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Abstract

In this thesis, we decompose the representation of SU(1, 1) on the unit disk into ir-

reducible components. We start with the decomposition over the maximal compact

subgroup K, we identify the modules of eigenfunctions which are square integrable

with respect to the quasi invariant measure on the unit disk. These modules rep-

resent the discrete series representations. Then, we use the induction in stages

method to find the principal series representation. The matrix coefficient with the

principal series and a K-invariant vector turns to be an important function which

is called a spherical function. There is a nice function (Harish Chandra’s function)

controlling the decay of the spherical function at infinity. Finally, we use a new

approach to find the inversion formula which is equivalent to decomposition into

irreducible representations using the geometry of cycles with dual numbers and the

covariant transform.
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Chapter 1

Introduction

One of the main problems of representation theory is to classify all unitary irredu-

cible representations of a given group G up to isomorphism. A unitary represent-

ation is completely reducible, in the sense that for any closed invariant subspace,

the orthogonal complement is again a closed invariant subspace. This fundamental

property makes this type of representation particularly important in physics, espe-

cially in quantum mechanics.

The most significant part of the theory of unitary representations in applications

is the theory of unitary representations of locally compact groups. This thesis con-

cerns a classification for the infinite dimensional unitary irreducible representations

of the semisimple connected non-compact Lie group SU(1, 1), which is isomorphic

to the group SL2(R). The main results of irreducible unitary representations of

semisimple Lie groups are due to Gelfand-Naimark [13], V. Bargmann [6] and Har-

ish Chandra [15]. Gelfand and Naimark studied SL2(C), whereas Bargmann did so

only for SL2(R). The work of Bargmann is the first to use the Lie algebra method

to study representations of semi-simple Lie groups. It contains the crucial ideas of

expanding in terms of isotopic components and the use of the Casimir operator.

Gelfand and Naimark studied representations πχ of G induced from a character χ

of a Borel subgroup H ⊂ G. Thereafter, they showed how to decompose every unit-

ary representation as a sort of continuous direct sum of irreducible representations.

The work in chapter 4 is to find the irreducible modules which are square integrable

with respect to the quasi-invariant measure, using the homogeneous space, like in
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Gelfand’s approach, and the Lie algebra as in Bergmann’s works.

Integral transforms establishes a correspondence between functions on a manifold

X and functions on some manifold M of submanifolds of X. The main problems are

in the description of the images and kernels of these transforms and in the construc-

tion of explicit inversion formulas recovering the original objects from their images.

The first book devoted to this area was by I. M. Gelfand,M. I. Graev and N. Ya.

Vilenkin [12]. From the 1940s, one of the main problems in mathematics was to

develop an analog of the Fourier transform for noncommutative Lie group. For the

group SL2(C), I. M. Gelfand and M. A. Naimark constructed a theory in which the

role of exponential functions was played by irreducible infinite-dimensional unitary

representations of the SL2(C) group. Obtaining analogs of the inversion formula

and the Plancherel formula for the Fourier transform was the most important result

of this theory. Our contribution in Chapter 6 is to use a new method starting with

the covariant transform to obtain the inversion formula. The covariant transform

approach is not restricted to SL2(R), it may be successfully used for many other

cases. This type of transform uses the representation itself, like in Gelfand’s ap-

proach [13]. But the eigenvector is selected by the derived representation, like in

Bargmann’s works [6]. Thus, the new method bridges together the two approaches.

Also, covariant transform methods are much used in theoretical physics, and the

new approach will be easier to adopt for problems of decomposing a system into

smaller blocks corresponding to irreducible representations.

The aim of this thesis is to decompose the induced representation ρn of the group

SU(1, 1) on the space SU(1, 1)/K ' D into irreducible components using different

techniques, where K is the maximal compact subgroup of SU(1, 1) and D is the

unit disk . We use the derived representation of the Lie algebra to obtain the

results.

We are interested of the covariant transform [4,9,10,23,31,37] or the matrix coef-

ficient from an irreducible square integrable representation and a mother wavelet

which is selected to be admissible. This leads to a covariant transform which is

an isometry to a space of square integrable functions with respect to the quasi
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invariant measure on a homogeneous space. Furthermore, let

A =


a 0

0 a−1

 : a ∈ R \ {0}

 ,

N =


1 n

0 1

 : n ∈ R

 .

The matrix coefficient with the principal series and a K-invariant vector turns to

be an important function associated with the character of the subgroup P = AN .

This function is called a spherical function [17, § V.3.1; 33, § III.3] and to get

it, we find the principal series representatin using the induction in stages method

[20, Chap. 2]. There is a nice function (Harish-Chandra’s function) controlling the

decay of the spherical function at infinity.

Harish-Chandra established the Plancherel formula for semisimple Lie groups.

The Plancherel theorem gives the direct integral decomposition into irreducible

representations of the regular representation. In this thesis, we find the inversion

formula which is equivalent to decomposition of the induced representation of the

group SL2(R) on the upper half plane into irreducible components, but we use a

new approach: the homogeneous spaces X1 = SL2(R)/K and X1 = SL2(R)/N

are dual to each other in the sense that points of one manifold are realized as

submanifolds of the other. Both X1 and X2 are parametrised by the upper half

plane. Moreover, when we pass from the space X1 to the space X2, we obtain a

new homogeneous space with the same action on SL2(R). This action becomes

a linear-fractional transformation with the hypercomplex number on X1 and with

the dual number ε2 = 0 on X2. So, in our method we start with the covariant

transform which sends functions on L2(X1) to functions on the space L2(X2). The

main problem is in the construction of explicit inversion formula. Thus, we use the

contravariant transform which sends functions to L2(X1). To find the measure of

the inversion formula, we use the relation between the covariant and contravariant

transform.

The structure of this thesis is as follows.

� In chapter 2, we provide some standard notations, definitions and results from

group theory and representation theory which are considered in this thesis.
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� In chapter 3, we presents some basic facts about the group SU(1, 1) and its

Lie algebra.

� In chapter 4, we describe the construction of induced representations of the

group SU(1, 1) on Hilbert spaces. Furthermore, we study the classification of

the irreducible unitary representations ρn of SU(1, 1) on the unit disk. This

classification is due to Bargmann [6]. It depends on two components: the

constant value of the Casimir operator and the structure of the ladder of Z

eigenvectors , where Z is the generator of the subgroup K. According to the

Schur’s lemma, the Casimir operator C acts as a scalar for the irreducible

representation:

dρn(C) = λI.

Since the Casimir operator is a self-adjoint operator, then it has only real

eigenvalues. Depending on these values, there are three classes of the non-

trivial unitary irreducible representations [39, Chap. 8,§ 2]:

discrete series represntation if λ = 1− (n− 1)2 ≤ 0, n ∈ Z,

principal series represntation if λ = 1 + s2 ∈ [1,∞), s ∈ R,

complementary series represntation if λ = 1− s2 ∈ (0, 1), −1 < s < 1.

Our new work in this chapter is using the homogeneous space, like in Gel-

fand approach, and the Lie algebra like in Bergmann works to construct and

analyse the irreducible representation on the unit disk. So, first we find the

common eigenfunctions of the Casimir operator and the subgroup K. Next,

we identify the ladders of these eigenfunctions which are square integrable

with respect to the quasi-invariant measure. Then, we find the multiplicity

of every type of discrete series unitary irreducible representations. In the last

section, we consider the covariant transform which is an isometry to a space

of square integrable functions with respect to the invariant measure on a ho-

mogeneous space. The image of this transform is a space of an irreducible
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component, which represents a space of analytic and polyanalytic functions.

� In chapter 5, we construct the induced representation of SL2(R) from the

trivial character of the subgroup N . This representation is reducible, thus we

use the induction in stages method [20, Chap. 2] to obtain the principal rep-

resentation. Since there is an isomorphism of SL2(R) with the group SU(1, 1),

the results on SL2(R) can be applied to SU(1, 1). Thereafter, we construct

the spherical eigenfunction associated with the character of the subgroup

P = AN . To determine the Plancherel measure, we study the asymptotic

behaviour of the spherical function at infinity.

� In chapter 6, we find the inversion formula for the covariant transform Wρk
ϕ0

.

This formula is equivalent to the decomposition into irreducible components

of the unitary representation ρk, k ∈ Z. We consider an eigenvalue 1 + s2 of

the Casimir operator:

dρ0(C) = −4v2
(
∂2
u + ∂2

v

)
.

To find this formula, first we study the representations of SL2(R), ρk and

ρτ , induced from the complex characters of K and N respectively . Then,

we find the induced covariant transform Wρk
ϕ0

with N -eigenvector, thus we

obtain a transform in the space L2(SL2(R)/N). Thereafter, we compute the

contravariant transform with K-eigenvector

Mρτ
φ0

: L2(SL2(R)/N)→ L2(SL2(R)/K).

We find these transforms using the representation itself like in Gelfand’s ap-

proach [13], but the eigenvectors are selected by the derived representation as

in Bargmann’s works [6]. Finally, we use the relation between the covariant

and contravariant transform to find the inversion formula. Thus, the original

contribution is using the covariant transform to find the inversion formula

with eigenvectors selected by the derived representation. This new method

will be easier to adopt for problems of decomposing a system into elementary
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bits in theoretical physics. Also, it is not restricted to SL2(R), it can be

successfully used for many other cases.

Our new work in this thesis is to use different methods to get the results:

� In the fourth chapter, we found the common eigenfunctions of the Casimir

operator and the subgroup K. Our method is to obtain the eigenfunctions

of the generator of the subgroup K, Then, we found the restriction of the

Casimir operator to these eigenfunctions. Also, we found the irreducible mod-

ules which are square integrable with respect to the quasi-invariant measure.

Our new work in this chapter is using the homogeneous space, like in Gel-

fand approach, and the Lie algebra like in Bergmann works to construct and

analyse the irreducible representation on the unit disk.

� In chapter 5, we used the induction in stages method and the covariant trans-

form to obtain the spherical eigenfunctions.

� In chapter 6, we identified the horocycles with dual numbers and we used the

covariant transform with eigenvectors selected by the derived representation

to build the inversion formula, which is equivalent to decomposition of the

induced representation of the group SL2(R) on the upper half plane into

irreducible components.
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Chapter 2

Preliminaries on representation

theory of groups

This chapter is planned to review some known results. We point to the represent-

ation theory of matrix groups, which we will use in this thesis.

2.1 Groups and transformations

Group theory is the mathematical theory of symmetry, which can be described in

terms of transformations.

Definition 2.1.1. [21, § 2.1; 30, § 2.1, Definition 2.1] A transformation group

G is a non-empty set of mappings from some set X to itself with the following

properties:

� the identity transformation I belongs to G.

� G is closed under composition: if g1 and g2 both belong to G,then so does

the composition g1 ◦ g2.

� if g ∈ G, then g−1 exists and belongs to G.

Let G1 is the group of all one-to-one mappings of the set X onto itself, and the

group G2 is the group of the identity mapping alone. Every transformation group

G on the space X is contained between these two: G2 ⊂ G ⊂ G1 [21, § 2.1].
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Example 2.1.2. [30, § 2.1] The group of linear-fractional transformations:a b

c d

 : z 7→ az + b

cz + d
, (2.1.1)

of the extended complex plane such that ad− bc 6= 0.

2.2 Subgroups and homogeneous spaces

Let G be a group, define an operation of G on a set X. We say that a subset

S ⊂ X is G-invariant if g · s ∈ S for all g ∈ G and s ∈ S, where · is the action of

G on S from the left [30, § 2.2].

Definition 2.2.1. [34, § 1.1.1] A left group action of G on X is a function G×X →

X that satisfies the following:

� e · x = x, where e is the identity element,

� g · (g1 · x) = (g ∗ g1) · x, where g, g1 ∈ G, x ∈ X and ∗ is the multiplication

on G.

We say that the action of G on X is transitive if for every x ∈ X, we have

Gx :=
⋃
g∈G

g · x = X, (2.2.1)

that is, for every x, y ∈ X, there is g ∈ G such that y = g · x.

Definition 2.2.2. [21, § 2.2; 30, § 2.2] A G-homogeneous space is a space with a

transitive group action by G .

Let H be a subgroup of a group G. Define the space of cosets X = G/H by

the equivalence relation: g1 ∼ g2 if there exists h ∈ H such that g1 = g2 ∗ h.

The space X = G/H is a homogeneous space under the left G-action g : g1H 7→

(g ∗ g1)H. It is convenient to have a parametrisation of X and express the above

G-action through those parameters, as shown below [30, § 2.2.2].

We define a section function s : X → G such that it is a right inverse to the natural

projection p : G→ G/H, i.e. p(s(x)) = x for all x ∈ X. Any g ∈ G has a unique
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decomposition of the form g = s(x)∗h, where x = p(g) ∈ X and h ∈ H. We define

a map r : G→ H associated to s through the identities:

x = p(g), h = r(g) := s(x)−1 ∗ g.

The set X is a left G-space with the G-action defined in terms of maps s and

p as follows:

g : x 7→ g · x = p(g ∗ s(x)).

This is illustrated by the diagram:

G G

X X

g∗

g·
s p ps

Example 2.2.3. [30, § 2.2.1] For any group G, we can define its action on X = G

as follows:

� the inner automorphisms or the conjugation

g : h 7→ ghg−1; (2.2.2)

� the left shift

Λ(g) : h 7→ g−1h; and (2.2.3)

� the right shift

R(g) : h 7→ hg, (2.2.4)

for all g, h ∈ G. The above actions define group homomorphisms from G to the

transformation group of G.

2.3 Lie groups and Lie algebras

We introduce the concept of Lie group, which describes symmetries in many physics

theories, notably in quantum mechanics and particle physics. It establishes rela-

tions between many different areas of mathematics, in particular between algebra,

geometry, topology and analysis.
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Definition 2.3.1. [21, § 5.1] A topological space M is called a manifold if for every

point x ∈M , there exists a neighbourhood U homeomorphic to an open set in Rn.

A chart (U, φ) on a manifold M is an open set U ⊂ M together with a fixed

homemorphism φ of this set onto an open set in Rn. A collection of charts which

together cover the entire manifold M is called an atlas A [21, § 5.1].

Definition 2.3.2. [21, § 5.1] A manifold M is called a smooth manifold if there is

given an atlas A on M consisting of smoothly connected charts.

To show that an atlas is smooth, we need to verify that each transition map

φ1 ◦ φ−1
2 : Rn → Rn is smooth (it has continuous derivatives of every order), where

(U, φ1) and (V, φ2) are charts in A.

Definition 2.3.3. [21, § 6.1] A Lie group is a topological group G with two

structures: G is a group and G is a smooth manifold for which the mapping

f : G×G→ G, given by f(x, y) = xy−1 is a smooth. Smoothness of the mapping

f means that it has continuous derivatives of every order.

Example 2.3.4. [8, § 1.2] The special linear group SL2(R) is the group of 2 × 2

real matrices with determinant is equal to one. The group law coincides with the

matrix multiplication:a1 b1

c1 d1

a2 b2

c2 d2

 =

a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

 . (2.3.1)

The identity is the unit matrix

I =

1 0

0 1

 ,

and the inverse matrix is:

g−1 =

 d −b

−c a

 , where g =

a b

c d

 .

