄2.

Proof.

n(R1 +R2 +R3 − ǫ)
(a)

≤ I (Xn
1X

n
2 ;X

n
1 +Xn

2 + Zn
1 ) + I

(

Xn
3 ;
√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2

)

(b)

≤ I
(

Xn
1 ;X

n
1 + Zn

1 ,
√
aXn

1 +Nn
1

)

+ I
(

Xn
2 ;X

n
1 +Xn

2 + Zn
1 ,
√
aXn

1 +
√
bXn

2 +Nn
2

)

+I
(

Xn
3 ;
√
aXn

1 +
√
bXn

2 +Xn
3 + Zn

2

)

(c)
= h

(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
1

)

− h (Zn
1N

n
1 ) + h

(

Xn
1 +Xn

2 + Zn
1

∣

∣

∣

√
aXn

1 +
√
bXn

2 +Nn
2

)

−h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
2

)

+ h
(√

aXn
1 +

√
bXn

2 +Xn
3 + Zn

2

)

(d)

≤ h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
1

)

− nh (Z1N1) + nh
(

X1G +X2G + Z1

∣

∣

∣

√
aX1G +

√
bX2G +N2

)

−h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
2

)

+ nh
(√

aX1G +
√
bX2G +X3G + Z2

)

(e)

≤ n
[

h(X1G + Z1,
√
aX1G +N1)− h(Z1N1) + h(X1G +X2G + Z1|

√
aX1G +

√
bX2G +N2)

−h(X1G + Z1,
√
aX1G +N2) + h(

√
aX1G +

√
bX2G +X3G + Z2)

]
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= I
(

X1G;X1G + Z1,
√
aX1G +N1

)

+ I
(

X2G;X1G +X2G + Z1,
√
aX1G +

√
bX2G +N2

)

+I
(

X3G;
√
aX1G +

√
bX2G +X3G + Z2

)

(f)
= I

(

X1G;X1G + Z1,
√
aX1G +N1

)

+ I (X2G;X1G +X2G + Z1)

+I
(

X3G;
√
aX1G +

√
bX2G +X3G + Z2

)

. (6.133)

where (a) is from Fano’s inequality; in (b) we let





Z1

Ni



 ∼ N



0,





1 ρi

ρi 1







 , ρ2i < 1, i = 1, 2. (6.134)

Equality (c) follows from the fact that N2 and Z2 have the same marginal distribution.

Inequality (d) follows by the fact that Gaussian distribution maximizes conditional entropy

under a sum power constraint [47, Lemma 2], where

XiG ∼ N (0,Pi) , i = 1, 2. (6.135)

In (d), we consider

h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
1

)

− h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
2

)

= h
(

Xn
1 + Zn

1

∣

∣Nn
1 −√

aZn
1

)

− h
(

Xn
1 + Zn

1

∣

∣Nn
2 −√

aZn
1

)

+ h
(

Nn
1 −√

aZn
1

)

−h
(

Nn
2 −√

aZn
1

)

= h (Xn
1 + Un

1 )− h (Xn
1 + Un

2 ) + h
(

Nn
1 −√

aZn
1

)

− h
(

Nn
2 −√

aZn
1

)

(6.136)

where Un
i , i = 1, 2, is an i.i.d. Gaussian sequence with zero mean and variance

Var (Ui) = Var
(

Zn
1

∣

∣Nn
i −√

aZn
1

)

= 1− (ρi −
√
a)

2

1 + a− 2ρi
√
a
. (6.137)
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If ρ1 = 0, then

Var (U1) ≤ Var (U2) (6.138)

under condition

0 ≤ ρ2 ≤
2
√
a

1 + a
. (6.139)

Using (6.138) and the extremal inequality [48], expression (6.136) is maximized by X1G:

h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
1

)

− h
(

Xn
1 + Zn

1 ,
√
aXn

1 +Nn
2

)

≤ nh
(

X1G + Z1,
√
aX1G +N1

)

− nh
(

X1G + Z1,
√
aX1G +N2

)

. (6.140)

(e) holds if

ρ2 =
(√

b−√
a
)

P1 +
√
b (6.141)

which implies that X2G → X1G +X2G + Z1 →
√
aX1G +

√
bX2G +N2 form a Markov chain

[47, Lemma 5]. Combining (6.139) and (6.141), we obtain (6.131). The gap between the

upper bound (6.133) and lower bound (6.132) is

I
(

X1G;
√
aX1G +N1 |X1G + Z1

)

=
1

2
log

(

1 +
aP1

1 + P1

)

<
1

2
log(1 + a) ≤ 1

2
. (6.142)

Next, We present the following theorem that gives a sum-rate upper-bound.
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Theorem 6.24. Any achievable rate triplet (R1, R2, R3) for the Gaussian MAZIC with

0 ≤ a ≤ b ≤ 1 must satisfy the following constraint

n(R1 +R2 +R3)

≤ min
a≤σ2≤1

{n

2
log
(

(P1 + P2 + 1)(aP1 + bP2 + σ2) − (
√
aP1 +

√
bP2 +

√
a)2
)

−n

2
log(aP1 + bP2 + 1) −n

2
log(σ2 − a) +

n

2
log(aP1 + bP2 + P3 + 1)

}

.

Proof.

n(R1 +R2 +R3)− nǫ
(a)

≤ I(Xn
1X

n
2 ; Y

n
1 ) + I(Xn

3 ; Y
n
2 )
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1 ;X

n
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1 ) + I(Xn
2 ;X

n
1 +Xn

2 + Zn
1 ) + I(Xn
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√
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1 +
√
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2 +Xn
3 + Zn

2 )
(b)
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1 ;X

n
1 + Zn

1 ) + I(Xn
2 ;X

n
1 +Xn

2 + Zn
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√
aXn

1 +
√
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2 +Nn
1 )

+I(Xn
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√
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1 +
√
bXn

2 +Xn
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2 )
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√
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√
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√
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√
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√
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√
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√
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√
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(c)

≤ n

2
log
(

(P1 + P2 + 1)(aP1 + bP2 + σ2)− (
√
aP1 +

√
bP2 +

√
a)2
)

−n

2
log(aP1 + bP2 + 1)− n

2
log(σ2 − a) +

n

2
log(aP1 + bP2 + P3 + 1)

where (a) is from Fano’s inequality; (b) is by giving side information
√
aXn

1 +
√
bXn

2 +Nn
1

to the second mutual information where Nn
1 is an i.i.d. Gaussian random variables whose

covariance matrix with Z1 is

Cov





Z1

N1



 =





1 ρσ

ρσ σ2



 ;

(c) is the result of applying the extremal inequality [48] to the first two terms, and to the

third and forth terms respectively. for the first two terms,

h(Xn
1 + Zn

1 )− h(
√
aXn

1 +Nn
1 |Zn

1 − 1√
a
Nn

1 ) ≤
n

2
log(1 + P1)−

n

2
log(aP1 + a) = −n

2
log a,

since the use of the extremal inequality requires V ar(N1|Z1 − 1√
a
N1) ≥ a ⇒ ρσ =

√
a. For

the third and fourth terms,

h(
√
aXn

1 +
√
bXn

2 +Nn
1 )− h(

√
aXn

1 +
√
bXn

2 + Zn
2 )

≤ n

2
log(aP1 + bP2 + σ2)− n

2
log(aP1 + bP1 + 1)

as the use of the extremal inequality requires σ2 ≤ 1.

