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In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nystrom method (BHTRKNM), whose coefficients
are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including
Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential
equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid
trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the
method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector
methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some

numerical examples to show accuracy and efficiency advantages.

1. Introduction

In what follows, we consider the numerical solution of the
general second-order IVPs of the form

y'=f(xny),
¥ (x0) = ¥
, , 1)
y (x0) = ¥or
x € [xg, xn]

where f : R x R*" — R*", N > 0 is an integer, and m is
the dimension of the system. Problems of form (1) frequently
arise in several areas of science and engineering such as clas-
sical mechanics, celestial mechanics, quantum mechanics,
control theory, circuit theory, astrophysics, and biological sci-
ences. Equation (1) is traditionally solved by reducing it into
a system of first-order IVPs of double dimension and then
solved using the various methods that are available for solving

systems of first-order IVPs (see Lambert [1, 2], Hairer and
Wanner in [3], Hairer [4], and Brugnano and Trigiante [5, 6]).

Nevertheless, there are numerous methods for directly
solving the special second-order IVPs in which the first
derivative does not appear explicitly and it has been shown
that these methods have the advantages of requiring less
storage space and fewer number of function evaluations (see
Hairer [4], Hairer et al. [7], Simos [8], Lambert and Watson,
and [9], Twizell and Khaliq [10]). Fewer methods have been
proposed for directly solving second-order IVPs in which the
first derivative appears explicitly (see Vigo-Aguiar and Ramos
[11], Awoyemi [12], Chawla and Sharma [13], Mahmoud and
Osman [14], Franco [15], and Jator [16, 17]). It is also the
case that some of these IVPs possess solutions with special
properties that may be known in advance and take advantage
of when designing numerical methods. In this light, several
methods have been presented in the literature which take
advantage of the special properties of the solution that may be
known in advance (see Coleman and Duxbury [18], Coleman
and Ixaru [19], Simos [20], Vanden Berghe et al. [21], Vigo-
Aguiar and Ramos [11], Fang et al. [22], Nguyen et al. [23],
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Ramos and Vigo-Aguiar [24], Franco and Gémez [25], and
Ozawa [26]). However, most of these methods are restricted
to solving special second-order IVPs in a predictor-corrector
mode.

Our objective is to present a BHTRKNM that is imple-
mented in a block-by-block fashion; in this way, the method
does not suffer from the disadvantages of requiring start-
ing values and predictors which are inherent in predictor-
corrector methods (see Jator et al. [27], Jator [16], and Ngwane
and Jator [28]). We note that multiderivative trigonometri-
cally fitted block methods for y" = f(x, y, y') have been pro-
posed in Jator [29] and Jator [16]. However, the BHTRKNM
proposed in this paper avoids the computation of higher
order derivatives which have the potential to increase compu-
tational cost, especially, when applied to nonlinear systems.
In this paper, we propose a BHTRKNM which is of order 3
and its application is extended to solving oscillatory systems,
PDEs, and Hamiltonian systems including the energy con-
serving equation.

The organization of this article is as follows. In Section 2,
we derive the BHTRKNM for solving (1). The analysis and
implementation of the BHTRKNM are discussed in Section 3.
Numerical examples are given in Section 4 to show the accu-
racy and efficiency of the BHTRKNM. Finally, the conclusion
of the paper is given in Section 5.

2. Development of the BHTRKNM

In order to numerical integrate (1) we define the BHTRKNM
as consisting of the following four discrete formulas:

1
Yni1 = Vn T hy; +h <Zﬁjfn+j + :Bwrvfnw) >
j=0

1
Vv =Yn T hy:; +h (Z)}jfrwj + Yn+vfn+v> >
=0
()
1
hy:H-l = hy:z +H <Z‘B;fn+j + ,B;+vfn+v> >
j=0

1
hy),, = hy, + b’ (Zn’-M j+ V,'mfnw) ,
=0

where j3;, [3;, yj» and y]'» are coefficients that depend on the

step-length h and frequency w. In general, the frequency w

is chosen near the exact frequency of the true solution (see

[30]). The coefficients of the method are chosen so that the

method integrates the IVP (1) exactly where the solutions are

members of the linear space (1, x, x%, sin(wx), cos(wx)).
The main method has the form

