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ABSTRACT. 

In this paper, an A-stable exponentially fitted predictor-corrector using multiderivative linear multistep method for solving 
stiff differential equations is developed. The method which is a two-step third derivative method of order five contains free 
parameters. The numerical stability analysis of the method was discussed, and found to be A-stable. Numerical examples 
are provided to show the efficiency of the method when compared with existing methods in the literature that have solved 
the set of problems. 
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1.0 INTRODUCTION 

 In order to solve stiff initial value problems in ordinary differential equations efficiently, many new methods have 
been developed in recent years, which satisfy certain stability requirements.  

 The property of A-stability is desirable in formulas to be used in the solution of stiff systems of differential 
equations especially from chemical kinetics and the discretisation of partial differential equations. Dahlquist [7], proved that 
A-stable linear multistep formulas must be implicit, its maximum order is two and of those of second order, the one with 
the smallest truncation error coefficient is the trapezoidal rule. In nearly every linear systems of differential equation, which 
have widely disperse eignevalues, high order A-stable formulas are particularly appropriate since they allow integration to 
proceed with a larger step size. 

 Thus, the need to develop a high order A-stable implicit multistep formula, which uses linear combinations of 
derivatives higher than the first, give rise to the development of multiderivative multistep formulas. Lambert [11], and 
Enright [8], pointed out that Multiderivative methods give high accuracy and possess good stability properties when used 
to solve first order initial value problems in ordinary differential equation. 

 However, A-stable multiderivative multistep formulas designed for solving stiff systems of differential equations 
includes, Enright [8], Jackson and Kenue[10], Brown [5],Okunuga[13], Otunta and Abhulimen[15],[3]Abhulimen and 
Omeike[2]. 

2.0 THE GENERAL MULTIDERIVATIVE MULTISTEP METHOD 

 The general multiderivative multistep method is given by, 
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 is the     derivative of        evaluated at            ,    and      are real constants with      and      is 

the appropriate numerical solution evaluated at the point     . In order to remove the arbitrary constant in (2.1) we shall 

always assume that      , and ∑ |  |    
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2.1 DEVELOPMENT OF NEW EXPONENTIALLY FITTED MULTIDERIVATIVE 
 METHODS 

 A numerical integration formula is said to be exponentially fitted at (complex) value      if when the method is 

applied to the scalar test problem               , with exact initial condition, the characteristic equation       

satisfies the relation            . 

 However, the idea of using exponentially fitted formulas for the appropriate numerical integration of certain 
classes of stiff systems of first order ordinary differential equation of the form, 

                                                                                                               

which was originally proposed by Liniger and Willoughby [12], is to derive integration formulas containing free parameters 
(other than the step length of integration) and then to choose these parameters so that a given function     , where   is 

real, satisfies the integration formula exactly. 

Liniger and Willoughby [12] derived three 1-step integration formulas with orders ranging from 1 – 3. Their results revealed 
that for all choices of the fitting parameter  , their formulas are A-stable. 
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2.2 DERIVATION OF FAMILY OF TWO STEP EXPONENTIALLY FITTED METHODS 

 The objective of this paper is to develop a two-step, third derivative multiderivative exponentially fitted formulas. 
(i.e.     and    ). 

 For this purpose, equation (2.1) is reduced to, 
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Where        ,       ,         

From equation (2.2), we obtain 
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And 
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 However, the implementation of the proposed formulas involves a pair of formulas, that is predictor and corrector 
formulas. Thus, equation (2.3) serves as the predictor and while equation (2.4) serves as the corrector. 

where, 

      [            ]      
 and       [            ]      

   

        [            ]      
                                                                                                                  

are respectively the first, second and third derivatives of      . When we are deriving exponentially fitted multistep 

methods, the approach is to allow both (2.3) and (2.4) to posses free parameters order than the mesh size     which allow 

it to be fitted automatically to exponential function. 

2.3 DERIVATION OF METHOD OF FIFTH ORDER FORMULAS 

 The derivation of predictor-corrector integrations formula of order 5 involves two stages as was done in higher 
order. First we derived the order four predictor by setting                  in equation (2.3) to obtain five set of 

equations with 12 unknown parameters and we then obtain the following set of simultaneous equations 

       

       

                                

             

         

 

When we solve the above equations we obtain, 
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When these values of the parameters are substituted into (2.3), we obtain the predictor formula as: 
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Now, for exponential fitting purpose, we apply (2.7) to scalar test function 
                                                                                                                                               

to  obtain  equation (2.8) below. 
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For the purpose of stability analysis, we obtain the free parameter   from (2.9). 