The group SL2(R) is a connected non compact group of three-dimensional as it

is defined by four real parameter with one constraint. It is a sub-manifold of R4,
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thus, it inherits the differentiable structure and topology from R4.

To see the topological structure of SL2(R), it is convenient to take the substitution

a = x+ y, d = x− y, b = u+ v, c = u− v, (2.3.2)

so that the equation ad− bc = 1 reads:

x2 − y2 − u2 + v2 = 1⇒ x2 + v2 = 1 + y2 + u2. (2.3.3)

For each (y, u) ∈ R2, the point (x, v) belongs to the circle S1 with radius equal to

(1 + y2 + u2)
1
2 . This makes SL2(R) diffeomorphic to the direct product S1 × R2.

The study of Lie groups can be considerably facilitated by linearizing the group

in the neighbourhood of its identity. This results in a structure called a Lie al-

gebra. For connected, simply connected Lie groups [38, § 4.6], there is a one-to-one

correspondence with Lie algebras, thus much of the study of Lie groups can be

reduced to the study of their Lie algebras, which is usually easier.

Definition 2.3.5. [21, § 6.2] A Lie algebra is a vector space g over a field F

equipped with a bilinear product

[·, ·] : g× g→ g

which we call a Lie bracket, such that the following properties are satisfied:

� it is bilinear: [αx+ βy, z] = α[x, z] + β[y, z] for α, β ∈ F and x, y, z ∈ g.

� it is skew symmetric: [x, x] = 0 which implies [x, y] = −[y, x] for all x, y ∈ g.

� it satisfies the Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all

x, y, z ∈ g.

For every matrix Lie group G there is an associated matrix Lie algebra g. An

important relation between them is the exponential map [30, § 2.3.1]:

exp : g→ G

exp(tX) =
∞∑
k=0

(tX)k

k!
, t ∈ R.

(2.3.4)

This series is convergent for every point and its behaviour depends on the property

of the powers Xk.

There are several ways to construct a Lie algebra from a Lie group [21, § 6.3]. We

present two of them as in [30, § 2.3] in the following subsections.
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2.3.1 One-parameter subgroups and Lie algebras

Definition 2.3.6. [14, Definition 2.13] A function x : R → G is called a one-

parameter subgroup of G if

� x is continuous, that is, for every open subset of the topological group G, the

inverse image is an open subset of R.

� x(0) = I, where I is the identity matrix.

� x(s+ t) = x(s)x(t) for all s, t ∈ R.

It follows from the well-known property of the exponent that for any element

X ∈ g, the curve x(t) = exp tX, t ∈ R is a one-parameter subgroup of G that

satisfies:

X =
d

dt
x(t)|t=0.

2.3.2 Invariant vector fields and Lie algebras

In the second realisation of the Lie algebra, g is identified with the left(right)

invariant vector fields on the group G, that is first order differential operators X

defined at every point of G and invariant under the left(right) shifts:

XΛ = ΛX (XR = RX).

The left and right derived action can be calculated at any point g ∈ G as follows:

d

dt
(x(−t) · g)|t=0 and

d

dt
(g · x(t))|t=0, (2.3.5)

where x(t) is a one-parameter subgroup of G. We see from 2.3.1 that these vector

fields define generators of one-parameter subgroups of right (left) shifts.

2.4 Representations of groups

Group representations can be used to realise the ways in which groups act on

vector spaces. We begin from linear representations of groups since linear objects

are easier to study.
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Definition 2.4.1. [21, § 7.1] A representation in the wide sense means a homo-

morphism of a group G:

ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G, (2.4.1)

into the group of one-to-one mappings of a certain set H onto itself. The repres-

entation ρ is called linear if H is a linear space and the mappings ρ(g) are linear

operators. The space H is called the representation space.

Example 2.4.2. [21, § 7.1] Let us consider a linear space L : X → C, there is a

natural linear representation of a group G on L(x) which produced by its action

on X:

g : f(x) 7→ ρgf(x) = f(g−1 · x), where g ∈ G, x ∈ X. (2.4.2)

2.5 Decomposition of representations

Decomposing representations of a group G into the simplest possible components

is one of the principal problems and we will illustrate the following notions which

are relevant to this topic.

Definition 2.5.1. [21, § 7] Let ρ be a representation of G in H. A linear subspace

L ⊂ H is invariant subspace for ρ if for any x ∈ L and any g ∈ G, the vector

ρ(g)x ∈ L. We can consider a restriction of ρ to any its invariant subspace. Such

a restriction is called subrepresentation.

There are always two trivial invariant subspaces: the null space and entire H.

Definition 2.5.2. [21, § 7.1] If there are only two trivial invariant subspaces, then

ρ is irreducible representation. Otherwise it is a reducible representation.

2.5.1 Unitary representations

The theory of unitary representations is one of the most developed parts of the

theory of representations of topological groups, which is connected both with the

diverse applications and with the presence of a series of properties which facilitate

the study of unitary representations. One of these properties is: every unitary
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representation is completely reducible (decomposable). That is, for any closed in-

variant subspace V ⊂ H, the orthogonal complement V ⊥ ⊂ H is a closed invariant

subspace. Thus, H is a sum of two invariant subspaces: H = V ⊕ V ⊥.

A bijection U : H → H is a unitary operator if

〈Ux, Uy〉 = 〈x, y〉, x, y ∈ H.

Definition 2.5.3. [21, § 7.3] A representation ρ in a space H is called a unitary if

H is a Hilbert space and the operator ρ(g) is a unitary for all g ∈ G.

Definition 2.5.4. [21, § 7.2] Let ρ1 and ρ2 be two representations of a Lie group

G in spaces H1 and H2 respectively. An operator U : H1 → H2 is called an

intertwining operator between ρ1 and ρ2 if for every g ∈ G,

ρ1(g) = Uρ2(g)U−1.

Furthermore, unitary representations ρ1 and ρ2 are unitary equivalent repres-

entations if and only if there is a unitary operator U : H1 → H2 intertwining ρ1

and ρ2.

Definition 2.5.5. [21, § 7.3] The set of equivalence classes of unitary irreducible

representations of a group G is denoted by Ĝ and called dual object (or dual space)

of the group G.

An important fact on representation theory which is used to derive a lot of

results on the irreducible representations, is that known as Schur’s lemma.

Lemma 2.5.6 (Classical Schur’s lemma). [4, § 4.3, Lemma 4.3.1] Let ρ be a

continuous unitary irreducible representation of G on the Hilbert space H. If

� : H → H is a bounded linear operator on H, and � commutes with ρ(g), for all

g ∈ G, then

� = λI,

for some λ ∈ C.
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Chapter 3

Preliminaries on the SU(1,1)

group

In this chapter, we present some basic facts about the group SU(1, 1) and its Lie

algebra, utilizing the relation between SL2(R) and SU(1, 1). The main sources for

this chapter are [17,33,39,40].

3.1 Structure of SU(1, 1) and Its Parametrisation

The Lie group SU(1, 1) consists of 2 × 2 complex matrices A of determinant one,

such that

AGA∗ = G, (3.1.1)

where

G =

1 0

0 −1

 , (3.1.2)

and A∗ is Hermitian conjugated matrix to A.

Let us take a matrix

α ι

β κ

 from SU(1, 1), since detA = 1, we get

ακ− ιβ = 1. (3.1.3)

On the other hand, we have

AGA∗ =

α ι

β κ

1 0

0 −1

ᾱ β̄

ῑ κ̄

 =

αᾱ− ιῑ αβ̄ − ικ̄

βᾱ− κῑ ββ̄ − κκ̄

 , (3.1.4)
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and so from (3.1.1), we have

|α|2 − |ι|2 = 1,

|κ|2 − |β|2 = 1,

αβ̄ − ικ̄ = 0,

βᾱ− κῑ = 0.

(3.1.5)

From the first two equations, we deduce that , since |α|2 = 1 + |ι|2 ≥ 1 and

|κ|2 = 1 + |β|2 ≥ 1, therefore, α and κ are non-zero. From the third equation,

dividing by non-zero κ̄, we obtain

ι =
αβ̄

κ̄
, (3.1.6)

which we substitute into (3.1.3), then multiplying both sides with κ̄:

α|κ|2 − α|β|2 = κ̄. (3.1.7)

Using |κ|2 − |β|2 = 1 from (3.1.5), we get

α = κ̄.

Then, using (3.1.6), we get

ι = β̄.

So, we obtain that every matrix A of SU(1, 1) is of the form

A =

α β̄

β ᾱ

 , (3.1.8)

where

|α|2 − |β|2 = 1.

The group law in SU(1, 1) is provided by matrix multiplication.

Consider a matrix

a b

c d

 ∈ SL2(R), the Cayley transform [24, § 8.1; 30, § 10.1;

33, § IX.1] is defined by the matrix conjugation

1

2

 1 −i

−i 1

a b

c d

1 i

i 1

 =

α β̄

β ᾱ

 , (3.1.9)

16



where

α =
1

2
(a+ d− ic+ ib), β =

1

2
(c+ b− ia+ id).

The above identities define an isomorphism of SL2(R) with the group SU(1, 1). On

the other hand, the Poincaré upper half plane R2
+ [39, Chap. 8] is biholomorphic

to the Poincaré disk

D = {z ∈ C : |z| < 1},

via the linear fractional transformation

T (z) =
z − i
z + i

. (3.1.10)

So, the group SU(1, 1) is more convenient for complex or harmonic analysis in unit

disk D, while SL2(R) is well suited for the upper half-plane.

The group SU(1, 1) is three-dimensional as it defined by four real parameters

bound by one constraint.

Up to the conjugation g : g′ 7→ g−1g′g, the group SU(1, 1) has the only non-

trivial compact continuous closed subgroup K, namely the group of matrices of the

form k =

eiω 0

0 e−iω

, −π < ω ≤ π, which is parametrised by a point eiω of the

unit circle.

Now, any g ∈ SU(1, 1) has a unique decomposition of the formα β̄

β ᾱ

 = |α|

 1 β̄ᾱ−1

βα−1 1

 α
|α| 0

0 ᾱ
|α|


=

1√
1− |z|2

1 z

z̄ 1

eiω 0

0 e−iω

 , (3.1.11)

where ω = argα, z = β̄ᾱ−1, and |z| < 1 (because |α|2 − |β|2 = 1). Let z = reiφ,

then the identity (3.1.11) describes an element g ∈ SU(1, 1)α β̄

β ᾱ

 =
1√

1− |z|2

1 z

z̄ 1

eiω 0

0 e−iω

 , (3.1.12)

by a triple of numbers (r, φ, ω) where 0 ≤ r < 1 and −π < φ, ω ≤ π. The
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connection with the above (α, β) coordinates is as follows:

α =
eiω

√
1− r2

, β =
rei(ω−φ)

√
1− r2

; (3.1.13)

r =

∣∣∣∣βα
∣∣∣∣ , φ = − arg

β

α
, ω = argα. (3.1.14)

The parametrisation by (r, φ, ω) is closely connected with parametrisation by

the Euler angles (τ, φ, ψ) described in [40, § VI.1.3], yet the former is more suitable

for complex analysis in D. Furthermore, we note that (3.1.12) can be also rewritten

in the same variables as:α β̄

β ᾱ

 =

eiφ
2 0

0 e−iφ
2

 1√
1−r2

r√
1−r2

r√
1−r2

1√
1−r2

ei(ω−φ
2

) 0

0 e−i(ω−φ
2

).

 . (3.1.15)

The last presentation is decomposition of SU(1, 1) as the product KAK of its sub-

groups, which is called the Cartan decomposition. To present the whole subgroup

A in the middle matrix, the parameter r shall belong to (−1, 1).

We also note the Iwasawa decomposition SL2(R) = ANK ′ [17, § I.3; 30, § 3.2;

33, § III.1] is:a b

c d

 =

λ 0

0 λ−1

1 ν ′

0 1

cosω′ − sinω′

sinω′ cosω′

, (3.1.16)

where λ ∈ R+, ν ′ ∈ R and −π < ω′ ≤ π. The values of parameters in the above

decomposition are as follows:

λ = (c2 + d2)−1/2, ν ′ = ac+ bd, ω′ = arctan
c

d
. (3.1.17)

Consequently, cosω′ = d√
c2+d2

and sinω′ = −c√
c2+d2

.

However, in the context of the upper half-plane a slightly different NAK-

parametrisation is more convenient:a b

c d

 =

1 ν

0 1

λ 0

0 λ−1

cosω′ − sinω′

sinω′ cosω′

, (3.1.18)

with the same defining relations (3.1.17) for λ and ω. Although, the relation for ν

is seemingly more complicated:

ν =
ac+ bd

c2 + d2
,

18



it is preferable in the upper half-plane. Define

g · z =
az + b

cz + d
, g =

a b

c d

 ∈ SL2(R), (3.1.19)

the mapping g 7→ g · i from SL2(R) into R2
+ induces a bijection NA→ R2

+. Indeed,

we see that 1 ν

0 1

λ 0

0 λ−1

 7→ x+ iy, (3.1.20)

with x = ν and y = λ2.

A straightforward calculation shows that the left dµl (right dµr) Haar meas-

ure on SL2(R) can be expressed in terms of the Lebesgue measure for the above

parameters as follows [33, § III.1]:

dµl(g) =
r dr dφ dω

(1− r2)2
=
dν dλ dω

λ3
=
dx dy dω

y2
, (3.1.21)

dµr(g) =
r dr dφ dω

1− r2
= λ dν dλ dω =

dx dy dω

y
. (3.1.22)

The above identities between invariant measures in different parametrisations are

understood up to constant factor.

3.2 The Lie Algebra su(1, 1)

The Lie algebra sl2(R) of SL2(R) consists of all 2 × 2 real matrices of trace zero

[39, § 8.1]. This follows from the relation

etrX = det eX , X ∈ sl2(R). (3.2.1)

One can introduce a basis

A =
1

2

−1 0

0 1

 , B =
1

2

0 1

1 0

 , Z =

 0 1

−1 0

 . (3.2.2)

The commutator relations are

[Z,A] = 2B, [Z,B] = −2A, [A, B] = −1

2
Z. (3.2.3)

By the mapping

g 7→

1 −i

1 i

 g

1 −i

1 i

−1

=
1

2

1 −i

1 i

 g

1 1

i −i

 ,

19



we get the same base A, B, Z (3.2.2) in the SU(1, 1) form:

A =
1

2

 0 −1

−1 0

 , B =
1

2

0 −i

i 0

 , Z =

 i 0

0 −i

 .

Of course these A, B, Z satisfy to the same commutation identities (3.2.3). They

also generate one-parameter subgroups of SU(1, 1):

exp(tA) =

 cosh t
2
− sinh t

2

− sinh t
2

cosh t
2

 ,

exp(tB) =

 cosh t
2
−i sinh t

2

i sinh t
2

cosh t
2

 ,

exp(tZ) =

eit 0

0 e−it

 .