1
Vel = KV T+ 60]/‘}’,’1 + 1 <Z.ijn+j + ﬁnwfnﬂ/) N E)
j=0

where «,, 8, and f3,, ,, and f3; are to be determined coeffi-
cient functions of the frequency and step-size. In order to

International Journal of Differential Equations

derive the main method and additional methods we initially
seek a continuous local approximation II(x) on the interval
[x,,> X,,,1] of the form

IT(x) = ay (x) ¥, + Oy (x) hy,’l

2 < (4)
F B Y B () fej + Buw () fres |
j=0

where a,(x), §,(x), and /Sj(x), j = 0,v,1, are continuous
coeflicients. The first derivative of (4) is given by

' (x) = %H(x). (5)

We assume that y,,, ; = II(x,, ;) is the numerical approxima-

n+j
tion to the analytical solution y(x,,, ;), v i = ' (x,,, ;) is the
),and f,.; = " (x
an approximation to y'(x,,, i) Jj=0,v1

The following theorem shows how the continuous
method (4) is constructed. This is done by requiring that on
the interval from x, to x,,; = x, + h the exact solution is
locally approximated by function (4) with (5) obtained as a
consequence.

. . . ! .
numerical approximation to y'(x,,, ; ) 18

Theorem 1. Let F;(x) = x,i=012 F;(x) = sinwx, and
F,(x) = coswx be basis functions and let V = (y,,, y,’l, o> frim

fou1)T be a vector, where T is the transpose. Define the matrix
G by

Fy (x,) F, (x,)
Fy (x,) F; (x,)
G=| F(x)  F(x) (6)
Fy (%) - Fy (x00)
F(;’ (1) o F: (%s1)

and G; is obtained by replacing the ith column of G by the vector
V. Let the following conditions be satisfied:

I1(x,) = Yo
H, (xn) = yr’1’ (7)
" (xn + ]) = fn+j’

j=0,v,1;

then the continuous representations (4) and (5) are equivalent
to the following:

e det(Gy)
IT(x) = ;} 4t (G) F; (x), (8)
b d [odet(G)
I (x) = 5(% det(G)Fi(x)). )

Proof. To prove this theorem, we use the approach given in
Jator [17] with appropriate notational modification. We start
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by requiring that the method (4) be defined by the assumed
basis functions

4
o (%) = Y @iy oF; (%),
i=0

4
hé, (x) = Zh6i+1,0Fi (%), (10)

i=0
4

WB; (x) = Y W By jF; (%),
i=0

2 .
where &y, ¢, hd;,1 5, and h” B, ; are coeflicients to be deter-

By imposing conditions (7) on (13), we obtain a system of five
equations which can be expressed as

GL =V, (15)
where L = (€y,¢;,... ,€4)T is a vector whose coeflicients are
determined via Cramer’s rule as

det (G;)
;= , i=0,1,...,4, 16
' det(G) as)

where G; is obtained by replacing the ith column of G by V.
In order to obtain the continuous approximation, we use the
elements of L to rewrite (13) as

