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Abstract

In this paper, we face the implementation of a non-linear kernel method for regression on a wireless sensor network
(WSN) based on MICAz motes. The operating system used is TinyOS 2.1.1. The algorithm estimates the value of some
magnitude from the measurements of the motes in a distributed approach where information and computations are
performed asynchronously. This proposal includes a research on the potential problems encountered along with the
developed solutions. Namely, matrix and floating computations, acknowledgement mechanisms and data loss.
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1 Introduction
Wireless sensor networks (WSNs) are very useful to mon-
itor physical conditions in large or difficult access envi-
ronments. Due to their wireless capabilities and their use
of batteries, these networks have low costs of deployment.
The nodes, usually known as motes, may include sensors
of many kinds. Since they are also endowed with pro-
cessing capabilities, they can perform a set of algorithms
accordingly to the result of the measurements. These fea-
tures open a wide spectrum of applications for WSNs [1].
They can be seen as intelligent and autonomous networks.

A WSN is often understood as a network with a cen-
tral node that runs the main operations such as network
synchronization, data processing and storage, while the
rest of nodes would just take measures to later send them
to the central node. We may find several real implemen-
tations of centralized WSNs, e.g. in agriculture [2] or
tracking [3]. However, it is well known that this topol-
ogy has several problems in large networks due to its
dependency on the central node. To name a few:

• Unbalanced energy consumption: since
computations and communications are concentrated
in one and a few nodes, respectively.
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• Inefficient use of network bandwidth: large number
of relays and nodes around central node with high
rates associated, also wasting energy.

• Unreliability: if the central node or nodes around it
get down for any reason, the network is unavailable.

• Poor response time: in large networks, we have large
latencies associated to relays and management of
huge amounts of data.

These problems can be solved by using a distributed
network model (see Fig. 1), where all nodes compute
the solution for the locations in its neighbourhood by
interchanging information locally.

There are simple methods to make distributed esti-
mations such as least squares regression. Nevertheless,
attending to the application, more improved algorithms
may be needed. For example, in structural health mon-
itoring (SHM), some approaches in WSN need to man-
age non-linear cases in a distributed architecture [4].
And support vector machine-based non-linear distributed
approaches can be applied to solve localization problems
from RSSI parameters [5]. In this sense, some general
frameworks for distributed kernel approaches have been
presented in [6, 7] to solve non-linear regression in a
distributed and real-time way. The design of distributed
intelligent WSN involves both the design of distributed
algorithms (like [4–8]) and their implementation. While
the former is platform independent, the latter sets out
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Fig. 1 Example of distributed wireless sensor network

some interesting problems when translated to a WSN
architecture.

Some works on distributed implementations have
already been proposed [9, 10]. However, to our knowledge,
there is no implementation description of complex non-
linear kernel-based algorithms reported in the literature,
like the ones in [6, 7]. Due to the important benefits of
these algorithms, we have selected them as a target to
study as a real implementation over a network composed
by simple motes like MICAz, using the temperature field
to easily illustrate the performance of the algorithm. These
algorithms are quite demanding on both communication
and processing capabilities. So, the main question to face
is about its feasibility when implemented on an standard
WSN with low resources motes. We positively answer this
question by proposing a solution for this problem.

The algorithm in [7] is based on the kernel least squares
(KLS) algorithm. Its main advantage is that although it
is computed in a distributed way, it converges to the
solution of the centralized version. As discussed, the
distributed KLS (DKLS) is highly demanding in terms of
communication and computation capabilities. It requires
matrix and kernel operations at the same time than
multi-node communication management. Our solution is
possible thanks to the versatile features of TinyOS, the
operating system that will be used to program and compile
the application into the motes.

Besides the computational complexity of the algorithm,
we have found severe problems with data packet loss,
management of the transceiver buffers and unsupported
hardware floating point data computation. The two first
problems have been solved developing a new layer for
communication handling that works as an extension of
the related native libraries of TinyOS, in which not only

data buffering features have been extended but also some
changes into these native libraries have been done in order
to improve the performance. On the other hand, regard-
ing the floating point data management, TinyOS provides
a software emulation with severe limitations when using
with matrix data. In this way, a two-step solution has been
adopted to allow these operations.

This paper is organized as follows. In Section 2, we
introduce the regression algorithm to be implemented,
starting with the classic KLS regression and ending with
the DKLS algorithm. Next, the modified DKLS (m-DKLS)
algorithm, an evolution of DKLS, is explained in Section
3. Its implementation is our target in this paper. In Section
4, we provide an overview on the main concepts of this
operating system, in order to better understand the limi-
tations later found, which are detailed in Section 5. These
limitations are the starting point of our work. The ideas
to solve these problems are presented in Section 6. The
next step is detailed in Section 7, where we develop
the implementation in a MICAz network. In Section 8,
the testing scenario is defined, and some obtained results
are included. Finally, in Section 9, we summarize the
work done, establishing in Section 9.1 some points of
improvement and pending work to be done in this line of
research.

2 Distributed kernel least squares
2.1 Classic kernel least squares regression
As introduced in [11], the classic kernel least squares
regression method is a well-known approach based on
applying the kernel trick to the linear least squares algo-
rithm. Given xi ∈ R

d , a set of training inputs, and yi ∈ R,
the corresponding outputs, with i = 1, ..., n, the algorithm
finds the hyperplane in the non-linearly transformed ker-
nel space, f (x), that better fits a given set of training data,
minimizing a least squares criteria. Then, for any new or
test input, x�, the method predicts the output as f (x�). In a
WSN, the input xi could be the position coordinates while
the output yi could be some environment measure, e.g. the
temperature.

