3,379 research outputs found

    On the implementation of distributed asynchronous non-linear kernel methods over wireless sensor networks

    Get PDF
    In this paper, we face the implementation of a non-linear kernel method for regression on a wireless sensor network (WSN) based on MICAz motes. The operating system used is TinyOS 2.1.1. The algorithm estimates the value of some magnitude from the measurements of the motes in a distributed approach where information and computations are performed asynchronously. This proposal includes a research on the potential problems encountered along with the developed solutions. Namely, matrix and floating computations, acknowledgement mechanisms and data loss.Ministerio de Ciencia e Innovación, Consolider-Ingenio CSD2008-00010,TEC2012-38800-C03-{02} and European Union (FEDER)

    Experimental evaluation in wireless communications

    Get PDF
    This editorial sums up relevant topics on the assessment of wireless communication systems covered by the especial issue entitled "Experimental Evaluation in Wireless Communications". The topics include practical aspects on the implementation of distributed asynchronous non-linear kernel methods over wireless sensor networks; localization methods based on the exploitation of radio-frequency identification (RFID) wireless sensors and cellular networks or on sparsity approximations; channel sounding and assessment of broadband orthogonal frequency-division multiplexing (OFDM)-based wireless systems in high-speed vehicular communications; coexistence analysis of femtocell-based and outdoor-to-indoor systems; techniques for peak-to-average power ratio (PAPR) reduction; new solutions for baseband and radio frequency (RF) hardware impairments in full-duplex wireless systems; and, finally, suitability of interference alignment for broadband indoor wireless communications

    Adaptation and learning over networks for nonlinear system modeling

    Full text link
    In this chapter, we analyze nonlinear filtering problems in distributed environments, e.g., sensor networks or peer-to-peer protocols. In these scenarios, the agents in the environment receive measurements in a streaming fashion, and they are required to estimate a common (nonlinear) model by alternating local computations and communications with their neighbors. We focus on the important distinction between single-task problems, where the underlying model is common to all agents, and multitask problems, where each agent might converge to a different model due to, e.g., spatial dependencies or other factors. Currently, most of the literature on distributed learning in the nonlinear case has focused on the single-task case, which may be a strong limitation in real-world scenarios. After introducing the problem and reviewing the existing approaches, we describe a simple kernel-based algorithm tailored for the multitask case. We evaluate the proposal on a simulated benchmark task, and we conclude by detailing currently open problems and lines of research.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200
    corecore