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In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients
are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including
Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial differential
equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid
trigonometrically fitted method with an off-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the
method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector
methods. The stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some
numerical examples to show accuracy and efficiency advantages.

1. Introduction

In what follows, we consider the numerical solution of the
general second-order IVPs of the form

𝑦󸀠󸀠 = 𝑓 (𝑥, 𝑦, 𝑦󸀠) ,𝑦 (𝑥0) = 𝑦0,𝑦󸀠 (𝑥0) = 𝑦󸀠0, 𝑥 ∈ [𝑥0, 𝑥𝑁] ,
(1)

where 𝑓 : R × R2𝑚 → R2𝑚, 𝑁 > 0 is an integer, and 𝑚 is
the dimension of the system. Problems of form (1) frequently
arise in several areas of science and engineering such as clas-
sical mechanics, celestial mechanics, quantum mechanics,
control theory, circuit theory, astrophysics, and biological sci-
ences. Equation (1) is traditionally solved by reducing it into
a system of first-order IVPs of double dimension and then
solved using the variousmethods that are available for solving

systems of first-order IVPs (see Lambert [1, 2], Hairer and
Wanner in [3], Hairer [4], and Brugnano andTrigiante [5, 6]).

Nevertheless, there are numerous methods for directly
solving the special second-order IVPs in which the first
derivative does not appear explicitly and it has been shown
that these methods have the advantages of requiring less
storage space and fewer number of function evaluations (see
Hairer [4], Hairer et al. [7], Simos [8], Lambert and Watson,
and [9], Twizell and Khaliq [10]). Fewer methods have been
proposed for directly solving second-order IVPs in which the
first derivative appears explicitly (seeVigo-Aguiar andRamos
[11], Awoyemi [12], Chawla and Sharma [13], Mahmoud and
Osman [14], Franco [15], and Jator [16, 17]). It is also the
case that some of these IVPs possess solutions with special
properties that may be known in advance and take advantage
of when designing numerical methods. In this light, several
methods have been presented in the literature which take
advantage of the special properties of the solution thatmay be
known in advance (see Coleman and Duxbury [18], Coleman
and Ixaru [19], Simos [20], Vanden Berghe et al. [21], Vigo-
Aguiar and Ramos [11], Fang et al. [22], Nguyen et al. [23],

Hindawi
International Journal of Differential Equations
Volume 2017, Article ID 9293530, 14 pages
https://doi.org/10.1155/2017/9293530

https://doi.org/10.1155/2017/9293530


2 International Journal of Differential Equations

Ramos and Vigo-Aguiar [24], Franco and Gómez [25], and
Ozawa [26]). However, most of these methods are restricted
to solving special second-order IVPs in a predictor-corrector
mode.

Our objective is to present a BHTRKNM that is imple-
mented in a block-by-block fashion; in this way, the method
does not suffer from the disadvantages of requiring start-
ing values and predictors which are inherent in predictor-
correctormethods (see Jator et al. [27], Jator [16], andNgwane
and Jator [28]). We note that multiderivative trigonometri-
cally fitted blockmethods for 𝑦󸀠󸀠 = 𝑓(𝑥, 𝑦, 𝑦󸀠) have been pro-
posed in Jator [29] and Jator [16]. However, the BHTRKNM
proposed in this paper avoids the computation of higher
order derivatives which have the potential to increase compu-
tational cost, especially, when applied to nonlinear systems.
In this paper, we propose a BHTRKNM which is of order 3
and its application is extended to solving oscillatory systems,
PDEs, and Hamiltonian systems including the energy con-
serving equation.

The organization of this article is as follows. In Section 2,
we derive the BHTRKNM for solving (1). The analysis and
implementation of the BHTRKNMare discussed in Section 3.
Numerical examples are given in Section 4 to show the accu-
racy and efficiency of the BHTRKNM. Finally, the conclusion
of the paper is given in Section 5.

2. Development of the BHTRKNM

In order to numerical integrate (1) we define the BHTRKNM
as consisting of the following four discrete formulas:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦󸀠𝑛 + ℎ2( 1∑
𝑗=0

𝛽𝑗𝑓𝑛+𝑗 + 𝛽𝑛+V𝑓𝑛+V) ,
𝑦𝑛+V = 𝑦𝑛 + ℎ𝑦󸀠𝑛 + ℎ2( 1∑

𝑗=0

𝛾𝑗𝑓𝑛+𝑗 + 𝛾𝑛+V𝑓𝑛+V) ,
ℎ𝑦󸀠𝑛+1 = ℎ𝑦󸀠𝑛 + ℎ2( 1∑

𝑗=0

𝛽󸀠𝑗𝑓𝑛+𝑗 + 𝛽󸀠𝑛+V𝑓𝑛+V) ,
ℎ𝑦󸀠𝑛+V = ℎ𝑦󸀠𝑛 + ℎ2( 1∑

𝑗=0

𝛾󸀠𝑗𝑓𝑛+𝑗 + 𝛾󸀠𝑛+V𝑓𝑛+V) ,

(2)

where 𝛽𝑗, 𝛽󸀠𝑗, 𝛾𝑗, and 𝛾󸀠𝑗 are coefficients that depend on the
step-length ℎ and frequency 𝑤. In general, the frequency 𝑤
is chosen near the exact frequency of the true solution (see
[30]). The coefficients of the method are chosen so that the
method integrates the IVP (1) exactly where the solutions are
members of the linear space ⟨1, 𝑥, 𝑥2, sin(𝑤𝑥), cos(𝑤𝑥)⟩.