For the conditional entropy h(Xn
1 +Xn

2 +Zn
1 |
√
aXn

1 +
√
bXn

2 +Nn
1 ), identically and indepen-

dently distributed (i.i.d) zero-mean Gaussian Xn
1 and Xn

2 are the maximizing distributions

[49].
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Corollary 6.25. For the Gaussian MAZICs satisfying 0 ≤ a ≤ b ≤ 1, if the power con-

straints satisfy

P1 =
1−

√
ab√

ab− a
,

P3 ≥ b− 1 + (b− a)P1 =

√

b

a
−

√
ab,

the sum-rate capacity is

C =
1

2
log(1 + P1) +

1

2
log

(

1 +
bP2 + P3

1 + aP1

)

. (6.143)

Proof. For the achievability part, let receiver 1 decode messages from users 1 and 2, and

receiver 2 decode messages from users 2 and 3, we have the following achievable rate triplets

(R1, R2, R3):

R1 ≤ 1

2
log(1 + P1), (6.144)

R2 ≤ 1

2
log

(

1 +
bP2

1 + aP1

)

, (6.145)

R3 ≤ 1

2
log

(

1 +
P3

1 + aP1

)

, (6.146)

R1 +R2 ≤ 1

2
log(1 + P1 + P2), (6.147)

R2 +R3 ≤ 1

2
log

(

1 +
bP2 + P3

1 + aP1

)

. (6.148)

Apply Fourier-Motzkin elimination with respect to S = R1+R2+R3, the resulting achievable

sum-rate is

R1 +R2 +R3

≤ min

{

1

2
log(1 + P1) +

1

2
log

(

1 +
bP2 + P3

1 + aP1

)

,
1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1

)}

,
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if (b− a)P1 ≤ 1− b+ P3,

1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1

)

≥ 1

2
log(1 + P1) +

1

2
log

(

1 +
bP2 + P3

1 + aP1

)

.

hence, 1
2
log(1 + P1) +

1
2
log
(

1 + bP2+P3

1+aP1

)

is an achievable sum-rate, and is achieved by user

1 decoding X2 first, subtracting it off, and then decoding X1; and user 2 decoding X2 and

X3 simultaneously by treating X1 as noise.

For the converse part, at the last step of the proof of Theorem 6.24, if we further let the

Gaussian variables Xn
2 − (

√
aXn

1 +
√
bXn

2 + Nn
1 ) − (Xn

1 +Xn
2 + Zn

1 ) form a Markov chain,

then

P1 =

√
ab− σ2

a−
√
ab

. (6.149)

The sum-rate upper-bound becomes

1

2
log(1 + P1) +

1

2
log

(

1 +
bP2

aP1 + σ2

)

+
1

2
log

(

1 +
P3

1 + aP1 + bP2

)

.

Let σ2 = 1, (6.149) becomes P1 = 1−
√
ab√

ab−a
, naturally, this requires a ≤ b, and

√
ab ≤ 1 such

that (6.149) is non-negative. This is because a > b is infeasible as it implies
√
ab ≤ a, i.e.,

(6.149) is negative when σ2 = 1.

It is perhaps not intuitive that the sum-rate (6.143) is optimal only if P1 =
1−

√
ab√

ab−a
. Specifi-

cally, given that this sum-rate capacity is achieved when the interference from X1 is treated

as noise at Y2, it might be expected that with smaller P1, the same scheme should also be

optimal. We show that this is not true.

First, for a ≤ 1,
1− b

b− a
≤ 1−

√
ab√

ab− a
.
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But for P1 ≤ 1−b
b−a

, the achievable sum-rate

1

2
log(1 + P1 + P2) +

1

2
log

(

1 +
P3

1 + aP1 + bP2

)

(6.150)

is greater than the sum-rate (6.143).

Now consider any P1 with 1−b
b−a

≤ P1 ≤ 1−
√
ab√

ab−a
. The following function is an achievable sum-

rate for P1 ≤ 1−
√
ab√

ab−a
. However, it is easy to show that f is not concave in P1 around the point

1−b
b−a

. Therefore, sum-rates strictly larger than (6.143) can be achieved for 1−b
b−a

≤ P1 ≤ 1−
√
ab√

ab−a

using time-sharing.

f(P1) =







1
2
log(1 + P1 + P2) +

1
2
log
(

1 + P3

1+aP1+bP2

)

, if P1 ≤ 1−b
b−a

,

1
2
log(1 + P1) +

1
2
log
(

1 + bP2+P3

1+aP1

)

, if 1−b
b−a

≤ P1 ≤ 1−
√
ab√

ab−a
.

Next, let us consider an even simpler case, where one of the cross link gain vanishes, for
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Figure 6.4: The Comparison of the sum-rates achieved by proposed time-sharing scheme

and Eq. (6.143) when 1−b
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example, a = 0. With only one weak interference link, we are able to obtain a boundary

curve of the capacity region.

Theorem 6.26. For a Gaussian MAZIC with a = 0 and 1+P3

1+P1
≤ b ≤ 1 (P3 ≤ P1), then the

following rate triple is always on the boundary of the capacity region:

(

1

2
log

(

1 +
P1

1 + β̄P2

)

,
1

2
log(1 + β̄P2) +

1

2
log

(

1 +
βP2

1 + P1 + β̄P2

)

,
1

2
log(1 + P3)

)

,

(6.151)

where β ∈ [0, 1] and satisfy

1

2
log(1 + β̄P2) +

1

2
log

(

1 +
βP2

1 + P1 + β̄P2

)

≤ 1

2
log

(

1 +
bP2

1 + P3

)

. (6.152)

Proof. By setting α = 1, the general achievable rate region in Corollary 6.5 reduces to

R1 ≤ 1

2
log(1 + P1),

R2 ≤ 1

2
log(1 + P2),

R3 ≤ 1

2
log

(

1 +
P3

1 + bβP2

)

,

R1 +R2 ≤ 1

2
log(1 + P1 + P2),

R2 +R3 ≤ 1

2
log(1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + bβP2

)

,

R1 +R2 +R3 ≤ 1

2
log(1 + P1 + βP2) +

1

2
log

(

1 +
bβ̄P2 + P3

1 + bβP2

)

.

If let R3 =
1
2
log(1 + P3), the achievable rate region reduces to

R1 ≤ 1

2
log(1 + P1), (6.153)

R2 ≤ 1

2
log

(

1 +
bP2

1 + P3

)

, (6.154)

R1 +R2 ≤ 1

2
log(1 + P1 + P2). (6.155)
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If b ≥ 1+P3

1+P1
(P3 ≤ P1), inequality (6.155) is always active. Therefore, the rate triple (6.151)

is always achievable.

For the converse, (6.155) is a natural upper-bound for R1 +R2.

Remark 6.27. In the general MAZIC with weak interference, we conclude that the sum-

capacity is within 1.5 times the sum-rate achieved by Han-Kobayashi scheme as well. To

show this, we choose the upper-bound to be

1

4
log(1 + P1 + P2) +

1

4
log(1 + P1) +

1

4
log

(

1 +
P3

1 + aP1

)

+
1

4
log(1 + P2) +

1

4
log

(

1 +
P3

1 + bP2

)

.

This upper bound follows directly from the sum-capacity results of 2-user ZIC with weak

interference and MAC. For the lower-bound, choose

1

4
log(1 + P1) +

1

4
log

(

1 +
P3

1 + aP1

)

+
1

4
log(1 + P2) +

1

4
log

(

1 +
P3

1 + bP2

)

,

which is achieved using a simple TDM scheme: split the time in half and let transmitters

1 and 3 transmit in one half while 2 and 3 in the other half. The above sum rate follows

directly from the sum capacity of the ZIC with weak interference.