mined. Substituting (10) into (4) we get 1 det (G)
M(x)=) F(x), (17)
4 4 = det (G)
!
I(x) = Z“m,oFi () y, + Zh8i+1,0Fi (x) ¥, L
-0 -0 whose first derivative is given by
(11)
1 4 4
d det (G;)
+ 2 21 Bt iFs (%) fo I (x) = - YF (x) ). 18
JZOZO o1 () foss ®= 7| X qec B (18)
which is simplified to O
4 Remark 2. We note that, in the derivation of the BHTRKNM,
I (x) = Z 1 oF; (%) 3, + 18,1 oF; (x) y:l the basis functions F;(x) = x',i =0,1,2, Fs(?c) = sin wx, and
pard ’ ’ F,(x) = cos wx are chosen because they are simple to analyze.
(12)  Nevertheless, other possible bases are possible (see Nguyen et
L al. [23]).
+ Zh :31'+1,jFi (x) fn+j
j=0 2.1. Specification of the Method. The continuous methods (8)
and (9) which are equivalent to forms (4) and (5) are used to
and expressed as generate two discrete methods and two additional methods.
The discrete and additional methods are then applied as a
) = 4 oF 5 BHTRKNM for solving (1). We choose v = 1/2 and evaluating
(x) = ZO i (%), (13) (8) at x = x,,, and x = x,,,,, respectively, gives the two dis-
= crete methods y,,, = II(x, + vh) and y,,, = II(x, + h) which
h takes the form of the main method. Evaluating (9) at x = x,,,,
where . . 2.
and x = x,,,, respectively, gives the additional methods
1 v, = (x,+vh)and y!,, = IT'(x,+h). The coefficients and
€= 0y 0¥+ hOi o J’; + th Bisr,j S (14) their corresponding Taylor series equivalence of y,.,, V1
=0 hy!. ,and hy!, | are, respectively, given as follows:
a0 =1,
1
61/,0 = E’
csc (u/4) csc (1/2) ((8 + uz) cos (u/4) — 4 (2 cos (3u/4) + usin (3u/4)))
no 161>
7 Tl 71ut 53u° 2348 (19)
=—+ + + + e,
96 7680 3870720 123863040 2179989504
csc (u/4)* (8 + (—8 + uz) cos (1/2) — 4u sin (u/2)) 1 u? u? u® ud
= - = —-——- —_— —_— —_— + e 5
Pus 16u? 16 2304 276480 34406400 4459069440
B, - csc (1/4)? (u + 4 cot (u/2) — 4 csc (u/2)) _ 1 112 B 19u* B 247u° B 1013u® N
w1 23040 1290240 619315200 98099527680

32u 96



Remark 3. We note that the Taylor series expansions in (19)
through (22) must be used when « — 0 because the corre-
sponding trigonometric coeflicients given in these equations
are vulnerable to heavy cancelations (see [8]).

2.2. Block Form. BHTRKNM is formulated from the four dis-
crete hybrid formulas stated in (2) which are provided by the
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ao=1,
51,0 =1,
csc (u/4) csc (u/2) ((2 + u2) cos (u/4) — 2 (cos (3u/4) + usin (3u/4)))
Bio= 402
1 W 19t 17u® 29u®
=—+—+ + + +oe,
6 480 483840 19353600 1362493440 (20)
B __csc(u/4)2csc(u/2)(—2+2cosu+usinu) _l_u_z_ u B u® B u® .
L 8u 3 720 80640 9676800 1226244096 ’
csc (u/4)? (—4 +u® +4cos (1/2) + 2u cot (1/2) — 2u csc (u/2))
B = 812
o 13u* u’ 251u° .
T 1440 483840 1290240 12262440960 ’
a,o =0,
0,0=1,
) cot(u/2) 1 ( u )2 5 19 23ut 263u® 103348
Ppo=————+-csc|l—) =—+ + + + +oee,
’ u 8 4 24 5760 322560 154828800 24524881920 (21)
;o csc (u/4)? csc (1)2) (=2 + 2 cos (u) + u sin (1)) 1 u? B ut B ub B u® .
Por = 8u 3 720 80640 9676800 1226244096 ’
o csc(u/4)’ (u+dcot(uf2) —dcsc(uf2)) 1 1? 19wt 2474° 101308 .
Yor = 8u T 24 5760 322560 154828800 24524881920 ’
a =0,
00=1,
ﬁl _csc (u/4)* (u - 2 sin (u/2)) 1 u? ut . u® . u® .
Lo 4u 6 720 80640 9676800 1226244096 ’
ﬁ' _csc (u/4)* (u - 2 sin (u/2)) _2 u_2 B ut B u® B u® . (22)
Lv ™~ 4u T3 360 40320 4838400 613122048 ’
, csc (u/4)* (—4 +u’ +4cos (1/2) + 2u cot (1/2) — 2u csc (u/2))
ﬁl,l = 812
! + u_2 + W + o + u +
6 720 80640 9676800 1226244096 '

continuous one-step hybrid trigonometrically fitted method
with one off-grid point given by (4) and its first derivative (5).
We define the following vectors:

T
Yl,l+1 = [yn+v> yn+1’hyr,z+v’hyr’1+1] »

Yy = [yn—v’ Y hyr’;—w hy,,,]T >
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T
Fy+1 = [fn+v>fn+1’hfri+v’ hfri+1] >

T
Fy = [fn—v’fn’hf;;—v’hfn’] 4
(23)
where 4 = 0,...,N, n = 0,...,N. The methods in (2)

specified by the coeflicients (19)-(22) are combined to give
the BHTRKNM, which is expressed as

AY,y = AgY, + 1 (ByF, + BiF,,;), (24)

where A,, A;, By, and B, are matrices of dimension four
whose elements characterize the method and are given by the
coefficients of (2).