But from equation ... 
 ̅   

  
     then equation (2.9) yields, 

  
     

 

 
          

 

 
      

 

 
                   

 

 
  

                                                                                            

Again to obtain the corresponding order 5 corrector formula, we obtain six set of simultaneous equation from 
(2.4)asfollows, 
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We impose the same condition as in predictor, and in addition, we let      as free parameters     , the values of the 

unknown parameters are obtained from (2.11) as, 

              
 

 
 

  

  
     

 

 
 

  

  
       

   
 

 
        

 

 
 

  

 
     

 

  
 

 

 
   

 

When these values are substitute into (2.4), we obtain the fifth order corrector formula as, 
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By applying (2.12) to test function (2.8) we obtain, 
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We need to obtain the relation
    

  
 in (2.13) for the purpose of exponential fitting condition and stability. From the solution 

of test function (2.8), we established that; 
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Equation (2.13) now becomes 
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Equation (2.15) now unites both the parameter and corrector formulas which is capable of solving stiff systems. We obtain 
the value of the free parameter   from (2.15) as, 
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3.0 STABILITY CONSDIERATION OF THE METHOD 

 To examine the stability conditions required by this method, it is expected by maximum modulus theorem that the 
stability function of the method given by (2.16) satisfies|    |   .  

  

In order to determine the interval of absolute stability of the method, we find limits of both      and     as     and 
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That is   (
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Similarly, from (2.16) we have, 
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Thus we formed that  (
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  Now, we further verify analytically that the ranges of value of a andb represent the region of absolute stability of the new 
method. We illustrate this by taking a large sample S as shown in table 3.1 below; 

Table 3.1: Parameters values of a and b 

      

-10 0.955214724 0.0989973 

-100 0.995050247 0.1163663 

-500 0.999002002 0.1180848 

-1000 0.999500500 0.1183014 

-5000 0.999900020 0.1184751 

-10000 0.999950005 0.1184968 

-20000 0.999975001 0.11850765 

From the table above, we observed that as q decreases, the values of a andbare monotonically increasing.  

The implication of the observation is that, for any of value of q in the open left-half plane, the corresponding values of a(q) 

and b(q) converges and bounded within the ranges of   (
 

 
  ) and   (

 

   
 
  

   
) respectively. These ranges help to 

determine the region of absolute stability of the new method. 

Furthermore, we examine the stability function of the new method. From equation (2.15), the stability function of the new 
method is given as  
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When we tested for the values of         ], with the region of absolute stability   (
 

 
  ) and   (

 

   
 
  

   
), we 

observed that |     |   . Hence, by definition of A-stability of multistep method, we conclude that the new method is A-

stable. The new method can solve   stiff problems in ordinary differential equations. 

 

4.0 NUMERICAL EXPERIMENTS 

 In the section, the Numerical Integrators derived are tested on several standard stiff value problems (IVPs) in 
Ordinary Differential Equations (ODEs). 

 To show the effectiveness and validity of our newly derived methods, we present some numerical examples 
below. All numerical examples are coded in Fortan 77 and implemented on digital computer. 

However, for purpose of comparative analysis on the performance of the new scheme we denote AL
5 
as the new method, 

CH4, CH5-Cash [6] method of order 4 and 5 respectively, J-K Jackson and Kenue[10], OK6-Okunuga [13], AB7, AB8, 
NM9 represent Abhulimen and Otunta[3] method of order 7, 8 and 9 respectively. F

5 
Abhulimen[4] method of order 5, AF5-

Abhulimen and Okunuga[1]and AG6-Abhulimen and Omeike[2]. 

Example 1  

Non-linear stiff problems (Enright and Pryce) [9] 

  
                                                          

  
                                                                                                                                          

  
                                              

 

Table 4.1 Numerical result of the non-linear stiff problem 

Step length h Method                

       AL
5
 0.5882826881 1.0092403605 -2.7914604750 

AB8 0.5884667145 1.0090563343 -2.7919757498 

    AL
5
 0.5882826902 1.0092403584 -2.7914604809 

AB8 0.5882826902 1.0092403584 -2.7914604809 

Exact Solution 0.5882826881 1.0092403605 -2.7914604750 

 

Errors 

 

       AL
5
 1.5 x 10

-6
 1.5 x 10

-6
 2.5 x 10

-6
 

AB8 -1.8 x 10
-4

 1.8 x 10
-4

 5.2 x 10
-4

 

    AL
5
 1.2 x 10

-10
 1.2 x 10

-10
 4.2 x 10

-10
 

 AB8 2.2 x 10
-8

 2.2 x 10
-9

 6.3 x 10
-9

 

 

Example 2  

Second order differential equation (Okunuga[13]) 

The accuracy of the new method is also illustrated  

   

        
  

  
        

                                  



  I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 3  N u m b e r  2  

J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

 

7160 | P a g e                                                                        
A p r i l , 2 0 1 7                                                       c i r w o r l d . c o m  
 

 The system (4.2) can be rewritten as a first – order system; 

   

  
              

   

  
                                                                                                           

 Thus we obtain a 2 x 2 system of stiff IVP. The eigenvalues of the Jacobian matrix 

         

 The general solution of (4.2) is                   . If we impose the initial conditions in       the exact 
solution is         . 