6.6 Summary

In this chapter we have studied the capacity of an uplink network with co-channel interfer-

ence. By modeling such networks using a multiple access interference channel with one-sided

interference, we have obtained an inner bound to the capacity region for both the discrete

memoryless case and the Gaussian case. The capacity region for the discrete memoryless

channel model with strong and very strong interference has been established; for the Gaus-

sian MAZIC, we have determined the capacity region for the very strong interference case,
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and for the case in which one interference link is strong and the other one is very strong;

for the strong interference case, we have obtained a boundary line segment of the capacity

region. For the mixed interference case, a boundary point of the capacity region has been

obtained. For the weak interference case, we have obtained the sum-rate capacity for the

symmetric channel coefficients whose result is analogous to that of the two user Gaussian

one-sided interference channel. For the general case, a sum-rate upper bound has been

obtained which gives rise to a sum-rate capacity result under certain power constraint con-

ditions. Furthermore, it does not change the capacity results if we allow more users intended

for receiver 2 without interfering receiver 1. In this case, R3 is replaced by the sum-rate of

all those added users.



Chapter 7

Diversity Combining of

Non-coherently Modulated LDPC

Codes in Wireless Communications

The previous chapters are focused on the information theoretic limits on various channel

models with interference. However, in the real world, exploiting the interference structure

and partially decoding it require strong coordination of users that are often impossible to

accommodate. For example, the devices in a network may not have the same physical layer

protocol even though they share the same spectrum.

This is especially true in networks where spectrum pre-planning is not possible and users

share the frequency band in a rather independent manner. This is what motivated DARPA

to hold a spectrum challenge from January 2013 through March 2014 [2].

101
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7.1 DARPA spectrum challenge and software radio im-

plementation

The DARPA spectrum challenge (DSC) consists of two separate tournaments: competitive

and cooperative tournaments. Both need to transmit a fixed amount of data (173 Mb)

at a given frequency band (5 MHz) and time duration (180 seconds). In the competitive

tournament, the goal is to complete transmission ahead of the other team, selfish behavior

is thus encouraged. The cooperative tournament, however, is one that involves teamwork

among different groups, in which the ultimate goal is the collective throughput as a team,

instead of individual throughput.

In the real implementation, the individuals or teams form a two-user and 3-user interference

channel physically, corresponding to different tournaments. However, one important takeout

message is that implementing interference decoding/subtraction is infeasible at a reasonable

cost, because of the lack of coordination. As such, one is left only with interference avoidance

or co-existence with interference (i.e., treating interference as noise).

Given the clear goals of two tournaments, we set out our basic strategies as follows:

• Channel codes are definitely needed, especially for the competitive tournament, where

an interference intense environment is expected. We chose the low density parity check

(LDPC) codes mainly for the competitive mode, facilitated by the BCH code as an

outer code. With a customizable coding rates, the concatenation of the two codes has

very strong decoding capability that operates reliably with SNR at or below 0 dB. As

for the cooperative mode, interference avoidance is a better strategy to help teammates

also score. In this case, coding speed is much more critical than capability, as a cleaner

environment is expected with spectrum sensing kicking in. For this purpose, we chose

Reed-Solomon (RS) code.
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• The sliding window feedback that is used in TCP/IP is adapted for wireless application

that takes into account the possibility of lost feedback.

• In the cooperative mode, in order to better avoid teammates, in addition to leave time

holes, frequency division multiplexing (FDM) is employed to free some frequency space

for others.

In the absence of interference cancellation, the challenges are unique when the goal is to

maximize your capability to correctly decode the information based on the received signals.

In the following, we address one practical design problem regarding improvement of the

information reception when sever interference is present in the wireless network.

7.2 Current state-of-the-art techniques in the practical

system design

In recent communication systems, multiple independently received signal copies of the same

message are often available at the receiver. This includes retransmission in packet based sys-

tems, multi-channel environment, and multi-antenna receivers that have become prevalent

in almost all current and future wireless systems. For example, in the DSC, we implemented

retransmission schemes based on the sliding window mechanism. As a result, multiple copies

of the same packet may be received. Sometimes, the interference is so disastrous that there is

no single packet among those multiple copies can be decoded correctly. One natural question

coming out of this is that, can one do some kind of combining of multiple copies? Instead of

making use of the received copies independently, can one achieve a better performance by

combining the information from independent copies in an optimal manner?

The focus of this chapter is on diversity combining schemes for communication systems with

non-coherent modulation while employing LDPC codes. For coherent modulation, it is well
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known that maximal ratio combining (MRC) is the optimal linear combining technique.

Other practical alternatives for coherent systems include equal gain combining and selection

combining which strikes a balance between performance and channel knowledge requirement.

However, with a highly dynamic transmission may put exacting demand in tracking channel

state information. As such non-coherent modulations, e.g., differentially encoded signals,

are often used instead. For systems with non-coherent modulation, diversity combining is

often limited to hard decision combining (e.g., majority rule) which limits its applications

to certain number of diversity branches and is also inferior in performance to that of soft

decision combining used in coherent modulated systems.

We show however, for non-coherently modulated systems employing LDPC codes, there is a

natural way to implement soft decision diversity combining that is embedded in the decoding

process. This soft decision diversity combining is shown to have much improved performance

over hard decision combining that requires independent LDPC decoding prior to employing

majority rule diversity combining.

7.2.1 Non-coherent modulation

Phase shift keying (PSK) and quadrature amplitude modulation (QAM) are most widely

used modulation schemes in digital communications. For both modulations, the phase of

the signal carries the information that needs to be recovered at the receiver. Coherent

modulation uses the absolute phase of the signal to represent the information whereas non-

coherently modulated schemes, e.g., those implementing differential encoding, embeds the

information in the phase difference between consecutive symbols. As such, for coherent

modulation, one needs to keep track of the channel state, especially the channel phase

information whereas for differentially encoded signals, there is no such need so long as the

channel coefficients do not vary much from time to time.
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Tracking channel state information puts additional burden on the communication system,

which can become quite stringent with fast fading channels. Thus in many practical systems

such as satellite and radio relay communications as well as in some cellular systems, non-

coherent modulations are widely used [50].

7.2.2 LDPC codes

LDPC codes are a class of linear block codes with a particular characteristic in terms of

their parity-check matrix. Specifically, the fraction of nonzero entries is small. LDPC codes

provide a performance close to the Shannon limit for a number of important channels. In

other words, one can not expect to have codes that perform better than LDPC in terms

of transmission rate and reliability trade-off. Furthermore, the decoding algorithms have

linear time complex. These advantages, i.e., the superior error correction performance and

simplicity in implementation makes it the most widely used error correction codes in exist-

ing and future wireless communications systems, including the digital television broadcast

standard (DVB-S2) [51], ITU-T G.hn standard [52]. LDPC is also used for 10GBase-T

Ethernet, which sends data at 10 gigabits per second over twisted-pair cables. As of 2009,

LDPC codes are also part of the Wi-Fi 802.11 standard as an optional part of 802.11n [53]

and 802.11ac, in the High Throughput (HT) PHY specification.

The decoding algorithms for LDPC codes can be classified into two main categories: hard-

decision decoding and soft-decision decoding. The difference between the two lies in the

inputs that are taken in by the algorithm. For the hard-decision decoding, the inputs are

decoded symbols from the demodulator, while likelihood ratio values are inputs for the soft-

decision algorithms. Soft-decision decoding, based on the concept of belief propagation,

yields a better decoding performance and is therefore the preferred method where possible.
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7.3 SystemModel and Diversity Combining Techniques

The RF signal received over the air goes through the typical RF circuit chain and reduces

to the corresponding baseband signal, denoted as a sequence y = {y0, y1, · · · , yK} that can

be written as

yk = hkxk + nk, (7.1)

where k = 1, 2, · · · is the symbol index, hk is the channel coefficient, and nk is a complex

additive white Gaussian noise (AWGN) with zero mean and variance 2σ2. The channel

coefficient hk can be written as hk = ρke
jφk . For soft decision based demodulator, the

outputs are the log likelihood ratios (LLR). For example, in binary modulation schemes, the

LLR is expressed as the following.