3. Error Analysis and Stability

3.1. Local Truncation Error (LTE). We define the local trun-
cation error of (24) as

L{(Z(x);h)] = Z,y — [AZ, + W'BF,, + W’CF,,,;], (25)
where
Zyor = [ ()7 (%)oY (%) o1 (00)]
Zy= [y (%) (x) by () oy ()]
Frur = [f Curns Yuer) s f (nsts Yust) > B (s Vi)
(26)

hf, (xn+1’ yn-f—l)]T >
ﬁ[t = [f (xnfv’ ynfv) ’f (xn’ yn) ’hf, (xn—v’ yn—v) ’

hf' (e y)] s

and L[(Z(x);h)] = [L,[z(x);h], Ly[z(x);hl,. .., Lyz(x);
h]]7 is linear different operator.

Suppose that Z(x) is sufficiently differentiable. Then, a
Taylor series expansion of the terms in (25) about the point x
gives the following expression for local truncation error:

L[Z(x);h] = CyZ (x) + C,hZ' (x) +---
27)
+CHIZI(x) + -0,

where C;,i = 0, 1,.. ., are constant coeflicients (see [17]).

Definition 4. The block method (24) has algebraic order at
least p > 1 provided there exists a constant C,,, # 0 such

that the local truncation error E,, satisfies |E, | = C, ohP
O(h?*?), where || - || is the maximum norm.

Remark 5. (i) The local truncation error constants (EP ) of

Vpvs Yns 1o hy; o hy,'l +1)T of the block method (24) are given,
respectively, by Cs = (1/1440,1/720,1/384,0)", where C,, =
C,=C,=C,=C,=0.

(ii) From the local truncation error constant computa-
tion, it follows that the method (24) has order p at least three.

5
3L
2 [
Stable
1L
ol
1}
2L
3L
0 20 40 60 80 100

FIGURE 1: The stability region plotted in the (g, u)-plane.

3.2. Stability. The linear-stability of the BHTRKNM is dis-
cussed by applying the method to the test equation y” =
-\? y, where A is a real constant (see [18]). Letting Y = Ah,
it is easily shown as in [19] that the application of (24) to the
test equation yields
Y =M(Y5u)Y,,
. (28)
M(Y4u)= (A, -Y*B)) (A, +Y’B,),

where the matrix M(Y?; u) is the amplification matrix which
determines the stability of the method. In the spirit of [22],
the spectral radius of p(M (Y%, 1)) can be obtained from the
characteristics equation

p’ =20 (Yhu)p+© (Y:5u) =0, (29)

where u = wh, T(Y%u) = trace M(Y%u), and (Y u) =
det M(Y?;u) are rational functions. We let q = Ahin the
following definition.

Definition 6. A region of stability is a region in the g-u plane,
throughout which p(M (Y:u) < 1 and any closed curve
given by p(M (Y% u)) = 1 defines the stability boundary of
the method (see [22]). We note that the plot for the stability
region of the BHTRKNM method is given in Figure 1.

Remark 7 1t is observed that, in the g-u plane, the
BHTRKNM is stable for g € [0,47.96] and u € [-m,7] (see
Figure 1).

3.3. Implementation. The main method and the additional
methods specified by (19)-(22) are combined to form the
block method BHTRKNM (24), which is used to solve (1)
without requiring starting values and predictors. BHTRKNM
is implemented in a block-by-block fashion using a Mathe-
matica 10.0 code, enhanced by the feature NSolve[ ] for linear



problems while nonlinear problems were solved by Newton’s
method enhanced by the feature FindRoot[ ] (see Keiper and
Gear [33]). Mathematica can symbolically compute deriva-
tives and so the entries of the Jacobian matrix which involve
partial derivatives are automatically generated. In what fol-
lows, we summarize how BHTRKNM is applied.