The main method has the form

𝑦𝑛+1 = 𝛼0𝑦𝑛 + 𝛿0ℎ𝑦󸀠𝑛 + ℎ2( 1∑
𝑗=0

𝛽𝑗𝑓𝑛+𝑗 + 𝛽𝑛+V𝑓𝑛+V) , (3)

where 𝛼0, 𝛿0, and 𝛽0, 𝛽V, and 𝛽1 are to be determined coeffi-
cient functions of the frequency and step-size. In order to

derive the main method and additional methods we initially
seek a continuous local approximation Π(𝑥) on the interval[𝑥𝑛, 𝑥𝑛+1] of the formΠ (𝑥) = 𝛼0 (𝑥) 𝑦𝑛 + 𝛿0 (𝑥) ℎ𝑦󸀠𝑛

+ ℎ2( 1∑
𝑗=0

𝛽𝑗 (𝑥) 𝑓𝑛+𝑗 + 𝛽𝑛+V (𝑥) 𝑓𝑛+V) , (4)

where 𝛼0(𝑥), 𝛿0(𝑥), and 𝛽𝑗(𝑥), 𝑗 = 0, V, 1, are continuous
coefficients. The first derivative of (4) is given by

Π󸀠 (𝑥) = 𝑑𝑑𝑥Π (𝑥) . (5)

We assume that 𝑦𝑛+𝑗 = Π(𝑥𝑛+𝑗) is the numerical approxima-
tion to the analytical solution 𝑦(𝑥𝑛+𝑗), 𝑦󸀠𝑛+𝑗 = Π󸀠(𝑥𝑛+𝑗) is the
numerical approximation to 𝑦󸀠(𝑥𝑛+𝑗), and 𝑓𝑛+𝑗 = Π󸀠󸀠(𝑥𝑛+𝑗) is
an approximation to 𝑦󸀠(𝑥𝑛+𝑗), 𝑗 = 0, V, 1.

The following theorem shows how the continuous
method (4) is constructed. This is done by requiring that on
the interval from 𝑥𝑛 to 𝑥𝑛+1 = 𝑥𝑛 + ℎ the exact solution is
locally approximated by function (4) with (5) obtained as a
consequence.

Theorem 1. Let 𝐹𝑖(𝑥) = 𝑥𝑖, 𝑖 = 0, 1, 2, 𝐹3(𝑥) = sin𝑤𝑥, and𝐹4(𝑥) = cos𝑤𝑥 be basis functions and let𝑉 = (𝑦𝑛, 𝑦󸀠𝑛, 𝑓𝑛, 𝑓𝑛+V,𝑓𝑛+1)𝑇 be a vector, where 𝑇 is the transpose. Define the matrix𝐺 by

𝐺 =(((
(

𝐹0 (𝑥𝑛) ⋅ ⋅ ⋅ 𝐹4 (𝑥𝑛)𝐹󸀠0 (𝑥𝑛) ⋅ ⋅ ⋅ 𝐹󸀠4 (𝑥𝑛)𝐹󸀠󸀠0 (𝑥𝑛) ⋅ ⋅ ⋅ 𝐹󸀠󸀠4 (𝑥𝑛)𝐹󸀠󸀠0 (𝑥𝑛+V) ⋅ ⋅ ⋅ 𝐹󸀠󸀠4 (𝑥𝑛+V)𝐹󸀠󸀠0 (𝑥𝑛+1) ⋅ ⋅ ⋅ 𝐹󸀠󸀠4 (𝑥𝑛+1)
)))
)

(6)

and𝐺𝑖 is obtained by replacing the 𝑖th column of𝐺 by the vector𝑉. Let the following conditions be satisfied:Π(𝑥𝑛) = 𝑦𝑛,Π󸀠 (𝑥𝑛) = 𝑦󸀠𝑛,Π󸀠󸀠 (𝑥𝑛 + 𝑗) = 𝑓𝑛+𝑗,𝑗 = 0, V, 1;
(7)

then the continuous representations (4) and (5) are equivalent
to the following:

Π (𝑥) = 4∑
𝑖=0

det (𝐺𝑖)
det (𝐺) 𝐹𝑖 (𝑥) , (8)

Π󸀠 (𝑥) = 𝑑𝑑𝑥 ( 4∑
𝑖=0

det (𝐺𝑖)
det (𝐺) 𝐹𝑖 (𝑥)) . (9)

Proof. To prove this theorem, we use the approach given in
Jator [17] with appropriate notational modification. We start
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by requiring that the method (4) be defined by the assumed
basis functions

𝛼0 (𝑥) = 4∑
𝑖=0

𝛼𝑖+1,0𝐹𝑖 (𝑥) ,
ℎ𝛿0 (𝑥) = 4∑

𝑖=0

ℎ𝛿𝑖+1,0𝐹𝑖 (𝑥) ,
ℎ2𝛽𝑗 (𝑥) = 4∑

𝑖=0

ℎ2𝛽𝑖+1,𝑗𝐹𝑖 (𝑥) ,
(10)

where 𝛼𝑖+1,0, ℎ𝛿𝑖+1,0, and ℎ2𝛽𝑖+1,𝑗 are coefficients to be deter-
mined. Substituting (10) into (4) we get

Π (𝑥) = 4∑
𝑖=0

𝛼𝑖+1,0𝐹𝑖 (𝑥) 𝑦𝑛 + 4∑
𝑖=0

ℎ𝛿𝑖+1,0𝐹𝑖 (𝑥) 𝑦󸀠𝑛
+ 1∑
𝑗=0

4∑
𝑖=0

ℎ2𝛽𝑖+1,𝑗𝐹𝑖 (𝑥) 𝑓𝑛+𝑗 (11)

which is simplified to

Π (𝑥) = 4∑
𝑖=0

(𝛼𝑖+1,0𝐹𝑖 (𝑥) 𝑦𝑛 + ℎ𝛿𝑖+1,0𝐹𝑖 (𝑥) 𝑦󸀠𝑛
+ 1∑
𝑗=0

ℎ2𝛽𝑖+1,𝑗𝐹𝑖 (𝑥) 𝑓𝑛+𝑗) (12)

and expressed as

Π (𝑥) = 4∑
𝑖=0

ℓ𝑖𝐹𝑖 (𝑥) , (13)

where

ℓ𝑖 = 𝛼𝑖+1,0𝑦𝑛 + ℎ𝛿𝑖+1,0𝑦󸀠𝑛 + 1∑
𝑗=0

ℎ2𝛽𝑖+1,𝑗𝑓𝑛+𝑗. (14)

By imposing conditions (7) on (13), we obtain a system of five
equations which can be expressed as𝐺𝐿 = 𝑉, (15)

where 𝐿 = (ℓ0, ℓ1, . . . , ℓ4)𝑇 is a vector whose coefficients are
determined via Cramer’s rule as

