
' i. Ki \ Ш è f Г.Т::Т;
‘̂ v Г Т У .<ví > '.*rX Ч“ T -v » rs í í ·' Y : П V>\ *·>-̂ ·̂·**·’.

' ‘̂ .c ' ,c: f̂ ¿-’'",..

.n¿ i^^ïrpJTE O f 'Ξι
;c.> '”"· »*”·■· ‘’ ‘w . ',· .' */ ̂, 4

и·,·^. : — i-...'.-;

PARALLEL RENDERING ALGORITHMS EOR
DISTRIBUTED-MEMORY MULTICOMPUTERS

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING AND INFORMATION

SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

i>y

Talisiii Mertefe Kur(,· .

June 1997

/

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of doctor of philosophy.

Assoc. Prof. Ce\raet Aykanat (Supervisor)

I certify that I have read this thesis and that in rny opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of doctor of philosophy.

Prof. Bülent Özgüç (Co-supervisor)

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of doctor of philosophy.

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of doctor of philosophy.

I certify that I have read this thesis and that in my opinion it is
fully adequate, in scope and in quality, as a dissertation for the
degree of doctor of philosophy.

sst. Pro rAsst. Prof. Özgür Uluso)

Approved by the Institute of Engineering and Science:

Prof. Mehmet Bat
Director of the Institute of Engineering and Science

ABSTRACT

PARALLEL RENDERING ALGORITHMS FOR
DISTRIBUTED-xMEMORY MULTICOMPUTERS

Tahsin Mertefe Kurç
Ph.D. in Computer Engineering and Information Science

Supervisors:
Assoc. Prof. Cevdet Aykamıt and Prof. Bülent Özgüç

June 1997

In this thesis, utilization of distributed memory multicomputers in gathering radios-
ity, polygon rendering and volume rendering is investigated.

In parallel gathering racliosity, the target issues are the parallelization of the com
putation of the form-factor matrix and solution phases on hypercube-connected multi-
computers. Interprocessor communication in matrix computation phase is decreased by
sharing the memory space between matrix elements and the scene data. A demand-
driven algorithm is proposed for l)etter computational load balance during calculation
of form-factors. Gauss-.Jacobi (G J) iterative algorithm is used by all of the previous

works in the solution phase. We apply more efficient Scaled Conjugate-Gradient (SC G)
algorithm in the solution phase. Parallel algorithms were developed for G J and SCG
algorithms for hypercube-connected multicomputers. In addition, load balancing in the

tion pha.se is investigated. An efficient data redistribution scheme is proposed, kliis

scheme achieves perfect load balance in matrix-vector product operations in the solution
phase.

Object-space parallelism is investigated for parallel polygon rendering on hypercube-
connected multicomputers. Briefly, in object-space parallelism, scene data is partitioned
into disjoint sets among processors. Each processor performs the rendering of its local
partition of primitives. After this local rendering phase, full screen partial images in each
processor are merged to obtain the final image. This phase is called pixel merging phase.
Pixel merging phase requires interprocessor communication to merge partial images.
In this work, hypercube interconnection topology and message passing structure are
exploited to merge partial images efficiently. Volume of communication in pixel merging
phase is decreased by only exchanging local foremost pixels in each processor after local
rendering phase. For this purpose, a modified scanline z-buffer algorithm is proposed for
the local rendering phase. This algorithm avoids message fragmentation by storing local
foremost pixels in consecutive memory locations. In addition, it eliminates initialization
of z-buffer, which is a sequential overhead to parallel e.xecution. For pixel merging
phase, we propose two schemes referred to here as pairwise exchange scheme and all-to-
all personalized communication scheme, which are suited to the hypercube topology. We
investigate load balancing in pixel merging phase. Two heuristics, recursive subdivision
and heuristic bin packing, were proposed to achieve better load balancing in pixel merging
phase. These heuristics are adaptive such that they utilize the distribution of foremost
pixels on the screen to subdivide the screen in the pixel merging phase.