Step 1. Choose N, h = (b — a)/N, and the number of blocks
I' = N. Using (24), n = 0, and ¢ = 0, the values of
)2 21> » /2> y{)T are simultaneously obtained over the sub-

interval [x, x,], as y, and y; are known from the IVP (1).

Step 2. Forn = 1 and u = 1, the values of (y3/2,y2,y;/2, yé)T

are simultaneously obtained over the subinterval [x;, x,], as
! .

y, and y, are known from the previous block.

Step 3. The process is continued forn =2,...,N-land y =
2,...,I'—1 to obtain the numerical solution to (1) on the sub-
intervals [xg, x;], [x1, %51, .. > [Xn_p> XN

In order to illustrate the efficiency of our method, we
solved a variety of problems including oscillatory systems,
PDEs such as the Telegraph equation, and Hamiltonian
systems. The following methods are selected for comparison:

(i) BHTRKNM given in this paper.

(ii) ARKN: adapted Runge-Kutta-Nystrom method in
[34] which has order five.

(iii) (DS3.12): difference scheme (3.12) in [32].

(iv) ESDIRK: explicit singly diagonally implicit Runge-
Kutta method in [26].

(v) FESDIRK: functionally fitted ESDIRK in [26].

(vi) EFRK: exponentially fitted Runge-Kutta method
(Method (b)) in Simos [8].

(vii) N4: fourth-order standard Runge-Kutta-Nystrom
method in [35].

4. Numerical Examples

In this section, numerical experiments are performed using
a code in Mathematica 10.0 to illustrate the accuracy and
efficiency of the method.

Example 1. We consider the following inhomogeneous IVP
by Simos [8].

y" = -100y + 99sin (x),
y(0) =1,
(30)
¥ (0) = 11,
x € [0,1000]
where the analytical solution is given by
Exact: y (x) = cos (10x) + sin (10x) + sin (x) . (31)
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TABLE 1: Results, with w = 10, for Example 1.

Our method Simos [8]
N Err N Err
1000 2.14%x107° 1000 1.4x 107"
2000 5.98 x 107° 2000 3.5% 107
4000 2.06x107° 4000 1.1x107°
8000 1.26 x 107° 8000 8.4x107°
16000 7.79 x 1078 16000 55%107°
32000 4.67 x107° 32000 35%x 1077
0}
= -sf
e L
@ L
= I
S 10
50,000 100,000 150,000
NFEs
—e— Simos
Our method

FIGURE 2: Efficiency curve for Example 1.

This example was solved using the order 3 BHTRKNM
and the endpoint errors (Err = |y(xy) — yyl) obtained were
compared to the order 4 exponentially fitted method given
in Simos [8]. In Table 1 it is shown that BHTRKNM is more
efficient than the method in Simos [8]. We also compare the
computational efficiency of the two methods in Figure 2 by
considering the FNEs (number of function evaluations) over
N integration steps for each method. This example illustrates
that the BHTRKNM performs better.

Example 2. We consider the nonlinear Duffing equation
which was also solved by Simos [8] and Ixaru and Vanden
Berghe [31]:

y" +y+y3 = Bcos (Qx),
y(0) = Gy, (32)
y' (0) = 0.
The analytical solution is given by

Exact: y (x) = C,; cos (Qx) + C, cos (3Q2x)
(33)
+ C; cos (5Q0x) + C, cos (70x) ,

