71 research outputs found

    Performance analysis of wormhole routing in multicomputer interconnection networks

    Get PDF
    Perhaps the most critical component in determining the ultimate performance potential of a multicomputer is its interconnection network, the hardware fabric supporting communication among individual processors. The message latency and throughput of such a network are affected by many factors of which topology, switching method, routing algorithm and traffic load are the most significant. In this context, the present study focuses on a performance analysis of k-ary n-cube networks employing wormhole switching, virtual channels and adaptive routing, a scenario of especial interest to current research. This project aims to build upon earlier work in two main ways: constructing new analytical models for k-ary n-cubes, and comparing the performance merits of cubes of different dimensionality. To this end, some important topological properties of k-ary n-cubes are explored initially; in particular, expressions are derived to calculate the number of nodes at/within a given distance from a chosen centre. These results are important in their own right but their primary significance here is to assist in the construction of new and more realistic analytical models of wormhole-routed k-ary n-cubes. An accurate analytical model for wormhole-routed k-ary n-cubes with adaptive routing and uniform traffic is then developed, incorporating the use of virtual channels and the effect of locality in the traffic pattern. New models are constructed for wormhole k-ary n-cubes, with the ability to simulate behaviour under adaptive routing and non-uniform communication workloads, such as hotspot traffic, matrix-transpose and digit-reversal permutation patterns. The models are equally applicable to unidirectional and bidirectional k-ary n-cubes and are significantly more realistic than any in use up to now. With this level of accuracy, the effect of each important network parameter on the overall network performance can be investigated in a more comprehensive manner than before. Finally, k-ary n-cubes of different dimensionality are compared using the new models. The comparison takes account of various traffic patterns and implementation costs, using both pin-out and bisection bandwidth as metrics. Networks with both normal and pipelined channels are considered. While previous similar studies have only taken account of network channel costs, our model incorporates router costs as well thus generating more realistic results. In fact the results of this work differ markedly from those yielded by earlier studies which assumed deterministic routing and uniform traffic, illustrating the importance of using accurate models to conduct such analyses

    Hypergraph-Based Interconnection Networks for Large Multicomputers

    Get PDF
    This thesis deals with issues pertaining to multicomputer interconnection networks namely topology, technology, switching method, and routing algorithm. It argues that a new class of regular low-dimensional hypergraph networks, the distributed crossbar switch hypermesh (DCSH), represents a promising alternative high-performance interconnection network for future large multicomputers to graph networks such as meshes, tori, and binary n-cubes, which have been widely used in current multicomputers. Channels in existing hypergraph and graph structures suffer from bandwidth limitations imposed by implementation technology. The first part of the thesis shows how the low-dimensional DCSH can use an innovative implementation scheme to alleviate this problem. It relies on the separation of processing and communication functions by physical layering in order to accommodate high wiring density and necessary message buffering, improving performance considerably. Various mathematical models of the DCSH, validated through discrete-event simulation, are then introduced. Effects of different switching methods (e.g., wormhole routing, virtual cut-through, and message switching), routing algorithms (e.g., restricted and random), and different switching element designs are investigated. Further, the impact on performance of different communication patterns, such as those including locality and hot-spots, are assessed. The remainder of the thesis compares the DCSH to other common hypergraph and graph networks assuming different implementation technologies, such as VLSI, multiple-chip technology, and the new layered implementation scheme. More realistic assumptions are introduced such as pipeline-bit transmission and non-zero delays through switching elements. The results show that the proposed structure has superior characteristics assuming equal implementation cost in both VLSI and multiple-chip technology. Furthermore, optimal performance is offered by the new layered implementation

    Performance Evaluation of Specialized Hardware for Fast Global Operations on Distributed Memory Multicomputers

