58 research outputs found

    Geometric Spanning Cycles in Bichromatic Point Sets

    Full text link
    Given a set of points in the plane each colored either red or blue, we find non-self-intersecting geometric spanning cycles of the red points and of the blue points such that each edge of the red spanning cycle is crossed at most three times by the blue spanning cycle and vice-versa

    Contents

    Get PDF

    Edge-Removal and Non-Crossing Configurations in Geometric Graphs

    Get PDF
    A geometric graph is a graph G = (V;E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V . We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.Postprint (published version

    Hamiltonian orthogeodesic alternating paths

    Get PDF
    AbstractLet R be a set of red points and let B be a set of blue points. The point set P=R∪B is called equitable if ||B|−|R||⩽1 and it is called general if no two points are vertically or horizontally aligned. An orthogeodesic alternating path on P is a path such that each edge is an orthogeodesic chain connecting points of different color and such that no two edges cross. We consider the problem of deciding whether a set of red and blue points admits a Hamiltonian orthogeodesic alternating path, that is, an orthogeodesic alternating path visiting all points. We prove that every general equitable point set admits a Hamiltonian orthogeodesic alternating path and we present an O(nlog2n)-time algorithm for finding such a path, where n is the number of points. On the other hand, we show that the problem is NP-complete if the path must be on the grid (i.e., vertices and bends have integer coordinates). Further, we show that we can approximate the maximum length of an orthogeodesic alternating path on the grid by a factor of 3, whereas we present a family of point sets with n points that do not have a Hamiltonian orthogeodesic alternating path with more than n/2+2 points. Additionally, we show that it is NP-complete to decide whether a given set of red and blue points on the grid admits an orthogeodesic perfect matching if horizontally aligned points are allowed. This contrasts a recent result by Kano (2009) [9] who showed that this is possible on every general point set

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Subject Index Volumes 1–200

    Get PDF

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop
    • …
    corecore