In the computation of the prediction, f (x), an optimiza-
tion problem is solved where a loss function, L, between
the truth yi and its prediction f (xi)

L(yi, f (xi)) ≥ 0, (1)

is averaged over the joint probability density function of
the input and outputs,

R(f ) =
∫
Y×X

L(y, f (x))p(y, x)dydx (2)

where R(f ) is the so-called risk function.
Usually, the risk of making estimations cannot be com-

puted because the joint distribution between the inputs
and the outputs is unknown. However, we can compute
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an approximation averaging the error function of the
available data, as it is formulated by the empirical risk min-
imization (ERM) principle. The formulation in (2) yields

Remp(f ) =
n∑

i=1
L(yi, f (xi)). (3)

Using the least squares (LS) loss function, we get:

Remp(f ) =
n∑

i=1
(yi − f (xi))

2. (4)

Since there is an infinite set of non-linear prediction
functions, f (x), that fit the output data, we need to con-
strain the solution. This is achieved through Thikonov
regularization. We get the classic formulation (5) of the
KLS problem,

fλ(·) = arg min
f ∈HK

1
n

n∑
i=1

(f (xi) − yi)
2 + λ‖f ‖2

HK . (5)

The optimization variable is f , which is a function con-
strained to be in HK , the reproducing kernel Hilbert space
induced by the kernel k(·, ·), denoting by ‖ · ‖HK its norm.
HK is a vector space of functions with a certain (and con-
venient) inner product. Note that in (5), we compute f (·)
to minimize the mean square error with the first term,
while with the last one we force the solution f (·) to have
minimum norm to avoid overfitting. The inner-product
structure implies that the solution to (5), denoted by fλ(·),
satisfies:

fλ(·) =
n∑

i=1
cλ,ik(·, xi) (6)

for some cλ ∈ R
r . This fact is known as the represen-

ter theorem in [12]. In the case of least squares, cλ is the
solution to a system of n linear equations, satisfying:

cλ = (K + λI)−1y (7)

where K is the kernel matrix whose elements are defined
by kij = k(xi, xj), and the kernel is pre-specified.

2.2 Distributed kernel least squares (DKLS)
2.2.1 Distributed definition of KLS
The previous solution is a centralized algorithm and can-
not be implemented in a distributed approach as it is. Let
us suppose that we have a wireless sensor network of m
nodes and we have n ≤ m measurements from them as
training samples. Using the same notation as in Section
2.1, we could think of position as inputs xi ∈ R

3, and tem-
perature measures yi as outputs. The training samples are
ensembles in the set Sn. Let us suppose that not all nodes
have access to all the samples, so the training samples
accessible from node j is the subset Sj

n. Let us also denote
the set of the indices of the training samples in Sn by Sn

and the indices of training samples accessible by node j as
Sj

n.
The first approximation to a distributed problem in this

scenario is to compute m centralized solutions, one for
each node of the network, so the classical KLS problem
could be written as:

min
fj∈HK

n∑
i=1

(zi − yi)2 +
m∑

j=1
λj‖fj‖2

HK
(8)

s.t. zi = fj(xi), ∀i ∈ Sn, j = 1, ..., m. (9)

In this problem, the optimization variables are z ∈ R
n,

i.e. {fj}m
j=1, and rather than finding a function f (·), we are

estimating a set of them.
The constraints in (9) require that all nodes agree on the

training data. This fact makes it to be equivalent to the
classic KLS problem, getting the centralized solution, i.e.
fj(·) = fλ(·) for j = 1, ..., m (see Lemma 1 in Appendix
of [6]). So, we can associate a centralized regression to a
global agreement of nodes on the training samples. But we
could think of an association of a distributed regression to
a local agreement instead. Local agreement would involve
that only a limited number of samples are shared between
each two nodes. This last problem can be described as
follows,

min
fj∈HK

∑
i∈Sj

n

(zi − yi)2 +
m∑

j=1
λj‖fj‖2

HK
(10)

s.t. zi = fj(xi), ∀i ∈ Sj
n, j = 1, ..., m. (11)

In this formulation, the solution is feasible if and only if
fj(xi) = zi = fk(xi) for (xi, yi) ∈ Sj

n ∩ Sk
n and for j, k =

1, ..., m; that is, if and only if every pair of node decision
rules agree on samples they share. We get (z, f1, ..., fm) as
the minimizer solution of (10), and fj is a function of only
the training samples in Sj

n as part of the joint minimizer.

2.2.2 Successive orthogonal projections algorithm
A distributed approach of KLS problem has been shown
in the previous subsection. Here, we face its solution,
for which an alternate projections algorithm is proposed
in [6], taking into account the similarities between both
problems. In particular, the algorithm uses the non-
relaxed successive orthogonal projection (SOP) algorithm,
next described.

