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Aradi vértanúk tere 1, 6720 Szeged, Hungary;

viola@math.u-szeged.hu

Abstract

Consider a 2n element colored point set, n points red and n points
blue, in convex position in the plane. Erdős asked to estimate the
number of points in the longest noncrossing path such that edges join
points of different color and are straight line segments. Kynčl, Pach
and Tóth in 2008 gave a construction proving the upper bound 4

3n+
O(

√
n). This bound is conjectured to be tight. For an arbitrary

coloring they gave a lower bound n+Ω(
√

n
logn).

In this paper we improve the previous lower bound to n+Ω(
√
n).

We also present a class of configurations that shows the 4
3n+O(

√
n)

upper bound.

1 Introduction

In this paper edges of a graph will be always considered to be straight line
segments. If we have a point set in general position, it is not so hard to see
that there is a noncrossing Hamiltonian path on that set. In the case when
our point set is colored we get to new interesting problems. We will restrict
the edges to connect points of different color. Consider balanced colorings of
a 2n element point set, that is let n points be red and n points be blue. If the
color classes are separated by a line, then there is a noncrossing Hamiltonian
path on the point set [1]. If the color classes are not separated by a line,
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then the previous statement does not hold for n ≥ 8, even if the points are
in convex position. By the existence of halving lines the result in [1] gives at
least n points on the longest noncrossing path for any point set on n points.

Before turning our attention to the main topic of the paper (the convex
case) we mention a related, interesting class of point sets. A convex or a
concave chain is a finite set of points in the plane lying on the graph of a
strictly convex or a strictly concave function, respectively. A double-chain
consists of a convex chain and a concave chain such that any line determined
by any of the chains does not intersect the other chain.

Cibulka, Kynčl, Mészáros, Stolař, Valtr [3] in 2009 proved if both chains
contain at least one fifth of all the points, then there exists a Hamiltonian,
noncrossing path. On the other hand, they showed that the above property
does not hold for double-chains in which one of the chains contains at most
≈ 1/29 of all the points.

Now we state of a problem of Erdős, that is the root of our discussion.
He [4] asked what happens if we restrict the points to be in convex position.

ℓ(P) = max
U is a noncrossing path

ℓ(U),

where ℓ(U) is the number of points on U .

ℓ(n) = min
P is balanced

ℓ(P),

where P is any colored planar 2n element convex point set.
Without loss of generality we may assume that the points are on a cir-

cle. Erdős conjectured that the following configuration was asymptotically
extremal. If n is divisible by four, divide the circle into four intervals that
consist of n

2
red, n

4
blue, n

2
red and 3n

4
blue points, respectively. In this

configuration there are 3n
2
+ 2 points on the longest noncrossing path.

Jan Kynčl, János Pach and Géza Tóth [7] disproved the above conjecture

in 2008 and gave the 4
3
n +O(

√
n) upper and n + Ω

(

√

n
logn

)

lower bound.

Abellanas et al. had a very similar construction for the same upper
bound [2] independently at the same time. It is conjectured that this upper
bound is asymptotically tight.

In this paper we improve the above lower bound. We consider a 2n ele-
ment point set in convex position with a balanced coloring. We show that
there are at least n + Ω(

√
n) points on the longest noncrossing path. Re-

garding the upper bound previously there were two very similar constructions
in [7] and in [2]. Here we present a class of configurations for the 4

3
n+O(

√
n)

upper bound. This class was also found by Jan Kynčl [6] using computer
search.
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2 Notations

Let P be a planar point set of 2n points in convex position. We index our
points according to their circular order along the perimeter of their convex
hull: P1, P2, . . . , P2n where the arithmetics of the indices is the modulo 2n
arithmetics. Two elements of P, Pi and Pj, define two arcs (two subsets of
P): a(Pi, Pj) = {Pi, Pi+1, . . . , Pj} and a(Pj, Pi) = {Pj, Pj+1, . . . , Pi}. Let A
be an arc. The complement of A (in P) will be also an arc: the complement
of arc a(Pi, Pj) is the arc a(Pj+1, Pi−1). The closed straight line segment
determined by Pi and Pj is denoted by [PiPj]. Segments [PiPj] and [PkPl]
are crossing if and only if the four indices are pairwise different, furthermore
Pk and Pl lie in different arcs determined by Pi and Pj . It is easy to see
that “to be crossing” is a symmetric relation. A path in P is just an ordered
subset of P: p1, p2, . . . , pℓ. We can think about a path as the sequence of
segments [pi, pi+1]. A path is noncrossing if it consists of pairwise noncrossing
segments. The length of a path P is the number of points in P , and we use
the notation length(P ).