Image-space parallelism is investigated for parallel volume rendering of unstructured
grids. In image-space parallelism, the screen is subdivided into regions. Each processor
is assigned one or more subregions. The primitives (e.g.. tetrahedrals) in the volume data
are distributed among processors according to screen subdivision and processor-subregion
assignments. Then, each processor renders its local subregions. The target topic in this
work is the adaptive subdivision of the screen. Adaptive subdivision issue has not been
investigated in parallel volume rendering of unstructured grids before. Only some re
searchers utilized adaptive subdivision in parallel polygon rendering and ray tracing.
In this work, several algorithms are proposed to subdivide the screen adaptively. The
algorithms presented in this work can be grouped into two classes: 1-dimensional array

based algorithms and 2-dimensional mesh based algorithms. Among the 2-dimensional
mesh based algorithms, graph partitioning based subdivision and Hilbert curve based
subdivision algorithms are new approaches in parallel rendering field. An experimental
comparison of the subdivision algorithms are performed on a common frame work. The
subdivision algorithms were employed in the parallelization of a volume rendering algo
rithm, which is a polygon rendering based algorithm. In the previous works on parallel
polygon rendering, only the number of primitives in a subregion were used to approxi
mate the work load of the subregion. We experimentally show that this approximation
is not enough. Better speedup values can be obtained by utilizing other criteria such as
number of pixels, number of spans in a region. By utilizing these additional criteria, the
speedup values are almost doubled.

ÖZET

ÇOK İş l e m c i l i d a g i t i k -h a f i z a l i b İl g İs a y a r l a r d a

PARALEL GÖRÜNTÜLEME ALGORİTMALARI

Tahsin Mertefe Kıırç
Bilgisayar ve Enformatik Mühendisliği Doktora

Tez Yöneticileri:
Doç. Dr. Cevdet Ay kanat and Prof. Bülent Özgüç

Haziran 1997

Bu tezde dağıtık hafızalı çok işlemcili bilgisayarların ı.ftma yönteminin toplama meto

dunda, poligon görüntülemede ve hacim görüntülemede kullanımı araştırılmıştır.
Toplama metodunda ele alman temel konular durum-katsayı matrisinin hesaplanması

ve çözüm adımının hiperküp bağlantılı çoklu bilgisayarlarda paralel olarak yapılmasıdır.
Durum-katsayı matrisinin hesaplanmasında işlemciler arası veri aktarımı her işlemcideki
hafızanın durum-katsayı matrisi ve ışıma metoduyla görüntülenen ortamı oluşturan ver
iler arasında paylaştırılması ile azaltılmıştır. İşlemcilerin daha verimli kullanılabilmesi

için dinamik paylaştırma yöntemi uygulanmıştır. Ç'özüın aşamasında Scaled Conjugate-
Gradient metodu başarılı bir şekilde uygulanmıştır. Gauss-.iacobi ve Scaled (.'onjugate-
Gradient metodları için verimli paralel algoritmalar geliştirilmiştir. Durum-katsayı ma
trisinin hesaplanınasnıdan sonra, her işlemcide kalan sıfırdan farklı durum-katsayı de

ğerlerinin işlemciler arasında tekrar dağıtılması ile hemen hemen ideal yük dağılımı

sağlanmıştır.

Poligon görüntüleme konusunda yapılan çalışmalarda parça uzayında paralelleştirme
yaklaşımı ele alınmıştır. Parça uzayında paralelleştirmede ortamı oluşturan parçalar
işlemciler arasında dağıtılır. Her işlemci kendi parçalarının üzerinde görüntüleme algo
ritmalarını çalıştırır. Daha sonra her işlemcideki resimler birleştirilerek son resim ortaya
çıkarılır. Bu çalışmada hiperküp bilgisayarında parça uzayında paralelleştirme algo
ritmaları geliştirilmiştir. Resimlerin birleştirilmesi sıra.sında işlemciler arasında iletişim
hacmini azaltan verimli algoritmalar önerilmiştir, işlemciler arasındaki mesajların kopuk
kopuk olmasını önlemek için değiştirilmiş bir görüntüleme algoritması önerilmiştir.

Hacim görüntülemede ise ekran uzayında paralelleştirme yaklaşımı araştırılmıştır.
Bu yaklaşımda ekran uzayı işlemciler arasında bölünür. Her işlemci kendisine ait olan
ekran parçası üzerinde görüntüleme algoritmasını çalıştırtır. Ekranın bölünmesine göre
hacim elernanlarıda işlemciler arasında dağıtılır. Bu çalışmada, çeşitli ekran uzayında
bölme yöntemleri incelendi ve geliştirildi. Bu yöntemler ekranı hacim elemanlarının
ekrandaki dağılımlarına göre bölerek daha iyi yük dağılımı sağlar. Bu yöntemlerden
çizge parçalamaya dayalı bölme ve Hilbert eğrisine dayalı bölme yeni yöntemlerdir.
Bu yöntemler deneysel olarak karşılaştırılmıştır. Ayrıca, bu çalışmada incelenen ve
geliştirilen yöntemler poligon görüntülemeye dayalı bir hacim görüntüleme algoritmasına
başarı ile uygulanmışladır.