Let C1, ..., Cm be closed convex subsets of the Hilbert
space H, whose intersection C = ∩m

i=1Ci is non-empty.
Let PC(v̂) denote the orthogonal projection of v̂ ∈ H onto
C:

PC(v̂) � arg min
v∈C

‖ v − v̂ ‖ (12)

And the orthogonal projection of v̂ ∈ H onto Ci:

PCi(x̂) � arg min
v∈Ci

‖ v − v̂ ‖ (13)
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In [6, 13], it is defined the successive orthogonal projec-
tion (SOP) algorithm to compute PC(·) using

{
PCi(·)

}m
i=1as

follows:

v0 := v̂ vt := PC(t mod m)+1(vt−1) (14)

In this definition (14), we denote by (t mod m) to the
remainder of the division t/m. It establishes that the PC(·)
can be computed projecting sequentially onto all the con-
vex subsets Ci, using for the PCi+1 the result of the previous
projection: first, it projects v̂ onto C1, the result PC1 is pro-
jected onto C2, and it iterates in this way successively a
certain number of times.

As pointed out in [6] (Theorem 2), it is demonstrated in
[14] that for every v ∈ C and every t ≥ 1

‖ vt − v ‖≤‖ vt−1 − v ‖ (15)

and that

lim
n→∞ vn ∈ (∩m

i=1Ci) (16)

lim
n→∞ ‖ vt − PC(v̂) ‖= 0 (17)

if Ci are affine for all i ∈ {1, ..., m}. Hence, the more
iterations we perform, the more accurate result we
get.

2.2.3 Distributed KLS solution
It is possible to redefine the problem in (10) in terms of the
SOP algorithm [6], where the Hilbert space H = R

n ×Hm
K

with norm

‖ (z, f1, ..., fm) ‖2=‖ z‖2
2 +

m∑
i=1

λi ‖ fi ‖2
HK (18)

is defined. With it, (10) can be interpreted as the orthog-
onal projection of the vector (y, 0, ..., 0) ∈ H onto the set
C = ∩m

j=1Cj ⊂ H, with

Cj =
{
(z, f1, ..., fm) : fj(xi) = zi, ∀i ∈ Sj

n,

z ∈ R
n,

{
fj
}m

j=1 ⊂ HK
}

⊂ H (19)

It is important to note that, for any v = (z, f1, ..., fm) ∈ H,
the computation of

PCj(v) = arg min
v′∈Cj

‖ v − v′ ‖ (20)

is restricted to the locally accessible training examples
by node j. It means that computing PCj(v) leaves zi

unchanged for all i /∈ Sj
n and leaves fk unchanged for all

k �= j.
The new function associated with the node j can be

computed using fj, {xi}i∈Sj
n

and the message variables
{zi}i∈Sj

n
. This method defines the DKLS algorithm (using

the notation of [7]), shown in Algorithm 1.

Algorithm 1 DKLS algorithm
Initialization

Each node j broadcasts their location xj to its neigh-
bouring sensors.
Each node j broadcasts their measurement yj to their
neighbouring sensors.
Each node j initializes zk = yk , ∀k ∈ Sj

n.
Each node j initializes fj,0 = 0.

Training

for t=1,...,T do
for j = 1, ..., m do

fj,t = argmin
f ∈HK

∑
i∈Sj

n

(f (xi) − zi)2 + λj‖f − fj,t−1‖2
HK

Node j broadcasts fj,t(xk)∀k ∈ Sj
n

Every node sharing data i replaces zk by
fj,t(xk), ∀k ∈ Si

n
end for

end for

It is interesting to note that the solution in (10) is an
approximation to the centralized KLS. As discussed in
[6], the neighbourhood of a mote limits the accuracy of
its estimations, so local connectivity influences an esti-
mator’s bias. In [6, 7], there are some studies that show
through simulations that the error decays exponentially
with the number of neighbours.

3 Non-linear asynchronous distributed algorithm
The DKLS algorithm in [6] is beneficial in many ways, but
in [7], the authors highlight several limitations:

• After each node completes its training stage, it must
generate a prediction for each neighbour (a different
message computation for each one).

• Due to that, the communication burden grows with
the number of neighbours, and it means that the
communication and computation load can be high.

• Each node broadcasts one estimation for each
neighbour node, and all of these messages should be
received by all of its neighbours. Let us denote n0 as
the sender mote and n1, n2 as neighbours of n0. Node
n0 would broadcast both fj,t(xn1) and fj,t(xn2) and
both would be received by n1 and n2. If n1 and n2 are
not neighbours between them, they must discard the
non-corresponding message, but the packet already
have been received and read. This means waste of
resources, in terms of processing and energy
consumption.

• It needs a synchronization of the network to do the
training step, because we can only train one node at a
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time. Otherwise, a node could receive several updates
for zk , and then it would not know which one should
keep.

• Finally, if a sensor stops working (or some radio link
fails) then the learning procedure stops, and the next
node does not receive new predictions so it does not
start its training stage.

To overcome these limitations, in [7], the authors propose
a simple modification in the algorithm: instead of trans-
mitting fj,t(xk) for k ∈ Sj

n, the node would only broadcast
fj,t(xj) (the prediction for the current node) to all its
neighbours. The resulting algorithm is the modified DKLS
algorithm (m-DKLS, see Algorithm 2).

Algorithm 2 Modified DKLS algorithm (m-DKLS)
Initialization

Each node j broadcasts their location xj to its neigh-
bouring sensors.
Each node j broadcasts their measurement yj to their
neighbouring sensors.
Each node j initializes zk = yk , ∀k ∈ Sj

n.
Each node j initializes fj,0 = 0.

Training

for t=1,...,T do
for j = 1, ..., m do

fj,t = argmin
f ∈HK

∑
i∈Sj

n

(
f (xi) − zi

)2 + λj‖f − fj,t−1‖2
HK

Node j broadcasts fj,t(xj)
Each neighbouring node replaces zj by fj,t(xj)

end for
end for

The benefits of the algorithm can be summarized as
follows:

• It reduces the number of messages generated from Nj
(the number of neighbours of node j) to 1. It only
needs to broadcast one message.