The important role in the representation theory of SU(1, 1) is played by the two

operators X+ and X− [39, § 8.2]:

X± = A∓ iB, (3.2.4)

which together with Z have commutators derived from (3.2.3):

[Z,X±] = ±2iX±, [X+, X−] = −iZ. (3.2.5)

The universal enveloping algebra of su(1, 1) has centre generated the Casimir [39,

Chap. 8, (1.25)] operator C:

C = Z2 − 4A2 − 4B2 = Z2 − 2(X+X− +X−X+). (3.2.6)
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Chapter 4

Induced representations and

classification of irreducible unitary

representations on the unit disk

In this chapter, we describe the construction of induced representations of the group

SU(1, 1) on Hilbert spaces. Furthermore, we study the classification of the irredu-

cible unitary representations of SU(1, 1) on the unit disk. The classification depends

on two components: the constant value of the Casimir operator and the structure

of the ladder of Z eigenvectors. With the notation of Taylor [39, Chap. 8,§ 2],

the non-trivial unitary representations have three classes: discrete series, principal

series and complementary series:

holomorphic discrete series ρ+
n , n ∈ Z+,

conjugate holomorphic discrete series ρ−−n, n ∈ Z+,

first (even) principal series ρeis, s ∈ R,

second (odd) principal series ρois, s ∈ R\{0}.

complementary series ρes, s ∈ (−1, 1)\{0}.

In this chapter, we use the homogeneous space, like in Gelfand approach, and the

Lie algebra like in Bergmann works to construct and analyse the irreducible unit-

ary representations on the unit disk. First, we find the common eigenfunctions of

the Casimir operator and the subgroup K. Next, we identify the ladders of eigen-

functions which are square integrable with respect to the quasi-invariant measure.
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Then, we find the multiplicity of every type of discrete series UIR in the induced

representations. Furthermore, we study the Lie derivatives of the ladder operat-

ors L± which map an irreducible component induced from a character indexed by

an integer n to an irreducible component induced from a character indexed by an

integer n ± 2. In the last section, we consider the covariant transform which is

an isometry to L2 space with respect to the invariant measure on a homogeneous

space. The image of this transform is a space of an irreducible component, which

represents a space of analytic and polyanalytic functions.

4.1 Induced Representations of SU(1, 1) on Homo-

geneous Spaces

We will describe the construction of induced representations of the SU(1, 1) group

on Hilbert spaces of the following form:

1. the left regular representation on the group SU(1, 1) itself which is induced

by a character of the trivial subgroup {e};

2. the representation on the unit disk which is induced by a character of the

subgroup K; and

3. the representation on the unit circle which is induced by a character of the

subgroup

H =


e−i

θ1
2 α e−i

θ1
2 β̄

ei
θ1
2 β ei

θ1
2 ᾱ

 : α, β ∈ C, |α|2 − |β|2 = 1

 , (4.1.1)

where eiθ1 =
α− iβ̄

ᾱ + iβ
.

[21, § 2.2] Any homogeneous space X with the group G can be identified with the

quotient space of G by the subgroup H = Gx, the stabilizer of a fixed point x ∈ X,

by means of the bijection y ∈ X ⇔ gH ∈ G/H, where g is any element of G such

that gx = y. Thus every left G-homogeneous space is isomorphic to the space of

left cosets of G with respect to a certain subgroup.

A construction of induced representations is as follows [21, § 13.2; 22, § 3.1; 39,
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Chap. 5]. Let H be a subgroup of the SU(1, 1) group and SU(1, 1)/H be the

respective homogeneous space. Let χ be a character of H and L2
χ(SU(1, 1)) be a

space of functions with the H-covariance property:

F (gh) = χ(h)F (g), g ∈ SU(1, 1), h ∈ H. (4.1.2)

This space is invariant under left SU(1, 1)-shifts

Λ(g) : F (ǵ) 7→ F (g−1ǵ), g, ǵ ∈ SU(1, 1). (4.1.3)

Consider a section s : SU(1, 1)/H → SU(1, 1), which is a right inverse of the natural

projection p : SU(1, 1) → SU(1, 1)/H. Any element g ∈ SU(1, 1) can be uniquely

decomposed as g = s(p(g))r(g), where the map r : G → H is defined by the

identity:

r(g) = s(p(g))−1g. (4.1.4)

Let L2(SU(1, 1)/H) be the space of square integrable functions on the homogeneous

space X = SU(1, 1)/H with the invariant measure dν on X (the measure dν is

invariant if for each g ∈ G and x ∈ X,
∫
f(g·x) dν(x) =

∫
f(x) dν(x), for f ∈ L2(X)

[1, § 2.3, Definition 2.3.1]). We define a lifting Lχ : L2(SU(1, 1)/H)→ Lχ2 (SU(1, 1))

as follows:

[Lχf ](g) = χ(r(g))f(p(g)), f ∈ L2(SU(1, 1)/H)

=: F (g).
(4.1.5)

Now, we define the pulling P : Lχ2 (SU(1, 1)) → L2(SU(1, 1)/H) by [PF ](x) =

F (s(x)). The induced representation ρχ on L2(SU(1, 1)/H) for the character χ on

H is generated by the following formula:

ρχ(g) = P ◦ Λ(g) ◦ Lχ. (4.1.6)

This can be represented by the following diagram:
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Lχ2 (SU(1, 1)) Lχ2 (SU(1, 1))

L2(SU(1, 1)/H) L2(SU(1, 1)/H)

PLχ

Λ(g)

PLχ
ρχ(g)

Figure 4.1: Induced representation from a character of a subgroup

Thus, the formula of the induced representation on the homogeneous space

SU(1, 1)/H (4.1.6) is

[ρχ(g)f ](x) = χ(r(g−1 ∗ s(x)))f(g−1 · x). (4.1.7)

4.1.1 Left regular representation

Let L2(SU(1, 1), dν) be the Hilbert space of all square integrable complex-valued

functions F on SU(1, 1) with respect to the left Haar measure dν such that:

‖F‖2 =

∫
SU(1,1)

|F (g)|2 dν <∞.

Thus the left regular representation of the SU(1, 1) on L2(SU(1, 1), dν) is given by

Λ

α β̄

β ᾱ

F

z ω̄

ω z̄

 = F

α β̄

β ᾱ

−1z ω̄

ω z̄



= F

ᾱz − β̄ω ᾱω̄ − β̄z̄

αω − βz αz̄ − βω̄

 ,
z ω̄

ω z̄

 ∈ SU(1, 1).

(4.1.8)

4.1.2 Induced Representation on the unit disk

For the one-dimensional compact subgroup K of the diagonal matrices, the left

homogeneous space SU(1, 1)/K can be identified with the unit disk D.

The natural projection is given by

p : SU(1, 1)→ D
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where

p

α β̄

β ᾱ

 =
β̄

ᾱ
. (4.1.9)

Let us define the section map s : D → SU(1, 1) as follows

s : z 7→ 1√
1− |z|2

1 z

z̄ 1

 . (4.1.10)

Mapping r : SU(1, 1) → K associated to the natural projection p and the

section s is

r :

α β̄

β ᾱ

 7→
 α
|α| 0

0 ᾱ
|α|

 . (4.1.11)

The set SU(1, 1)/K is a left homogeneous space with the SU(1, 1)-action defined

in terms of maps s and p as follows

g−1 · z = p(g−1 ∗ s(z))

=
ᾱz − β̄
α− βz

, g−1 =

 ᾱ −β̄

−β α

 ,
(4.1.12)

where ∗ is the multiplication on SU(1, 1).

The invariant measure dµ(z) on D comes from the decomposition dg = dµ(z) dk,

where dg and dk are Haar measures on G and K respectively, is equal to

dµ(z) = (1− |z|2)−2 dz ∧ dz̄, (4.1.13)

and dz ∧ dz̄ is the standard Lebesgue measure on D.

Let χn : T → C be a character of T defined by :

χn(z) = z−n, n ∈ Z, (4.1.14)

which induces a linear representation of SU(1, 1) constructed in the Hilbert space

Lχn2 (SU(1, 1)) consisting of the functions Fn : SU(1, 1)→ C with the property:

Fn

α β̄

β ᾱ

 = χn

 α
|α| 0

0 ᾱ
|α|

F
 1 β̄ᾱ−1

βα−1 1

 ,

and the norm

‖Fn‖2
D =

∫
D

∣∣∣∣∣∣F
1 z

z̄ 1

∣∣∣∣∣∣
2

dz ∧ dz̄

(1− |z|2)2 , z = β̄ᾱ−1,
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where F ∈ L2(D, dµ).

For z ∈ D, we have

r
(
g−1 ∗ s(z)

)
= r

 ᾱ −β̄

−β α

 ∗ 1√
1− |z|2

1 z

z̄ 1


= r

 1√
1− |z|2

ᾱ− β̄z̄ ᾱz − β̄

αz̄ − β α− βz


=

1

|α− βz|

ᾱ− β̄z̄ 0

0 α− βz

 .

(4.1.15)

The representation ρn : L2(D)→ L2(D), which is induced by the character χn,

is given by formula (4.1.7), that is

[ρn(g)f ](z) = χ(r(g−1 ∗ s(z)))f(g−1 · z).

Substituting the calculation from (4.1.12) and (4.1.15), we get

[ρn(g)f ](z) =

(
α− βz
|α− βz|

)−n
f

(
ᾱz − β̄
α− βz

)
=

(
ᾱ− β̄z̄
α− βz

)n/2
f

(
ᾱz − β̄
α− βz

)
.

(4.1.16)

These operators are unitary on the space L2(D, dµ), where dµ = (1−|z|2)−2 dz∧

dz̄ for the Lebesgue measure dz ∧ dz̄ on D, that is ‖ρn(g)f‖D = ‖f‖D . It is

common [33, § IX.3; 39, § 8.4] to use the representation which preserves analyticity

through the following link.

Definition 4.1.1. [3, § 4; 5, § 4.2; 28, § 2.2] An n-peeling is an isometry Pn :

L2(D, (1− |z|2)−2dz ∧ dz̄)→ L2(D, (1− |z|2)n−2 dz ∧ dz̄) defined as:

Pn : f(z) 7→ [Pnf ](z) =
f(z)

(1− |z|2)n/2
, z = u+ iv. (4.1.17)

Representation (4.1.16) is intertwined ρ̆n ◦ Pn = Pn ◦ ρn by the n-peeling with

the representation:

[ρ̆n(g)f ](z) =
1

(α− βz)n
f

(
ᾱz − β̄
α− βz

)
, (4.1.18)

which is unitary in L2(D, (1−|z|2)n−2dz∧dz̄). The demonstration of the intertwin-

ing property is based on the following analog of identity for the unit disk (4.1.13):

1−
∣∣∣∣ ᾱz − β̄α− βz

∣∣∣∣2 =
1− |z|2

|α− βz|2
.
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The derived representations of ρn are

Ã = dρAn = −1
4
n(z − z̄) · I + 1

2
(1− z2) · ∂z + 1

2
(1− z̄2) · ∂z̄ , (4.1.19)

B̃ = dρBn = i
4
n(z + z̄) · I + i

2
(1 + z2) · ∂z − i

2
(1 + z̄2) · ∂z̄ , (4.1.20)

Z̃ = dρZn = −in · I − 2zi · ∂z + 2iz̄ · ∂z̄ . (4.1.21)

The ladder operators L± = Ã± iB̃, which can be defined as the operators that

increase or decrease the eigenvalue of another operator, are represented by:

L+ = −1
2
nz · I − z2 · ∂z + ∂z̄ , (4.1.22)

L− = 1
2
nz̄ · I + ∂z − z̄2 · ∂z̄ . (4.1.23)

In quantum mechanics, the operator L+ (respectively, L−) is called the creation

(respectively, annihilation) operator. There are commutation relations between Z̃

and L± given by

[Z̃, L±] = ∓2iL±. (4.1.24)

The Casimir operator is:

dρn(C) = Z̃Z̃ − 2
(
L−L+ + L+L−

)
= (1− zz̄)

(
−n2 · I − 2nz · ∂z + 2nz̄ · ∂z̄ − 4(1− zz̄) · ∂z∂z̄

)
. (4.1.25)

The relations ∂z =
1

2
e−iθ(∂r − i

r
∂θ) and ∂z̄ =

1

2
eiθ(∂r + i

r
∂θ) between partial deriv-

atives in the polar coordinates z = reiθ implies the following form:

dρn(C) = (1− r2)
(
−n2 · I + 2in · ∂θ − (1− r2)(r−1 · ∂r + ∂2

r + r−2 · ∂2
θ

)
.

(4.1.26)

Lie derivative (left invariant vector fields) LX for an element X of a Lie algebra

is computed through the derived right regular representation of the lifted function:

[LXF ](g) =
d

dt
F (g exp tX)

∣∣∣
t=0
, (4.1.27)

for any differentiable function F on G. For the group SU(1, 1), we find that:

LA = −r
2

sin(φ− 2ω)∂ω −
1

2
e2iw(1− zz̄)∂z −

1

2
e−2iω(1− zz̄)∂z̄, (4.1.28)

LB =
r

2
cos(φ− 2ω)∂ω −

i

2
e2iw(1− zz̄)∂z +

i

2
e−2iω(1− zz̄)∂z̄, (4.1.29)

LZ = ∂ω. (4.1.30)
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The right ladder operators are represented by:

LA+iB = e−2iω

[
iz

2
∂ω − (1− zz̄)∂z̄

]
, (4.1.31)

LA−iB = −e2iω

[
iz̄

2
∂ω + (1− zz̄)∂z

]
. (4.1.32)

4.1.3 Induced Representation on the unit circle

Let eiθ1 =
α− iβ̄

ᾱ + iβ
, the subgroup

H =


e−i

θ1
2 α e−i

θ1
2 β̄

ei
θ1
2 β ei

θ1
2 ᾱ

 : α, β ∈ C, |α|2 − |β|2 = 1

 (4.1.33)

is the two-dimensional and the isotropy group of i ∈ T. Thus the homogeneous

space SU(1, 1)/H can be identified with the unit circle T.

The natural projection map is given by :

p : SU(1, 1)→ T

where

p

α β̄

β ᾱ

 =
α− iβ̄

ᾱ + iβ
.

Then let

s : T → SU(1, 1)

where

s(u) =

√u 0

0
√
ū

 ,

such that

[p ◦ s](u) = u⇒ p ◦ s = I,

where I is the identity map.

The unique decomposition of any

α β̄

β ᾱ

 ∈ SU(1, 1) defined by s is of the

form, α β̄

β ᾱ

 =

ei
θ1
2 0

0 e−i
θ1
2

e−i
θ1
2 α e−i

θ1
2 β̄

ei
θ1
2 β ei

θ1
2 ᾱ

 .
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The map r : SU(1, 1) → H associated to the natural projection p and the section

s is

r(g) = s(p(g))−1g

=

e−i
θ1
2 α e−i

θ1
2 β̄

ei
θ1
2 β ei

θ1
2 ᾱ

 .
(4.1.34)

The space SU(1, 1)/H is a left homogeneous space under the SU(1, 1)-action

defined in terms of p and s as follows:

g−1 · u =
ᾱu+ iβ̄

α− iβu
, g−1 =

 ᾱ −β̄

−β α

 , u ∈ T, (4.1.35)

and · is the action of SU(1, 1) on T from the left.

