100 research outputs found

    An eighth-order exponentially fitted two-step hybrid method of explicit type for solving orbital and oscillatory problems

    Get PDF
    The construction of an eighth-order exponentially fitted (EF) two-step hybrid method for the numerical integration of oscillatory second-order initial value problems (IVPs) is considered. The EF two-step hybrid methods integrate exactly differential systems whose solutions can be expressed as linear combinations of exponential or trigonometric functions and have variable coefficients depending on the frequency of each problem. Based on the order conditions and the EF conditions for this class of methods, we construct an explicit EF two-step hybrid method with symmetric nodes and algebraic order eight which only uses seven function evaluations per step. This new method has the highest algebraic order we know for the case of explicit EF two-step hybrid methods. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order EF scheme is more efficient than other standard and EF two-step hybrid codes recently proposed in the scientific literature

    Phase-Fitted and Amplification-Fitted Higher Order Two-Derivative Runge-Kutta Method for the Numerical Solution of Orbital and Related Periodical IVPs

    Get PDF
    A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods

    A class of explicit high-order exponentially-fitted two-step methods for solving oscillatory IVPs

    Get PDF
    The derivation of new exponentially fitted (EF) modified two-step hybrid (MTSH) methods for the numerical integration of oscillatory second-order IVPs is analyzed. These methods are modifications of classical two-step hybrid methods so that they integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(¿t), exp(-¿t)}, ¿¿C, or equivalently {sin(¿t), cos(¿t)} when ¿=i¿, ¿¿R, where ¿ represents an approximation of the main frequency of the problem. The EF conditions and the conditions for this class of EF schemes to have algebraic order p (with p=8) are derived. With the help of these conditions we construct explicit EFMTSH methods with algebraic orders seven and eight which require five and six function evaluation per step, respectively. These new EFMTSH schemes are optimal among the two-step hybrid methods in the sense that they reach a certain order of accuracy with minimal computational cost per step. In order to show the efficiency of the new high order explicit EFMTSH methods in comparison to other EF and standard two-step hybrid codes from the literature some numerical experiments with several orbital and oscillatory problems are presented

    A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

    Get PDF
    In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages

    A FAMILY OF EXPONENTIALLY FITTED MULTIDERIVATIVE METHOD FOR STIFF DIFFERENTIAL EQUATIONS

    Get PDF
    In this paper, an A-stable exponentially fitted predictor-corrector using multiderivative linear multistep method for solving stiff differential equations is developed. The method which is a two-step third derivative method of order five contains free parameters. The numerical stability analysis of the method was discussed, and found to be A-stable. Numerical examples are provided to show the efficiency of the method when compared with existing methods in the literature that have solved the set of problems

    Exponentially fitted fifth-order two-step peer explicit methods

    Get PDF
    The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with dimension six. Finally, some numerical experiments are presented to show the behaviour of the new peer schemes for some periodic problems
    corecore