• Since it broadcasts only one data, there is no need to
synchronize the network. Each node decides when to
transmit.

• If a connection between two nodes stops working, it
does not stop the training stage of the other nodes of
the network.

Although it exhibits a slightly worse convergence
than the DKLS approach, again the error reduces
exponentially with the number of neighbours. The num-
ber of retransmissions reduces significantly while the

number of iterations increases to achieve a given error
level [7]. In addition, the retransmissions can be per-
formed asynchronously.

At this point it is interesting to note that the m-DKLS
algorithm can be easily extended to other kernel methods
different to the KLS.

4 Brief introduction to TinyOS
4.1 NesC overview
TinyOS is an open source operating system designed to
work specifically with wireless sensor networks. It has an
event-oriented architecture, and it has a set of libraries
that provides data acquisition tools for the motes. These
libraries are open source, so the code is available to be
modified. It uses the NesC programming language, which
is a dialect of the C language that adds some additional
event-oriented features.

Every NesC application is based on modular program-
ming. An application is composed by one or more com-
ponents. Each component can be seen as a functional part
of the application. Each component has interfaces. These
interfaces are used to connect this component to other
components of the application. Interfaces use two kind of
operations:

• Commands (input): to allow external components to
trigger operations to the component.

• Events (output): to send notifications to other
components.

4.2 Tasks
Tasks are a very important feature of TinyOS. They are
code blocks that are executed only when the processor is
available:

• When the processor is running the operations of a
task, it can not be stopped to execute any other task.
For this reason, it’s desirable not to include too many
operations in one task in order to share the processor
by all the modules of the application. All tasks have
same execution priority.

• Tasks do not work as functions do; they do not admit
parameters.

4.3 Event and commands types
In TinyOS, it is quite important to introduce the different
ways to use events and commands (see [15], Section 4.5).

Two kind of events and commands are available in
TinyOS:

• Synchronous operations have the same execution
priority, and they are related to tasks.

• Asynchronous operations have higher priority: they
interrupt the current execution (even tasks), and they
are related to interrupts.



Garrido-Castellano and Murillo-Fuentes EURASIP Journal on Wireless Communications and Networking  (2015) 2015:171 Page 6 of 14

In the following sections, we explain how important all
these features are, in order to implement the algorithm.

5 Platform features and limitations
5.1 Hardware features: MICAz
The selected hardware for this work are the MICAz
motes. They have limited resources compared to other
devices such as Imote2. Hence, a successful implemen-
tation on this platform ensures the compatibility with
other more powerful devices. They have the following
features:

• ATMEGA128L 8-bit micro-controller [16].
• Temperature and humidity sensors.
• ChipCon CC2420 IEEE 802.15.4 compliant RF

transceiver. It works with the standard IEEE 802.15.4
at 2.4 GHz. Maximum data rate of 250 kbps [17]. It
has 128-byte transmission and
reception-independent FIFOs.

• Internal flash 128 kB, RAM 4 kB, external flash 512 kB.

5.2 Limitations
5.2.1 Floating point data limitations
The m-DKLS algorithm is based on kernel least squares
learning, and it requires to perform floating point opera-
tion capabilities.

We need to develop a linear algebra library to imple-
ment the algorithm. This library is compound by several
functions: matrix inversion, matrix product, scalar prod-
uct etc. Each function executes a certain matrix operation
and needs to receive the arguments to be used (matrices).
The only way to pass matrices to functions in NesC is
passing arguments by reference (pointers).

MICAz motes do not support floating point operations
by hardware, and they are needed by the algorithm, which
uses matrices of floating point data. Floating point vari-
ables are, then, managed by software emulation when the
application is compiled, but passing floating point param-
eters by reference to functions are not supported; we need
this feature to compute matrix operations.

5.2.2 Reception buffer limitations
It is necessary to define a frame structure to send and
receive data in the network. We have used the frame struc-
ture in Fig. 2. Note that not all the fields are required for an
implementation but are useful for monitoring purposes:

Fig. 2 Frame structure used in WSN

• type (1 byte): this field is used to classify the frame by
the step of the algorithm which it belongs to.

• ack (1 bit): Boolean field to indicate if the message is
an ACK.

• nodeid_src (1 byte): identification of the sender node.
• nodeid_dest (1 byte): identification of the destination

node.
• pos (2 bytes): position of the nodeid_src node.
• zk (4 bytes): its value depends on the step of the

algorithm which the message belongs to. If the
message is an initialization step message, then this
field contains the temperature measured by
nodeid_src. If the message is a training step message,
then it contains the fj,t(xj) of m-DKLS.

• pred (4 bytes): this field only takes value when the
training step has been completed and a result is sent.
The value sent is corresponding to the prediction of
temperature in the position indicated by the field
pospred.

• pospred (2 bytes): position in which the latest
prediction has been done, and which temperature
value is in the field pred.

• dsn (1 byte): field used for acknowledgement
control.

In the m-DKLS algorithm, each node must compute
an estimate of fj,t after receiving a new data from its
neighbours. Let us suppose the following buffer-overflow
scenario:

• The number of neighbours of a mote is greater than
the number of frames that the receiving buffer of the
CC2420 chip can hold.

• All the neighbours of this mote send a new data at the
same time while the mote is computing the current
data, or the incoming messages in the mote arrive too
quickly to process them in real time.