The result of this problem using the newly derived methods are obtained at    ; as given in table 4.2 below. 

Table 4.2: Numerical results on second order ODE at x=1 

Step h Method      Error     

0.05 OK6 0.367879436 5.6 x 10
-8

 

 AG6 0.36787846 1.4 x 10
-8

 

 AF5 0.36787930 1.8 x 10
-7

 

 AL
5
 0.36787943 5.2 x 10

-9
 

    

0.125 AL
5
 0.36787944 2.7 x 10

-8
 

Exact Solution 0.367879435  

It will be observed from table 4.2 above, for h=0.05 the numerical result of the problem consider reveal that the new 
method perform better with existing methods in the literature. The level of performing of better_______ 

Example 3  

Jackson and Kenue[10] , Cash [6], Okunuga[4] 

                     

                                  

  [   ] 

The eigenvalues of the Jacobian matrix of the system are       and        with stiffness ratio 48. 

The exact solution is given as, 

                      

                    

For comparison purpose , we have  the following as; 

AB7, AB8 and NM9 to represent Abhulimen and Otunta  “ Two step third derivative methods order seven, eight and nine” 
respectively. F

5
 denote three-step second derivative scheme. 

Table 4.3: Comparative analysis of result of problem 3 at x=1 

Method Step size   (/error/) z(1) x 10
2
 (/error/) 

J-K          0.2725503 (3.0 x 10
-7

) -0.2879477 (4.0 x 10
-9

) 

CH4  0.2735498 (3.0 x 10
-7

) -0.2879471 (3.0 x 10
-9

) 

CH5  0.27355005 (3.0 x 10
-8

) -0.28794742 (3.0 x 10
-9

) 

AB7  0.27354004 (4.0 x 10
-5

) -0.28796321 (6.0 x 10
-5

) 

F
4
  0.2735503 (3.0 x 10

-7
) -0.2879477 (3.1 x10

-7
) 

NM9  0.27354004 (7.9 x10
-5

) -0.28794740 (8.3 x10
-7

) 

F
5
  0.27355003 (6.4 x10

-9
) 0.28794741 (6.7 x10

-9
) 
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AL
5
  0.2735501 (5.0 x 10

-8
) -0.28794741(7.0 x 10

-10
) 

J-K         0.27355005 (5.0 x 10
-7

) -0.28794742 (4.0 x 10
-7

) 

CH4  0.27355003 (1.0 x 10
-8

) -0.28794740 (1.0 x 10
-10

) 

AL
5
  0.2735501 (6.0 x 10

-8
) -0.28794741(1.0 x 10

-10
) 

AB7  0.27354004 (4.0 x 10
-5

) -0.28796321 (6.0 x 10
-5

) 

F
4
  0.2735503 (3.0 x 10

-7
) -0.2879477 (3.1 x10

-7
) 

NM9  0.27354004 (7.9 x10
-5

) -0.28794740 (8.3 x10
-7

) 

F
5
  0.27355003 (6.4 x10

-9
) 0.28794741 (6.7 x10

-9
) 

AL
5
 0.05 0.2373550 (1.1 x 10

-7
) -0.2879947 (1.4 x 10

-9
) 

AB7  0.27354004 (4.0 x 10
-5

) -0.28796321 (6.0 x 10
-5

) 

AF5  0.27354738 (2.7 x 10
-6

) -0.28794461 (1.4 x10
-8

) 

Exact solution 0.27355004 -0.287947411 

As shown in the Table 3.1 above, the proposed method in this paper perform better than 
existingmethods in terms of accuracy. 

5.0 CONCLUSION 

 The aim of this paper was to develop numerical method which provides solution to initial value problems with stiff 
differential equations via exponentially fitted integrators.Numerical experiments have been carried out using appropriate 
step size as required by each problem. Such problems which are stiff require small step size before the solution can be 
smooth. In general, the results from numerical experiment so presented in this paper, show that the new method perform 
effectively well when compared similar methods in the literature. Hence the aim and objective of this paper have been 
achieved. 
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