Let c =
1√
2

1 i

i 1

, conjugation by c, takes the subgroup H to

1

2

1 i

i 1

H

 1 −i

−i 1

 =
1

|ᾱ + iβ|

|ᾱ + iβ|2 2<(βα)

0 1

 ∈ SL2(R). (4.1.36)

Since the character of

a b

0 a−1

 ∈ SL2(R) is am [33, § III.3], then the character

χ̃ : H → C can be defined by:

χ̃(h) = |ᾱ + iβ|m, h ∈ H, m ∈ R. (4.1.37)

This character induces a linear representation of SU(1, 1) constructed in the Hilbert

space Lχ̃2 (SU(1, 1)) consisting of the functions F̃h : SU(1, 1)→ C with the property:

F̃h

α β̄

β ᾱ

 = χ̃

e−i
θ1
2 α e−i

θ1
2 β̄

ei
θ1
2 β ei

θ1
2 ᾱ

 · F̃
ei

θ1
2 0

0 e−i
θ1
2

 ,

and the norm

‖F̃h‖2
T =

1

2π

∫ 2π

0

∣∣∣∣∣∣F̃
ei

θ1
2 0

0 e−i
θ1
2

∣∣∣∣∣∣
2

dθ1,

where F̃ ∈ L2(T).
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For u ∈ T, we have

r
(
g−1 ∗ s(u)

)
= r

 ᾱ −β̄

−β α

 ∗
√u 0

0
√
ū


= r

 ᾱ
√
u −β̄

√
ū

−β
√
u α

√
ū


=

 e−iθ2ᾱ
√
ū −e−iθ2 β̄ū

√
ū

−eiθ2βu
√
u eiθ2α

√
u

 ,

(4.1.38)

where eiθ2 =
ᾱ + iβ̄ū

α− iβu
.

Substituting the calculation from (4.1.35) and (4.1.38) into the induced repres-

entation formula (4.1.7) impliesρχ̃
α β̄

β ᾱ

 f

 (u) = |α− iβu|mf
(
ᾱu+ iβ̄

α− iβu

)
, (4.1.39)

where u = eiθ ∈ T and f ∈ L2(T, dθ).

Proposition 4.1.2. The induced representation on the unit circle (4.1.39) is iso-

metric on the space L2(T, dθ) if and only if m = −1.

Proof. The representation ρχ̃ is isometric if ‖ρχ̃(g)f‖K = ‖f‖K :

‖ρχ̃(g)f‖2
K =

1

2π

∫ 2π

0

|ρχ̃(g)f(eiθ)|2 dθ

=
1

2π

∫ 2π

0

∣∣α− iβeiθ
∣∣2m ∣∣∣∣f ( ᾱeiθ + iβ̄

α− iβeiθ

)∣∣∣∣2 dθ. (4.1.40)

We use the substitution

eiθ̃ =
ᾱeiθ + iβ̄

α− iβeiθ
⇒ dθ =

e−iθeiθ̃

(ᾱ + iβeiθ̃)2
dθ̃, α− iβeiθ =

1

ᾱ + iβeiθ̃
.

Hence, (4.1.40) becomes

‖ρχ̃(g)f‖2
K =

1

2π

∫ 2π

0

∣∣∣ᾱ + iβeiθ̃
∣∣∣−2m ∣∣∣f (eiθ̃

)∣∣∣2 dθ̃∣∣ᾱ + iβeiθ̃
∣∣2

=
1

2π

∫ 2π

0

∣∣∣ᾱ + iβeiθ̃
∣∣∣−2m−2 ∣∣∣f (eiθ̃

)∣∣∣2 dθ̃. (4.1.41)

Since

‖f‖2
K =

1

2π

∫ 2π

0

∣∣∣f (eiθ̃
)∣∣∣2 dθ̃, (4.1.42)
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then, the representation ρχ̃ is isometric if and only if

− 2m− 2 = 0⇔ m = −1. (4.1.43)

4.1.4 Casimir eigenfunctions

This subsection is devoted to finding the common eigenfunctions of the Casimir

operator (4.1.25) with the eigenvalue λ and the operator dρZn (4.1.21).

Lemma 4.1.3. There are two solutions of the equation dρn(C)ϕ−m
2
,n = λϕ−m

2
,n:

1. for −m
2
6= −1,−2,−3, . . . ,

ϕ−m
2
,n(z, z̄) = z−

m
2 · (1− zz̄)t± · F

(
1

2
(n−m) + t±,−

n

2
+ t±; 1− m

2
; zz̄

)
,

(4.1.44)

2. for −m
2
6= 1, 2, 3, . . . ,

ϕ̃−m
2
,n(z, z̄) = z̄

m
2 · (1− zz̄)t± · F

(
1

2
(m − n) + t±,

n

2
+ t±; 1 +

m

2
; zz̄

)
,

(4.1.45)

where t± =
1±
√

1− λ
2

and F is the hypergeometric function.

Proof. To find the family of eigenfunctions of dρZn , we solve the equation
(
dρZn
)
ϕ−n

2
(z, z̄) =

0 by the method of characteristic [36, § 2.5] since this is a first-order linear PDE:

(−in · I − 2zi · ∂z + 2iz̄ · ∂z̄)ϕ−n
2
(z, z̄) = 0. (4.1.46)

We may write the characteristics for this equation as follows:

dz

−2zi
=
dz̄

2z̄i
=

dϕ−n
2

inϕ−n
2

.

dz

−2zi
=
dz̄

2z̄i
⇒ C1 = zz̄.

We need to obtain another integral curve which involves ϕ−n
2
. This is possible from

the following equation

dz

−2zi
=

dϕ−n
2

inϕ−n
2

⇒ n · dz
−2z

=
dϕ−n

2

ϕ−n
2

⇒ C2 = ϕ−n
2
· z

n
2 .
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Hence, the general solution of(4.1.46) is of the form C2 = φ(C1), that is

ϕ−n
2
(z, z̄) = z−

n
2 · φ(zz̄).

Now, the eigenfunctions

ϕ−m
2

(z, z̄) = z−
m
2 · φ(zz̄) (4.1.47)

satisfy

(dρZn )ϕ−m
2

(z, z̄) = i(m− n)ϕ−m
2

(z, z̄).

The restriction of the Casimir operator (4.1.26) to eigenfunctions ϕ−m
2

(r, θ) =(
reiθ
)−m

2 · φ (r2) is:

[
dρn(C)

]
ϕ−m

2
(r, θ) =

(
reiθ
)−m

2

[
−4r2

(
1− r2

)2 · d
2φ

dr2

(
r2
)
− 4
(
1− r2

)2(
1− m

2

)
· dφ
dr

(
r2
)

+
(
1− r2

)(
nm− n2

)
· φ
(
r2
)]
. (4.1.48)

By Schur’s lemma, the Casimir operator acts as a scalar for the irreducible unitary

representation ρn:

[dρn(C)]ϕ−m
2

= λ · ϕ−m
2
,

that is

r2
(
1− r2

)
· d

2φ

dr2

(
r2
)

+
(
1− r2

)(
1− m

2

)
· dφ
dr

(
r2
)
− 1

4

[(
nm− n2

)
− λ

1− r2

]
φ
(
r2
)

= 0. (4.1.49)

Now, put r2 = x, then we get

x (1− x) · d
2φ

dx2
(x) + (1− x)

(
1− m

2

)
· dφ
dx

(x)− 1

4

[(
nm− n2

)
− λ

1− x

]
φ (x)

= 0. (4.1.50)

This equation has three regular singular points: 0, 1 and ∞, thus it can be trans-

formed into a hypergeometric differential equation by means of a suitable change

of variables.

To transform (4.1.50), we use the substitution

φ(x) = xl · (1− x)t · g(x), (4.1.51)
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thus, the equation (4.1.50) becomes

x(1− x) · d
2g

dx2
(x) +

[
1− m

2
+ 2l− x

(
1− m

2
+ 2(l+ t)

)]
· dg
dx

(x) +

[
−1

4

(
nm−n2

)
−t
(
1−m

2

)
−2lt+

[
l(1−m

2
)+l(l−1)

]
· 1− x

x
+

1

4

λ

1− x
+t(t−1)

x

1− x

]
·g(x) = 0.

(4.1.52)

Now, if

1. l = 0, t(t− 1) = −λ
4

⇒ t± =
1±
√

1− λ
2

,

the equation (4.1.52) will be represented as

x(1− x) · d
2g

dx2
(x) +

[
1− m

2
− x
(
1− m

2
+ 2t±

)]
· dg
dx

(x)

−
[

1

4

(
nm− n2

)
+ t±

(
1− m

2

)
+
λ

4

]
· g(x) = 0.

(4.1.53)

This is a hypergeometric differential equation has the form:

x(1− x) · d
2g

dx2
(x) + [γ − (ζ1 + ζ2 + 1)x] · dg

dx
(x)− ζ1ζ2 · g(x) = 0,

where ζ1 = 1
2
(n−m) + t±, ζ2 = −n

2
+ t±, γ = 1− m

2
.

The solution for the equation (4.1.53) can be expressed in terms of hypergeo-

metric series:

g(x) = F (ζ1, ζ2; γ;x)

= 1 +
∞∑
k=1

(ζ1)k · (ζ2)k
(γ)k

· x
k

k!
,

where (ζ1)k = ζ1(ζ1 + 1)...(ζ1 + k − 1).

It is undefined if γ equals a non-positive integer, i.e. if

−m
2

= −1,−2,−3, · · · .

Hence, from (4.1.51) the solution for the equation (4.1.49) is

φ(r2) =
(
1− r2

)t± · F (ζ1, ζ2; γ; r2)

= (1− zz̄)t± · F (ζ1, ζ2; γ; zz̄).
(4.1.54)

We substitute (4.1.54) in (4.1.47) to get the eigenfunctions:

ϕ−m
2
,n(z, z̄) = z−

m
2 · (1− zz̄)t± · F

(
1

2
(n−m) + t±,−

n

2
+ t±; 1− m

2
; zz̄

)
.

(4.1.55)
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2. l = m
2
, t(t− 1) = −λ

4
⇒ t± =

1±
√

1− λ
2

,

the equation (4.1.52) becomes

x(1− x) · d
2g

dx2
(x) +

[
1 +

m

2
− x
(
1 +

m

2
+ 2t±

]
· dg
dx

(x)

−
[

1

4

(
nm− n2

)
+ t±

(
1 +

m

2

)
+
λ

4

]
· g(x) = 0, (4.1.56)

and the solution for this hypergeometric differential equation can be written

as:

g(x) = F (ζ ′1, ζ
′
2; γ′;x),

where ζ ′1 = 1
2
(m− n) + t±, ζ ′2 = n

2
+ t±, γ′ = 1 + m

2
.

It is undefined if γ′ equals a non-positive integer, i.e. if

−m
2

= 1, 2, 3, · · · .

From (4.1.47) and (4.1.51) we get the eigenfunctions

ϕ̃−m
2
,n(z, z̄) = z−

m
2 · (zz̄)

m
2 · (1− zz̄)t± · F (ζ ′1, ζ

′
2; γ′; zz̄). (4.1.57)

That is

ϕ̃−m
2
,n(z, z̄) = z̄

m
2 · (1− zz̄)t± · F

(
1

2
(m − n) + t±,

n

2
+ t±; 1 +

m

2
; zz̄

)
.

(4.1.58)

4.2 The classification of irreducible unitary rep-

resentations of SU(1, 1) group on the unit disk

In this section, we aim to construct and analyse the irreducible unitary represent-

ations of the SU(1, 1) group on the unit disk, using Bargmann’s [6] classification.

We will clarify this classification in the following theorem.

Theorem 4.2.1. [39, Chap. 8] Any non-trivial irreducible unitary representation

of SU(1, 1) is unitarily equivalent to one of the following type, for the following

values of s =
√

1− λ, where λ is the eigenvalue of the Casimir operator dρn(C):
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1. The discrete series, with s = n− 1 denoted by ρ+
n or s = −n+ 1, denoted by

ρ−−n and n is an integer > 2.

2. The mock discrete series, with s = 0, denoted by ρ+
1 , ρ−−1.

3. The complementary series with −1 < s < 1, s 6= 0, components which have

even parity denoted by ρes.

4. The principal series with is, s ∈ R\{0}, both parities, denoted by ρeis and ρois

and for s = 0, the component of even parity.

An irreducible unitary representation of SU(1, 1) is determined by the spectrum

of idρZn and dρn(C). We begin with the discrete series where the action of this

representation on the Casimir operator is

dρ+
n (C) = 1− (n− 1)2, n ∈ Z+,

dρ−−n(C) = 1− (n− 1)2, n ∈ Z+.
(4.2.1)

4.2.1 The discrete series

Consider the unitary representation ρn(K) on the Hilbert space H, then H splits

into a direct sum of irreducible unitary representations Hn of K (Peter-Weyl the-

orem (Part II) [32, Chap. I]). That is

H =
⊕
n∈K̂

Hn

=
⊕
n∈Z

Hn,
(4.2.2)

where

ρn(K)ϕ−m
2
,n = ei(n−m)ϕ−m

2
,n, onHn. (4.2.3)

Thus,

dρZnϕ−m2 ,n = i(m− n)ϕ−m
2
,n

= −2i
(
−m

2
+
n

2

)
ϕ−m

2
,n, onHn.

(4.2.4)

In the following lemma, we will describe the action of the ladder operators on the

spectrum idρZn .
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· · · ϕ−m
2
,n ϕ−m

2
+1,n ϕ−m

2
+2,n · · ·

L−

L+ L+

L−

L+

L−

L+

L−

Lemma 4.2.2. The ladder operators L± act as

Proof. From the commutators

[dρZn , L
±]ϕ−m

2
,n(z, z̄) = ∓2iL±ϕ−m

2
,n(z, z̄), (4.2.5)

we deduce that L±ϕ−m
2
,n are eigenvectors of dρZn :

dρZn
(
L±ϕ−m

2
,n

)
=
(
L±dρZn ∓ 2iL±

)
ϕ−m

2
,n

= L±
(
dρZnϕ−m2 ,n

)
∓ 2iL±ϕ−m

2
,n

= i(m− n)L±ϕ−m
2
,n ∓ 2iL±ϕ−m

2
,n

= −2i
(n

2
− m

2
± 1
)
L±ϕ−m

2
,n.

(4.2.6)

Using the relation [L+, L−] = idρZn and the expression for the Casimir operator,

dρn(C) = Z̃Z̃ − 2 (L−L+ + L+L−), we find that

L−L+ϕ−m
2
,n(z, z̄) = −1

4

[
(m− n− 1)2 − 1 + λ

]
ϕ−m

2
,n(z, z̄), (4.2.7)

and

L+L−ϕ−m
2
,n(z, z̄) = −1

4

[
(m− n+ 1)2 − 1 + λ

]
ϕ−m

2
,n(z, z̄). (4.2.8)

Moreover, L+ and L− are adjoin of each other:

(L+)∗ = L−. (4.2.9)

Then, from (4.2.7) and (4.2.8) we see that

‖L+‖ =
1

2
[1− λ− (m− n− 1)2]

1
2 , (4.2.10)

and

‖L−‖ =
1

2
[1− λ− (m− n+ 1)2]

1
2 . (4.2.11)
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In the case 1 − λ = (n − 1)2, for an integer n > 1, we observe that the eigen-

functions

ϕ−m
2
,n(z, z̄) = z−

m
2 (1− zz̄)

n
2 , where − m

2
= 0, 1, 2, . . . . (4.2.12)

These eigenfunctions are square-integrable on D with respect to the invariant meas-

ure dµ =
dz ∧ dz̄

(1− |z|2)2 :

‖ϕ−m
2
,n‖2 =

∫
D
|ϕ−m

2
,n(z, z̄)|2 dz ∧ dz̄

(1− |z|2)2

=

∫
D

(zz̄)−
m
2 (1− zz̄)n

dz ∧ dz̄
(1− |z|2)2

=

∫ 2π

0

∫ 1

0

r−m(1− r2)n−2 rdrdθ

= 2π

∫ 1

0

r−m+1(1− r2)n−2 dr

< 2π

∫ 1

0

r(1− r2)n−2 dr

= −π (1− r2)n−1

n− 1

∣∣∣1
0

=
π

n− 1

<∞.