A coloring of P is a function c : P → {red, blue}. The coloring c is
balanced if |c−1(red)| = |c−1(blue)|(= |P|/2 = n). We denote c−1(red) by
R, respectively B = c−1(blue). Furthermore P always denotes a 2n element
convex planar point set P with a balanced coloring c.

Observe, as we restricted the edges to connect points of different color
for each path p1, p2, . . . , pℓ the color of pi and the color of pj are the same if
and only if i and j are of the same parity. In other words, as we walk along
the path the red and blue points alternate. When we want to emphasize this
property we will say that a path is alternating.

We can partition P into disjoint nonempty arcs in such a way that
each arc is monochromatic and the sequence of these monochromatic arcs
R1, B1, R2, B2, . . . , Rr, Br along the perimeter is alternating in color. The arc
Ri is a red monochromatic arc and Bi is the next blue monochromatic arc in
the above sequence. Arcs Ri and Bi are called runs for every i ∈ {1, . . . , r}.
The common number of red arcs and blue arcs is called the run parameter
of the colored point set, run(P).

From the definitions above one can see that the problem is really a com-
binatorial question. For example we can assume that P is on a circle or on
an ellipse.

In the next section we summarize the previous result. Finally we describe
our improvement.
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3 Initial observations

Let s be any line that is disjoint from P and cuts our point set into two
nonempty parts. Then s determines two complementary arcs: A and Ac. We
call these arcs/point sets the sides of s. We call s an axe.

The elements of a matching on point set P are edges determined by two
elements of P. The endpoints of an edge are called matched points. A
matching M of P is a separated matching with axe s if the following three
properties are satisfied:

(a) any element of M crosses the axe s (that is if we take two matched
elements of P, then they belong to different sides of s);

(b) different elements of M do not cross each other;

(c) the two endpoints of any element of M have different colors (that is,
our earlier rule that edges connect points of different colors apply here,
too)

In other words a matching is separated (with axe s) if and only if it matches
pairs of points from different sides of s with different colors in a noncrossing
way. The size of a separated matching M is the number of points in M .

The elements of a separated matching can be easily joined to form a
noncrossing path. Our next claim summarizes this observation.

Observation 1. If M is a separated matching, then we can find a noncross-
ing alternating path of length 2 · |M |.

This can be improved easily by using edges (if possible) that are not
intersecting the line s. First we need a definition.

Let M be a separated matching (with axe s, cutting our point set into
two sides: arcs A and Ac). Let alt(M) be the number of alternations between
the colors along A following the perimetrical order. Note that arc A contains
one endpoint of each element of M . We call a separated matching M with
alt(M) = 0 an Erdős matching.

For any separated matching M there is a path P on the point set of M so
that the edges of M give the odd edges of P . Note, this path is not unique.
There are exactly two such paths depending on it which color we choose to be
the color of the first point of P . If we want to enlarge P , we may incorporate
new points into P if possible. The new edges we get may or may not cross
the line s. If an edge does not cross s, we call it a side edge.

Observation 2. ([7]) There exist side edges and a suitable Erdős matching
so that they can be connected into a path of n+ run(P)− 1 points.
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The following lemma says that in certain sense every path is a separated
matching improved by side edges.

Observation 3. Let P be an arbitrary noncrossing path in P. Take a line
s such that the first and last edge of P are crossed by s. Then we can choose
a separated matching M with axe s from the edges of P in such a way, that
the number of points in M is at least length(P )− 2run(P) + 1.

Note that the axe is not uniquely defined.

Proof. Throw away all edges of P that are not crossed by the line s. Thus we
obtain subpaths P1, . . . , Pl of P . From each subpath of odd length delete the
first edge. In the remainder of each subpath keep every other edge starting
from the first edge. In such a way we get a separated matching.