• The default mode of events and commands of
TinyOS is used to manage the events of all modules,
i.e. synchronous mode.

In such a situation, we have the problem described
in Fig. 3. This figure represents the mote by its two
main parts, namely, the micro-controller and the CC2420
transceiver, both with a vertical computation timeline.
We have a three-message length reception buffer and a
neighbourhood of five nodes. Due to the default syn-
chronous event mode, all the events have the same
priority of execution, including the event that signals
the reception of a new packet into the buffer. This
means that the microprocessor does not attend that
event until the current task execution ends. In this sce-
nario, it is easy to lose incoming packets due to buffer
overflow.
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Fig. 3 Overflow in reception buffer of transceiver. In this example, the
number of neighbours is greater than the number of packets that the
transceiver buffer can hold. The last packet would be lost if no
retransmissions are done

5.2.3 Transmission buffer limitations
We could have similar problems when transmitting
data to the network. The native libraries to handle the
transmission of data only use one RAM memory variable
to hold the packet until it is accepted by the transceiver
and saved into its transmission buffer. If the processor
requests to transmit several packets (for example, the
calculated zj to all the neighbours) while the hardware
transmission buffer is full, only the last of them will
be transmitted due to variable overwriting. Therefore, it
is needed an additional control by software to transmit
messages.

5.2.4 Acknowledgement mechanism limitations
CC2420 chips provide an acknowledgement mechanism
(a hardware mechanism). This can protect the radio link
from undesired problems in the radio channel. But as
it is referenced in [18] (and we have observed during
our work), some additional issues are detected, like false
acknowledgements.

A false acknowledgement occurs when the radio chip
receives a packet and it acknowledges its reception, but
the micro-controller would never receive it. For this
reason, it is advisable to use a software acknowledgement
mechanism at the application level with certain special
behaviour. This idea will be detailed as part of the pro-
posed solution (in Sections 6 and 7).

5.2.5 The problem of the initialization step with
communication errors

The initialization step of the m-DKLS algorithm is critical.
If a node starts the training step without the sample (xi, yi)
of one of its neighbours, the algorithm will get quite wrong
results, as it will use a 0 value for the initial measure of

that neighbour. So the way by which the nodes acquire the
knowledge of the neighbourhood is of high importance:

• We need a very reliable transmission and reception of
data if the network topology is fixed.

• We must protect each node not to start its training
step until all the neighbour measures have been
received.

When using a fixed topology, each mote knows its
neighbourhood because it is defined in the application
source code. This means that matrix dimensions are also
fixed, so all the initialization messages from the neigh-
bours must be received in order to start the training
step.

6 Proposed solution
In the last section, we detected two main problems when
implementing the algorithm in the MICAz motes:

• Packet loss.
• Short time between packets preventing their

processing in real time, in scenarios like Fig. 3.

To avoid on these problems, we have based the
implementation only on unicast messages, although the
broadcasting data would be desirable in terms of com-
munication energy consumption. We have developed an
additional layer to control the communications among
motes and to ensure that all the unicast messages are
received and processed by the destination motes. Finally,
we focus on minimizing the number of retransmissions in
scenarios like shown in Fig. 3.

To sum up, the following points must be addressed:

• To solve the floating point data limitations.
• Each mote must have transmission and reception

buffers with enough capacity to attend to all the
neighbours.

• If a received packet into the transceiver buffer cannot
be attended by the microprocessor, it should be
removed from the buffer to avoid overflow if possible.

• If a packet must be sent and the transceiver buffer is
full, we must ensure that it will be sent when possible.

• The required time to process a packet must not affect
to the communications to other motes.

• All the received packets must be processed.
• We need to achieve zero packet loss, trying to

minimize as possible the number of retransmissions
in the network.

6.1 Floating point computation
To face the limitations described in Section 5.2.1, we
could scale the floating point variables and treat them like
integer variables, but overflow problems were present.
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To deal with these problems, we have adopted a two-
step solution with good results:

1. Matrices are saved into the RAM-like scaled values
(integers). Doing this we can pass them by reference
to the matrix functions.

2. Once into each matrix function, all pointed data are
saved into local variables (matrices), converting them
to float variables without scale. Hence, internally,
each function will do all the operations with floating
point variables avoiding overflow problems. Finally,
the results will be scaled again and returned like
integer values.

The library is set to allow the user to select not only the
scale of the input data but also the scale of the result.

6.2 Reception
Our proposed solution for reception is shown in Fig. 4. Let
us have a comprehensive overview with a few points:

1. First, we must modify the native events and
commands of TinyOS that manage the reception of
packets, converting them from synchronous mode to
asynchronous mode. This will make that whenever
exist packets into the buffer, no processing
operations will be done until all of them have been
saved into the RAM. If some processing operation
is running when a new packet gets into the
transceiver buffer, the process will be stopped and
continued once the packet has been extracted
from the transceiver and saved into the RAM
memory.

Fig. 4 Overview of the proposed solution for reception of data.
Combining asynchronous reception events with the extension of the
transceiver capabilities allows the handling of both communication
and computation operations. Both the circular buffer and the data
resulting from the m-DKLS algorithm are saved into the RAM memory

2. A new reception module must be implemented. It
must include a circular buffer into the RAM memory
to save all the incoming messages. Each time a packet
is received from the transceiver (in asynchronous
mode), it will be saved in this buffer.