ℓ𝑖 = det (𝐺𝑖)
det (𝐺) , 𝑖 = 0, 1, . . . , 4, (16)

where 𝐺𝑖 is obtained by replacing the 𝑖th column of 𝐺 by 𝑉.
In order to obtain the continuous approximation, we use the
elements of 𝐿 to rewrite (13) as

Π (𝑥) = 4∑
𝑖=0

det (𝐺𝑖)
det (𝐺) 𝐹𝑖 (𝑥) , (17)

whose first derivative is given by

Π󸀠 (𝑥) = 𝑑𝑑𝑥 ( 4∑
𝑖=0

det (𝐺𝑖)
det (𝐺) 𝐹𝑖 (𝑥)) . (18)

Remark 2. Wenote that, in the derivation of the BHTRKNM,
the basis functions 𝐹𝑖(𝑥) = 𝑥𝑖, 𝑖 = 0, 1, 2, 𝐹3(𝑥) = sin𝑤𝑥, and𝐹4(𝑥) = cos𝑤𝑥 are chosen because they are simple to analyze.
Nevertheless, other possible bases are possible (see Nguyen et
al. [23]).

2.1. Specification of the Method. The continuous methods (8)
and (9) which are equivalent to forms (4) and (5) are used to
generate two discrete methods and two additional methods.
The discrete and additional methods are then applied as a
BHTRKNMfor solving (1).We choose V = 1/2 and evaluating
(8) at 𝑥 = 𝑥𝑛+V and 𝑥 = 𝑥𝑛+1, respectively, gives the two dis-
crete methods 𝑦𝑛+V = Π(𝑥𝑛 + Vℎ) and 𝑦𝑛+1 = Π(𝑥𝑛 +ℎ)which
takes the form of themainmethod. Evaluating (9) at 𝑥 = 𝑥𝑛+V
and 𝑥 = 𝑥𝑛+1, respectively, gives the additional methods𝑦󸀠𝑛+V = Π󸀠(𝑥𝑛+Vℎ) and 𝑦󸀠𝑛+1 = Π󸀠(𝑥𝑛+ℎ).The coefficients and
their corresponding Taylor series equivalence of 𝑦𝑛+V, 𝑦𝑛+1,ℎ𝑦󸀠𝑛+V, and ℎ𝑦󸀠𝑛+1 are, respectively, given as follows:

𝛼V,0 = 1,𝛿V,0 = 12 ,𝛽V,0 = csc (𝑢/4) csc (𝑢/2) ((8 + 𝑢2) cos (𝑢/4) − 4 (2 cos (3𝑢/4) + 𝑢 sin (3𝑢/4)))16𝑢2
= 796 + 7𝑢27680 + 71𝑢43870720 + 53𝑢6123863040 + 23𝑢82179989504 + ⋅ ⋅ ⋅ ,

𝛽V,V = −csc (𝑢/4)2 (8 + (−8 + 𝑢2) cos (𝑢/2) − 4𝑢 sin (𝑢/2))16𝑢2 = 116 − 𝑢22304 − 𝑢4276480 − 𝑢634406400 − 𝑢84459069440 + ⋅ ⋅ ⋅ ,
𝛽V,1 = csc (𝑢/4)2 (𝑢 + 4 cot (𝑢/2) − 4 csc (𝑢/2))32𝑢 = − 196 − 11𝑢223040 − 19𝑢41290240 − 247𝑢6619315200 − 1013𝑢898099527680 + ⋅ ⋅ ⋅ ,

(19)
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𝛼1,0 = 1,𝛿1,0 = 1,
𝛽1,0 = csc (𝑢/4) csc (𝑢/2) ((2 + 𝑢2) cos (𝑢/4) − 2 (cos (3𝑢/4) + 𝑢 sin (3𝑢/4)))4𝑢2

= 16 + 𝑢2480 + 19𝑢4483840 + 17𝑢619353600 + 29𝑢81362493440 + ⋅ ⋅ ⋅ ,
𝛽1,V = −csc (𝑢/4)2 csc (𝑢/2) (−2 + 2 cos 𝑢 + 𝑢 sin 𝑢)8𝑢 = 13 − 𝑢2720 − 𝑢480640 − 𝑢69676800 − 𝑢81226244096 + ⋅ ⋅ ⋅ ,
𝛽1,1 = csc (𝑢/4)2 (−4 + 𝑢2 + 4 cos (𝑢/2) + 2𝑢 cot (𝑢/2) − 2𝑢 csc (𝑢/2))8𝑢2

= − 𝑢21440 − 13𝑢4483840 − 𝑢61290240 − 251𝑢812262440960 + ⋅ ⋅ ⋅ ,

(20)

𝛼V,0 = 0,𝛿V,0 = 1,
𝛾󸀠V,0 = −cot (𝑢/2)𝑢 + 18 csc(𝑢4)2 = 524 + 19𝑢25760 + 23𝑢4322560 + 263𝑢6154828800 + 1033𝑢824524881920 + ⋅ ⋅ ⋅ ,
𝛾󸀠V,V = −csc (𝑢/4)2 csc (𝑢/2) (−2 + 2 cos (𝑢) + 𝑢 sin (𝑢))8𝑢 = 13 − 𝑢2720 − 𝑢480640 − 𝑢69676800 − 𝑢81226244096 + ⋅ ⋅ ⋅ ,
𝛾󸀠V,1 = csc (𝑢/4)2 (𝑢 + 4 cot (𝑢/2) − 4 csc (𝑢/2))8𝑢 = − 124 − 11𝑢25760 − 19𝑢4322560 − 247𝑢6154828800 − 1013𝑢824524881920 + ⋅ ⋅ ⋅ ,

(21)

𝛼1,0 = 0,𝛿1,0 = 1,
𝛽󸀠1,0 = csc (𝑢/4)2 (𝑢 − 2 sin (𝑢/2))4𝑢 = 16 + 𝑢2720 + 𝑢480640 + 𝑢69676800 + 𝑢81226244096 + ⋅ ⋅ ⋅ ,
𝛽󸀠1,V = csc (𝑢/4)2 (𝑢 − 2 sin (𝑢/2))4𝑢 = 23 − 𝑢2360 − 𝑢440320 − 𝑢64838400 − 𝑢8613122048 + ⋅ ⋅ ⋅ ,
𝛽󸀠1,1 = csc (𝑢/4)2 (−4 + 𝑢2 + 4 cos (𝑢/2) + 2𝑢 cot (𝑢/2) − 2𝑢 csc (𝑢/2))8𝑢2

= 16 + 𝑢2720 + 𝑢480640 + 𝑢69676800 + 𝑢81226244096 + ⋅ ⋅ ⋅ .