(4.2.13)

Looking at the equation (4.2.11), we have L− = 0, if and only if m = 0, which

implies that the vector annihilated by L− is

ϕ0,n(z, z̄) = (1− zz̄)
n
2 . (4.2.14)

The vector ϕ0,n is called the lowest weight vector and n is called the lowest weight,

because all idρZn eigenvectors have eigenvalues higher than n.

We can easily obtain the relations:

L+ϕ−m
2
,n =

(m
2
− n

)
ϕ−m

2
+1,n, L−ϕ−m

2
,n = −m

2
ϕ−m

2
−1,n, (4.2.15)

which can be visualised by the following diagram:

0 ϕ0,n ϕ1,n ϕ2,n · · ·
L−

L+

L−

L+

L−

L+

L−
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In the case 1− λ = (−n+ 1)2, for an integer n > 1, we have the eigenfunctions

ϕ̃−m
2
,−n(z, z̄) = z̄

m
2 (1− zz̄)

n
2 , where − m

2
= 0,−1,−2, . . . . (4.2.16)

These functions satisfy:

‖ϕ̃−m
2
,−n‖2 =

∫
D
|ϕ̃−m

2
,−n(z, z̄)|2 dz ∧ dz̄

(1− |z|2)2

=

∫
D

(zz̄)
m
2 (1− zz̄)n

dz ∧ dz̄
(1− |z|2)2

=

∫ 2π

0

∫ 1

0

rm(1− r2)n−2 rdrdθ

= 2π

∫ 1

0

rm(1− r2)n−2 dr

< 2π

∫ 1

0

r(1− r2)n−2 dr

= −π (1− r2)n−1

n− 1

∣∣∣1
0

=
π

n− 1

<∞.

(4.2.17)

Thus, the eigenfunctions ϕ̃−m
2
,−n, where −m

2
6 0 and n > 1, are in L2(D, dµ).

Looking at the equation (4.2.10), we have L+ = 0, if and only if m = 0, and

the vector which is a null solution of the creation operator L+, is

ϕ̃0,−n(z, z̄) = (1− zz̄)
n
2 . (4.2.18)

The vector ϕ̃0,−n is called the highest weight vector and −n is called the highest

weight, because all idρZn eigenvectors have eigenvalues lower than −n.

We have the relations:

L+ϕ̃−m
2
,−n =

m

2
ϕ̃−m

2
+1,−n, L−ϕ̃−m

2
,−n = −

(m
2

+ n
)
ϕ̃−m

2
−1,−n, (4.2.19)

which can be visualised by the following diagram:

· · · ϕ̃−2,−n ϕ̃−1,−n ϕ̃0,−n 0
L+

L−

L+

L−

L+

L−

L+

Let

F (ω, z, z̄) = χn(e−iω)ϕ−m
2
,n

= einωϕ−m
2
,n,

(4.2.20)
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where ϕ−m
2
,n is the function (4.2.12). F (ω, z, z̄) is an eigenvector for the Lie deriv-

ative of the element Z , that is:

LZF (ω, z, z̄) = inF (ω, z, z̄). (4.2.21)

The commutators

[LZ ,LA±iB]einωϕ−m
2
,n = ∓2iLA±iBeinωϕ−m

2
,n.

We denote L− = LA+iB and L+ = LA−iB, then L± act as

· · · ϕ−m
2
,n−2 ϕ−m

2
,n ϕ−m

2
,n+2 · · ·

L−
L+ L+

L−
L+

L−
L+

L−

The lowest weight vector (4.2.14), annihilating by the operator L− as well, then

all vectors ϕj,n = (L+)jϕ0,n are lowest weight vectors due to the commutation of

the left and right actions:

L−ϕj,n = L−(L+)jϕ0,n

= (L+)jL−ϕ0,n

= 0, j > 0.

(4.2.22)

For each ϕ0,n, the collection of vectors ϕj,n = (L+)jϕ0,n form an orthogonal basis

of an irreducible component Hn with the respective ladder structure (4.2.15).

Two actions—the left and the right—jointly create the two-dimensional lattice

structure with n = 2 or n = 3:
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0 ϕ0,n ϕ0,n+2 ϕ0,n+4 · · ·

0

ϕ1,n0 ϕ1,n+2 ϕ1,n+4 · · ·

ϕ2,n0 ϕ2,n+2 ϕ2,n+4 · · ·

0 0

...
...

...

L−

L+

L−

L+

L−

L+

L−

L−

L+L−

L−

L+

L−

L+

L−

L+

L−

L−

L+

L−

L+

L−

L+

L−

L+L−

L+L−

L+L−

L+L−

L+L−

L− L−

L+L− L+L− L+L−

Figure 4.2: The actions of the left and the right ladder operators
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Looking to this structure, and the action of the Lie derivative L+, so we have

the orthogonal direct sums

H+
e =

⊕
n>1
n even

Hn, H+
o =

⊕
n>1
n odd

Hn, (4.2.23)

where H+ = H+
e ⊕H+

o .

In the same manner, we can obtain another two-dimensional structure consists of all

vectors ϕ̃−j,−n, where j > 0 and n > 1. In this case, for each highest weight vector

ϕ̃0,−n, the collection of vectors ϕ̃−j,−n = (L−)jϕ̃0,−n form an orthogonal basis of an

irreducible component H−n with the respective ladder structure (4.2.19). With the

action of the Lie derivative L−, we get the orthogonal direct sums

H−e =
⊕
n<−1
n even

Hn, H−o =
⊕
n<−1
n odd

Hn, (4.2.24)

where H− = H−e ⊕H−o .

Note that the Hilbert space is

H = H+ ⊕H−. (4.2.25)

Each Hn is generated by the respective vertical ladder, that is

Hn = span{ϕ0,n, ϕ1,n, ϕ2,n, . . .}, wheren > 1,

Hn = span{ϕ0,n, ϕ−1,n, ϕ−2,n, . . .}, wheren < −1.
(4.2.26)

We provide the following lemma, which shows that each ladder in the discrete

series will appear with multiplicity 1.

Lemma 4.2.3. The space of lowest and highest weight vectors of the same ladder

is one-dimensional.

Proof. The equation

dρn(C)ϕ−m
2
,n = λϕ−m

2
,n (4.2.27)

is a second order differential equation, thus it has two solutions [2, Theorem 2.1].

We recall that

L−L+ϕ−m
2
,n(z, z̄) = −1

4

[
(m− n− 1)2 − 1 + λ

]
ϕ−m

2
,n(z, z̄),
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and

L+L−ϕ−m
2
,n(z, z̄) = −1

4

[
(m− n+ 1)2 − 1 + λ

]
ϕ−m

2
,n(z, z̄).

From (4.2.10) and (4.2.11), any lowest or highest weight vector ϕ−m
2
,n in L2(D, dµ)

satisfies m = 0.

If ϕ̃0,n is a vector such that L+ϕ̃0,n(z, z̄) = 0, then

L−L+ϕ̃0,n(z, z̄) = −1

4

[
(−n− 1)2 − 1 + λ

]
ϕ̃0,n(z, z̄) = 0 (4.2.28)

⇒ λ = 1− (n+ 1)2. (4.2.29)

If ϕ0,n is a vector such that L−ϕ0,n(z, z̄) = 0, then

L+L−ϕ0,n(z, z̄) = −1

4

[
(−n+ 1)2 − 1 + λ

]
ϕ0,n(z, z̄) = 0

⇒ λ = 1− (−n+ 1)2. (4.2.30)

Suppose that these two vectors are solutions of the Casimir operator with the same

λ. Then λ = 1− (−|n|+ 1)2 and n in (4.2.29) must be negative while n in (4.2.30)

must be positive, therefore we have two ladders since every lowest or highest weight

vector is basis for a different ladder:

0 ϕ0,n ϕ1,n ϕ2,n · · ·
L−

L+

L−

L+

L−

L+

L−

and

0ϕ̃0,−nϕ̃−1,−nϕ̃−2,−n· · · L+L+

L−

L+

L−

L+

L−

Hence, the space of lowest and highest weight vectors of the same ladder has

one dimension.
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4.2.2 The mock discrete series

In this case, the eigenvalue of the Casimir operator λ = 1. The representations ρ+
1

and ρ−−1 are not a discrete series representations, but rather a mock discrete series.

The reason for this is that, the eigenfunctions ϕ−m
2
,±1 in the representation space

of ρ±±1 are not in L2(D, dµ) [39, Chap. 8].

The mock discrete series representations appear in the decomposition, since they

are embedded in the principal series [6, § 9].

Suppose n = 1, 3, . . .. From the expression (4.2.11), we see that L−ϕ−m
2
,n = 0 when

−m
2

= 1−n
2

. So the corresponding space has an orthogonal basis{
ϕ−m

2
,n : −m

2
=

1− n
2

,
3− n

2
, . . .

}
.

Thus (4.2.3) tells us that ρ+
1 has the lowest weight

(
n+ 2(1−n

2
)
)

= 1.

And for n = −1,−3, . . ., from (4.2.10), we see that L+ϕ−m
2
,n = 0 when −m

2
= −1−n

2
.

So, the corresponding space has an orthogonal basis{
ϕ−m

2
,n : −m

2
=
−1− n

2
,
−3− n

2
, . . .

}
.

Thus, ρ−−1 has the highest weight
(
n+ 2(−1−n

2
)
)

= −1.

4.2.3 The complementary series

In this case, the representation is denotes by

ρes, λ = 1− s2, s ∈ (−1, 1)\{0}. (4.2.31)

The complementary series representations do not appear in the decomposition into

irreducible components [33, § VIII.4; 35, § 1].

4.2.4 The principal series

This representation with even parity is denoted by

ρeis, λ = 1 + s2, s ∈ R, (4.2.32)

and called a member of the first principal series. Note that

ρeis ' ρe−is. (4.2.33)
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We denote the space corresponding to this type by He
s .

And with odd parity, it is denoted by

ρois, λ = 1 + s2, s ∈ R\{0}, (4.2.34)

and called a member of the second principal series. Note that

ρois ' ρo−is, (4.2.35)

and the space corresponding to this type is denoted by Ho
s .

In the case of principal series, where the spectrum of the Casimir operator is

continuous, it is not possible to decompose the Hilbert space as a direct sum of

irreducible representations. But each unitary representation of the non-compact

group decomposes into a direct integral of irreducible unitary representations.

Let Ĝ is the set of isomorphism classes of unitary representations. We let dσ be a

measure on Ĝ, the direct integral decomposition [7, 19] is as follows

L2(D) ∼=
∫
Ĝ

Hλ dσ(s), (4.2.36)

where Hλ is the corresponding space to each class. The unique measure dσ is called

the Plancherel measure. We will find this measure in the following chapters.

In the following lemma, we show that each ladder in the principal series will

appear with multiplicity 1.

Lemma 4.2.4. The space of radial eigenfunctions of the same ladder is one-

dimensional.

Proof. The equation

dρn(C)ϕ−m
2
,n = (1 + s2)ϕ−m

2
,n (4.2.37)

is a second order differential equation which can be converted to the hypergeometric

equation. By lemma 4.1.3, there is one defined solution for every integer −m
2

.

The eigenfunction ϕ−m
2
,n = z−

m
2 φ(zz̄) is radial if and only if m = 0. Thus, by

lemma 4.1.3, the radial eigenfunction takes the form:

ϕ0,n = (1− zz̄)
1+is
2 F

(
1

2
(n+ 1 + is),

1

2
(−n+ 1 + is); 1; zz̄

)
. (4.2.38)

Then, every radial eigenfunction is basis for a different ladder:
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· · · ϕ̃−1,n ϕ0,n ϕ1,n · · ·
L+

L−

L+

L−

L+

L−

L+

L−

Hence, the space of radial eigenfunctions of the same ladder has one dimension.

4.3 Covariant Transform

Definition 4.3.1. [26, Definition 4.1] Let ρ be a representation of a group G in a

space H and F be an operator acting from H to a space U. We define a covariant

transformWρ
F acting from H to the space L(G,U) of U- valued functions on G by

the formula:

Wρ
F : υ 7→ υ̂(g) = F (ρ(g−1)υ), υ ∈ H, g ∈ G. (4.3.1)

The operator F is called a fiducial operator.

Example 4.3.2. [26, Example 4.4] Let H be a Hilbert space with an inner product

〈·, ·〉 and ρ be a unitary representation of a group G in the space H. Let F : H → C

be the functional υ 7→ 〈υ, υ0〉 defined by a vector υ0 ∈ H. The vector υ0 is called

the mother wavelet or the vacuum state. Then, the covariant transform (4.3.1)

becomes the wavelet transform:

W : υ 7→ υ̂(g) = 〈ρ(g−1)υ, υ0〉 = 〈υ, ρ(g)υ0〉, υ ∈ H, g ∈ G. (4.3.2)

Definition 4.3.3. [29, Definition 4.4] Let F : H → U intertwines the restriction

of ρ to H with a character χ of H : F (ρ(h)υ) = χ(h)F (υ) for all h ∈ H, υ ∈ H.

Then, the induced covariant transform is:

[WFυ](x) = F (ρ(s(x))υ), υ ∈ H, x ∈ G/H,

and s : G/H → G is a continuous section.

The covariant transform has obtained its name because of the following property.

Theorem 4.3.4. [26, Theorem 6.1] The covariant transform (4.3.1) intertwines ρ

and the left regular representation Λ on L(G,U):

Wρ(g) = Λ(g)W , (4.3.3)
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where Λ(g) : f(ǵ) 7→ f(g−1ǵ), g, ǵ ∈ G.

Example 4.3.5. For G = SU(1, 1), H = K and the induced representation ρ2

(4.1.16), a pairing with the vacuum υ0(z) = 1− |z|2, has the property

〈υ, ρ2(h)υ0〉 = e2iθ〈υ, υ0〉, h =

eiθ 0

0 e−iθ

 ∈ K.
Thus, υ0 can be used for the induced covariant transform:

[Wυ](ω) = 〈υ, ρ2(s(ω))υ0〉

= (1− ωω̄)

∫
D

υ(z)

(1− ωz̄)2

dz ∧ dz̄
(1− zz̄)

,
(4.3.4)

where s(ω) =
1√

1− |ω|2

1 ω

ω̄ 1

.

Up to the factor
1− |ω|2

1− |z|2
, this is known as the Bergman integral. The image space

B2(D) ofW is SU(1, 1)-invariant subspace of L2(D), which is called Bergman space.

The orthogonal projection:

P : L2(D)→ B2(D) (4.3.5)

presented by the Bergman integral (4.3.4) is called the Bergman projection.

Corollary 4.3.6. [26, Corollary 6.8] Let a fiducial operator F be a null-solution,

i.e. AF = 0, for the operator A =
∑

j ajdρ
Xj
B , where Xj ∈ g and aj are constants.