3. The new module must handle a new
acknowledgement mechanism at microprocessor
level. A message is not acknowledged until it is saved
into the circular buffer. This mechanism will require
a pre-processing operation, as it will be detailed in
New-acknowledgement-mechanism.

4. The reception operations must be transparent to the
user.

6.3 Transmission
The solution for transmission is similar, but in this case,
it is not necessary to convert the corresponding native
events and commands into asynchronous mode:

1. We must provide a circular buffer into the
RAM memory to save all the messages
that must be sent.

2. The new module for transmission must manage the
new acknowledgement mechanism
(detailed in New-acknowledgement-mechanism).
It must manage the timer of the mechanism.

3. The transmission operations must be transparent
to the user.

6.4 New acknowledgement mechanism
We propose to use the direct-sequence number (DSN)
mechanism. The transmitter mote labels each packet
and waits for a given time for a response. It must
control situations like the scenario shown in Fig. 5, where
we have a retransmission because processing times to

Fig. 5 Acknowledgement mechanism details. An example of special
scenarios that must be controlled by the acknowledgement
mechanism
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acknowledge are larger than timers. The acknowledge-
ment mechanism uses a timer to evaluate if a packet must
be resent. We want to minimize the number of retrans-
missions in the network. In our solution, we are pro-
cessing the incoming packets sequentially in the circular
buffer, so if we do not send the acknowledgement until its
turn of processing, retransmissions will be done.

In the reception of the acknowledgement, we have a
similar problem. Suppose mote m1 sends a packet to m2
and starts the timer. When it is received by m2, it will
be attended in asynchronous mode to be saved into its
reception circular buffer. Once it is saved, the m2 sends
an acknowledgement packet to m1. Once the acknowl-
edgement packet is received by m1, it will attend it but
a pre-processing is needed: this kind of packet must not
wait their turn into the circular buffer in order to avoid
unnecessary retransmissions. So, all the incoming pack-
ets must be pre-processed: if they are ACK packets, they
will not be saved into the circular buffer; they must be
processed immediately to clear the timer.

7 The implementation
Finally, we detail the components that provide the new
functionalities described in Section 6. The solution is
based on three new modules (see Fig. 6):

• The main component (moteC).
• The new transmitter component (QueuedSenderC).
• The new reception component (QueuedReceiverC).

We propose an upper layer to handle the wireless com-
munications, apart from the module responsible for the
execution of the m-DKLS algorithm.

7.1 The main module moteC
This module is connected to the native TinyOS
component of receiving data from the CC2420. It
means that when the transceiver component signals the

Fig. 6 Simple representation of the solution. Representation of the
relationships between the modules of the new communication layer

reception of a new packet into its hardware buffer, that
event is received in the module moteC. Previously, we
have set that event in asynchronous mode.

The moteC module uses the interface QReceive provided
by the new module QueuedReceiverC (detailed later).
Through this interface, the module QueuedReceiverC gets
new messages and pre-process them.

When a new message event is received by moteC, it gets
the message from the transceiver and sends it to Queue-
dReceiverC through the QReceive interface. Everything in
this chain is working in asynchronous mode so all these
operations will be done with the highest priority.

7.2 The new reception component QueuedReceiverC
This new component implements our reception circular
buffer. It also provides the QReceive interface and uses the
interface QSend provided by the new module Queued-
SenderC. When a new message is received from the
QReceive interface, this component must pre-process it:

1. If the message is an acknowledgement of a previously
sent message by this mote, this message must be sent
to the QueuedSenderC component (through its
interface QSend ) to reset the timer. This operation
must be immediately done, so the QSend interface
must work in asynchronous mode too.

2. If the message is not an acknowledgement, it must be
saved into the circular buffer. Once saved, an
acknowledgement message must be sent immediately
to the sender of the message, so QueuedReceiverC
puts an ACK message into the QSend interface.

In our implementation, the QueuedReceiverC is also
responsible for the execution of the m-DKLS algorithm,
but it is executed in synchronous mode through sev-
eral tasks. The operations related to m-DKLS algorithm
could also be easily implemented into a separated module
to have the communications independent from the algo-
rithm. In synchronous mode, this component does the
following operations:

1. Detection of non-processed messages by the
m-DKLS algorithm into the circular buffer.

2. If there are non-processed messages, extract the
oldest one, delete it from the circular buffer and
process it in m-DKLS, obtaining a result.

3. Send the result to all the neighbours through the
interface QSend of the component QueuedSenderC.

To avoid a continuous check loop to control the status
of the circular buffer, we have used two pointers, one of
them pointing to the last received message and another
one pointing to the last processed message. Depending on
the relative positions between them, we can easily know
if there are non-processed messages. This involves a very
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low computational load. A simple flow chart of this new
component is shown in Fig. 7.

7.3 The new transmission component QueuedSenderC
This component also implements a circular buffer for
transmission, and it is controlled with the same mech-
anism of two pointers used in the module Queue-
dReceiverC. It provides the QSend interface in asyn-
chronous mode and uses the native TinyOS modules to
send the messages to the network. The following function-
alities are implemented here in relation to the messages
received by the interface QSend:

1. If the message is an acknowledgement of a packet
previously sent by this mote, the module must reset
the timer of the acknowledgement and continue
processing the next message into the circular buffer
of QueuedSenderC.

2. If the message is an ACK packet to be sent to another
mote, the QueuedSenderC module sends it directly
to the native TinyOS sender component without
using the circular buffer, because of the highest
priority of this kind of messages.