(22)

Remark 3. We note that the Taylor series expansions in (19)
through (22) must be used when 𝑢 → 0 because the corre-
sponding trigonometric coefficients given in these equations
are vulnerable to heavy cancelations (see [8]).

2.2. Block Form. BHTRKNM is formulated from the four dis-
crete hybrid formulas stated in (2) which are provided by the

continuous one-step hybrid trigonometrically fitted method
with one off-grid point given by (4) and its first derivative (5).
We define the following vectors:𝑌𝜇+1 = [𝑦𝑛+V, 𝑦𝑛+1, ℎ𝑦󸀠𝑛+V, ℎ𝑦󸀠𝑛+1]𝑇 ,

𝑌𝜇 = [𝑦𝑛−V, 𝑦𝑛, ℎ𝑦󸀠𝑛−V, ℎ𝑦󸀠𝑛]𝑇 ,
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𝐹𝜇+1 = [𝑓𝑛+V, 𝑓𝑛+1, ℎ𝑓󸀠𝑛+V, ℎ𝑓󸀠𝑛+1]𝑇 ,𝐹𝜇 = [𝑓𝑛−V, 𝑓𝑛, ℎ𝑓󸀠𝑛−V, ℎ𝑓󸀠𝑛]𝑇 ,
(23)

where 𝜇 = 0, . . . , 𝑁, 𝑛 = 0, . . . , 𝑁. The methods in (2)
specified by the coefficients (19)–(22) are combined to give
the BHTRKNM, which is expressed as𝐴1𝑌𝜇+1 = 𝐴0𝑌𝜇 + ℎ2 (𝐵0𝐹𝜇 + 𝐵1𝐹𝜇+1) , (24)

where 𝐴0, 𝐴1, 𝐵0, and 𝐵1 are matrices of dimension four
whose elements characterize the method and are given by the
coefficients of (2).

3. Error Analysis and Stability

3.1. Local Truncation Error (LTE). We define the local trun-
cation error of (24) as𝐿 [(𝑍 (𝑥) ; ℎ)] = 𝑍𝜇+1 − [𝐴𝑍𝜇 + ℎ2𝐵𝐹𝜇 + ℎ2𝐶𝐹𝜇+1] , (25)

where𝑍𝜇+1 = [𝑦 (𝑥𝑛+V) , 𝑦 (𝑥𝑛+1) , ℎ𝑦󸀠 (𝑥𝑛+V) , ℎ𝑦󸀠 (𝑥𝑛+1)]𝑇 ,𝑍𝜇 = [𝑦 (𝑥𝑛−V) , 𝑦 (𝑥𝑛) , ℎ𝑦󸀠 (𝑥𝑛−V) , ℎ𝑦󸀠 (𝑥𝑛)]𝑇 ,𝐹𝜇+1 = [𝑓 (𝑥𝑛+V, 𝑦𝑛+V) , 𝑓 (𝑥𝑛+1, 𝑦𝑛+1) , ℎ𝑓󸀠 (𝑥𝑛+V, 𝑦𝑛+V) ,ℎ𝑓󸀠 (𝑥𝑛+1, 𝑦𝑛+1)]𝑇 ,𝐹𝜇 = [𝑓 (𝑥𝑛−V, 𝑦𝑛−V) , 𝑓 (𝑥𝑛, 𝑦𝑛) , ℎ𝑓󸀠 (𝑥𝑛−V, 𝑦𝑛−V) ,ℎ𝑓󸀠 (𝑥𝑛, 𝑦𝑛)]𝑇 ,

(26)

and 𝐿[(𝑍(𝑥); ℎ)] = [𝐿1[𝑧(𝑥); ℎ], 𝐿2[𝑧(𝑥); ℎ], . . . , 𝐿4[𝑧(𝑥);ℎ]]𝑇 is linear different operator.
Suppose that 𝑍(𝑥) is sufficiently differentiable. Then, a

Taylor series expansion of the terms in (25) about the point 𝑥
gives the following expression for local truncation error:𝐿 [𝑍 (𝑥) ; ℎ] = 𝐶0𝑍 (𝑥) + 𝐶1ℎ𝑍󸀠 (𝑥) + ⋅ ⋅ ⋅+ 𝐶𝑞ℎ𝑞𝑍𝑞 (𝑥) + ⋅ ⋅ ⋅ , (27)

where 𝐶𝑖, 𝑖 = 0, 1, . . ., are constant coefficients (see [17]).

Definition 4. The block method (24) has algebraic order at
least 𝑝 ≥ 1 provided there exists a constant 𝐶𝑝+2 ̸= 0 such
that the local truncation error 𝐸𝜇 satisfies ‖𝐸𝜇‖ = 𝐶𝑝+2ℎ𝑝+2 +𝑂(ℎ𝑝+3), where ‖ ⋅ ‖ is the maximum norm.

Remark 5. (i) The local truncation error constants (𝐶𝑝+2) of(𝑦𝑛+V, 𝑦𝑛+1, ℎ𝑦󸀠𝑛+V, ℎ𝑦󸀠𝑛+1)𝑇 of the block method (24) are given,
respectively, by 𝐶5 = (1/1440, 1/720, 1/384, 0)𝑇, where 𝐶0 =𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0.

