43 research outputs found

    Fault-tolerance in metric dimension of boron nanotubes lattices

    Get PDF
    The concept of resolving set and metric basis has been very successful because of multi-purpose applications both in computer and mathematical sciences. A system in which failure of any single unit, another chain of units not containing the faulty unit can replace the originally used chain is called a fault-tolerant self-stable system. Recent research studies reveal that the problem of finding metric dimension is NP-hard for general graphs and the problem of computing the exact values of fault-tolerant metric dimension seems to be even harder although some bounds can be computed rather easily. In this article, we compute closed formulas for the fault-tolerant metric dimension of lattices of two types of boron nanotubes, namely triangular and alpha boron. These lattices are formed by cutting the tubes vertically. We conclude that both tubes have constant fault tolerance metric dimension 4

    Felt_space infrastructure: Hyper vigilant spatiality to valence the visceral dimension

    Get PDF
    Felt_space infrastructure: Hypervigilant spatiality to valence the visceral dimension. This thesis evolves perception as a hypothesis to reframe architectural praxis negotiated through agent-situation interaction. The research questions the geometric principles of architectural ordination to originate the ‘felt_space infrastructure’, a relational system of measurement concerned with the role of perception in mediating sensory space and the cognised environment. The methodological model for this research fuses perception and environmental stimuli, into a consistent generative process that penetrates the inner essence of space, to reveal the visceral parameter. These concepts are applied to develop a ‘coefficient of affordance’ typology, ‘hypervigilant’ tool set, and ‘cognitive_tope’ design methodology. Thus, by extending the architectural platform to consider perception as a design parameter, the thesis interprets the ‘inference schema’ as an instructional model to coordinate the acquisition of spatial reality through tensional and counter-tensional feedback dynamics. Three site-responsive case studies are used to advance the thesis. The first case study is descriptive and develops a typology of situated cognition to extend the ‘granularity’ of perceptual sensitisation (i.e. a fine-grained means of perceiving space). The second project is relational and questions how mapping can coordinate perceptual, cognitive and associative attention, as a ‘multi-webbed vector field’ comprised of attractors and deformations within a viewer-centred gravitational space. The third case study is causal, and demonstrates how a transactional-biased schema can generate, amplify and attenuate perceptual misalignment, thus triggering a visceral niche. The significance of the research is that it progresses generative perception as an additional variable for spatial practice, and promotes transactional methodologies to gain enhanced modes of spatial acuity to extend the repertoire of architectural practice

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Decomposition of the unitary representation of SU(1,1) on the unit disk into irreducible components

    Get PDF
    In this thesis, we decompose the representation of SU(1,1) on the unit disk into ir reducible components. We start with the decomposition over the maximal compact subgroup K, we identify the modules of eigenfunctions which are square integrable with respect to the quasi invariant measure on the unit disk. These modules rep resent the discrete series representations. Then, we use the induction in stages method to find the principal series representation. The matrix coefficient with the principal series and a K-invariant vector turns to be an important function which is called a spherical function. There is a nice function (Harish Chandra’s function) controlling the decay of the spherical function at infinity. Finally, we use a new approach to find the inversion formula which is equivalent to decomposition into irreducible representations using the geometry of cycles with dual numbers and the covariant transform

    Symmetry in Graph Theory

    Get PDF
    This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of ""Graph Theory"". Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view
    corecore