Then the covariant transform [WFf ](g) = F (ρ(g−1)f) for any f satisfies

D(WFf) = 0, where D =
∑
j

ājL
Xj . (4.3.6)

Here, LXj are the left invariant vector fields (Lie derivative) on G corresponding

to Xj.

Example 4.3.7. Consider the induced representation ρn (4.1.16) of the SU(1, 1)

group.

The vacuums ϕ0,n(z, z̄) = (1− zz̄)
n
2 are null solutions of the operator

L− = dρAn − idρBn . (4.3.7)
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Therefore, the image of the covariant transform with fiducial operator defined in

Example 4.3.2 consists of the null solutions to the operator

LA + iLB = e−2iω

[
iz

2
∂ω − (1− zz̄)∂z̄

]
. (4.3.8)

We refer to the two-dimensional lattice structure shown in Fig 4.2, the vertical

ladders are orthogonal basis of the covariant transform imageWϕo,n which generate

corresponding invariant irreducible components Hn annihilated by

LA+iBϕj,n = 0, where j ≥ 0, n > 1. (4.3.9)
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Chapter 5

Induction in stages and

Plancherel measure

In this chapter, we construct the induced representation of SL2(R) from the trivial

character of the subgroup N . This representation is reducible, thus we use the in-

duction in stages method [20, Chap. 2] to obtain irreducible representations. Since

there is an isomorphism of SL2(R) with the group SU(1, 1), the results on SL2(R)

can be applied to SU(1, 1). Thereafter, we construct the spherical eigenfunction as-

sociated with the character of the subgroup P = AN . To determine the Plancherel

measure, we study the asymptotic behaviour of the spherical function at infinity.

5.1 Induced representations of the group SL2(R)

In this section, we find the induction to SL2(R) from the trivial character of the

subgroup N . This representation is reducible, thus we will use the induction in

stages method [20, Chap. 2] to get the principal series representation. That is,

first we make an induction of the trivial character of N to P . This representation

can be decomposed into a one-dimensional representation of P which is a complex

character. Then, we induce a representation from this character of P to SL2(R).
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5.1.1 The induction to SL2(R) from the subgroup N

The decomposition a b

c d

 =

a 0

c a−1

1 b
a

0 1

 ,

can be used to identify the homogeneous space X = SL2(R)/N with KA ' T ×

R+ ' R2 \ {0}.

There is a natural projection map

p : SL2(R)→ X

where

p

a b

c d

 = (c, a).

Define a section

s : X → SL2(R)

as follows

s[(x, y)] =

y 0

x y−1

 ,

which is the right inverse of the natural projection. The map

r : SL2(R)→ N

will be

r

a b

c d

 =

1 b
a

0 1

 .

The left action on the homogeneous space SL2(R)/N is defined in terms of p

and s as follows:

g−1 · (x, y) = p
(
g−1 · s(x, y)

)
= (ax− cy, dy − bx), g =

a b

c d

 ,
(5.1.1)

and · is the action of SL2(R) on X from the left.
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Let χe be a trivial character of N defined by

χe

1 b

0 1

 = 1, (5.1.2)

then it induces a representation of SL2(R) in the Hilbert space Lχe2 (SL2(R)) of

functions with the N -covariance property

Fe

a b

c d

 = χe

1 b
a

0 1

F
a 0

c a−1


= F

a 0

c a−1

 .

(5.1.3)

This space is invariant under left SL2(R)-shifts

Λ(g) : F (ǵ) 7→ F (g−1ǵ), g, ǵ ∈ SL2(R).

The representation T : L2(X)→ L2(X), which is induced by the character χe,

is given by

[T (g)f ](x, y) = χe(r(g−1 · s(x, y)))f(g−1 · (x, y)).

Substituting the calculation from (5.1.1), we get

[T (g)f ](x, y) = f (ax− cy, dy − bx) , (5.1.4)

where (x, y) ∈ X.

5.1.2 The co-adjoint representation induced from a trivial

character of N

The affine group is the set Aff = {(a, b) : a > 0, b ∈ R} with the group law ∗

defined by:

(a1, b1) ∗ (a2, b2) = (a1a2, a1b2 + b1),

where (a1, b1), (a2, b2) ∈ Aff. The identity element is (1, 0) and the inverse is

(a, b)−1 = (a−1,−ba−1).

The group (Aff, ∗) is isomorphic to the group


a b

0 a−1

 : a > 0, b ∈ R

.
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For the subgroup N = {(1, b) : b ∈ R}, the homogeneous space X = Aff/N ' A =

R+ generates the co-adjoint representation of Aff on L2(R+).

There is a natural projection

p : Aff→ R+

such that

p(a, b) = a.

Let us define a section s : R+ → Aff as follows

s : a 7→ (a, 0),

such that

[p ◦ s](a) = a⇒ p ◦ s = I,

where I is the identity map.

The decomposition (a, b) = (a, 0) ∗ (1, b
a
) defines the map r : Aff→ N such that

r(a, b) = s(a)−1 ∗ (a, b) = (1,
b

a
).

The space Aff/N is a left homogeneous space under the Aff-action defined in terms

of p and s as follows:

(a, b)−1 · u = p((a, b)−1 ∗ s(u)) = a−1u, (5.1.5)

where (a, b) ∈ Aff, u ∈ X and · is the action of Aff on X from the left.

The character χe induces a representation of Aff constructed in the Hilbert

space Lχe2 (Aff), which consists of the function Fe : Aff→ C with the N -covariance

property

Fe(a, b) = χe

(
1,
b

a

)
F (a, 0)

= F (a, 0),

(5.1.6)

and the norm

‖Fe‖2
A =

∫
R+

|F (a, 0)|2 da
a
,

where F ∈ L2(R+).
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The representation π+
χe : L2(R+) → L2(R+) which is induced by the character

χe is given by [
π+
χe(a, b)f

]
(u) = χe(r(g−1 · s(u)))f(g−1 · u).

With u ∈ R+, we obtain the formula

[
π+
χe(a, b)f

]
(u) = f

(u
a

)
,

where f ∈ L2

(
R+,

da

a

)
.

By changing the variable t = u−1, g(t) = t−
1
2f(t−1), we get

[
π+
χe(a, b)g

]
(t) =

√
a · g (at) , (5.1.7)

where g ∈ L2 (R+, da) .

This representation is unitary reducible, and the decomposition into irreducible

components requires finding the eigenfunction of the operator π+
χe(a, b)g as follows:

[
π+
χe(a, b)g

]
(t) = µ · g(t) ⇒

√
a · g (at) = µ · g(t).

The function g0(t) = tν , where ν ∈ C, satisfies

[
π+
χe(a, b)

]
(tν) =

√
a(at)ν = aν+ 1

2 · tν .

Then, tν is the eigenfunction of π+
χe(a, b).

The Mellin transform is given by

g̃(s) = [Mg] (s) =
1√
2π

∫ ∞
0

t−
1
2
−isg(t) dt,

and the inverse Mellin transform is

[
M−1g̃

]
(t) = g(t) =

1√
2π

∫ ∞
−∞

t−
1
2

+isg̃(s) ds,

where ν = −1
2

+ is.
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Therefore, we obtain[
π+
χe(a, b)g

]
(t) =

√
a · g (at)

=
√
a

1√
2π

∫ ∞
−∞

(at)−
1
2

+isg̃(s) ds

=
1√
2π

∫ ∞
−∞

aist−
1
2

+isg̃(s) ds

=
[
M−1aisg̃

]
(t)

=
[
M−1aisMg

]
(t)

=
[
M−1Maisg

]
(t)

= aisg(t)

= χs(a, b) · g(t),

where χs(a, b) = ais is a complex character of the affine group. Hence, an irreducible

component of the representation (5.1.7) is a one-dimensional representation which

is the character χs.

5.1.3 Induction in stages

The subgroup P = AN of SL2(R) is defined as follows :

P =


a b

0 a−1

 : a ∈ R\{0}, b ∈ R

 .

We can find a homomorphism L : P → Aff such that L−1(a, b) has two elements

one for a > 0 and the other for a < 0.

The induced representation of SL2(R) from the trivial character of N (5.1.4) is

reducible, and to investigate the irreducibility, we use induction in stages technique.

That is [20, Chap. 2]

ind
SL2(R)
P [indPNχe] = ind

SL2(R)
N [χe].

First, the trivial character of N induces a representation of the affine group. We

get the co-adjoint representation π+
χe : L2(R)→ L2(R) which is given as follows:π+

χe

a b

0 a−1

 g

 (t) =
√
ag (at) . (5.1.8)
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This representation is reducible, from subsection 5.1.2 we can decompose it into

irreducible component. Therefore, we get the character as follows:

χκ

a 0

0 a−1

 = aκ, κ ∈ C.

Hence, for the subgroup P = AN , the character is obtained by:

χs

a b

0 a−1

 = |a|ssgnε(a), ε ∈ {0, 1}, s ∈ C.

Next, the character χs induces a representation of SL2(R) in the Hilbert space

Lχs2 (SL2(R)) of functions with the P -covariance property

Fs

a b

c d

 =χs

a b

0 a−1

F
1 0

c
a

1


= |a|ssgnε(a)F

1 0

c
a

1

 ,

(5.1.9)

this space is invariant under left SL2(R)-shifts.

A useful parametrization of X = SL2(R)/P is obtained bya b

c d

 =

1 0

c
a

1

a b

0 a−1

 , a 6= 0

and for b 6= 0,  0 b

−b−1 d

 =

 0 1

−1 0

b−1 −d

0 b

 .

This decomposition shows that the coset SL2(R)/P either contains matrix of the

form

1 0

u 1

 and , thus, can be parametrised by the real number u; or the coset

of matrices

b−1 −d

0 b

 which represents ∞.

So, we can identify the space X by the projective real line P(R) = R ∪ {∞}.

The natural projection map is given by :

p : SL2(R)→ P(R)
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where

p

a b

c d

 =
c

a
.

Then let

s : P(R)→ SL2(R)

where

s(ω) =

1 0

ω 1

 ,

such that

[p ◦ s](ω) = ω ⇒ p ◦ s = I,

where I is the identity map.

The map

r : SL2(R)→ P

will be

r

a b

c d

 =

a b

0 a−1

 .

The left action on the homogeneous space SL2(R)/P ∼= P(R) is defined in terms

of p and s as follows:a b

c d

 : ω 7→

a b

c d

−1

· ω = p

a b

c d

−1

∗ s(ω)

 =
aω − c
d− bω

, (5.1.10)

where

a b

c d

 ∈ SL2(R), ω ∈ P(R) and · is the action of SL2(R) on P(R) from

the left.

For ω ∈ P(R), we have

r
(
g−1 ∗ s(ω)

)
= r

 d −b

−c a

1 0

ω 1


= r

 d− bω −b

−c+ aω a


=

d− bω −b

0 (d− bω)−1


(5.1.11)
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The representation πs : L2(P(R)) → L2(P(R)), which is induced by the character

χs, is given by :

[πs(g)f ] (ω) = χs(r(g−1 ∗ s(ω)))f(g−1 · ω).

Substituting the calculation from (5.1.10) and (5.1.11), we obtain the formula

[πs(g)f ](ω) = |d− bω|ssgnε(d− bω)f

(
aω − c
d− bω

)
, (5.1.12)

where g =

a b

c d

 and f ∈ L2(P(R)).

This representation is unitary if and only if s = −1 + it, t ∈ R.

The principal series representations of SL2(R) are defined by

π+
s = ind

SL2(R)
P χ+

s , π−s = ind
SL2(R)
P χ−s ,

where

χ+
s

a b

0 a−1

 = |a|−1+is, s ∈ R,

and

χ−s

a b

0 a−1

 = |a|−1+issgn(a), s ∈ R \ {0}.

The induction representations to SL2(R) from the characters χ+
s and χ−s , respect-

ively, of the subgroup P are irreducible [20, § 2.5] and given by the formulas

[π+
s (g)f ](ω) = |d− bω|−1+isf(

aω − c
d− bω

), (5.1.13)

and

[π−s (g)f ](ω) = sgn(d− bω)|d− bω|−1+isf(
aω − c
d− bω

). (5.1.14)

5.2 Spherical functions

Recall that for a unitary representation ρ of a Lie group G, the matrix coefficient

of ρ with respect to two vectors f and h in the Hilbert space H is the function on

G defined by

ϕf,h(g) = 〈f, ρ(g)h〉,
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where 〈·, ·〉 is the unitary inner product on the Hilbert space.

Let

A =

ar =

cosh r sinh r

sinh r cosh r

 : r ∈ R

 .

We define the spherical functions to be the matrix coefficients of the irreducible

representation π+
s (ar) with a unit vector fixed by the compact group K [17, § V.3.1;

33, § III.3].

The function f0(ω) = 1 is a unit vector and satisfies [π+
s (K)f ](ω) = f(ω).

Then, for the unit vector f0 and the subgroup A, the spherical function is

ϕs(ar · 0) = 〈1 , π+
s (ar)(1)〉K

=
1

2π

∫ π

−π
| cosh r − sinh r · eiθ|−1−is

dθ

=
1

2π

∫ π

−π
(cosh 2r − sinh 2r · cos θ)

−1−is
2 dθ.

(5.2.1)

The main properties of this function are listed as follows:

1. It is continuous and K-bi-invariant, that is

ϕs(k1gk2) = ϕs(g),

for all k1, k2 ∈ K and g ∈ SL2(R).

2. It is a radial eigenfunction of the Casimir operator when n = 0:

∆̃ =
(

1− |z|2
)2 ∂2

∂z∂z̄
. (5.2.2)

3. ϕs(e) = 1, where e is the unit element of SL2(R).

5.2.1 The behaviour of ϕs at ∞

Since ϕs(a−r · 0) = ϕs(ar · 0) = ϕ−s(ar · 0), we can replace s and r in the integral

(5.2.1) by −s and −r. The replacement is important, so we can study the asymp-

totic behaviour of ϕs.

Use the substitution

u = tan
1

2
θ,

1

2
dθ = (1 + u2)−1du,
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we obtain

ϕs(ar · 0) =
1

2π

∫ ∞
−∞

(
cosh 2r + sinh 2r · 1− u2

1 + u2

)−1+is
2

· 2

1 + u2
du

=
1

π

∫ ∞
−∞

(
(1 + u2) · cosh 2r + sinh 2r · (1− u2)

1 + u2

)−1+is
2

· 1

1 + u2
du

=
1

π

∫ ∞
−∞

(
e2r + u2e−2r

)−1+is
2
(
1 + u2

)−1−is
2 du

=
1

π

∫ ∞
−∞

e(−1+is)r
(
1 + u2e−4r

)−1+is
2
(
1 + u2

)−1−is
2 du

=
1

π
e(−1+is)r

∫ ∞
−∞

(
1 + u2e−4r

)−1+is
2
(
1 + u2

)−1−is
2 du.

(5.2.3)

Then

e(1−is)rϕs(ar · 0) =
1

π

∫ ∞
−∞

(
1 + u2e−4r

)−1+is
2
(
1 + u2

)−1−is
2 du. (5.2.4)

The following lemma is similar to the theorem 4.5. in [16]. We start with the

spherical function as well, but we find it differently using the covariant transform.