(ii) From the local truncation error constant computa-
tion, it follows that the method (24) has order 𝑝 at least three.
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Figure 1: The stability region plotted in the (𝑞, 𝑢)-plane.
3.2. Stability. The linear-stability of the BHTRKNM is dis-
cussed by applying the method to the test equation 𝑦󸀠󸀠 =−𝜆2𝑦, where 𝜆 is a real constant (see [18]). Letting Υ = 𝜆ℎ,
it is easily shown as in [19] that the application of (24) to the
test equation yields𝑌𝜇+1 = 𝑀(Υ2; 𝑢) 𝑌𝜇,𝑀 (Υ2; 𝑢) fl (𝐴1 − Υ2𝐵1)−1 (𝐴0 + Υ2𝐵0) , (28)

where the matrix𝑀(Υ2; 𝑢) is the amplification matrix which
determines the stability of the method. In the spirit of [22],
the spectral radius of 𝜌(𝑀(Υ2; 𝑢)) can be obtained from the
characteristics equation𝜌2 − 2Γ (Υ2; 𝑢) 𝜌 + Θ (Υ2; 𝑢) = 0, (29)

where 𝑢 = 𝜔ℎ, Γ(Υ2; 𝑢) = trace𝑀(Υ2; 𝑢), and Θ(Υ2; 𝑢) =
det𝑀(Υ2; 𝑢) are rational functions. We let 𝑞 = 𝜆ℎ in the
following definition.

Definition 6. A region of stability is a region in the 𝑞-𝑢 plane,
throughout which 𝜌(𝑀(Υ2; 𝑢)) ≤ 1 and any closed curve
given by 𝜌(𝑀(Υ2; 𝑢)) = 1 defines the stability boundary of
the method (see [22]). We note that the plot for the stability
region of the BHTRKNMmethod is given in Figure 1.

Remark 7. It is observed that, in the 𝑞-𝑢 plane, the
BHTRKNM is stable for 𝑞 ∈ [0, 47.96] and 𝑢 ∈ [−𝜋, 𝜋] (see
Figure 1).

3.3. Implementation. The main method and the additional
methods specified by (19)–(22) are combined to form the
block method BHTRKNM (24), which is used to solve (1)
without requiring starting values and predictors. BHTRKNM
is implemented in a block-by-block fashion using a Mathe-
matica 10.0 code, enhanced by the feature𝑁𝑆𝑜𝑙V𝑒[ ] for linear
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problems while nonlinear problems were solved by Newton’s
method enhanced by the feature 𝐹𝑖𝑛𝑑𝑅𝑜𝑜𝑡[ ] (see Keiper and
Gear [33]). Mathematica can symbolically compute deriva-
tives and so the entries of the Jacobian matrix which involve
partial derivatives are automatically generated. In what fol-
lows, we summarize how BHTRKNM is applied.

Step 1. Choose𝑁, ℎ = (𝑏 − 𝑎)/𝑁, and the number of blocksΓ = 𝑁. Using (24), 𝑛 = 0, and 𝜇 = 0, the values of(𝑦1/2, 𝑦1, 𝑦󸀠1/2, 𝑦󸀠1)𝑇 are simultaneously obtained over the sub-
interval [𝑥0, 𝑥1], as 𝑦0 and 𝑦󸀠0 are known from the IVP (1).

Step 2. For 𝑛 = 1 and 𝜇 = 1, the values of (𝑦3/2, 𝑦2, 𝑦󸀠3/2, 𝑦󸀠2)𝑇
are simultaneously obtained over the subinterval [𝑥1, 𝑥2], as𝑦1 and 𝑦󸀠1 are known from the previous block.

Step 3. The process is continued for 𝑛 = 2, . . . , 𝑁 − 1 and 𝜇 =2, . . . , Γ−1 to obtain the numerical solution to (1) on the sub-
intervals [𝑥0, 𝑥1], [𝑥1, 𝑥2], . . . , [𝑥𝑁−1, 𝑥𝑁].

In order to illustrate the efficiency of our method, we
solved a variety of problems including oscillatory systems,
PDEs such as the Telegraph equation, and Hamiltonian
systems. The following methods are selected for comparison:

(i) BHTRKNM given in this paper.
(ii) ARKN: adapted Runge-Kutta-Nyström method in

[34] which has order five.
(iii) (DS3.12): difference scheme (3.12) in [32].
(iv) ESDIRK: explicit singly diagonally implicit Runge-

Kutta method in [26].
(v) FESDIRK: functionally fitted ESDIRK in [26].
(vi) EFRK: exponentially fitted Runge-Kutta method

(Method (b)) in Simos [8].
(vii) N4: fourth-order standard Runge-Kutta-Nyström

method in [35].

4. Numerical Examples

In this section, numerical experiments are performed using
a code in Mathematica 10.0 to illustrate the accuracy and
efficiency of the method.

Example 1. We consider the following inhomogeneous IVP
by Simos [8].

𝑦󸀠󸀠 = −100𝑦 + 99 sin (𝑥) ,𝑦 (0) = 1,𝑦󸀠 (0) = 11, 𝑥 ∈ [0, 1000] ,
(30)

where the analytical solution is given by

Exact: 𝑦 (𝑥) = cos (10𝑥) + sin (10𝑥) + sin (𝑥) . (31)

Table 1: Results, with 𝜔 = 10, for Example 1.

Our method Simos [8]𝑁 Err 𝑁 Err
1000 2.14 × 10−3 1000 1.4 × 10−1
2000 5.98 × 10−5 2000 3.5 × 10−2
4000 2.06 × 10−5 4000 1.1 × 10−3
8000 1.26 × 10−6 8000 8.4 × 10−5
16000 7.79 × 10−8 16000 5.5 × 10−6
32000 4.67 × 10−9 32000 3.5 × 10−7

50,000 100,000 150,000
NFEs

Our method
Simos

lo
g 1

0
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r|)
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Figure 2: Efficiency curve for Example 1.

This example was solved using the order 3 BHTRKNM
and the endpoint errors (Err = |𝑦(𝑥𝑁) − 𝑦𝑁|) obtained were
compared to the order 4 exponentially fitted method given
in Simos [8]. In Table 1 it is shown that BHTRKNM is more
efficient than the method in Simos [8]. We also compare the
computational efficiency of the two methods in Figure 2 by
considering the FNEs (number of function evaluations) over𝑁 integration steps for each method.This example illustrates
that the BHTRKNM performs better.