    Get PDF
    Workstation cluster multicomputers are increasingly being applied for solving scientific problems that require massive computing power. Parallel Virtual Machine (PVM) is a popular message-passing model used to program these clusters. One of the major performance limiting factors for cluster multicomputers is their inefficiency in performing parallel program operations involving collective communications. These operations include synchronization, global reduction, broadcast/multicast operations and orderly access to shared global variables. Hall has demonstrated that a .secondary network with wide tree topology and centralized coordination processors (COP) could improve the performance of global operations on a variety of distributed architectures [Hall94a]. My hypothesis was that the efficiency of many PVM applications on workstation clusters could be significantly improved by utilizing a COP system for collective communication operations. To test my hypothesis, I interfaced COP system with PVM. The interface software includes a virtual memory-mapped secondary network interface driver, and a function library which allows to use COP system in place of PVM function calls in application programs. My implementation makes it possible to easily port any existing PVM applications to perform fast global operations using the COP system. To evaluate the performance improvements of using a COP system, I measured cost of various PVM global functions, derived the cost of equivalent COP library global functions, and compared the results. To analyze the cost of global operations on overall execution time of applications, I instrumented a complex molecular dynamics PVM application and performed measurements. The measurements were performed for a sample cluster size of 5 and for message sizes up to 16 kilobytes. The comparison of PVM and COP system global operation performance clearly demonstrates that the COP system can speed up a variety of global operations involving small-to-medium sized messages by factors of 5-25. Analysis of the example application for a sample cluster size of 5 show that speedup provided by my global function libraries and the COP system reduces overall execution time for this and similar applications by above 1.5 times. Additionally, the performance improvement seen by applications increases as the cluster size increases, thus providing a scalable solution for performing global operations

    Parallel rendering algorithms for distributed-memory multicomputers

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Ph. D.) -- Bilkent University, 1997.Includes bibliographical references leaves 166-176.Kurç, Tahsin MertefePh.D

    System level modelling and design of hypergraph based wireless system area networks for multi-computer systems

    Get PDF
    This thesis deals with issues pertaining the wireless multicomputer interconnection networks namely topology and Medium Access Control (MAC). It argues that new channel assignment technique based on regular low-dimensional hypergraph networks, the dual radio wireless hypermesh, represents a promising alternative high-performance wireless interconnection network for the future multicomputers to shared communication medium networks and/or ordinary wireless mesh networks, which have been widely used in current wireless networks. The focus of this work is on improving the network throughput while maintaining a relatively low latency of a wireless network system. By means of a Carrier Sense Multiple Access (CSMA) based design of the MAC protocol and based on the desirable features of hypermesh network topology a relatively high performance network has been introduced. Compared to the CSMA shared communication channel model, which is currently the de facto MAC protocol for most of wireless networks, our design is shown to achieve a significant increase in network throughput with less average network latency for large number of communication nodes. SystemC model of the proposed wireless hypermesh, validated through mathematical models, are then introduced. The analysis has been incorporated in the proper SystemC design methodology which facilitates the integration of communication modelling into the design modelling at the early stages of the system development. Another important application of SystemC modelling techniques is to perform meaningful comparative studies of different protocols, or new implementations to determine which communication scenario performs better and the ability to modify models to test system sensitivity and tune performance. Effects of different design parameters (e.g., packet sizes, number of nodes) has been carried out throughout this work. The results shows that the proposed structure has out perform the existing shared medium network structure and it can support relatively high number of wireless connected computers than conventional networks

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Determining the Idle Time of a Tiling: New Results

    Get PDF
    In the framework of fully permutable loops, tiling has been studied extensively as a source-to-source program transformation. We build upon recent results by Högsted, Carter, and Ferrante~\cite{HogstedtCF97}, who aim at determining the cumulated idle time spent by all processors while executing the partitioned (tiled) computation domain. We propose new, much shorter proofs of all their results and extend these in several important directions. More precisely, we provide an accurate solution for all values of the {\em rise} parameter that relates the shape of the iteration space to that of the tiles, and for all possible distributions of the tiles to processors. In contrast, the authors in~\cite{HogstedtCF97} deal only with a limited number of cases and provide upper bounds rather than exact formulas.Dans le cadre des boucle complètement permutables le pavage a été beaucoup étudié comme une transformation source-à-source. Nous nous basons sur des travaux récents de Högsted, Carter et Ferrante [12] dont le but est de déterminer le temps d'attente cumulé passé par tous les processeurs pendant l'exécution le domaine de calcul partionné (pavé). Nous proposons des nouvelles preuves plus courtes de tous leurs résultats et nous les étendons dans plusieurs directions importantes. Nous donnons une solution plus précise pour toutes les valeurs du paramétre rise qui relie la forme de l'espace d'itérationa celle des tuiles et pour toutes les distributions possibles des tuiles sur les processeurs. Les auteurs dans [12] ne traitent qu'un nombre limité de cas et fournissent des bornes supérieures plutôt que des formules exacte
    corecore