Let t denote the number of subpaths of odd length among P1, . . . , Pl.
When we throw away the first edges of paths of odd length we delete t points
from P . Erasing every other edge in a path of even length does not decrease
the points of P . Thus what remains is to calculate the number of side edges
that we disregarded.

For i ∈ {1, . . . , l−1} the ending point of Pi−1 and the starting point of Pi

are on the same side of the line s. Observe, a side edge between the subpaths
Pi−1 and Pi has its endpoints in different runs. Therefore, when we disregard
the side edges we delete at most 2run(P)− l − 1 points from P .

Altogether we erased at most 2run(P) + t− l − 1 points from P . So the
size of the separated matching M is at least length(P )−2run(P)− t+ l+1.
As t is at most l the claim follows.

If someone considers the observed examples in the literature, then length(P )
is between n and 2n, while run(P) is o(n). If run(P) is linear in n the longest
noncrossing path beats the best known lower bound by Observation 2. Hence,
assuming run(P) = o(n) is reasonable, we should concentrate on separated
matchings.

Let m(P) denote the maximum size of the separated matchings on the
point set P.

4 Previous methods

The idea of the obvious lower bound is very simple.
Take any line s that cuts the point set P into two parts. If |A∩R|, |Ac ∩

B| ≥ t, then take t many points from A∩R and t many points from Ac ∩B.
The two t element point sets are separated by the line s. We can match their
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elements in a noncrossing way and hence we obtain a separated matching of
2t points.

Observation 4. There is an Erdős matching M of size at least n and hence
a noncrossing path of length n.

All what we described was known to Erdős. He showed in the following
way that it was easy to find a separated matching of size n. Take any halving
line s of the point set P. Let A be the arc with red majority (|A ∩ R| ≥
|A∩B|). It turns out that Ac must have blue majority. Hence the parameter
t in the above argument is at least n/2. We obtain a noncrossing alternating
path of length at least n.

The main ingredient of the improvement is summarized in the following
observation. First we need to introduce a simple notion. Let A be an arc in
P of even size. Then there is a unique partition of A into two arcs of the
same size that we call half-arcs.

Observation 5. (Implicit in [7]) If we can find an arc A, with half-arcs:
A = Ar∪̇Ab such that |Ar∩R|−|Ar∩B| ≥ t and |Ab∩B|−|Ab∩R| ≥ t, then
there is a separated matching M of size at least n+ t, moreover alt(M) ≤ 1.

The essence of the proof of the lower bound in [7] is a clever way to define
an arc A, where the red-blue coloring is unbalanced assuming that run(P) is
small. We do the same using a completely different idea and obtain a better
result in the following section.

5 Improved lower bound

The basic idea of our improvement is a simple visualisation/coding of the
colored P. The code-diagram will be part of the grid G consisting of the
(x, y) points with integer coordinates. We walk along the perimeter making
steps from a point to the succeeding one. Depending on the color of the
passed point we make a step on the grid G. Each step increases the x-
coordinate by 1. The change of the y coordinate will code the color of the
passed point: if it was red, then the step increases the y-coordinate by 1;
if it was blue, then the step decreases the y-coordinate by 1. We show an
example for the coloring and coding on Figure 1.

So the height of the walk reflects how the colors are changing. Since we
code a balanced coloring the walk ends at the level of starting. We can fold
our diagram to the surface of a cylinder to obtain a closed walk that reflects
the circular behaviour of our geometric point set. We call the horizontal line
through the lowest point of our diagram the 0-level. We choose our coordinate
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Figure 1: How to code P as a Dyck path

system such a way that the 0-level is the x-axis. For a non-negative integer
h the line described by equation y = h and it is called h-level. Note, the
h-level and h′-level are neighboring levels if and only if |h− h′| = 1.

We cut the closed walk at any point that belongs to the 0-level. This
way we obtain a Dyck path (for example see [10]) coding our colored point
set. Actually, our code contains all the combinatorial information we need
to consider the problem.

Our Dyck path has 2n steps. Each step starts on a level and ends at
a neighboring level. Walking through a run (monochromatic arc) our code
changes its height monotonicly. Hence for any h there are at most run(P)
many steps stepping up to the h-level and there are at most run(P) many
steps stepping down to the h-level. We choose t so that more than n steps
are above the t-level and t is maximal among the levels with this property.
The 0-level has all 2n many steps above it. As we lift the level one by one
we decrease the number of “steps above” by at most 2 · run(P). From this
it is straightforward to derive that

t ≥
⌊

n− 1

2 · run(P)

⌋

.