Lemma 5.2.1. If <(is) > 0, then the limit

c(s) = lim
r→∞

e(1−is)rϕs(ar · 0) (5.2.5)

exists and

c(s) =
1√
π

Γ
(

is
2

)
Γ
(

is+1
2

) . (5.2.6)

Proof. Suppose s1 = <(is) > 0, select 0 < ε < 1
2

such that εs1 <
1
2
, in absolute

value, the integrand in (5.2.4) is bounded from above by

(1 + u2e−4r)
−1+s1

2

(1 + u2)
1+s1

2

6
(1 + u2)

−εs1+
s1
2

(1 + u2)
1+s1

2

=
1

(1 + u2)
1
2

+εs1
, e4r > 1, (5.2.7)

and the last expression is integrable. Hence we can apply the dominated conver-

gence theorem [18, § 2.3], to get

lim
r→∞

e(1−is)rϕs(ar · 0) =
1

π

∫ ∞
−∞

(
1 + u2

)−1−is
2 du. (5.2.8)
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Put v = (1 + u2)−1, the integral converts to the Beta function:

1

π

∫ 1

0

v
1+is
2 v−

3
2 (1− v)−

1
2 dv =

1

π

∫ 1

0

v
is
2
−1(1− v)

1
2
−1 dv

=
1

π

Γ
(

is
2

)
Γ
(

1
2

)
Γ
(

is+1
2

)
=

1√
π

Γ
(

is
2

)
Γ
(

is+1
2

)
= c(s).

(5.2.9)

Thus, we obtain the asymptotic expansion for <(is) > 0 and r →∞:

ϕs(ar · 0) ∼ c(s)e(is−1)r. (5.2.10)

The function c(s) is called Harish-Chandra’s c-function [16, Intro. § 4] that appears

in the Plancherel measure. We mentioned this measure in the previous chapter.

We will use the following formulas to calculate |c(s)|−2:

|Γ (ib)|2 =
π

b sinh(πb)
,∣∣∣∣Γ(1

2
+ ib

)∣∣∣∣2 =
π

cosh(πb)
, b ∈ R.

(5.2.11)

If s ∈ R, and since the gamma function is defined for all complex numbers except

the non-positive integers, and by using the absolute value formulas (5.2.11), we

have

|c(s)|−2 = π

∣∣∣∣Γ(1 + is

2

)∣∣∣∣2 ∣∣∣∣Γ( is

2

)∣∣∣∣−2

=
sπ

2
tanh

πs

2
.

(5.2.12)

The measure |c(s)|−2ds is called the Plancherel measure [16, Intro. § 4].

If Hs is the corresponding space to the principal series representation π+
s , the

corresponding decomposition is∫ ∞
−∞

Hs |c(s)|−2ds =

∫ ∞
−∞

Hs
sπ

2
tanh

πs

2
ds. (5.2.13)

Here, we used the covariant transform to find the spherical function and we showed

how the decay of this function at infinity is controlled by the Harish-Chandra’s

function. In the following chapter we will find the explicit inversion formula and the

Plancherel measure such that each element is directly linked to the representation

theory and the covariant transform.
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Chapter 6

Covariant transform and inversion

formula

The main purpose of this chapter is to find the inversion formula for the covariant

transform Wρk
ϕ0

. This formula is equivalent to the decomposition of the unitary

representation ρk into irreducible components. We consider an eigenvalue 1 + s2 of

the Casimir operator:

dρk(C) = −4v2
(
∂2
u + ∂2

v

)
, where k = 0.

To find the inversion formula, first we study the representations of SL2(R), ρk and

ρτ , induced from the complex characters of K and N respectively. Then, we find

the induced covariant transform Wρk
ϕ0

with N -eigenvector to obtain a transform

in the space L2(SL2(R)/N). Thereafter, we compute the contravariant transform

with K-eigenvector

Mρτ
φ0

: L2(SL2(R)/N)→ L2(SL2(R)/K).

We find these transforms using the representation itself like in Gelfand’s approach

[13], but the eigenvectors are selected by the derived representation as in Bargmann’s

works [6]. Finally, we use the relation between the covariant and contravariant

transform to find the inversion formula. Thus, the original contribution is using

the covariant transform to find the inversion formula with eigenvectors selected by

the derived representation. This new method will be easier to adopt for problems
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of decomposing a system into elementary bits in theoretical physics. Also, it is not

restricted to SL2(R), it can be successfully used for many other cases.

6.1 Introduction

Action of SL2(R) by linear-fractional transformation on complex numbers produces

isometrical motions of the Lobachevsky geometry. It is less known that there

are related actions of SL2(R) on dual and double numbers which have the form

z = x+ ιy, ι2 = 0 or ι2 = 1, correspondingly. We write ε and j instead of ι within

dual and double numbers, respectively.

Three possible values −1, 0 and 1 of σ := ι2 will be referred to elliptic, parabolic

and hyperbolic cases, respectively.

A generic cycle [30, § 4.2] is the set of points (u, v) ∈ R2 defined for all values

of σ by the equation

k(u2 − σv2)− 2lu− 2nv +m = 0. (6.1.1)

This equation is represented by a point (k, l, n,m) from a projective space P3, since

for a scaling factor λ 6= 0, the point (λk, λl, λn, λm) defines an equation equivalent

to (6.1.1). We call P3 the cycle space and refer to the initial R2 as the point space.

In order to obtain a connection with the Möbius action, we arrange numbers

(k, l, n,m) into the matrix [30, Definition 4.11]

Cσ̆ =

l + ῐn −m

k −l + ῐn

 . (6.1.2)

The values of σ̆ := ῐ2 are −1, 0 or 1 may be chosen to be independent of the values

of σ.

Theorem 6.1.1. [30, Theorem 4.13] Let a matrix g=

a b

c d

 ∈ SL2(R), define a

Möbius transformation

g : (u+ ιv)→ a(u+ ιv) + b

c(u+ ιv) + d
. (6.1.3)
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Then the image C̃σ̆ of a cycle Cσ̆ under transformation with g ∈ SL2(R) is given

by similarity of the matrix (6.1.2):

C̃σ̆ = gCσ̆g
−1. (6.1.4)

Definition 6.1.2. [30, Definition 5.11] For two cycles C and C1, define the cycles

product by:

〈C,C1〉 = − tr(CC̄1), (6.1.5)

where tr denotes the trace of a matrix.

We can find the explicit expression of the cycle product (6.1.5) with σ = −1, 0

and 1:

〈C,C1〉 = km1 + k1m− 2ll1 + 2σnn1, (6.1.6)

where C = (k, l, n,m) and C1 = (k1, l1, n1,m1).

Definition 6.1.3. [11, Chap. 3, § 1.2] On the hyperbolic plane one can define

circles of infinitely large radius (horocycles), which are the limits of non-Euclidean

circles as the center and the radius of these circles consistently tend to infinity. In

the Lobachevsky model, the horocycles are represented either as Euclidean circles

tangent to the real axis or as lines parallel to the real axis.

The horizontal line v−1 = 0 as a cycle is represented by the matrix

− i
2
−1

0 − i
2

.

This line is invariant under the subgroup N =

1 n

0 1

, that is

1 n

0 1

− i
2
−1

0 − i
2

1 −n

0 1

 =

− i
2
−1

0 − i
2

 .

Thus all horocycles obtained by SL2(R) action are parametrized by points of the

homogeneous space SL2(R)/N .

The image of v − 1 = 0 under the lower triangular matrix

ξ1 0

ξ2
1
ξ1

 ∈ SL2(R) is

ξ1 0

ξ2
1
ξ1

− i
2
−1

0 − i
2

 1
ξ1

0

−ξ2 ξ1

 =

ξ1ξ2 − i
2

−ξ2
1

ξ2
2 −ξ1ξ2 − i

2
,

 (6.1.7)
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that is, cycle (ξ2
2 , ξ1ξ2,

1
2
, ξ2

1) with the equation

ξ2
2u

2 + ξ2
2v

2 − 2ξ1ξ2u− v + ξ2
1 = 0

⇔ (ξ2
2u

2 − 2ξ1ξ2u+ ξ2
1) + ξ2

2v
2 = v

⇔ (ξ2u− ξ1)2 + (ξ2v)2 = v

⇔ |(ξ2u− ξ1) + iξ2v|2 = v

⇔ |ξ2(u+ iv)− ξ1|2 = v

⇔ |ξ2z − ξ1|2 = v, z = u+ iv, (ξ1, ξ2) ∈ R2 \ {0}.

(6.1.8)

Therefore, the point (ξ1, ξ2) of the parabolic upper half plane SL2(R)/N paramet-

rizes the space of horocycles. Denote by h(ξ) = h(ξ1, ξ2) the horocycle given by

(6.1.8).

Every horocycle has a unique common point with the real axis, which is called

the center of the horocycle. Horocycles with common center are said to be parallel.

Note that a horocycle h(ξ1, ξ2) is tangent to the real axis at the point ξ1
ξ2

, hence

every parallel horocycle is of the form {h(λξ1, λξ2) : 0 < λ < ∞} for some chosen

(ξ1, ξ2) [11, Chap. 3, § 1.2].

Now, in order to find the invariant distance of a point z in the upper half plane to the

horocycle h(ξ), first we calculate the distance from a point z1 = (u, v) ∈ h(λξ1, λξ2)

to a horocycle h(ξ1, ξ2). The point z2 = (u, λ−2v) is in the horocycle h(ξ1, ξ2):

|λξ2z − λξ1|2 = v ⇒ |ξ2z − ξ1|2 = λ−2v.

Note that the points z1 and z2 are on the same vertical line, thus the distance

between them is ∣∣∣∣∫ v

vλ−2

1

y
dy

∣∣∣∣ =
∣∣log v − log vλ−2

∣∣
= 2 |log λ| .

(6.1.9)

Thus, all points of the horocycle h(λξ1, λξ2) are placed at the same distance 2 |log λ|

from the parallel horocycle h(ξ1, ξ2). Then, the signed distance from a point z ∈

h(λξ) to a horocycle h(ξ) is

%(z; ξ) = −2 log λ

= log
(
v−1|ξ2z − ξ1|2

)
,

(6.1.10)

because λ−2 = v−1|ξ2z − ξ1|2.
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6.2 Induced representations of the group SL2(R)

1. For the subgroup K =


 cos t sin t

− sin t cos t

 : t ∈ R

, the homogeneous space

SL2(R)/K are parametrised by points of the upper half-plane H+. The re-

spective maps are:

p

a b

c d

 =

(
bd+ ac

c2 + d2
,

1

c2 + d2

)
,

s(u, v) =
1√
v

v u

0 1

 ,

r

a b

c d

 =
1√

c2 + d2

d −c
c d

 .

(6.2.1)

The decomposition defined by the formula g = s(p(g))r(g) takes the form:a b

c d

 =
1

c2 + d2

1 bd+ ac

0 c2 + d2

d −c
c d

 . (6.2.2)

The SL2(R)-action defined by the formula g · x = p(g ∗ s(x)) takes the form:a b

c d

 : (u, v) 7→
(

(au+ b)(cu+ d) + cav2

(cu+ d)2 + (cv)2
,

v

(cu+ d)2 + (cv)2

)
. (6.2.3)

This map preserves the upper half plane v > 0. We can simplify this map as

a linear-fractional transformation with the complex number unit i2 = −1:a b

c d

 : w 7→ aw + b

cw + d
, wherew = u+ iv. (6.2.4)

The left invariant measure on the upper half plane H+ is equal to

dµ(w) =
dudv

v2
, w = u+ iv. (6.2.5)

The character χk

 cos t sin t

− sin t cos t

 = e−ikt, k ∈ Z of K, induces a linear

representation ρk on the space of square integrable functions, which is given

by the formula:

[ρk(g)f ](w) = χτ (r(g−1 ∗ s(w)))f(g−1 · w), (6.2.6)
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where g ∈ SL2(R) and w ∈ SL2(R)/K.

By simple calculation we obtain [25, § 8]:

[ρk(g)f ](w) =
|a− cw|k

(a− cw)k
f

(
dw − b
a− cw

)
, wherew = u+ iv. (6.2.7)

We consider the basis in the Lie algebra sl2(R) :

A =
1

2

−1 0

0 1

 , B =
1

2

0 1

1 0

 , Z =

 0 1

−1 0

 . (6.2.8)

They generate one-parameter subgroup of SL2(R):

etA =

e− t2 0

0 e
t
2

 , etB =

cosh t
2

sinh t
2

sinh t
2

cosh t
2

 , etZ =

 cos t sin t

− sin t cos t

 .

The derived representations are:

dρAk = w∂w + w̄∂w̄ (6.2.9)

= u∂u + v∂v, (6.2.10)

dρBk =
1

4
k(w − w̄) · I − 1

2
(1− w2)∂w −

1

2
(1− w̄2)∂w̄ (6.2.11)

=
1

2
kvi · I − 1

2
(1− u2 + v2)∂u + uv∂v, (6.2.12)

dρZk = −1

2
k(w − w̄) · I − (1 + w2)∂w − (1 + w̄2)∂w̄ (6.2.13)

= −ikv · I − (1 + u2 − v2)∂u − 2uv∂v, (6.2.14)

where w = u+ iv, ∂w = 1
2
(∂u − i∂v) and ∂w̄ = 1

2
(∂u + i∂v).

The Casimir operator is:

dρk(C) = dρZ
2−4A2−4B2

τ

= 4ikv∂u − 4v2(∂2
u + ∂2

v).
(6.2.15)

2. For the subgroupN ′ =


1 0

n 1

 : n ∈ R

, the homogeneous space SL2(R) /N ′
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can be identified with the upper half plane. The respective maps are:

p

a b

c d

 =

(
b

d
,

1

d2

)
,

s(u, v) =
1√
v

v u

0 1

 ,

r

a b

c d

 =

1 0
c

d
1

 .

(6.2.16)

The maps p and s produce the following decomposition g = s(p(g))r(g):a b

c d

 =
1

d2

1 bd

0 d2

d 0

c d

 , where d 6= 0. (6.2.17)

The action of SL2(R) on SL2(R) /Ń defined by the formula g ·x = p(g ∗s(x))

takes the form: a b

c d

 : (u, v) 7→
(
au+ b

cu+ d
,

v

(cu+ d)2

)
. (6.2.18)

It preserves the upper half plane v > 0. We can rewrite this map as a

linear-fractional transformation with the dual number unit ε2 = 0:a b

c d

 : w 7→ aw + b

cw + d
, wherew = u+ εv. (6.2.19)

The complex character χτ of N ′ is:

χτ

1 0

n 1

 = e−2πiτn, where τ ∈ R.

This character induces a linear representation ρτ on the space of square in-

tegrable functions, which is given by the formula:

[ρτ (g)f ](w) = χτ (r(g−1 ∗ s(w)))f(g−1 · w), (6.2.20)

where g ∈ SL2(R) and w ∈ SL2(R)/Ń .

A direct calculation shows that [25, § 8]:

[ρτ (g)f ](w) = exp

(
−2πi

τcv

a− cu

)
f

(
dw − b
a− cw

)
, (6.2.21)
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where w = u+ εv and f ∈ L2(H+, dµ).

This representation is unitary on the space of functions on the upper half

plane of dual numbers.