3. If the message is not an ACK packet, then it will be
saved into the circular buffer. They will be sent at
their turn according to the control pointers of the
circular buffer.

Fig. 7 Flow chart of the QueuedReceiverC component. A simple flow
chart where the main operations managed by this new reception
component can be easily understood

A simple flow chart of this new component is shown in
Fig. 8.

7.4 Example of task execution
In this section, a simple example of this solution is
included in Fig. 9 to illustrate the behaviour of the pre-
vious components. In the figure, the computation of one
packet is compound by three tasks. The execution of the
first task (the longest one) is interrupted when a new
packet has been received by the transceiver and it is sig-
nalled to the processor. When the interruption is done, the
received packet is saved into the circular reception buffer
and cleaned from the transceiver buffer. All the incoming
messages are processed sequentially.

8 Results
For the sake of simplicity and for demonstration purposes,
we next include the implementation of the m-DKLS into
a WSN with five motes linearly positioned and equally
spaced, and in which each mote communicates with its
nearest nodes. The distance between each two motes is
1 m.

We have used the following network configuration:

• Five motes executing the m-DKLS algorithm.
• One gateway mote, to get the results from the WSN

and send them to the PC.
• One mote without sensor board, to broadcast a

beacon signal each 6 s. Each time a mote receives this
signal, it starts the m-DKLS algorithm.

We have used the temperature field to perform the
experiments. The positions where we have estimated the

Fig. 8 Flow chart of the QueuedSenderC component. A simple flow
chart where the main operations managed by this new transmission
component can be easily understood
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Fig. 9 Timeline for the reception of data in the training step. In this
example, each packet needs three tasks to complete its processing,
and the first one is interrupted by an asynchronous event of a new
packet reception. Then, the mote saves the incoming packet into the
new circular reception buffer before continuing the processing of this
first task, emptying the transceiver buffer

temperatures are in the same axis of the motes, in posi-
tions 1.2, 1.6, 2.4, 2.8, 3.2, 3.6, 4.4 and 4.8, while the motes
are placed in positions 1.0, 2.0, 3.0, 4.0 and 5.0.

The selected kernel for this experiment has been the
Gaussian kernel, and the number of training iterations has
been fixed to 15. The neighbourhoods have been fixed
into the source code.

To test the adaptation of the network to substantial
variations of the measured field, we have used a heater,
moving it sequentially from the position of one mote to
the next one. Each variation in the position of the heater
needs some time to get a stable measure by the sen-
sors. We concluded that this time of convergence of a
new accurate data is limited by the temperature sensor
response rather than by the training step of the algorithm.
Each 6 s, we computed 15 iterations of the algorithm
(being the execution time shorter), although a quite good
result can be reached using only five iterations, as shown
in Fig. 10. However, in Fig. 11, it can be observed that
during 100 s, the measure taken by the sensor is not
stabilized.

As shown in previous sections, each node processes
sequentially each received message. Some of them will
be treated as acknowledgement messages and others as
m-DKLS messages. Furthermore, these last packets can
belong to the initialization step of the algorithm, to the
training step or can be result messages.

One mote does not send a message if it has not received
the acknowledgement of the previous one. This means
that a mote can only have one message of each neighbour
into its buffers regardless of the type of the message, so
the maximum incoming messages that a mote can have is
equal to the number of neighbours. The new transmission

Fig. 10 Convergence in the training step of node 4. This figure
illustrates the convergence of the iterations in the training step to the
final value at point 3.6 and time 6 s

and reception queues should have enough space to save, at
least, one message per neighbour. In the framework of our
experiment, just a capacity of two data frames is needed.

In relation to processing and delay issues of this imple-
mentation, we have obviously a delay in comparison to a
more capable mote in terms of transceiver and processor
capabilities. Working with MICAz motes, we need several
additional operations that make the execution of the algo-
rithm slower: not only the additional communication layer
and the speed of processing data take account, but also the
floating point emulation gets importance in delay.

Fig. 11 Real measures taken from sensor 4 during the experiment.
The heater was near to the sensor 4 position for 96 s (approximately),
from time 234 s to 330 s
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In a fixed topology like the one used in our work, the
inclusion of more motes into the network would need
modifications of the software in the existing nodes, as the
neighbourhoods are fixed by source code. Nevertheless, if
a dynamic procedure was used to establish the neighbour-
hood, as will be commented in Section 9.1, the scalability
of the network would be also dynamic and no additional
work would be necessary over the existing motes. The
only limit would be given by the hardware capabilities of
the motes.

The increase of RAM memory usage according to larger
neighbourhoods does not vary in a linear way, since the
size of the matrices depend on the number of neighbours.
Figure 12 illustrates the relationship between the neigh-
bourhood size and the static RAM memory increase. As
an example (our implementation), if we set as reference
value the approximate RAM memory used by a mote with
two neighbours, the used RAM memory would increase
in 450 bytes approximately if the neighbourhood was
composed by five motes. For eight neighbours, it would
increase in 600 bytes with respect to the case of five
neighbours. Note that we need to allocate RAM mem-
ory to variables associated to the computation (matrices,
auxiliary variables, topology definition...) apart from the
buffers. If we use neighbourhoods up to 50 nodes, the nec-
essary RAM memory of the new circular buffers would be
approximately of 1.6 kBytes. In Fig. 12, it can be observed
that we would need approximately 25 kBytes in the case
of a neighbourhood of 50 nodes. The 6.5 % of this needed
RAM memory would be allocated for the buffers, con-
cluding that in large neighbourhoods, the RAM memory
needs are controlled by the algorithm rather than by the
communication layer.