ACKNOWLEDGMENTS

I wish to express my deepest gratitude and thanks to Assoc. Prof. Dr. Cevdet
Aykanat and Prof. Dr. Bülent Özgüç for their supervision, encouragement, and invalu
able advice throughout the development of this thesis.

I am very grateful to Prof. Dr. Semih Bilgen, Asst. Prof. Dr. Özgür Ulusoy, and
•Asst. Prof. Dr. Mustafa Pınar for carefully reading my thesis, for their remarks and
suggestions.

I would like to extend my sincere thanks to all of my friends for their morale support
and encouragement during the thesis work. I would like to thank Egemen Tanin for his
sequential volume rendering code. I owe special thanks to all members of our department
for providing a pleasant environment for study.

Finally, my sincere thanks goes to my family for their endless morale support and
patience.

This work was partially supported by the Scientific and Technical Research Council
of Turkey (TÜBİTAK) under grants EEEAG-5 and EEEAG-160, Intel Supercomputer
Systems Division under grant SSD100791-2, and the Commission of the European Com

munities, Directorate General for Industry under contveict ITDC 204-82166.

Contents

1 Introduction 1
1.1 Gathering Radiosity .3
1.2 Polygon R endering.. 5
1.3 Volume Rendering5
1.4 Contributions of the Thesis .. 7

1.4.1 Parallel Gathering Radiosity.. 8
1.4.2 Parallel Polygon Rendering 9
1.4.3 Parallel Volume Rendering... 10

1.5 Organization of the T h es is ... 11

2 Gathering Radiosity on Hypercubes 13
2.1 Gathering Radiosity ... 15

2.1.1 Form-Factor Computation P h a s e .. 16
2.1.2 Solution Phase .. 17

2.2 Previous Work on Parallel Gathering Radiosity 23
2.3 Intel’s iPSC/2 Hypercube Multicomputer... 24
2.4 Parallel Computation of the Form-Factor M atrix.. 27

2.4.1 Static Assignment ... 27
2.4.2 Demand-Driven Assignment Scheme 31

2.5 Parallel Solution P hase.. 32
2.5.1 Parallel Gauss-Jacobi M eth od .. 32
2.5.2 Parallel Scaled Conjugate-Gradient Method 35
2.5.3 A Parallel Renumbering Scheme... 37

CONTENTS

2.6 Load Balancing in the Solution Phase: Data Redistribution....................... 39
2.6.1 A Parallel Data Redistribution S ch em e... 40
2.6.2 Avoiding the Extra Setup Time Overhead 42

2.7 Experimental R esults.. 42
2.8 Conclusions.. 47

Polygon Rendering: Overview and Related Work 50
3.1 Sequential Polygon R endering.. 50

3.1.1 Reading Environment Description... .50
3.1.2 Lighting Calculations... 52
3.1.3 Geometry Processing... .52
3.1.4 Shading and Hidden-surface R em oval.. .53

3.2 Previous Works on Parallel Polygon Rendering... 57
3.2.1 .A Taxonomy of Parallelism in Polygon Rendering on Distributed-

Memory Multicomputers... 57
3.2.2 Previous Works on Parallel Polygon Rendering................................ 62

3.3 Discussion of Previous Works 71

Active Pixel Merging on Hypercubes 74
4.1 Some Definitions .. 75
4.2 The Parallel A lgorithm .. 75
4.3 A Modified Scanline Z-buffer Algorithm.. 76
4.4 Pixel Merging on Hypercube M ulticom puter.. 78

4.4.1 Ring Exchange Schem e.. 78
4.4.2 2-dimensional Mesh Exchange S c h e m e ... 80
4.4.3 K-dimensional Mesh Exchange S ch em e... 82
4.4.4 Pairwise Exchange Scheme... 84
4.4.5 All-to-All Personalized Communication S ch em e............................. 85
4.4.6 Comparison of Pixel Merging S ch e m e s .. 86