Ik = log
p(yk, yk−1|mk = 0)

p(yk, yk−1|mk = 1)
,

where mk denotes the coded bit before differential modulation.

Suppose there are L independent branches available, and let LLR(l) (1 ≤ l ≤ L) denote

each diversity reception after non-coherent demodulator. Various receiver architectures can

be developed for taking advantage of such multiple receptions.

A simple and direct approach is to employ a distinct LDPC decoder for each independent

branch. The transmitted information bits are estimated by having the decoders take the

majority vote. It is refered as hard-decision combining (HDC) hereafter. The procedure

is shown in Fig. 7.1. However, the combined codeword after the vote may not be legiti-

mate. Furthermore, it becomes ambiguous for some of the decisions when the number of

branches goes even. More importantly, having multiple LDPC decoders takes up tremendous

computation resourses.

To overcome the computational complexity, it is realistic to combine the receiving signals

before the LDPC decoder, as depicted in Fig. 7.2. Therefore, only one decoder is needed
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despite of the number of branches. But in this way, the problem becomes how to combine

the multiple symbol decisions to feed the only decoder. One reasonable solution is to select

the best LLR out of multiple copies. In other words, the LLR with the largest magnitude is

selected for each bit, i.e.,

SC = LLR(l∗), l∗ = arg max
1≤l≤L

|LLR(l)|. (7.2)

We refer this methodology as selection combining (SC). As switching among the branches for

the one with the highest confidence, the SC method is expected to have better performance

than a single decoding without combining. However, if the channel conditions in each branch

are alike, the LLRs are not of much difference. Therefore, the performance improvement is

limited, especially in highly noisy channel conditions.

In the following , we propose the likelihood ratio combining (LRC) technique for taking

advantage of all received copies via diverse channels. The LLRs for each bit are added with

equal gain, that is

LLR =
L
∑

l=1

LLR(l). (7.3)

The operation of addition is considered because of the independence of each received version

of the signals. By adding LLRs together, the estimation of each bit from each branch is

weighted by their own confidence of their decisions. Hence, better performance is obtained

by integrating all the available informantion together. In the following section, we compare

the performance of all the techniques mentioned above.

7.4 Performance Comparison

We use DVB standard LDPC codes with code rate 1/4. The message length and codeword

length are 16200 and 64800 bits. As for the modulation, we adopt BPSK with differential

encoding and non-coherent detection. The ways to calculate the LLR are from [54, Section
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III.B]. We simulated with 2 types of channels, Gassian channels with unknown fixed chan-

nel coefficient (both magnitude and phase), and Rayleigh fading channels with randomized

channel coefficient. Moreover, 3 branches of received signals are assumed, in which the chan-

nel conditions are alike. The performance of different combining techniques are compared

in Fig. 7.3 and Fig. 7.4.

The BER (bit error rate) curve ends when the decodes message bits are free of errors. From

the simulation results, the LRC apparently has the best performance, and 3 dB effective

SNR gain is obtained in Gaussian channels compared to the reception without combining

as well as that with HDC. SC has reasonable improvements over no combining and HDC,

but is not as good as LRC. Similar performance is obtained in Rayleigh fading channels.

7.5 Summary

Performance of LDPC codes with non-coherent combining has been studied. Simulation

results have shown that the simple addition of all LLRs from available independent copies

provides the best SNR gain over other combining techniques, such as hard-decision combin-

ing and selection combining. The described LRC is also robust in Rayleigh fading channels.



Chapter 7 109

Figure 7.1: Communication system diagram with hard decision combining
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Figure 7.2: Communication system diagram with diversity combining before the LDPC
decoder.
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Figure 7.3: BER comparison for combining over 3 Gaussian channels
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Figure 7.4: BER comparison for combining over 3 Rayleigh fading channels.
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Chapter 8

Conclusions and Future Research

Directions

8.1 Conclusions

This dissertation studies the effect of interference in communication networks. The primary

focus is on the theoretical performance limits for various channel models; yet we also touch

upon implementation issues where system design needs to have robust performance in the

presence of unknown interference.

First, for a simple two-user Gaussian interference channel, we establish that within the

computable subregion of the Han-Kobayashi achievable rate region, frequency division mul-

tiplexing (FDM) suffices to achieve the best sum-rate.

Next, motivated by recent progresses of the exact sum-rate capacity characterizations of two-

user Gaussian interference channels, the two-user discrete memoryless interference channel

model is considered. The condition of the interference link being weak is extended to the

discrete memoryless case, which is characterized by a stochastic degradedness. The channel

113
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property resembles that for the Gaussian z-interference channel with weak interference.

Under this proposed weak interference definition, the sum-rate capacity is characterized for

the discrete memoryless interference channel with one-sided weak interference. Subsequently,

an outer-bound of the capacity region is also derived for this class of channels. The results

lead to the exact single-letter characterization of the capacity region of a subclass within

the discrete memoryless z-interference channel with weak interference.

The same technique is then applied to obtain the sum-rate capacity of discrete memoryless

interference channels with mixed interference. Similarly, the capacity region of some new

discrete memoryless interference channels are also characterized.

For both of these cases, the capacity expressions as well as the encoding schemes that achieve

the sum-rate capacity are analogous to the Gaussian interference channel counterpart.

We then consider channel models that are directly motivated by current cellular systems. In

particular, a 3-user up-link model with co-channel interference is considered. By studying

such a model, we aim to get insight on how to manage interference in an optimal manner for

multi-user communication systems. In this model, analyses of both the discrete memoryless

case and the Gaussian case are obtained. We have established an inner bound to the capacity

region for both cases. Capacity upper-bounds are also provided, in order to attain the exact

capacity results, and capacity achieving schemes. In the process of examining different

cases according to the interference strength over two cross links, we have the following

observations:

• It is harder to characterize the conditions for interference being weak or strong for the

discrete memoryless channels when the number of the involved users becomes larger.

The difficulty is due to the characterizations of the combined effects of different inter-

ference sources. This is not pronounced in the two-user interference channel case, in

which only one interference source is present at each receiver. One particular example



Chapter 8 115

provided in Chapter 6 is that in the Gaussian case, a, b ≥ 1 does not necessarily yield

the general optimality of joint decoding with interfering messages.

• The question of whether treating interference as noise is optimal for systems with

more than two users is also more complicated. In two-user Gaussian interference

channels, the noisy or very weak interference regime is where the simple scheme of

treating interference as noise is optimal in achieving the sum-rate capacity. Although

similar genie-aided techniques are developed for our uplink model, treating interference

as noise no longer achieves the sum-rate capacity. Instead, the sum-rate capacity is

attained by partially joint decoding with one of the interference messages.

These findings highlight the difficulties to manage the interference for complex communica-

tion networks.

Apart from above theoretical analysis, a simple diversity combining using soft-decision for

non-coherently modulated and LDPC coded signals was described in Chapter 7. The scheme,

while intuitive and simple, exhibits a much more robust performance in the presence of in-

terference compared with the typical hard decision combining for non-coherently modulated

signals.

8.2 Potential research topics

In the following, we describe some interesting ideas that worth pursuing in the future.