Example 2. We consider the nonlinear Duffing equation
which was also solved by Simos [8] and Ixaru and Vanden
Berghe [31]:

𝑦󸀠󸀠 + 𝑦 + 𝑦3 = 𝐵 cos (Ω𝑥) ,𝑦 (0) = 𝐶0,𝑦󸀠 (0) = 0. (32)

The analytical solution is given by

Exact: 𝑦 (𝑥) = 𝐶1 cos (Ω𝑥) + 𝐶2 cos (3Ω𝑥)+ 𝐶3 cos (5Ω𝑥) + 𝐶4 cos (7Ω𝑥) , (33)

where Ω = 1.01, 𝐵 = 0.002, 𝐶0 = 0.200426728069, 𝐶1 =0.200179477536, 𝐶2 = 0.246946143 × 10−3, 𝐶3 = 0.304016 ×10−6, and 𝐶4 = 0.374 × 10−9. We choose 𝜔 = 1.01.
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Table 2: Results, with 𝜔 = 1.01, for Example 2.

Our method Simos [8] Ixaru and Vanden
Berghe [31]𝑁 Err 𝑁 Err 𝑁 Err300 7.52 × 10−5 300 1.7 × 10−3 300 1.1×10−3600 2.47 × 10−6 600 1.9 × 10−4 600 5.4×10−51200 1.34 × 10−7 1200 1.4 × 10−5 1200 1.9×10−62400 8.11 × 10−9 2400 8.7 × 10−7 2400 6.2×10−8

Table 3: Steps and absolute errors, with 𝜔 = 1, for Example 3 [0, 50𝜋].
Our method FESDIRK4(3) [26] ESDIRK4(3) [26]

Steps Err Steps Err Steps Err
200 4.42 × 10−4 381 1.40 × 10−3 884 9.36 × 10−3
300 3.2 × 10−5 680 1.69 × 10−4 1573 6.20 × 10−4
400 5.39 × 10−8 1207 1.85 × 10−5 2796 4.42 × 10−5
600 4.25 × 10−7 2144 1.94 × 10−6 4970 3.41 × 10−6
1000 1.06 × 10−8 3806 1.99 × 10−7 8833 2.85 × 10−7
1200 1.76 × 10−9 6762 2.02 × 10−8 15706 2.53 × 10−8

5000 10,000 15,000
NFEs

Our method
Ixaru and Vanden Berghe
Simos

lo
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0
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Figure 3: Efficiency curves for Example 2.

We compare the endpoint global errors for our method
with those of Simos [8] and Ixaru andVandenBerghe [31].We
see from Table 2 that the results produced by our method are
competitive to those given in Simos [8] and Ixaru andVanden
Berghe [31]. Hence our method is more accurate and efficient
as demonstrated in Figure 3.

Example 3. We consider the following two-body problem
which was solved by Ozawa [26] on [0, 50𝜋]:

𝑦󸀠󸀠1 = −𝑦1𝑟3 ,𝑦󸀠󸀠2 = −𝑦2𝑟3 ,𝑟 = √𝑦21 + 𝑦22 ,

𝑦1 (0) = 1 − 𝑒,𝑦󸀠1 (0) = 0,𝑦2 (0) = 0,
𝑦󸀠2 (0) = √1 + 𝑒1 − 𝑒 ,

(34)

where 𝑒 (0 ≤ 𝑒 < 1) is an eccentricity. The exact solution of
this problem is

Exact: 𝑦1 (𝑥) = cos (𝑘) − 𝑒,𝑦2 (𝑥) = √1 − 𝑒2 sin (𝑘) , (35)

where 𝑘 is the solution of Kepler’s equation 𝑘 = 𝑥 + 𝑒 sin(𝑘).
We choose 𝜔 = 1.

We show in Table 3 that the results obtained using the
BHTRKNMmethod are more accurate than the explicit sin-
gly diagonally implicit Runge-Kutta (ESDIRK) and the func-
tionally fitted ESDIRK (FESDIRK) methods given in Ozawa
[26]. In Figure 4, we also illustrate the efficiency advantage of
the BHTRKNMmethod over those in Ozawa [26].

Example 4. We consider the stiff second-order IVP (see [16]
and references herein)

𝑦󸀠󸀠1 = (𝜖 − 2) 𝑦1 + (2𝜖 − 2) 𝑦2,𝑦󸀠󸀠2 = (1 − 𝜖) 𝑦1 + (1 − 2𝜖) 𝑦2,𝑦1 (0) = 2,𝑦󸀠1 (0) = 0,
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Table 4: Results for Example 5.

Our method ARKN𝑁 Error (𝛿 = 10−6) Error (𝛿 = 10−10) 𝑁 Error (𝛿 = 10−6) Error (𝛿 = 10−10)
2000 1.82 × 10−8 2.00 × 10−12 2000 9.05 × 10−8 9.00 × 10−12
4000 1.14 × 10−9 8.32 × 10−14 4000 5.43 × 10−9 7.06 × 10−13
8000 7.13 × 10−11 3.50 × 10−13 8000 2.03 × 10−10 2.87 × 10−13
16000 4.33 × 10−12 1.17 × 10−13 16000 7.25 × 10−12 3.56 × 10−13
32000 5.22 × 10−14 1.59 × 10−12 32000 3.45 × 10−13 5.91 × 10−13

5000 10,000 15,000
Steps

Our method
FESDIRK4(3)
ESDIRK4(3)

lo
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Figure 4: Efficiency curves for Example 3.

𝑦2 (0) = −1,𝑦󸀠2 (0) = 0,𝜖 = 2500,𝑤 = 1,𝑥 ∈ [0, 100] .
(36)

𝑦1(𝑥) = 2 cos𝑥; 𝑦2(𝑥) = − cos𝑥 where 𝜖 is an arbitrary
parameter.