4.5 Load Balancing in Pixel Merging Phase... 87
4.5.1 Recursive Adaptive Subdivision... 87
4.5.2 Heuristic Bin Packing 88

CONTENTS 111

4.6 Experimental Results on an iPSC/2 Hypercube Multicomputer................ 90
4.7 Results on a Parsytec CC S y stem .. 94
4.8 C onclusions.. 98

5 Volume Rendering: Overview and Related Work 106
5.1 Nom enclature...107
5.2 Ray-casting Based Direct Volume Rendering.. 110

5.2.1 Point Location and View Sort P ro b le m s I l l
5.2.2 Approaches to Solve Point Location and View Sort Problems . . . 114

5.3 Previous Works on Parallel Direct Volume Rendering of Unstructured Gridsll9
5.4 Discussion of Previous Works on Parallel Volume Rendering of Unstruc

tured G r id s ..123

6 Spatial Subdivision for Volume Rendering 125
6.1 Spatial Subdivision A lgorith m s... 127

6.1.1 Horizontal Subdivision (H S) ...128
6.1.2 Rectangular Subdivision (R S) ..131
6.1.3 Recursive Rectangular Subdivision (RRS) ...132
6.1.4 Mesh-based Adaptive Hierarchical Decomposition Scheme (MAHD) 134
6.1.5 Hilbert Curve Based Subdivision (HCS) ... 135
6.1.6 Graph Partitioning Based Subdivision (GS) ... 137
6.1.7 Redistributing the P rim itiv es ..140

6.2 Experimental Comparison of Subdivision A lgorith m s......................................141
6.3 Volume Rendering of Unstructured Grids: A Scanline Z-buffer Based Al

gorithm ..149
6.4 The Parallel Algorithm ...152
6.5 Experimental Results..154
6.6 C onclusions... 156

7 Summary and Conclusions 161
7.1 Parallel Gathering R adiosity...161
7.2 Parallel Polygon Rendering..162

CONTENTS IV

7.3 Parallel Volume Rendering...164

List of Figures

1.1 An example of computer graphics rendering.. 2

2.1 Basic steps of the GJ method.. 19
2.2 Basic steps of S C G method.. 22
2.3 A 16 node hypercube m ulticom puter... 25
2.4 (a) A ring embedding (b) A 2-dirnensional mesh embedding into a 4-

dimensional hypercube.. 26
2.5 The node algorithm in pseudo-code for patch circulation scheme............... 29
2.6 The node algorithm in pseudo-code for form-factor computation by stor

age sharing scheme.. 30
2.7 Parallel GJ algorithm... 33
2.8 Global concatenate operation for a 3-dimensional hypercube........................ 34
2.9 Parallel SC G method... 36
2.10 Form-factor computation phase, (a) Execution times for different schemes

on 16 processors, (b) Efficiency curves for different schemes........................ 44
2.11 The effect of the assignment granularity on the performance (execution

time in seconds) of the demand driven scheme for N = 886, P = 16. . . . 45
2.12 Efficiency curves for the S C G method... 47

3.1 The polygon rendering pipeline.. 51
3.2 A polygon with 5 vertices.. 52
3.3 World and viewing coordinate systems... 53

3.4 The z-buffer array.. 55

V

LIST OF FIGURES VI

3.5 An e.xample of image-space parallelism. The screen is partitioned and
subregions are assigned to processors (PO, Pi, P2, P3).............................. 58

3.6 .Λη example of object-space parallelism... 59

4.1 Volume of communication on different meshes embedded on the hypercube
of 16 processors for different scenes... 84

4.2 Extended span algorithm... 90
4.3 Comparison of RS with HBP. (a) Different number of processors for 2

POT scene, A = 400 x 400. (b) Different screen resolutions and different
scenes on 16 processors.. 94

4.4 Volume of communication for (a) 2 POT scene on different processors,
A = 400 X 400. (b) A = 400 x 400 and A = 640 x 640 for different scenes
on 16 processors.. 95

4.5 Speedup figures for A = 400 x 400. (a) 1 POT scene (b) 2 POT scene. 95
4.6 Speedup figures for A = 640 x 640. (a) 1 POT scene (b) 2 POT scene. 96
4.7 The Parsytec CC system... 97
4.8 Rendering rates of algorithms on Parsytec CC system, (a) A.APC-HBP

(b) ZBUF-EXC... 100
4.9 Speedup values achieved by the algorithms on Parsytec CC system, (a)