8.2.1 Beyond the weak and strong interference for the DMZICs

In the standard two-user Gaussian interference channel model, it is clear that the interference

has a clear boundary point that separates strong and weak interference. In the case of
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Gaussian interference channel in its standard form, the point corresponds to the interference

link gain of 1. In particular, for the one-sided interference case, when the only interference

link is weak, the sum-rate capacity is achieved by that the receiver subject to interference

treats interference as noise, and the other transceiver pair communicates at rate in the point-

to-point channel. For the strong interference case, the capacity region is achieved by joint

decoding interference with the intended message.

However, for the discrete memoryless channel model, the weak and strong interference cases

do not cover all the scenarios. To illustrate this point, we provide the following example.

Example 8.1. All the input and output alphabets are binary. Let fij represent p(y1 = 1|x1 =

i, x2 = j), gj represent p(y2 = 1|x2 = j), pi = Pr{Xi = 1}, and p̄i = 1− pi (i, j ∈ {0, 1}).

• For the interference being weak, one needs to satisfy the Markov chain (4.3), i.e.,

p(y1|x1x2y2) = p(y1|x1y2).

Then we would have,

p(y1|x1x2) =
∑

y2

p(y1y2|x1x2) =
∑

y2

p(y2|x2)p(y1|x1y2).

To be more concrete, we have

f00 = g0h01 + (1− g0)h00,

f01 = g1h01 + (1− g1)h00,

f10 = g0h11 + (1− g0)h10,

f11 = g1h11 + (1− g1)h11,
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with hij representing p(y1 = 1|x1 = i, y2 = j), i, j ∈ {0, 1}. Solving the above equations

about hij, we obtain

h00 =
g1f00 − g0f01

g1 − g0
,

h01 =
(1− g0)f01 − (1− g1)f00

g1 − g0
,

h10 =
g1f10 − g0f11

g1 − g0
,

h11 =
(1− g0)f11 − (1− g0)f10

g1 − g0
. (8.1)

• For the interference being strong, one needs to satisfy the inequality

I(X2; Y1|X1) ≥ I(X2; Y2)

for all input product distribution on X1 × X2. That is

h2(p̄2g0 + p2g1)− p2h2(g1)− p̄2h2(g0)

≤ p̄1h2(p̄2f00 + p2f01) + p1h2(p̄2f10 + p2f11)

−p̄1p̄2h2(f00)− p̄1p2h2(f01)− p1p̄2h2(f10)− p1p2h2(f11) (8.2)

for all p1, p2 ∈ [0, 1].

Now let f00 = 0.1, f01 = 0.2, f10 = 0.3, f11 = 0.25, and g0 = 0.1, then the weak interference

range is that g1 ∈ [0.25, 1], and the strong interference range is that g1 ∈ [0.038, 0.2]. There

exists a gap between the weak and the strong interference ranges.

One natural question to ask is that whether time sharing or rate splitting is going to be

optimal in this uncharacterized interference region.
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8.2.2 Defining the noisy (very weak) interference case for the two-

user discrete memoryless channel model

In Chapters 4 and 5, we extend the one-sided weak interference and mixed interference

cases to the two-user discrete memoryless interference channel, respectively; the case of

noisy interference case is not addressed. One can also think about extending the noisy

interference case. The difficulty is that in the Gaussian case to the discrete memoryless

case, the definition of noisy interference regime is rather complicated, there is no simple

way to define it analogously for the discrete memoryless case. One feasible approach is to

find some examples, that treating interference as noise is actually sum-rate optimal. The

corresponding conditions for those channels might provide a clue for defining the general

noisy interference condition for the discrete memoryless channel model.
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FDG Proof of the Markov Chain

(Xi−1
1 , Xn

1,i+1)− (X1i, Y
i−1
2 )− Y1i

We use [45, Definition 1] to prove in the following that (X1i, Y
i−1
2 ) d-separate (X i−1

1 , Xn
1,i+1)

from Y1i.

1. Consider the subgraph consisting of the vertices appeared in the Markov chain to be

proved, as well as the edges and vertices encountered when moving backward one or

more edges starting fro any of the vertices in the Markov chain. The subgraph is

depicted in Fig. A.1.

2. Delete all edges coming out of the vertices in (X1i, Y
i−1
2 ). It results in the Fig. A.2.

3. Now there is no edges connecting (X i−1
1 , Xn

1,i+1) and Y1i. We prove that the Markov

chain

(X i−1
1 , Xn

1,i+1)− (X1i, Y
i−1
2 )− Y1i

holds.
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Figure A.1: FDG subgraph.
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Figure A.2: Result of d-separation.
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A Counter Example for the

Equivalence between the Two

Different Conditions

This example explains that a DMZIC that satisfies the mutual information condition (4.10)

does not necessarily imply the Markov chain relationship (4.3).

Example B.1. Consider a DMIC with binary inputs and outputs. Let fij represent p(y1 =

1|x1 = i, x2 = j), gj represent p(y2 = 1|x2 = j), pi = Pr{Xi = 1}, and p̄i = 1 − pi

(i, j ∈ {0, 1}). From the mutual information condition (4.10)

I(X2; Y2) ≥ I(X2; Y1|X1),

we have

H(Y2)−H(Y2|X2) ≥ H(Y1|X1)−H(Y1|X1, X2),

122
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i.e.,

h2(p̄2g0 + p2g1)− p2h2(g1)− p̄2h2(g0)

≥ p̄1h2(p̄2f00 + p2f01) + p1h2(p̄2f10 + p2f11)

−p̄1p̄2h2(f00)− p̄1p2h2(f01)− p1p̄2h2(f10)− p1p2h2(f11),

for all p1, p2 ∈ [0, 1]. As the right hand side is linear of p1, it suffices to find {fij} and {gj}
such that,

h2(p̄2g0 + p2g1)− p2h2(g1)− p̄2h2(g0) ≥ h̄2(p̄2f00 + p2f01)− p̄2h2(f00)− p2h2(f01),

h2(p̄2g0 + p2g1)− p2h2(g1)− p̄2h2(g0) ≥ h2(p̄2f10 + p2f11)− p2h2(f11)− p̄2h2(f10).

Upon obtaining the above inequality, one can make specific choices of {fij} and {gj} to make

the above inequality hold for all possible p2 ranging from 0 to 1. For example, it is easy to

verify that a valid choice is

f00 = .1, f01 = .3, f10 = .5, f11 = .25,

g0 = .1, g1 = .5.

In the following, we prove by contradiction that this channel does not satisfy the markov

chain condition (4.3).

Suppose that the markov chain (4.3) is satisfied,

p(y1|x1x2y2) = p(y1|x1y2).

Then we would have,

p(y1|x1x2) =
∑

y2

p(y1y2|x1x2) =
∑

y2

p(y2|x2)p(y1|x1y2).
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Solving this equation, we get

p(y1 = 1|x1 = 1, y2 = 1) = − 1

16
,

which contradicts the fact that channel transit probability can never be negative.
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The equivalence between the DMDIC

and the DMZIC

In this appendix, we prove that the following two channels have the same capacity region.

• Channel 1: The DMZIC with inputs (X1, X2) and outputs (Y1, Y2). In addition, the

Markov chain X2 − (X1, Y2)− Y1 holds.

• Channel 2: The DMDIC with inputs (X1, X2) and outputs (Y1, Y
′
2), where X1, X2 and

Y1 are identical with the above DMZIC, while Y ′
2 = f(X1, Y2) such that the Markov

chain (X1, X2)− Y ′
2 − Y1 holds and H(Y ′

2 |X1) = H(Y2).