where Q = 1.01, B = 0.002, C;, = 0.200426728069, C, =
0.200179477536, C, = 0.246946143 X 1073, C; =0.304016 x
107%,and C, = 0.374 x 10™°. We choose w = 1.01.
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TABLE 2: Results, with w = 1.01, for Example 2.
. Ixaru and Vanden
Our method Simos [8] Berghe [31]
N Err N Err N Err
300 7.52%107° 300 1.7x107° 300 1.1x107°
600 247 %x107° 600 1.9x 1074 600 5.4%107°
1200 1.34%x 1077 1200 1.4x107° 1200 1.9%107°
2400 8.11 x 107 2400 8.7x1077 2400 6.2x1078
TABLE 3: Steps and absolute errors, with w = 1, for Example 3 [0, 5077].
Our method FESDIRK4(3) [26] ESDIRK4(3) [26]
Steps Err Steps Err Steps Err
200 442 %107 381 140 x 1072 884 9.36x107°
300 32x107° 680 1.69 x 107 1573 6.20x 107*
400 539% 1078 1207 1.85x107° 2796 4.42x107°
600 425x% 1077 2144 1.94%107° 4970 3.41x 107°
1000 1.06 x 107 3806 1.99 x 107”7 8833 2.85x 1077
1200 1.76 x 10™° 6762 2.02x107° 15706 2.53x107°
yl (0) =1- [
!
Y1 (0) =0,
g y2 (0) = 0)
5 -
= f 1+e
S 0 = \/ 5
g 1 RO=NT,
-10[ (34)
L L where e (0 < e < 1) is an eccentricity. The exact solution of
5000 10,000 15,000 this problem is
NFEs
Exact: x) = cos (k) —e,
—e— Simos —&— Our method N ( ) ( )

Ixaru and Vanden Berghe

F1Gure 3: Efficiency curves for Example 2.

We compare the endpoint global errors for our method
with those of Simos [8] and Ixaru and Vanden Berghe [31]. We
see from Table 2 that the results produced by our method are
competitive to those given in Simos [8] and Ixaru and Vanden
Berghe [31]. Hence our method is more accurate and efficient
as demonstrated in Figure 3.

Example 3. We consider the following two-body problem
which was solved by Ozawa [26] on [0, 507]:

n__ N
- __’
1 1’3
n_ X
- T T3>
2 7’3

(35)

¥, (x) = V1 —€?sin (k),

where k is the solution of Kepler’s equation k = x + e sin(k).
We choose w = 1.

We show in Table 3 that the results obtained using the
BHTRKNM method are more accurate than the explicit sin-
gly diagonally implicit Runge-Kutta (ESDIRK) and the func-
tionally fitted ESDIRK (FESDIRK) methods given in Ozawa
[26]. In Figure 4, we also illustrate the efficiency advantage of
the BHTRKNM method over those in Ozawa [26].

Example 4. We consider the stiff second-order IVP (see [16]
and references herein)

Y =(e=2) y +(2e-2) y,
yg =(1-¢)y, +(1-2¢)y,
yl (0) =2’

; (0) =0,
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TABLE 4: Results for Example 5.

Our method ARKN
N Error (8 = 10°%) Error (8 = 107'%) N Error (8 = 107%) Error (8 = 107'%)
2000 1.82x107° 2.00 x 107* 2000 9.05x10°° 9.00 x 107"
4000 1.14x107° 8.32x 107 4000 5.43%107° 7.06 x 107"
8000 7.13x 107" 3.50 x 107 8000 2.03%x 107 2.87x 107"
16000 433 x 107" 1.17 x 107 16000 7.25%x 107" 3.56 x 107"
32000 522x 107" 1.59 x 1072 32000 3.45x 1071 5.91x 107%*
1}
H
s}
s |
=
15[
5000 10,000 15,000
Steps
—e— ESDIRKA4(3) —&— Our method
FESDIRK4(3)
FIGURE 4: Efficiency curves for Example 3.
yZ (0) = _1’
!
¥,(0) =0,
€ = 2500,
w=1, (b) q > 47.96
x € [0,100]. FIGURE 5: These figures illustrate the stability of the BHTRKNM
(36) applied to Example 4. In (a) the method is stable with N = 722,
q € [0,47.96], and the global error is 1.7 x 107", whereas in (b) the
method is unstable with N = 721, g > 47.96, and the global error is
yi(x) = 2cosx; y,(x) = —cosx where € is an arbitrary 7005.78.
parameter.

This problem was chosen to demonstrate the stability of
the BHTRKNM (Figure 5). As mentioned in Remark 7, the
method is stable when g € [0,47.06] and u € [-m, 77].