Let σ be the i-th step of our Dyck path. Let σ′ be the 2n + 1 − i-th step,
the symmetric pair of σ. Note, t is chosen in such a way that we can find a
step σ above t-level with its symmetric pair also above t-level. Indeed: If we
consider each step below t-level and its symmetric pair, we cannot obtain all
the steps. Any remaining step is suitable for σ.

Theorem 6. Let P be a 2n element point set in convex position with balanced
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coloring. There is a separated matching M with alt(M) = 2 and of size at
least

n+

⌊

n− 1

2 · run(P)

⌋

.

Proof. Let t be the level as above and let σ and σ′ be two symmetric steps
of the coded P. Steps σ and σ′ correspond to two points S and S ′ of P.
Then σ and σ′ define two complementary arcs A and Ac of P. Let F and
L be the points corresponding to the first and the last step, respectively
of the Dyck path. One of the two arcs say A contains the point F and
hence it contains the point L, a neighbor of F on the Dyck path. According
to the symmetricity of σ and σ′ F and L are the two middle points of A.
A = a(S ′, L)∪̇a(F, S) is the partition of A into two half-arcs. As we walk
from F to S the coding Dyck path raises from 0-level to above t-level. This
color coding implies that |a(F, S)∩R|− |a(F, S)∩B| > t. At the same time
|a(S ′, L) ∩ B| − |a(S ′, L) ∩R| > t.

By Observation 5 our claim is true.

The following corollary is immediate.

Corollary 7.

ℓ(n) ≥ n− 1 +
√
n− 1 = n+ Ω(

√
n).

Proof. We know that ℓ(P) ≥ n + run(P) − 1 and ℓ(P) ≥ n +
⌊

n−1
2·run(P)

⌋

.

Hence for arbitrary P we know that the average of the two lower bounds
above is also a lower bound. The average of the two bounds is the promised
bound by simple arithmetics.

6 Limits of the known methods

Let us assume that an adversary can fix the initial point of our path in a
given P.

Erdős’ observation works in this case (starting point given by an adver-
sary): we are guaranteed to find a noncrossing path of length n.

But in the adversary version of the problem we cannot beat the trivial
bound. To see this, devide our points into two complementary arcs of equal
length. Points in one of the arcs obtain color red, the others will be blue. If
the initial point is the middle point of the red arc then the longest noncrossing
path has length at most n + 1.

Our method works more carefully. We code the coloring by a circular
Dyck path and choose an arbitrary step starting at 0-level of this code as
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an initial point. So we narrow the set of possible initial points to the set of
minimal points D. Assume that an adversary picks one element of D and
we are forced to start our path from there. Our lower bound is exhibited
by a path starting at the point given by the adversary of length at least
n + Ω(

√
n). With this generous setting we cannot improve the order of our

lower bound. Consider the following coloring: Let n = 2k. Take k red, k
blue and then

√
k red and

√
k blue points alternating

√
k many times on the

circle. If the adversary party marks the first point of the red run of length
k (this point is neighboring to a blue run of

√
k points), then the longest

noncrossing path has the promised length.
The number of the alternations in the matching is fixed in the lower

bounds. In the case of Erdős’ bound alt(M) = 0. In [7] and in our approach
for the constructed matching M alt(M) = 1. If we insist to come up with
a matching part with constant alternation parameter, then we cannot beat
the obvious bound n by more than a constant: take the red-blue completely
alternating coloring (red, blue, red, blue,. . . ). If we do the alternation in
blocks of length

√
n than even the side edges cannot help, we cannot improve

our lower bound of n + Ω(
√
n) points.

So the moral of the above remarks is that we must choose the initial
point of our path carefully and use a lot of alternations when we consider the
matching part of the path. The present techniques are not fulfilling these
requirements.