First, we show that if a rate pair is achievable for channel 2, it is also achievable for channel

1. Notice that Y1 is identical for both channels, it suffice to show that H(W2|Y n
2 ) ≤ nǫ2n if
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H(W2|Y ′n
2 ) ≤ nǫ2n. To prove it, we have

H(W2|Y n
2 )

≤ H(W2X
n
1 |Y n

2 )

= H(Xn
1 |Y n

2 ) +H(W n
2 |Xn

1 Y
n
2 )

= H(W n
2 |Xn

1 Y
n
2 Y

′n
2 )

≤ H(W2|Y ′n
2 )

≤ nǫ2n,

where we make use of the independence of Xn
1 and Y n

2 , Y
′
2 is a function of X1 and Y2, and

the fact that conditioning reduces entropy.

To this point, to establish the equivalence, it is left to show that if a rate pair is achievable

in channel 1, then it is also achievable in channel 2. It thus suffices to prove that







H(W1|Y n
1 ) ≤ nǫ1n,

H(W2|Y n
2 ) ≤ nǫ2n,

implies







H(W1|Y n
1 ) ≤ nǫ1n,

H(W2|Y ′n
2 ) ≤ nǫ′2n.

Therefore, the same code that works for channel 1 also works for channel 2. Notice that Y1

is identical for both channels. Therefore, the first decoders can use the same decoding rule

to achieve the same rate.
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In the following, we prove that the second decoder of channel 2 can perform as well as that

of channel 1. We have the following sequence of inequalities

H(W2|Y ′n
2 ) ≤ H(W1W2|Y ′n

2 )

= H(W1|Y ′n
2 ) +H(W2|W1Y

′n
2 )

(a)

≤ H(W1|Y n
1 ) +H(W2|W1X

n
1 Y

′n
2 )

(b)

≤ nǫ1n +H(W2|W1X
n
1 Y

n
2 Y

′n
2 )

(c)
= nǫ1n +H(W2|W1X

n
1 Y

n
2 )

(d)
= nǫ1n +H(W2|Y n

2 )

≤ nǫ1n + nǫ2n,

where (a) follows since Y1 is a degraded version of Y ′
2 , by the Markov chain (X1, X2)−Y ′

2−Y1;

(b) is because that Y ′
2 = f(X1, Y2) satisfying H(Y ′

2 |X1) = H(Y2). This is equivalent to

requiring the existence of function h(·, ·) such that Y2 = h(X1, Y
′
2) [8]. Therefore, Y2 is

completely determined by X1 and Y ′
2 ; (c) is from the fact that Y ′

2 = f(X1, Y2); (d) is due

to the independence of (W1, X
n
1 ) and (W2, Y

n
2 ). By defining ǫ′2n = ǫ1n + ǫ2n, we proved the

desired equivalence.
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Proof of Theorem 6.1

Fix p(q)p(u1|q)p(x1|u1q)p(u2|q)p(x2|u2q)p(x3|q).

Codebook generation: Randomly generate a time sharing sequence qn according to
∏n

i=1 p(qi).

Randomly generate 2nR3 sequences xn
3 (m3), m3 ∈ [1 : 2nR3 ], according to

∏n

i=1 p(x3i|qi).
For j = 1, 2, randomly generate 2nTi sequences un

j (lj), lj ∈ [1 : 2nTj ], each according to
∏n

i=1 pUj |Q(uji|qi). For each un
j (lj), randomly generate 2nSj sequences xn

j (lj, kj), kj ∈ [1 :

2nSj ], each according to
∏n

i=1 pXj |Uj,Q(xj |uji(lj), qi). The codebook is available at all trans-

mitters and receivers.

Encoding: For user j, j = 1, 2, to send message mj = (lj, kj), encoder j transmits xn
j (lj , kj).

For user 3, to send message m3, encoder 3 transmits xn
3 (mj).

Decoding: Upon receiving yn1 , decoder 1 finds the unique message tuple (l̂1, l̂2, k̂1, k̂2) such

that

(qn, un
1 (l̂1), u

n
2(l̂2), x

n
1 (l̂1, k̂1), x

n
2 (l̂2, k̂2), y

n
1 )

∈A(n)
ǫ (QU1U2X1X2Y1). (D.1)

If no such unique tuple exists, the decoder declares an error.
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Upon receiving yn2 , decoder 2 finds the unique message m̂3 such that

(qn, un
1(l1), u

n
2(l2), x

n
3 (m̂3)) ∈ A(n)

ǫ (QU1U2X3Y2), (D.2)

for at least one l1 ∈ [1 : 2nT1 ] and at least one l2 ∈ [1 : 2nT2]. If no such unique m̂3 exists,

the decoder declares an error.

Analysis of the probability of error: By the symmetry of the codebook generation, we assume

that the transmitted indices are l1 = l2 = k1 = k2 = m3 = 1. For user 1, we define the

following event:

E1
l1l2k1k2

={(qn, un1 (l1), un2 (l2), xn1 (l1, k1), xn2 (l2, k2), yn1 )

∈ A(n)
ǫ (QU1U2X1X2Y1)

}

. (D.3)

The error probability at receiver 1 is

Pn
e1 = Pr

{

E1
1111

c
⋃

∪(l1l2k1k2)6=(1,1,1,1)E
1
l1l2k1k2

}

≤ Pr(E1
1111

c
) +

∑

l1 6=1,l2=k1=k2=1

Pr(E1
l1111)

+
∑

l2 6=1,l1=k1=k2=1

Pr(E1
1l211) +

∑

k1 6=1,l1=l2=k2=1

Pr(E1
11k11)

+
∑

k2 6=1,l1=l2=k1=1

Pr(E1
111k2) +

∑

l1,l2 6=1,k1=k2=1

Pr(E1
l1l211)

+
∑

l1,k1 6=1,l2=k2=1

Pr(E1
l11k11) +

∑

l1,k2 6=1,l2=k1=1

Pr(E1
l111k2)

+
∑

l2,k1 6=1,l1=k2=1

Pr(E1
1l2k11) +

∑

l2,k2 6=1,l1=k1=1

Pr(E1
1l21k2)

+
∑

k1,k2 6=1,l1=l2=1

Pr(E1
11k1k2) +

∑

l1,l2,k1 6=1,k2=1

Pr(E1
l1l2k11)

+
∑

l1,l2,k2 6=1,k1=1

Pr(E1
l1l21k2) +

∑

l1,k1,k2 6=1,l2=1

Pr(E1
l11k1k2)

+
∑

l2,k1,k2 6=1,l1=1

Pr(E1
1l1k1k2) +

∑

l1,l2,k1,k2 6=1

Pr(E1
l1l2k1k2

)
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It is obvious that Pr(E1
1111

c
) → 0 when n → ∞. From the joint typicality we have

∑

l1 6=1,l2=k1=k2=1

Pr(E1
l1111)

≤2nT1
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 |qn)p(qnun2xn2yn1 )

≤2nT12n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1|Q)−2ǫ)

2−n(H(QU2X2Y1)−ǫ)

=2n(T1−I(U1X1;Y1|U2X2Q)+4ǫ) = 2n(T1−I(X1;Y1|X2Q)+4ǫ)

∑

l2 6=1,l1=k1=k2=1

Pr(E1
1l211)

≤2nT2
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un2 , x
n
2 |qn)p(qnun1xn1yn1 )

≤2nT22n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X2|Q)−2ǫ)

2−n(H(QU1X1Y1)−ǫ)

=2n(T2−I(U2X2;Y1|U1X1Q)+4ǫ) = 2n(T2−I(X2;Y1|X1Q)+4ǫ)

∑

k1 6=1,l1=l2=k2=1

Pr(E1
11k11)

≤2nS1
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(xn1 |un1 , qn)p(qnun1un2xn2yn1 )

≤2nS12n(H(QU1U2X1X2Y1)+ǫ)2−n(H(X1|U1Q)−2ǫ)

