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Abstract.

The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems
were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel
computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with
dimension six. Finally, some numerical experiments are presented to show the behaviour of the new peer schemes for some
periodic problems.
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INTRODUCTION

We consider the numerical solution of IVPs for first order differential systems

d
ay(t)=f(t,y(t)), t€to,to+T], y(to) =yo €R", (1)

where for simplicity f(¢,y) is assumed to be sufficiently smooth, so that the IVP (1) has a unique solution. Furthermore,
some knowledge of the behaviour of their unique global solution is known in advance. In the case that the solution of
(1) has an oscillatory behaviour and further we know an estimate of the frequency, some modified Runge-Kutta (RK)
methods using this information, usually called trigonometrically fitted or more generally exponentially fitted methods
[3, 2, 4,5, 9, 10] have been proposed in the last years to improve their accuracy and efficiency over standard RK
methods.

For explicit RK methods the stage order is limited to one and this implies serious restrictions in the dimensionality
of the fitting space. On the other hand, linear multistep methods do not have such a limitation, as shown for example
in the early paper of Gautschi [3]. In this case, with k steps, a method can be fitted to £+ 1 dimensional spaces.

Here, we consider explicit two-step peer methods introduced by R. Weiner, et al [6, 7] as an alternative to classical
Runge—Kutta (RK) and multistep methods attempting to combine the advantages of these two classes of methods.

In particular fitted three-stage peer methods based on the previous schemes given in [1] to some fitting spaces are
constructed.

Some numerical experiments are presented to show the performance of the above fitted methods for problems with
oscillatory solutions. The proposed methods are compared to exponentially fitted Adams-Bashforth-Moulton methods
with the same order.



FITTED TWO STEP PEER METHODS

It will be sufficient to consider in (1) scalar equations (m = 1) and then a s-stage peer scheme can be expressed in
vector form as

Y =AYo+hBFy+hRFy, 2)
where the s-dim vector Y; = {Y;;} includes approximations to the solution of (1) at#; +¢;h, I =1,...,s and
T
Yo = (Yer...-.Yis) €R,
e = (1,....1)" eR’,
. 3)
c = (C],...,CS) ERA7
Fo = flue+heYo) = (Fluthe; %)) €R,

where A € R**¥ and B € R*** full matrices and R € R*** strictly lower triangular are the free parameters that define
the method and the set of admissible fixed nodes ¢, j = 1,...,s satisfies that |c; — ¢;| # 0, 1 for all i # j.

It is worth to note that (2) is a multivalued method and O-stability requires that the matrix A satisfies the root’s
condition. In this work we consider only methods with the requirement that the eigenvalues 4;(A) of A,

MA)Y =1,  A(A)=0, j=2,...s. @)

Furthermore, following the ideas of [1], in order to simplify the derivation of the fitting methods and to get methods
with high stage order, we will take A with the form

A=P'AP (5)

with P = (p;;) € R*** alower triangular matrix with ones at the diagonal, and A = (; ) € R upper triangular whose
diagonal is diag(A) = (1,0,...,0), that clearly satisfy (4).
To study the local discretization error, we associate to (2) the linear s-dimensional vector valued operator .Z[@; A]

defined on sufficiently smooth scalar real or complex functions ¢ by
LNo;h)(t) = @o((t+h)e+he)—A @(re+he)—h B @(te+he) —h R @((t +h)e+ he). (6)
For our class of strongly 0-stable peer methods where A is given by (5) we have
Z[p:(10) = P~ Zg:h](10), )
with e R o o
ZNo;h|(to) =Z(t+h)—AZ(t) —hBZ(t) —hRZ(t +h), (8)
and Z(r) = P ¢(te+ he). In view of (7) the method (2) is fitted to the functional space .%, at ty with step size h iff

—

ZLo;hl(ty) =0, Vo c.Z, )

We can state the next important result:
Theorem.- Suppose that for a given set of admissible fixed nodes and constant matrix P the standard two-step peer
method (2), (5) with s stages has a unique solution with stage order 2s — 1, then:

1. For any linear space %1 = (1,@1(t),..., 21 ()) there exists a unique s-stage two step peer method fitted to
this space for h sufficiently small. This peer method has the same nodes and P-matrix as the standard method and
the coefficients N N N N N N

Az =A(t,h), Bg =B(t,h), Rz =R(1,h),

may depend (apart from the fitting space) on ty and h.
2. If %5, is a separable basis the coefficients are independent of t).



THREE-STAGE EXPONENTIALLY FITTED PEER METHODS

In this section, we consider exponential fitted variants for the fifth order peer scheme deduced in [1], which are fitted
to the particular spaces

« s = (1,1,12,63,1*,1)
« Z5(0) = (1,1,1%,13 sin(0t),cos(wt))
o Fs(w1,0) = (1,t,sin(w; t),cos(w; t),sin(wat),cos( @y 1))

where @, @1, @, are fixed positive parameters.

Due to the linear, explicit, multistep nature of each stage of the PEER schemes, we use predictor-corrector pairs of
linear multistep methods for comparison. We choose the classical four-step Adams-Bashforth-Moulton pair of order 5
(denoted by AMY), the fitted versions of the previous scheme to .%s(®) (denoted by AM5(®)), to Zs(w;, @,) (denoted
by AMS5(®y, @,)). The fitted multistep methods have been obtained following the ideas in [3].

We have implemented the AMS schemes in the mode PECE, that requires only 2 function evaluations per step. For
the PEER3 methods, 3 function evaluations per step are needed, so in order to be able to compare the computational
cost (total number of function evaluations), we have applied PEER3 methods with stepsizes 50 % larger than those of
the AMS5 methods.

The criterion used in the numerical comparisons is the maximum global error in the solution over the whole
integration interval. All computations were carried out in quadruple precision arithmetic (32 significant digits of
accuracy) on a PC computer running PYTHON.

Problem
We consider the two-dimensional semi-linear oscillatory second-order IVP

PN AR S R R | k2 31
Q(I)**E Wk -1 wrk2+1 Q(f)Jr?(Cll(t)*QZ(f)) 1

with initial conditions Y
[ —1)2 , _1 —V2—w
w=(T13) do-3( 5

and the parameters w > 0, 0 < k < 1. This problem represents a simple model consisting of two point masses connected
by a soft nonlinear spring and a stiff linear one, and its exact periodic solution can be written in terms of the Jacobi’s
elliptic functions as
V2 [ cos(m/4-+wt) —sn(t,k)
q(t) = 2 ( cos(7 /4 +wt) +sn(t, k) )

In our numerical experiments we have taken w = 2, k = 0.05, feng = 100, and h = 1/(5 x 2!), i = 1,...,5 and the
numerical results are presented in Figure 1.

In this test problem, the efficiency of the peer schemes considered is slighty superior to the corresponding multistep
methods. Also, the methods fitted with two frequencies @; = 2, @, = 1 perform much better than the corresponding
schemes fitted only to one frequency.
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FIGURE 1. Efficiency plot of fifth-order schemes for the two-dimensional semi-linear oscillatory problem with @, = @ = 2,
w=1,k=0.05
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