This problem was chosen to demonstrate the stability of
the BHTRKNM (Figure 5). As mentioned in Remark 7, the
method is stable when 𝑞 ∈ [0, 47.06] and 𝑢 ∈ [−𝜋, 𝜋].
4.1. Problems Where 𝑦󸀠 Appears Explicitly
Example 5. We consider the harmonic oscillator with fre-
quencyΩ and small perturbation 𝛿 that was solved in Franco
[15] and Guo and Yan [34]:

𝑦󸀠󸀠 + 𝛿𝑦󸀠 + Ω2𝑦 = 0,𝑦 (0) = 0,

−2 −1 1 2

−2

−1

1

2

(a) 0 ≤ 𝑞 ≤ 47.96

−2

−2

−1

−1

1 32

1

3

2

(b) 𝑞 > 47.96

Figure 5: These figures illustrate the stability of the BHTRKNM
applied to Example 4. In (a) the method is stable with 𝑁 = 722,𝑞 ∈ [0, 47.96], and the global error is 1.7 × 10−10, whereas in (b) the
method is unstable with𝑁 = 721, 𝑞 > 47.96, and the global error is7005.78.

𝑦󸀠 (0) = −𝛿2 ,𝑥 ∈ [0, 1000] ,
(37)

where the analytical solution is given by

Exact: 𝑦 (𝑥) = 𝑒(𝛿/2)𝑥 cos(Ω2 − 𝛿24 ) , (38)

where Ω = 1, 𝛿 = 10−6, and 𝛿 = 10−10. Guo and Yan [34]
solved this problem using ARKN method. The results in
Table 4 show that the BHTRKNM is competitive with the
order 5 Runge-Kutta-Nyström method.
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Figure 6: Absolute errors for Example 6.

4.2. Hyperbolic PDE

Example 6. We consider the given Telegraph equation (see
Ding et al. [32]).𝜕2𝑢𝜕𝑡2 + 2𝜋𝜕𝑢𝜕𝑡 + 𝜋2𝑢

= 𝜕2𝑢𝜕𝑥2 + 𝜋2 sin (𝜋𝑥) (sin (𝜋𝑡) + cos (𝜋𝑡))
0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1.

(39)

The exact solution is given by 𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑡).
In order to solve this PDEusing the BHTRKNM,we carry

out the semidiscretization of the spatial variable 𝑥 using the
second-order finite differencemethod to obtain the following
second-order system in the second variable 𝑡.𝜕2𝑢𝑚𝜕𝑡2 + 2𝜋𝜕𝑢𝑚𝜕𝑡 + 𝜋2𝑢𝑚 − (𝑢𝑚+1 − 2𝑢𝑚 + 𝑢𝑚−1)(Δ𝑥)2= 𝑔𝑚, 0 < 𝑡 < 1, 𝑚 = 1, . . . ,𝑀 − 1,𝑢 (𝑥𝑚, 0) = 𝑢𝑚,𝑢𝑡 (𝑥𝑚, 0) = 𝑢󸀠𝑚,

(40)

where Δ𝑥 = (𝑏 − 𝑎)/𝑀, 𝑥𝑚 = 𝑎 + 𝑚Δ𝑥,𝑚 = 0, 1, . . . ,𝑀, u =[𝑢1(𝑡), . . . , 𝑢𝑀(𝑡)]𝑇, g = [𝑔1(𝑡), . . . , 𝑔𝑚(𝑡)]𝑇, 𝑢𝑚(𝑡) ≈ 𝑢(𝑥𝑚, 𝑡),
and 𝑔𝑚(𝑡) ≈ 𝑔(𝑥𝑚, 𝑡) = 𝜋2 sin(𝜋𝑥𝑚)(sin(𝜋𝑡)+cos(𝜋𝑡)), which
can be written in the form

u󸀠󸀠 = f (𝑡, u, u󸀠) , (41)

subject to the boundary conditionsu(𝑡0) = u0 andu󸀠(𝑡0) = u󸀠0
where f(𝑡,u,u󸀠) = Au + g, and A is (𝑀 − 1) × (𝑀 − 1), matrix
arising from the semidiscretized system, and g is a vector of
constants.

Table 5: Results, with 𝜔 = 𝜋, for Example 6.

Our method Ding et al. [32]𝑥 Err Err
0.2 2.46 × 10−10 9.62 × 10−10
0.4 3.96 × 10−10 1.56 × 10−9
0.6 3.98 × 10−10 1.56 × 10−9
0.8 2.46 × 10−10 9.62 × 10−10

The boundary conditions are chosen accordingly. This
example was chosen to demonstrate that the BHTRKNM can
be used to solve the Telegraph equation. In Table 5, the results
produced by the BHTRKNMusingΔ𝑡 = 1/100 and space stepΔ𝑥 = 1/100 are compared to scheme (3.12) (𝜆1 = 1/12 and𝜆2 = 5/6), time step Δ𝑡 = 1/200, and space step Δ𝑥 = 1/100,
given in Ding et al. [32]. It is obvious from Table 5 that the
BHTRKNM is more accurate than the method given in [32].
Moreover, the errors produced by BHTRKNMmethod usingΔ𝑡 = 1/100 and space step Δ𝑥 = 1/100 are given in Figure 6.

4.3. Hamiltonian Systems and Energy Conservation. In this
section we present additional examples to show that the
BHTRKNM preserves energy. To do so we consider Hamil-
tonian systems of the form

𝑝󸀠 = −∇𝑞𝐻(𝑝, 𝑞) ,𝑞󸀠 = −∇𝑝𝐻(𝑝, 𝑞) , (42)

where𝐻(𝑝, 𝑞) is an arbitrary scalar function of the variables(𝑝, 𝑞). Let 𝑀 be a positive definite matrix and let 𝑈(𝑞) be a
potential and the total energy𝐻 expressed as the sum of the
kinetic and potential energy namely in the form

𝐻(𝑝, 𝑞) = 12𝑝𝑇𝑀−1𝑝 + 𝑈 (𝑞) ; (43)
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Figure 7: Perturbed Kepler problem: the logarithm of the global error of the Hamiltonian EH = |𝐻𝑛 − 𝐻0| against 𝑡 for ℎ = 0.2 and the
momentum EL = |𝐿𝑛 − 𝐿0| are presented in (a) and (b), respectively. In (c) we compare the efficiency curves for the BHTRKNM and N4.
Timing comparison is provided in (d). It is clear from the timing curves that BHTRKNM is very efficient.