7 New constructions

In [7] the upper bound was proved by a single construction and by its analysis.
There was even a conjecture that this construction and the construction of
Abellanas (that is very much alike) are isolated constructions showing the
upper bound of order 4n

3
. We show a different — although — related way to

construct a rich family of colored point sets exhibiting the [7] upper bound.
We think that these constructions strengthen the belief that the [7] upper
bound has the right order of magnitude and might guide the research towards
a proof of that.

To describe a colored point set we use the following notation. Let Mr×ℓ

denote r many consecutive runs altenating in color of length ℓ. We call a
building block of this type Mr×ℓ a mixed run. Regarding the notion of run
that we introduced before, in the following we usually say homogeneous run
to stress that a run is monochromatic. The notations BL and RL denote a
blue and a red run of length L, respectively. Let α ∈ [−1, 1], and let Pα,ℓ be

B2L, R(1+α)L,Mr×ℓ, R(1+α)L, B2L, R(1−α)L,Mr′×ℓ, R(1−α)L,
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C

C ′

A

B A′

B′

Figure 2: The coloring Pα,ℓ

where ℓ is arbitrary and r, r′ satisfy the following equalities rℓ = (2 − 2α)L
and r′ℓ = (2+2α)L. Hence, Pα,ℓ is a balanced colored point set of 2n = 12L
points. We assume that αL is an integer. In the case of α = −1, 1 we get
the [7] construction if we set ℓ = Θ(

√
L) (they considered this size in order

to have o(n) many runs).
On Figure 2 the number of points is proportional to the central angle of

the arc. The figure also visualizes six natural cut points of our point set: A,
B, C, A′, B′ and C ′. Points A, B, A′ and B′ seperate two runs, C and C ′

are at the middle of the mixed runs.
We claim that the size of the largest separated matching in Pα,ℓ has the

same order of magnitude as the construction of [7].

Theorem 8. m(Pα,ℓ) ≤ 4n
3
+O(ℓ).

Proof. We assume that the axe of an optimal matching divides the point
set into upper and lower side and the matched upper and lower points are
ordered from left to right. We can partition the edges of the matching into
classes in such a way that on each side (upper, lower) the endpoints belong
to one run or one mixed run. On each side we complete the points of a class
to an arc by adding the possible intermediate points. We call these pairs of
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arcs blocks. We have constant number of blocks.
Consider the case when in a block one arc is a mixed subrun containing

an equal number of homogeneous runs of the two colors and the other arc
is a homogeneous subrun. Notice that at most half of the mixed subrun
is going to be matched in this block. We will throw away some edges to
shape mixed subruns as above in every block. Deleting O(ℓ) edges from
the matching we can guarantee that in each block mixed subruns consist of
complete homogeneous runs and also of an equal number of runs of the two
colors. We denote the resulting separated matching by M .

Our goal is to take any seperated matching and deform its axe and its
edges (if necessary) without significant size decrease in such a way that the
axe will cut the point set at two of the six special points (see Figure 2).

We consider a few different cases based on the original position of the
axe. If an end of the axe cuts a mixed run or it is placed between a mixed
and a homogeneous run, we say that the end of the axe is mixed.
1st case: Both ends of the axe are mixed. We will change the position of
the axe which will modify M . The new axe will be CC ′ that halves both
mixed runs. In the new matching M ′ the two mixed runs will be completely
matched. Around C and C ′ each mixed run is matched with itself. Observe,
that the edges of M that do not involve points from any mixed run will
intersect CC ′ but cannot cross any edge we introduced in M ′. Therefore we
add these edges to M ′.

We will show that the size of M and M ′ are the same.
If there is an edge going between the two mixed runs in M , then all edges

of M are of the following two types. The edges that connect the two mixed
runs fall into the first type. Note, only one of the mixed runs can be also
connected to homogeneous runs. These edges fall into the second type. There
are no more possible edges in M (see the axe). Hence, the size of M is at
most 2(2− 2α)L+ 4αL = 4L = 2n

3
. Consequently, we get that |M | = |M ′|.

So we may assume edges of M that have an endpoint in a mixed run
have their other endpoint in a homogeneous run or in the same mixed run.
Observe, that the number of all edges that have an endpoint in a mixed run
equals to the number of edges if all points of a mixed run are matched within
the same mixed run.

After the previous surgery the bound on the number of matched points
is straightforward. There are at most 4L further points in M ′. Hence, we
get 8L = 4n

3
points altogether in M ′ as desired.