4.1 Problems Where y' Appears Explicitly

Example 5. We consider the harmonic oscillator with fre-
quency ) and small perturbation § that was solved in Franco
[15] and Guo and Yan [34]:

y" +8y' +sz =0,

y(0) =0,

0
!
0)=-1,
y0)=-3
x € [0,1000]
(37)
where the analytical solution is given by
62
Exact: y (x) = e/?* cos (02 - X) , (38)

where QO = 1,8 = 10 and 8 = 107, Guo and Yan [34]
solved this problem using ARKN method. The results in
Table 4 show that the BHTRKNM is competitive with the
order 5 Runge-Kutta-Nystrom method.
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FIGURE 6: Absolute errors for Example 6.

4.2. Hyperbolic PDE

Example 6. We consider the given Telegraph equation (see
Ding et al. [32]).

Pu ., '
=52 T sin (7rx) (sin (7rt) + cos (1))

(39)

0<x<1,0<t< 1.

The exact solution is given by u(x, y) = sin(mrx) sin(rt).

In order to solve this PDE using the BHTRKNM, we carry
out the semidiscretization of the spatial variable x using the
second-order finite difference method to obtain the following
second-order system in the second variable .

aZum + zﬂaum + 7T2u _ (um+l - 2um + um—l)
or? ot " (Ax)?
:gm, 0<t<1, m=1,...,M—1, (40)

u ('xm’ 0) = um’
ut (xm’ 0) = u:n’

where Ax = (b-a)/M, x,, =a+mAx,m=0,1,...,M,u=
[, (1), upg O], g = (918, G (], 14, (1) = 1, 1),
and g,,,(t) = g(x,,,t) = ? sin(rrx,,)(sin(rrt) +cos(rt)), which
can be written in the form

o' =f (t, u, u’) R (41)

subject to the boundary conditions u(t,) = u, and u'(ty) = u6
where f(f,u,u’) = Au + g and A is (M — 1) x (M — 1), matrix
arising from the semidiscretized system, and g is a vector of
constants.

TABLE 5: Results, with w = 7, for Example 6.

Our method Ding et al. [32]
X Err Err
0.2 246 x 107"° 9.62x107"°
0.4 3.96 x 107"° 1.56 x 10~°
0.6 3.98x 107" 1.56 x 107°
0.8 246 x 10710 9.62x1071°

The boundary conditions are chosen accordingly. This
example was chosen to demonstrate that the BHTRKNM can
be used to solve the Telegraph equation. In Table 5, the results
produced by the BHTRKNM using At = 1/100 and space step
Ax = 1/100 are compared to scheme (3.12) (A; = 1/12 and
A, = 5/6), time step At = 1/200, and space step Ax = 1/100,
given in Ding et al. [32]. It is obvious from Table 5 that the
BHTRKNM is more accurate than the method given in [32].
Moreover, the errors produced by BHTRKNM method using
At = 1/100 and space step Ax = 1/100 are given in Figure 6.

4.3. Hamiltonian Systems and Energy Conservation. In this
section we present additional examples to show that the
BHTRKNM preserves energy. To do so we consider Hamil-
tonian systems of the form

P =-VH(p.q),

q, = _VpH (P; q) >

(42)

where H(p, q) is an arbitrary scalar function of the variables
(p»q)- Let M be a positive definite matrix and let U(q) be a
potential and the total energy H expressed as the sum of the
kinetic and potential energy namely in the form

H(p.q) = %pTM“p +U(q); (43)
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FIGURE 7: Perturbed Kepler problem: the logarithm of the global error of the Hamiltonian EH = |H, — H,| against ¢ for h = 0.2 and the
momentum EL = |L, — L,| are presented in (a) and (b), respectively. In (c) we compare the efficiency curves for the BHTRKNM and N4.
Timing comparison is provided in (d). It is clear from the timing curves that BHTRKNM is very efficient.

then systems (42) can be written as a system of first-order
differential equations

v,

v = f(q),

where the momentra p = Mpv is in terms of the velocities
and f(q)9 = -M'VU(q) is in terms of the negative
gradient of a potential. See [36-39] and references therein for
further details. The Hamiltonian function, H(y), defined by

AN
1l

(44)

H(y) = H(p, q) is a polynomial in the variables p and g. The
Hamiltonian function conserves energy if