In computational terms, the increase due to larger
neighbourhoods are not linear, neither. To compute the

Fig. 12 Theoretical approximation of RAM memory increase.
Estimated RAM memory increase with respect to a neighbourhood
size of two of our implementation

m-DKLS, we need operations like matrix inversion, which
we have implemented using the Gauss-Jordan method.
This implies a computational load of O(n3), where n is
the number of neighbours plus 1. Also, we need matrix
product, which has the same computational load in our
implementation.

The RAM memory becomes the real limit in terms
of scalability of the algorithm. In relation to computa-
tional load, due to the sequential execution model of
our implementation, it is not a strict limit as the only
consequence is to have larger delays in the computation.

To experimentally validate the implementation, we
compare the results obtained by the m-DKLS imple-
mented in the WSN to the results obtained offline by the
theoretical m-DKLS solution. To achieve this last point
we have numerically1 simulated the same network topol-
ogy, and the real temperature measures from the motes
have been incorporated too. Figures 13, 14 and 15 illus-
trate the comparison at different times of the experiment.
The black dashed line connects the different tempera-
ture estimations obtained from the numerical simulation
by computer at all the intermediate positions. It can
be observed that the real-time implementation with the
MICAz network (red squares) provides the same results
of the numerically offline simulated solution (dashed),
validating our development and demonstrating the imple-
mentation feasibility.

As already discussed, in Fig. 10 it is illustrated an exam-
ple of how the iterations of node 4 in the training step
converge to the final estimation of the position 3.6 shown
in Fig. 13. This has been obtained from a theoretical m-
DKLS simulation using the real temperature measures at
time 6 s.

A demonstration video can be found at [19] and the
corresponding source code in [20].

Fig. 13 Experiment result start time. The heater is off yet
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Fig. 14 Experiment result at 276-s elapsed time. The heater is
positioned near to node 5

9 Conclusions
Non-linear kernel methods can be defined in a distributed
approach. This distributed description, such as one of
the m-DKLS, allows for a suitable implementation in
WSN, which is asynchronous by nature. However, WSN
are simple architectures where motes have limited com-
munication and computation capabilities that make the
implementation of this complex algorithm difficult. In this
work, we identify the major problems to be solved, namely
1) emulate floating point (and matrix) operation with
integer ones, 2) avoid synchronous standard operation to
prioritize message transmission and reception, 3) provide
a safe acknowledgement mechanism and 4) prevent a poor
initialization of the algorithm.

Fig. 15 Experiment result at 438-s elapsed time. The heater is
positioned between nodes 3 and 4

In this paper, we propose novel solutions to all of
them. Regarding to the avoiding of synchronous stan-
dard operation, we propose a new layer based on three
blocks: moteC, QueuedReceiverC and QueuedSenderC.
These blocks extend native communication capabilities
with circular buffers and the integration of a suitable con-
trol mechanism. In addition, we propose to modify some
native libraries related to communication handling as a
complement of the new layer2. These improvements help
managing the transmission of messages, avoiding losing
them due to buffer overflow, and reducing the number of
retransmissions, while increasing the maximum number
of messages (neighbour motes) that can be handled and
improving the network efficiency. These improvements
allow for a real-time implementation. We demonstrate the
performance of the proposed implementation in a sce-
nario where temperature is monitored. The solution was
able to provide a good non-linear regression estimation
along with adaptation capabilities to changing conditions.
We experimentally evaluated the performance of this
approach. The real implementation in the wireless sen-
sor network provided the same solution than the output
computed offline, assuming perfect communications in a
numeric programming language.

9.1 Future work
In addition to focusing on larger networks and different
topologies to check for scalability, we propose a future line
of research to study dynamic neighbourhoods, as it arises
as a problem from the implementation point of view. In
particular:

• To model a dynamic neighbourhood discovering
step using broadcast messages. A possible starting
point could be the following: the discoverer mote
would send a certain broadcast message that should
be answered by all accessible motes with an unicast
message, and their initial field measures could be
included. Once received the response messages, the
discoverer could then define its neighbourhood to
execute the algorithm.
In relation to these unicast messages, we can consider
two possibilities:

– The unicast message is using a transmission
control mechanism to ensure that it is
received by the discoverer mote (desirable).
In this case, the discoverer mote would then
take account of all the accessible motes.

– The unicast message is not using a control
transmission mechanism. If this was the case
and the message would not have been
received, the discoverer mote would not take
account of this neighbour mote when defining
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its neighbourhood, and the algorithm would
work properly.

• To use a mixed transmission mechanism for the
training step by which both broadcast and unicast
messages can be used to reduce the number of
transmissions keeping control of transmissions.

• The study of a trade-off between the neighbourhood
size and the number of iterations in the
training step that can be achieved in terms of
memory consumption and delay, this last one
due to the increase of the computational load.

• The management of RAM memory allocation
and limits in a dynamic way when creating
neighbourhoods.

These lines of research can bring us useful results to
achieve less dependence of the implementations from
the mote hardware capacities, as well as better WSN
performance when working with distributed WSNs: less
message transmissions and energy consumption with
similar reliability in communications.

Endnotes
1Using Matlab.
2See the reference guide in [20] for further details.
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WSN, wireless sensor network; KLS, kernel least squares; DKLS, distributed
kernel least squares; m-DKLS, modified distributed kernel least squares.
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