2nd case: None of the ends is mixed. Observe, that the ends of the axe
come from the set of {A,A′, B, B′}. If the axe cuts a homogeneous run to
two parts P1 and P2, then one of P1 and P2 will not contain any endpoints
of edges from M . So we can shift the axe to be between two runs in a way
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that M does not change.
If there are at most 2n

3
points on one side of the axe, then we are done.

Hence, by a symmetry argument we can assume that the axe is AA′. We
may assume that at each end of the axe the shorter run is fully matched in
the most economical way (to the other neighboring run to the axe). This
gives 4L point to M .

On the upper side of the axe remain a mixed run of (2 + 2α)L, a red run
of (1− α)L and a blue subrun of (1− α)L) points. On the lower side of the
axe remain a blue subrun of (1 + α)L, a red run of (1 + α)L and a mixed
run of (2 − 2α)L points. Suppose there is an edge in M with edpoints in
different mixed runs. Let t be the number of points in the upper mixed run
which are matched in M to the lower mixed run. Therefore, we get at most
another 2t + (2 + 2α)L − t + (2 − 2α)L − t = 4L points to M . If there are
no edges between the two mixed runs, we may assume that both mixed runs
are matched in the most economical way to the available homogeneous runs.
Simple calculation gives that there are no more edges that we could add to
M . Again we increased M by 4L new edges.

We showed that M contains at most 8L = 4n
3

points.
3rd case: One of the ends is mixed, the other is not. By a previous
observation if the axe cuts a homogeneous run, we shift the axe to be between
two runs so that M is not modified. If this end of the axe gets beside a mixed
run, we use the argument in the 1st case.

If there are at most 2n
3
points on one side of the axe, we are done. There-

fore, we claim by a symmetry argument that if the axe is in the upper (lower)
mixed run, then the other end of the axe is at B (at A). If a point from the
upper mixed run is matched to a point of the lower mixed run, then by simple
calculation the size of M is at most 2(1 + α)L + (2 − 2α)L + (2 + 2α)L ≤
8L = 4n

3
.

If there is no edge in M with endpoints from different mixed runs, then
the surgery as in 1st case can be performed for one of the mixed runs. The
end of the axe in the mixed run will get to the middle of the mixed run to
C or C ′. Notice, that one side of the axe contains at most 4L = 2n

3
many

points. Hence, the statement follows.

If we want to restrict the length of the longest noncrossing path we need
to restrict the number of runs, too.

Observation 9. If ℓ = Θ(
√
n), then ℓ(Pα,ℓ) =

4n
3
+O(

√
n).

Proof. In any path we can distinguish a separated matching and side edges
connected in a suitable way. The size of the maximum separated matching
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is 4n
3
+ O(

√
n) by Theorem 8. As the number of side edges is restricted to

O(
√
n), we showed the desired bound.

The construction Pα,ℓ was found independently by Jan Kynčl [6] using
computer search.

8 Further questions

Several directions of research remain open in the area. Our results underline
the importance of the following conjecture.

Conjecture. ([7]) For any fixed k and large n, every balanced two-
coloring of 2n points admits a separated matching of size at least 2n2k−1

3k−2
+

o(n) where k is the run parameter of the point set.
The class of constructions we gave in the previous section, also shows the

order of magnitude claimed above. So far it is the strongest evidence by this
conjecture.

We underline a more appealing consequence of the Kynčl-Pach-Tóth con-
jecture

Conjecture. Every balanced two-coloring of 2n points admits a sepa-
rated matching of size 4

3
n+O(

√
n).

The discrepancy is d if on any arc on the circle the difference among
the color classes is at most d. Small discrepancy implies a large separated
matching [9]. However, already in such small cases as three it is technical to
prove 4n

3
. Intuitions suggest that the lower bound for a separated matching

when the discrepancy is small (3, 4, . . . ) is much closer to 2n.
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[4] Paul Erdős, Personal communication to János Pach (see [7])

[5] A. Kaneko and M. Kano: Discrete geometry on red and blue poins
in the plane — a survey, in: Discrete and Computational Geometry
(B. Aronov et al., eds.), Springer-Verlag, Berlin, 2004, 551–570.
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