H(yn+1) = H(yn)’ vn, h>o0. (45)
Example 7. We consider the perturbed Kepler’s problem in
[40] given by
qu _ 41 _ (2€ + 62) Ehl
1 3/2 5/2°
(gi+43)""  (4i+4)

1,

q, (0)
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-3 -2 -1 0 1 2 3
(e) Exact flow

FIGURE 8: The pendulum problem: phase diagrams for BHTRKNM with w = 1,1.4,2 are presented in (a), (b), and (c), respectively. (d)
illustrates a distortion in the flow for the RK4, while (e) shows exact flow of the pendulum problem. In the diagrams, y = ¢; ' = ¢

q, (0) =0, The exact solution of this problem is
" 9, (26 + 62) % q, (t) = cos (f +et), @)
o __(qf+q§ 32 (q%+q§)5/2’ q, () = sin (t + €t) .
q,(0) =0, The Hamiltonian is
2
"(0) = 1, n n 1 (Ze +e )
4, 0)=1+e. Hzi(q1+q2)— — - (48)
(46) \/ql + qz 3 (ql + qz)
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FIGURE 9: The pendulum problem: Hamiltonian error EH = |H,, — H,| using RK4 with h = 0.5 is presented in (a), while (b) shows EH for
BHTRKNM. We also solve the problem on a larger interval of integration [0, 500], using the BHTRNM in (c) and (d) and the RK4 in (e) and

(f), respectively.

The system also has the angular momentum L = q,g5 — 4,4,
as a first integral. We take the parameter value e = 107°.

This problem is solved in the interval [0, 1000] using the
BHTRKNM for various values of h = 0.1/2"7%,i = 0,1,2, 3, 4.
The BHTRKNM preserves the Hamiltonian energy and to
demonstrate this, we plot the logarithm of the global error of
the Hamiltonian EH = |H, — H;| and the momentum EL =
|L, — Lol as given in Figures 7(a) and 7(b), respectively. The
problem was also solved using N4 given in Sommeijer [35]
and in Figure 7(c), the efficiency curves for the BHTRKNM
and N4 are compared showing that the BHTRKNM is
superior.

Example 8. We consider the pendulum oscillator in [36] (and

references herein) given by
"

q =-sing (49)

with initial conditions

q(0) =0,
, (50)
4 (0)=15
and Hamiltonian
H= %q'z - cosq. (51)

This problem is solved using the BHTRKNM on the
interval [0, 50] for h = 1 and w = 1, 1.4, 2 and the results for
the phase diagrams produced by the BHTRKNM in the g-q’
plane are presented in Figures 8(a), 8(b), and 8(c), respec-
tively. We observe that the BHTRKNM gives good results for
all the values of w, since all the diagrams follow the exact flow
of the pendulum problem as given in Figure 8(e). As illus-
trated in these Figures, the numerical solutions are periodic
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and in accordance with the fact that the pendulum equation
has a periodic solution. We note that Van Daele and Vanden
Berghe in [36] obtained similar results for a smaller step-size
h =0.5and w = 1 using S/V method including other versions
of the S/V method and it was observed that the SE1 ; method
in [36] produced better numerical results for w = 1 than for
w = 1.4. The problem was also solved using the fourth-order
Runge-Kutta method (RK4) and the results presented in
Figure 8(d) show a distortion in the flow diagram for the RK4;
hence the BHTRKNM is superior. The pendulum problem
was also presented in Figure 9.

5. Conclusion

This paper presents a BHTRKNM whose coefficients are
functions of the frequency and the step-size for directly solv-
ing general second-order initial value problems (IVPs), oscil-
latory systems, and Hamiltonian systems, as well as systems
arising from the semidiscretization of hyperbolic PDEs, such
as the Telegraph equation. We implement the BHTRKNM
in a block-by-block fashion; thus the method does not
need starting values and predictors which are inherent in
predictor-corrector methods. Numerical experiments pre-
sented in this paper clearly demonstrate that our method has
a reasonably wide stability region and enjoys accuracy and
efficiency advantages when compared to existing methods
in the literature. Technique for accurately estimating the
frequency as suggested in [30, 41] as well as implementing the
method in a variable step mode will be considered in future.
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