2−n(H(QU1U2X2Y1)−ǫ)

=2n(S1−I(X1;Y1|U1U2X2Q)+4ǫ) = 2n(S1−I(X1;Y1|U1X2Q)+4ǫ)
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∑

k2 6=1,l1=l2=k1=1

Pr(E1
111k2)

≤2nS2
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(xn2 |un2 , qn)p(qnun1un2xn1yn1 )

≤2nS22n(H(QU1U2X1X2Y1)+ǫ)2−n(H(X2|U2Q)−2ǫ)

2−n(H(QU1U2X1Y1)−ǫ)

=2n(S2−I(X2;Y1|U1U2X1Q)+4ǫ) = 2n(S2−I(X2;Y1|U2X1Q)+4ǫ)

∑

l1,l2 6=1,k1=k2=1

Pr(E1
l1l211)

≤2n(T1+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤2n(T1+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1U2X2|Q)−2ǫ)

2−n(H(QY1)−ǫ)

=2n(T1+T2−I(U1X1U2X2;Y1|Q)+4ǫ) = 2n(T1+T2−I(X1X2;Y1|Q)+4ǫ)

∑

l1,k1 6=1,l2=k2=1

Pr(E1
l11k11)

≤2n(S1+T1)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 |qn)p(qnun2xn2yn1 )

≤2n(S1+T1)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1Q)−2ǫ)

2−n(H(QU2X2Y1)−ǫ)

=2n(S1+T1−I(U1X1;Y1|U2X2Q)+4ǫ) = 2n(S1+T1−I(X1;Y1|X2Q)+4ǫ)
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∑

l1,k2 6=1,l2=k1=1

Pr(E1
l111k2)

≤2n(S2+T1)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un2 , x
n
1 , x

n
2 |un1qn)p(qnun1yn1 )

≤2n(S2+T1)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X1X2|U1Q)−2ǫ)

2−n(H(QU1Y1)−ǫ)

=2n(S2+T1−I(U2X1X2;Y1|U1Q)+4ǫ) = 2n(S2+T1−I(X1X2;Y1|U1Q)+4ǫ)

∑

l2,k1 6=1,l1=k2=1

Pr(E1
1l2k11)

≤2n(S1+T2)
∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 , x

n
2 |un2qn)p(qnun2yn1 )

≤2n(S1+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1X2|U2Q)−2ǫ)

2−n(H(QU2Y1)−ǫ)

=2n(S1+T2−I(U1X1X2;Y1|U2Q)+4ǫ) = 2n(S1+T2−I(X1X2;Y1|U2Q)+4ǫ)

∑

l2,k2 6=1,l1=k1=1

Pr(E1
1l21k2)

≤2n(S2+T2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un2 , x
n
2 |qn)p(qnun1xn1yn1 )

≤2n(S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X2|Q)−2ǫ)

2−n(H(QU1X1Y1)−ǫ)

=2n(S2+T2−I(U2X2;Y1|U1X1Q)+4ǫ)

=2n(S2+T2−I(X2;Y1|X1Q)+4ǫ)
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∑

k1,k2 6=1,l1=l2=1

Pr(E1
11k1k2)

≤2n(S1+S2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(xn1 |un1 qn)p(xn2 |un2qn)p(qnun1un2yn1 )

≤2n(S1+S2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(X1X2|U1U2Q)−2ǫ)

2−n(H(QU1U2Y1)−ǫ)

=2n(S1+S2−I(X1X2;Y1|U1U2Q)+4ǫ)

=2n(S1+S2−I(X1X2;Y1|U1U2Q)+4ǫ)

∑

l1,l2,k1 6=1,k2=1

Pr(E1
l1l2k11)

≤2n(S1+T1+T2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤2n(S1+T1+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1U2X2|Q)−2ǫ)

2−n(H(QY1)−ǫ)

=2n(S1+T1+T2−I(U1X1U2X2;Y1|Q)+4ǫ)

=2n(S1+T1+T2−I(X1X2;Y1|Q)+4ǫ)

∑

l1,l2,k2 6=1,k1=1

Pr(E1
l1l21k2)

≤2n(T1+S2+T2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤2n(T1+S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1X2U2|Q)−2ǫ)

2−n(H(QY1)−ǫ)

=2n(S1+T1+S2−I(U1U2X1X2;Y1|Q)+4ǫ)

=2n(T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)
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∑

l1,k1,k2 6=1,l2=1

Pr(E1
l11k1k2)

≤2n(S1+T1+S2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 , x

n
2 |un2qn)p(qnun2yn1 )

≤2n(S1+T1+S2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1X2|U2Q)−2ǫ)

2−n(H(QU2Y1)−ǫ)

=2n(S1+T1+S2−I(U1X1X2;Y1|U2Q)+4ǫ)

=2n(S1+T1+S2−I(X1X2;Y1|U2Q)+4ǫ)

∑

l2,k1,k2 6=1,l1=1

Pr(E1
1l2k1k2)

≤2n(S1+S2+T2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un2 , x
n
1 , x

n
2 |un1qn)p(qnun1yn1 )

≤2n(S1+S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U2X1X2|U1Q)−2ǫ)

2−n(H(QU1Y1)−ǫ)

=2n(S1+S2+T2−I(U2X1X2;Y1|U1Q)+4ǫ)

=2n(S1+S2+T2−I(X1X2;Y1|U1Q)+4ǫ)

∑

l1,l2,k1,k2 6=1

Pr(E1
l1l2k1k2

)

≤2n(S1+T1+S2+T2)

∑

(qn,un
1 ,u

n
2 ,x

n
1 ,x

n
2 ,y

n
1 )∈A

(n)
ǫ

p(un1 , x
n
1 , u

n
2 , x

n
2 |qn)p(qnyn1 )

≤2n(S1+T1+S2+T2)2n(H(QU1U2X1X2Y1)+ǫ)2−n(H(U1X1U2X2|Q)−2ǫ)

2−n(H(QY1)−ǫ)

=2n(S1+T1+S2+T2−I(U1U2X1X2;Y1|Q)+4ǫ)

=2n(S1+T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)
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Putting them together, we have

Pn
e1

≤ǫ+ 2n(T1−I(X1;Y1|X2Q)+4ǫ) + 2n(T2−I(X2;Y1|X1Q)+4ǫ)

+2n(T1−I(X1;Y1|U1X2Q)+4ǫ) + 2n(S2−I(X2;Y1|U2X1Q)+4ǫ)

+2n(T1+T2−I(X1X2;Y1|Q)+4ǫ) + 2n(S1+T1−I(X1;Y1|X2Q)+4ǫ)

+2n(S2+T1−I(X1X2;Y1|U1Q)+4ǫ) + 2n(S1+T2−I(X1X2;Y1|U2Q)+4ǫ)

+2n(S2+T2−I(X2;Y1|X1Q)+4ǫ) + 2n(S1+S2−I(X1X2;Y1|U1U2Q)+4ǫ)

+2n(S1+T1+T2−I(X1X2;Y1|Q)+4ǫ) + 2n(T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)

+2n(S1+T1+S2−I(X1X2;Y1|U2Q)+4ǫ) + 2n(S1+S2+T2−I(X1X2;Y1|U1Q)+4ǫ)

+2n(S1+T1+S2+T2−I(X1X2;Y1|Q)+4ǫ)

For user 2, we define the following event:

E2
l1l2m3

=
{

(qn, un1 (l1), u
n
2 (l2), x

n
3 (m3), y

n
2 ) ∈ A(n)

ǫ (QU1U2X3Y2)
}

.