The derived representations of the elements A, B and Z (6.2.8) of sl2(R) are:

dρAτ = w∂w + w̄∂w̄ (6.2.22)

= u∂u + v∂v, (6.2.23)

dρBτ = −πivτ · I − 1

2
(1− w2)∂w −

1

2
(1− w̄2)∂w̄ (6.2.24)

= −πivτ · I − 1

2
(1− u2)∂u + uv∂v, (6.2.25)

dρZτ = 2πivτ · I − (1 + w2)∂w − (1 + w̄2)∂w̄ (6.2.26)

= 2πivτ · I − (1 + u2)∂u − 2uv∂v, (6.2.27)

where w = u+ εv, ∂w = 1
2
(∂u + 1

ε
∂v) and ∂w̄ = 1

2
(∂u − 1

ε
∂v).

The Casimir operator is:

dρτ (C) = dρZ
2−4A2−4B2

τ

= −8πivτ∂u − 4v2∂2
v .

(6.2.28)

In the following we will find some eigenfunctions, and the special role of them will

become obvious later.

6.2.1 Joint eigenvector of dρk(C) with dρNk

First, we calculate the eigenvector of the derived representation dρNk :

[
dρNk f

]
(w, w̄) = −∂uf(w, w̄) = −(∂w + ∂w̄)f(w, w̄) = 0. (6.2.29)

The solution is f(w, w̄) = φ(v), where φ is an arbitrary function.

Then, we solve the differential equation

dρk(C)φ(v) = (1 + s2)φ(v), s ∈ R,

where dρk(C) is the Casimir operator(6.2.15), and k = 0 for simplicity.

This equation becomes

− 4v2d
2φ

dv2
(v)− (1 + s2)φ(v) = 0. (6.2.30)
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It is a Cauchy-Euler equation, therefore the solution takes the form φ(v) = vm.

Differentiating gives d2φ
dv2

(v) = m(m − 1)vm−2, and substituting into (6.2.30) leeds

to

−4m(m− 1)vm − (1 + s2)vm = 0

⇒ −4m(m− 1)− (1 + s2) = 0

⇒ m =
1± is

2
.

Hence, the set of fundamental solution is{
v

1+is
2 , v

1−is
2

}
. (6.2.31)

6.2.2 Joint eigenvector of dρτ(C) with dρZτ

To begin, we look for an eigenvector of the derived representation dρZτ (6.2.27)

with τ = 0. To do that, we solve the equation dρZτ f(w, w̄) = 0 using the method

of characteristics:
du

1 + u2
=

dv

2uv
=

df

2πiτvf
.

du

1 + u2
=

dv

2uv
⇒ 2udu

1 + u2
=
dv

v
⇒ 2C1 =

v

1 + u2
.

We need to obtain another integral curve which involves f . Since τ = 0, then

dv

2uv
=

df

2πiτvf
⇒ df

f
= 0 ⇒ C2 = f.

Hence, the general solution is of the form C2 = ψ(C1), that is

f(w, w̄) = ψ

(
v

2(1 + u2)

)
, w = u+ εv, (6.2.32)

where ψ is an arbitrary function. To specify this function, we solve the equation

dρτ (C)ψ

(
v

2(1 + u2)

)
= (1 + s2)ψ

(
v

2(1 + u2)

)
, (6.2.33)

where dρτ (C) is the Casimir operator(6.2.28). This equation turns into

− 4
v2

(1 + u2)2

d2ψ

dv2

(
v

2(1 + u2)

)
− (1 + s2)ψ

(
v

2(1 + u2)

)
= 0. (6.2.34)

Using the substitution t = v
2(1+u2)

, then we obtain

− 4t2
d2ψ

dt2
(t)− (1 + s2)ψ(t) = 0. (6.2.35)
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It is a Cauchy-Euler equation, so let ψ(t) = tm and substitute in the differential

equation(6.2.35), then m = 1+is
2

and m = 1−is
2

are two distinct possible values of

m. Therefore, the set of fundamental solution is
{
t
1+is
2 , t

1−is
2

}
.

Finally, the set of fundamental solution for the equation(6.2.34) is{(
v

2(1 + u2)

) 1+is
2

,

(
v

2(1 + u2)

) 1−is
2

}
. (6.2.36)

6.3 Induced Covariant transform

Definition 6.3.1. [27, § 5.1] Let H be a closed subgroup of G and f ∈ H such

that

ρ(h)f = χ(h)f (6.3.1)

for some character χ of H where h ∈ H and ρ is a unitary representation of a

Lie group G in a Hilbert space H. For a section s from G/H to G, the induced

covariant transform Wρ
f is a map from the Hilbert space H to a space of function

on G/H given as follows:

Wf : υ 7→ υ̃(x) = 〈υ, ρ(s(x))f〉, x ∈ G/H. (6.3.2)

The map υ 7→ υ̃(x) = υ̃(s(x)) intertwines ρ with the representation ρχ in a

certain function space on G/H induced by the character χ of H. That is,

ρχ ◦Wρ
f =Wρ

f ◦ ρ. (6.3.3)

Example 6.3.2. We will find the induced wavelet transform with N -eigenvector

that intertwines respectively the representation ρk (6.2.7) where k = 0 with the

representation ρτ (6.2.21). We take the fiducial vector ϕ0(w, w̄) = v
1+is
2 (6.2.31)

which would be the eigenvector for the representation ρk

1 n

0 1

. That is

ρk

1 n

0 1

ϕ0 = χτ

1 n

0 1

ϕ0. (6.3.4)
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Then, the corresponding induced covariant transform is:[
Wρk

ϕ0
f
]

(ξ) = 〈f, ρk(s(ξ1, ξ2))ϕ0〉

=

〈
f, ρk

ξ1 0

ξ2
1
ξ1

 v
1+is
2

〉

=

∫
H+

f(w)

(
v

|ξ1 − ξ2w|2

) 1−is
2 dudv

v2

=

∫
H+

f(w) exp

{
−1− is

2
%(w; ξ)

}
dudv

v2
, w = u+ iv,

(6.3.5)

where %(w; ξ) (6.1.10) is the signed distance from the point w to the horocycle h(ξ),

ξ = (ξ1, ξ2).

6.4 Contravariant transform

Definition 6.4.1. [26, § 5] Let ρ be a unitary square integrable representation of

the group SL2(R) on a Hilbert space H and H be a closed subgroup of SL2(R).

Let X = SL2(R)/H be a homogeneous space with an invariant measure dx. We

define the function ws(x) = ρ(s(x))w0, where w0 ∈ H and s is a section map. The

contravariant transform Mρ
w0

is a map L2(X)→ H defined by

Mρ
w0
f =

∫
X

f(x)ws(x) dx, x ∈ X. (6.4.1)

For an admissible vector w0 [4, Definition 8.1.1], the contravariant transform in

this setup is known as a reconstruction formula.

Example 6.4.2. For the representation ρτ (6.2.21) with τ = 0, we take the K-

eigenvector φ0(w, w̄) =
(

v
2+2u2

) 1+is
2 (6.2.36). Then, the corresponding contravariant

transform is:[
Mρτ

φ0
f
]

(w) =

∫
h(ξ)

f(ξ)ρτ (s(ξ1, ξ2))φ0 dξ

=

∫
R2

f(ξ)ρτ

ξ1 0

ξ2
1
ξ1

( v

2(1 + u2)

) 1+is
2

dξ1dξ2

=

∫
R2

f(ξ)

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

dξ1dξ2, w = u+ εv.

(6.4.2)
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Proposition 6.4.3. [26, Prop. 6.4] Contravariant transform Mw0 intertwines left

regular representation Λ on L2(SL2(R)) and ρ:

Mw0Λ(g) = ρ(g)Mw0 . (6.4.3)

Let ρ be an irreducible square integrable representation and ϕ0 and w0 be

admissible vectors. The covariant transform intertwines ρ and the left regular

representation Λ:

Wϕ0ρ(g) = Λ(g)Wϕ0 .

Combining with (6.4.3), we see that the compositionMw0 ◦WF intertwines ρ with

itself. That is,

(Mw0 ◦Wϕ0) ◦ ρ(g) = ρ(g) ◦ (Mw0 ◦Wϕ0). (6.4.4)

Thus, from the Schur’s lemma we have the relation

Mw0 ◦Wϕ0 = kI, (6.4.5)

for some constant k ∈ C.

On the other hand, and from the orthogonality relations [4, § 8.2]:

〈Wϕ1f1,Wϕ2f2〉 = 〈f1, f2〉〈Cϕ2, Cϕ1〉, (6.4.6)

where C is a unique positive, self adjoint and invertible operator in the Hilbert

space. This operator is known as Duflo-Moore operator.

If f1, f2 ∈ H, we have

〈Mw0 ◦Wϕ0f1, f2〉 = 〈Wϕ0f1,Ww0f2〉

= 〈f1, f2〉〈Cw0, Cϕ0〉

= 〈〈Cϕ0, Cw0〉f1, f2〉.

(6.4.7)

Thus

Mw0 ◦Wϕ0 = 〈Cϕ0, Cw0〉I. (6.4.8)

And for non-orthogonal vectors w0 and ϕ0, we get 〈Cϕ0, Cw0〉 = k 6= 0.
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6.4.1 Inversion formula

We will find the inversion formula for the covariant transform (6.3.5) from the

relation (6.4.8) with the contravariant transform Mρτ
φ0

(6.4.2):

f(w) =
1

〈Cϕ0, Cφ0〉
[
Mρτ

φ0

(
Wρk

ϕ0
f
)]

(w)

=
1

〈Cϕ0, Cφ0〉

∫
R2

Wρk
ϕ0
f(ξ)

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

dξ1dξ2.

(6.4.9)

The function h(s) = 〈Cϕ0, Cφ0〉 must be explicitly identified.

The following result is an inversion formula similar to that in Gelfand’s book [11,

Chap. 3, Theorem 3.2], but with a difference in the eigenvector.

Theorem 6.4.4. For f ∈ L2(R2
+, dµ), we have the inversion formula

f(w) =
1

2π2

∫
R
s tanh

πs

2

(∫
R2

Wρk
ϕ0
f(ξ)ρτ (s(ξ1, ξ2))φ0(w) dξ1dξ2

)
ds, (6.4.10)

where

ρτ (s(ξ1, ξ2))φ0(w) =

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

,

and Wρk
ϕ0
f is the covariant transform (6.3.5).

Proof. To find the inversion formula for the covariant transform (6.3.5), we need

to identify 〈Cϕ0, Cw0〉 in (6.4.9):

〈Cϕ0, Cw0〉 =
1

f(w)

[
Mρτ

φ0

(
Wρk

ϕ0
f
)]

(w)

=
1

f(w)

∫
R2

Wρk
ϕ0
f(ξ)

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

dξ1dξ2.

(6.4.11)

To identify this function, it is enough to compute the composition of the covariant

transform and the contravariant transform for one particular function. Let

f0(w) =
vis+ 1

2 (1 + v)−
is+1
2

1 + u2
∈ L2(R2

+, dµ(w)), 0 < <(is) < 1. (6.4.12)

We compute the covariant transform for the function f0:

Wρk
ϕ0
f0(ξ) =

∫ ∞
0

∫ ∞
−∞

vis+ 1
2 (1 + v)−

is+1
2

1 + u2
v

1−is
2

(
1

|ξ1 − ξ2w|2

) 1−is
2 dudv

v2
. (6.4.13)
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And for ξ = (ξ1, 0), this value becomes

Wρk
ϕ0
f0(ξ) =

∫ ∞
0

∫ ∞
−∞

vis+ 1
2 (1 + v)−

is+1
2

1 + u2
v

1−is
2
−2
(
ξ2

1

) is−1
2 dudv

=
(
ξ2

1

) is−1
2

∫ ∞
0

v
is
2
−1(1 + v)−

is+1
2

(∫ ∞
−∞

1

1 + u2
du

)
dv

=
(
ξ2

1

) is−1
2

∫ ∞
0

v
is
2
−1(1 + v)−

is+1
2 π dv

= πe
is−1
2
%(i;ξ)B(

is

2
,
1

2
),

(6.4.14)

where %(i; ξ) is the distance from the point i to the horocycle h(ξ) and B is the

Beta function.

Then, we find the function (6.4.11) with (ξ1, ξ2) = (ξ1, 1) and f(w) = f0(i):

〈Cϕ0, Cw0〉 =
1

f0(i)

∫
R
Wρk

ϕ0
f0((ξ1, 1))

(
ξ2

1

2ξ2
1(ξ1)2

) 1+is
2

dξ1

= 2
is+1
2 πB(

is

2
,
1

2
)

∫
R
e

is−1
2
%(i;(ξ1,1))

(
2ξ2

1

)− 1+is
2 dξ1

= πB(
is

2
,
1

2
)

∫
R

(ξ2
1 + 1)

is−1
2

(
ξ2

1

)− 1+is
2 dξ1.

(6.4.15)

Put u = (ξ2
1 + 1)−1, then (6.4.15) becomes

〈Cϕ0, Cw0〉 = πB(
is

2
,
1

2
)

∫ 1

0

u
1
2
−1(1− u)−

is
2
−1 du

= πB(
is

2
,
1

2
)B(− is

2
,
1

2
)

= π
Γ( is

2
)Γ(1

2
)

Γ( is+1
2

)

Γ(−is
2

)Γ(1
2
)

Γ(−is+1
2

)

= π2

∣∣∣∣Γ( is

2

)∣∣∣∣2 ∣∣∣∣Γ( is+ 1

2

)∣∣∣∣−2

= π2 2

s
coth

πs

2
.

(6.4.16)

Substituting this value in (6.4.9), we obtain

f(w) =
1

2π2
s tanh

πs

2

∫
R2

Wρk
ϕ0
f(ξ)

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

dξ1dξ2. (6.4.17)

And for s ∈ R, we get the inversion formula

f(w) =
1

2π2

∫
R
s tanh

πs

2

(∫
R2

Wρk
ϕ0
f(ξ)ρτ (s(ξ1, ξ2))φ0(w) dξ1dξ2

)
ds, (6.4.18)

where

ρτ (s(ξ1, ξ2))φ0(w) =

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

. (6.4.19)
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The inversion formula is equivalent to the decomposition of the unitary rep-

resentation ρk, k = 0 (6.2.7) into irreducible components. We will describe the

irreducible invariant subspaces Hs. Consider the eigenspace

{
f ∈ L2(H+) : dρk(C)f = (1 + s2)f

}
. (6.4.20)

This space is spanned by the functions (6.4.19). Thus, the elements of this ei-

genspace can be presented as a continuous linear combination over a set of such

functions, that is

fs(w) =

∫
R2

Wρk
ϕ0
f(ξ)

(
vξ2

1

2ξ2
1(ξ1 − ξ2u)2 + 2u2

) 1+is
2

dξ1dξ2, (6.4.21)

where fs belongs to the space Hs ⊂ L2(H+).

Introduce the projection operator Ps : L2(H+)→ Hs by

Psf = fs.

Thus, the problem of decomposing the space L2(H+) into irreducible subspaces

consists in expanding the functions f ∈ L2(H+) in their projections fs.

The solution of this problem is given by (6.4.18), since this formula can be written

as follows:

f(w) =
1

2π2

∫
R
s tanh

πs

2
fsds, fs = Psf. (6.4.22)
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