then systems (42) can be written as a system of first-order
differential equations

𝑞󸀠 = V,
V󸀠 = 𝑓 (𝑞) , (44)

where the momentra 𝑝 = 𝑀V is in terms of the velocities
and 𝑓(𝑞) = −𝑀−1∇𝑈(𝑞) is in terms of the negative
gradient of a potential. See [36–39] and references therein for
further details. The Hamiltonian function, 𝐻(𝑦), defined by

𝐻(𝑦) = 𝐻(𝑝, 𝑞) is a polynomial in the variables 𝑝 and 𝑞. The
Hamiltonian function conserves energy if𝐻(𝑦𝑛+1) = 𝐻 (𝑦𝑛) , ∀𝑛, ℎ > 0. (45)

Example 7. We consider the perturbed Kepler’s problem in
[40] given by

𝑞󸀠󸀠1 = − 𝑞1(𝑞21 + 𝑞22)3/2 − (2𝜖 + 𝜖
2) 𝑞1(𝑞21 + 𝑞22)5/2 ,𝑞1 (0) = 1,
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(c) BHTRKNM, 𝑤 = 2; ℎ = 1
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(d) RK4, ℎ = 1
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Figure 8: The pendulum problem: phase diagrams for BHTRKNM with 𝑤 = 1, 1.4, 2 are presented in (a), (b), and (c), respectively. (d)
illustrates a distortion in the flow for the RK4, while (e) shows exact flow of the pendulum problem. In the diagrams, 𝑦 = 𝑞; 𝑦󸀠 = 𝑞󸀠.

𝑞󸀠1 (0) = 0,
𝑞󸀠󸀠2 = − 𝑞2(𝑞21 + 𝑞22)3/2 − (2𝜖 + 𝜖

2) 𝑞2(𝑞21 + 𝑞22)5/2 ,𝑞2 (0) = 0,𝑞󸀠2 (0) = 1 + 𝜖.
(46)

The exact solution of this problem is𝑞1 (𝑡) = cos (𝑡 + 𝜖𝑡) ,𝑞2 (𝑡) = sin (𝑡 + 𝜖𝑡) . (47)

The Hamiltonian is

𝐻 = 12 (𝑞󸀠21 + 𝑞󸀠22 ) − 1√𝑞21 + 𝑞22 − (2𝜖 + 𝜖2)3 (𝑞21 + 𝑞22)3/2 . (48)
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(e) RK4, 𝑤 = 1.0; ℎ = 0.1
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Figure 9: The pendulum problem: Hamiltonian error EH = |𝐻𝑛 − 𝐻0| using RK4 with ℎ = 0.5 is presented in (a), while (b) shows EH for
BHTRKNM.We also solve the problem on a larger interval of integration [0, 500], using the BHTRNM in (c) and (d) and the RK4 in (e) and
(f), respectively.

The system also has the angular momentum 𝐿 = 𝑞1𝑞󸀠2 − 𝑞2𝑞󸀠1
as a first integral. We take the parameter value 𝜖 = 10−3.

This problem is solved in the interval [0, 1000] using the
BHTRKNM for various values of ℎ = 0.1/2𝑖−1, 𝑖 = 0, 1, 2, 3, 4.
The BHTRKNM preserves the Hamiltonian energy and to
demonstrate this, we plot the logarithm of the global error of
the Hamiltonian EH = |𝐻𝑛 − 𝐻0| and the momentum EL =|𝐿𝑛 − 𝐿0| as given in Figures 7(a) and 7(b), respectively. The
problem was also solved using N4 given in Sommeijer [35]
and in Figure 7(c), the efficiency curves for the BHTRKNM
and N4 are compared showing that the BHTRKNM is
superior.

Example 8. We consider the pendulum oscillator in [36] (and
references herein) given by𝑞󸀠󸀠 = − sin 𝑞 (49)

with initial conditions 𝑞 (0) = 0,𝑞󸀠 (0) = 1.5 (50)

and Hamiltonian 𝐻 = 12𝑞󸀠2 − cos 𝑞. (51)

This problem is solved using the BHTRKNM on the
interval [0, 50] for ℎ = 1 and 𝑤 = 1, 1.4, 2 and the results for
the phase diagrams produced by the BHTRKNM in the 𝑞-𝑞󸀠
plane are presented in Figures 8(a), 8(b), and 8(c), respec-
tively. We observe that the BHTRKNM gives good results for
all the values of𝑤, since all the diagrams follow the exact flow
of the pendulum problem as given in Figure 8(e). As illus-
trated in these Figures, the numerical solutions are periodic
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and in accordance with the fact that the pendulum equation
has a periodic solution. We note that Van Daele and Vanden
Berghe in [36] obtained similar results for a smaller step-sizeℎ = 0.5 and𝑤 = 1 using 𝑆/𝑉method including other versions
of the 𝑆/𝑉method and it was observed that the 𝑆𝐸1𝐸𝐹method
in [36] produced better numerical results for 𝑤 = 1 than for𝑤 = 1.4. The problem was also solved using the fourth-order
Runge-Kutta method (RK4) and the results presented in
Figure 8(d) show a distortion in the flowdiagram for the RK4;
hence the BHTRKNM is superior. The pendulum problem
was also presented in Figure 9.

5. Conclusion

This paper presents a BHTRKNM whose coefficients are
functions of the frequency and the step-size for directly solv-
ing general second-order initial value problems (IVPs), oscil-
latory systems, and Hamiltonian systems, as well as systems
arising from the semidiscretization of hyperbolic PDEs, such
as the Telegraph equation. We implement the BHTRKNM
in a block-by-block fashion; thus the method does not
need starting values and predictors which are inherent in
predictor-corrector methods. Numerical experiments pre-
sented in this paper clearly demonstrate that our method has
a reasonably wide stability region and enjoys accuracy and
efficiency advantages when compared to existing methods
in the literature. Technique for accurately estimating the
frequency as suggested in [30, 41] as well as implementing the
method in a variable step mode will be considered in future.
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