The error probability at receiver 2 is

Pn
e2 =Pr

{

E2
111

c
⋃

∪m3 6=1,any(l1,l2)E
2
l1l2m3

}

≤Pr
(

E2
111

c)
+

∑

m3 6=1,l1=l2=1

Pr
(

E2
11m3

)

+
∑

l1,m3 6=1,l2=1

Pr
(

E2
l11m3

)

+
∑

l2,m3 6=1,l1=1

Pr
(

E2
1l2m3

)

+
∑

l1,l2,m3 6=1

Pr
(

E2
l1l2m3

)

.
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Again, it is obvious that Pr(E2
111

c
) → 0 when n → ∞. From the joint typicality we have

∑

m3 6=1,l1=l2=1

Pr
(

E2
11m3

)

≤2nR3
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(xn3 |qn)p(qn, un1 , un2 , yn2 )

≤2nR32n(H(QU1U2X3Y2)+ǫ)2−n(H(X3|Q)−2ǫ)2−n(H(QU1U2Y2)−ǫ)

=2n(R3−I(X3;Y2|U1U2Q)+4ǫ)

∑

l1,m3 6=1,l2=1

Pr
(

E2
l11m3

)

≤2n(T1+R3)
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(un1 , x
n
3 |qn)p(qn, un2 , yn2 )

≤2n(T1+R3)2n(H(QU1U2X3Y2)+ǫ)2−n(H(U1,X3|Q)−2ǫ)2−n(H(QU2Y2)−ǫ)

=2n(T1+R3−I(U1X3;Y2|U2Q)+4ǫ)

∑

l2,m3 6=1,l1=1

Pr
(

E2
1l2m3

)

≤2n(T2+R3)
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(un2 , x
n
3 |qn)p(qn, un1 , yn2 )

≤2n(T2+R3)2n(H(QU1U2X3Y2)+ǫ)2−n(H(U2,X3|Q)−2ǫ)2−n(H(QU1Y2)−ǫ)

=2n(T2+R3−I(U2X3;Y2|U1Q)+4ǫ)

∑

l1,l2,m3 6=1

Pr
(

E2
l1l2m3

)

≤2n(T1+T2+R3)
∑

(qn,un
1 ,u

n
2 ,x

n
3 ,y

n
2 )∈A

(n)
ǫ

p(un1 , u
n
2 , x

n
3 |qn)p(qn, yn2 )

≤2n(T1+T2+R3)2n(H(QU1U2X3Y2)+ǫ)2−n(H(U1U2X3|Q)−2ǫ)

2−n(H(QY2)−ǫ)

=2n(T1+T2+R3−I(U1U2X3;Y2|Q)+4ǫ)
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Therefore, for receiver 2,

Pn
e2

≤ǫ+ 2n(R3−I(X3;Y2|U1U2Q)+4ǫ) + 2n(T1+R3−I(U1X3;Y2|U2Q)+4ǫ)

+2n(T2+R3−I(U2X3;Y2|U1Q)+4ǫ)

+2n(T1+T2+R3−I(U1U2X3;Y2|Q)+4ǫ)
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In order that P n
e1, P

n
e2 → 0, from above inequalities, we must have

T1 ≤ I(X1; Y1|X2Q), (D.4)

T2 ≤ I(X2; Y1|X1Q), (D.5)

S1 ≤ I(X1; Y1|U1X2Q), (D.6)

S2 ≤ I(X2; Y1|U2X1Q), (D.7)

T1 + T2 ≤ I(X1X2; Y1|Q), (D.8)

S1 + T1 ≤ I(X1; Y1|X2Q), (D.9)

S2 + T1 ≤ I(X1X2; Y1|U1Q), (D.10)

S1 + T2 ≤ I(X1X2; Y1|U2Q), (D.11)

S2 + T2 ≤ I(X2; Y1|X1Q), (D.12)

S1 + S2 ≤ I(X1X2; Y1|U1U2Q), (D.13)

S1 + T1 + T2 ≤ I(X1X2; Y1|Q), (D.14)

T1 + S2 + T2 ≤ I(X1X2; Y1|Q), (D.15)

S1 + T1 + S2 ≤ I(X1X2; Y1|U2Q), (D.16)

S1 + S2 + T2 ≤ I(X1X2; Y1|U1Q), (D.17)

S1 + T1 + S2 + T2 ≤ I(X1X2; Y1|Q), (D.18)

R3 ≤ I(X3; Y2|U1U2Q), (D.19)

T1 +R3 ≤ I(U1X3; Y2|U2Q), (D.20)

T2 +R3 ≤ I(U2X3; Y2|U1Q), (D.21)

T1 + T2 +R3 ≤ I(U1U2X3; Y2|Q). (D.22)

Using Fourier-Motzkin elimination on (D.4)-(D.22) and getting rid of redundant inequalities,

we obtain (6.11)-(6.21). The cardinality bounds on the auxiliary random variables are from

the Caratheodory Theorem.
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Proof of Theorem 6.7

The achievability part follows directly from Theorem 6.1 by setting U1 = U2 = ∅. For

the converse, (6.41), (6.42) and (6.44) form an outer bound on the capacity region of the

corresponding MAC with X1 and X2 as inputs and Y1 as output. Moreover, (6.43) is a

natural bound on R3. Therefore, we only need to prove (6.45)-(6.47). First,

n(R2 +R3)− nǫ

= H(W2) +H(W3)− nǫ
(a)

≤ I(Xn
2 ; Y

n
1 ) + I(Xn

3 ; Y
n
2 )

(b)

≤ I(Xn
2 ; Y

n
1 |Xn

1 ) + I(Xn
3 ; Y

n
2 |Xn

1 )
(c)

≤ I(Xn
2 ; Y

n
2 |Xn

1X
n
3 ) + I(Xn

3 ; Y
n
2 |Xn

1 )

= I(Xn
2X

n
3 ; Y

n
2 |Xn

1 )

= H(Y n
2 |Xn

1 )−H(Y n
2 |Xn

1X
n
2X

n
3 )

=
n
∑

i=1

{

H(Y2i|Y i−1
2 Xn

1 )−H(Y2i|Y i−1
2 Xn

1X
n
2X

n
3 )
}

(d)

≤
n
∑

i=1

{H(Y2i|X1i)−H(Y2i|X1iX2iX3i)}

= I(X2iX3i; Y2i|X1i),

139
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where (a) is from Fano’s inequality; (b) is because of the mutual independence among Xn
1 ,

Xn
2 and Xn

3 ; (c) is due to (6.39); and (d) uses the fact that conditioning reduces entropy and

the memoryless property. Similarly, we can prove the bound on R1 +R3. We further have

n(R1 +R2 +R3)− nǫ

= H(W1,W2) +H(W3)− nǫ
(a)

≤ I(Xn
1X

n
2 ; Y

n
1 ) + I(Xn

3 ; Y
n
2 )

(b)

≤ I(Xn
1X

n
2 ; Y

n
1 ) + I(Xn

3 ; Y
n
2 )

(c)

≤ I(Xn
1X

n
2 ; Y

n
2 |Xn

3 ) + I(Xn
3 ; Y

n
2 )

= I(Xn
1X

n
2X

n
3 ; Y

n
2 )

= H(Y n
2 )−H(Y n

2 |Xn
1X

n
2X

n
3 )

=
n
∑

i=1

{

H(Y2i|Y i−1
2 )−H(Y2i|Y i−1

2 Xn
1X

n
2X

n
3 )
}

(d)

≤
n
∑

i=1

{H(Y2i −H(Y2i|X1iX2iX3i))}

= I(X1iX2iX3i; Y2i).

By introducing a time-sharing random variable Q, we obtain Theorem 6.7. The cardinality

of Q can be verified using the Caratheodory theorem.
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