AAPC-HBP (b) ZBUF-EXC..100
4.10 Total volume of communication and concurrent volume of communication. 101
4.11 Rendered images of the scenes used in the experiments on iPSC/2. (a) 1

POT scene (b) 2 POT scene...102
4.12 Rendered images of the scenes used in the experiments on iPSC/2. (a) 4

POT-1 scene (b) 4 POT_2 scene.. 102
4.13 Rendered images of the scenes used in the experiments on iPSC/2. (a) 8

POT-1 scene (b) 8 POT-2 scene.. 103
4.14 Rendered images of the scenes used in the experiments on the Parsytec

CC system, (a) Teapot scene (102080 triangles, rendering time is 0.332
seconds on 16 processors) (b) Balls scene (157440 triangles, rendering time
is 0.495 seconds on 16 processors). 104

LIST OF FIGURES V II

4.15 Rendered images of the scenes used in the experiments on the Parsytec
CC system, (a) Lattice scene (235200 triangles, rendering time is 0.7
seconds on 16 processors) (b) Rings scene (343200 triangles, rendering
time is 0.821 seconds on 16 processors).. 104

4.16 Rendered images of the scenes used in the experiments on the Parsytec CC
system, (a) Tree scene (425776 triangles, rendering time is 0.576 seconds
on 16 processors) (b) Mountain scene (524288 triangles, rendering time is
1.052 seconds on 16 processors)... 105

5.1 A volumetric data set. Figure illustrates a 2-dimensional projection of
the volume, (a) Volume is sampled at 3-dimensional space. Each small
filled circle represents the sample points with 3-dimensional spatial coor
dinates. Dashed lines represent the boundaries of the volume, (b) Sample
points are connected to form volume elements. A tetrahedral cell, which
is formed by connecting four distinct sample points, is also illustrated. . . 108

5.2 Types of grids encountered in volume rendering...110
5.3 Ray-casting based direct volume rendering..I l l
5.4 Re-sampling phase of the ray-casting DVR. The color and opacity values

at the sample point on the ray are calculated by finding the contributions
of original sample points which form the cell. After re-sampling, sample
points on the ray are composited to generate the color on the screen. . . 113

6.1 An example of horizontal subdivision for eight processors............................129
6.2 An example of rectangular division for 8 processors organized into 4 clus

ters and 2 processors in each cluster...131
6.3 -An example of recursive subdivision for eight processors..............................132
6.4 An example of mesh-based adaptive hierarchical decomposition for eight

processors. Mesh resolution is 8 x 8... 136
6.5 Traversing of the 2-dimensional mesh with Hilbert curve and mapping of

the mesh cells locations into one-dimensional array indices......................... 137
6.6 An example of Hilbert curve based subdivision for eight processors. Mesh

resolution is 8 X 8... 138

LIST OF FIGURES Vlll

6.7 An example of graph partitioning based subdivision for eight processors.
Mesh resolution is 8 x 8...139

6.8 The algorithm to classify the primitives at redistribution step of HS, RS,
RRS, and MAHD algorithms..141

6.9 The algorithm to classify primitives in HCS and GS algorithms.................142
6.10 Rendered images of the data sets used in the experiments, (a) Blunt fin

(381548 triangles, rendering timéis 6.27 seconds on 16 processors) (b) Post
data (1040588 triangles, rendering time is 8.55 seconds on 16 processors). 143

6.11 Load balancing performance, based on the approximate load calculations,
of the MAHD, HCS, and GS algorithms (a) Different mesh resolutions on
16 processors, (b) Different number of processors.. 144

6.12 Percent increase in the number of primitives after primitive redistribution.
Each value in the graph represents the percent increase in the total number
of primitives for the mesh resolution the algorithm finds the best load
balance, based on the estimated load distribution..145

6.13 Load balancing performance, based on the actual primitive distribution,
of the MAHD, HCS, and GS algorithms (a) Different rnesh resolutions on
16 processors, (b) Different number of processors.. 146

6.14 Percent increase in the number of primitives after primitive redistribution.
Each value in the graph represents the percent increase in the total number
of primitives for the mesh resolution the algorithm finds the best load
balance, based on the actual distribution of primitives................................. 147

6.15 Execution time of MAHD, HCS, and GS for different mesh resolutions. . 148
6.16 Load balance performance of all algorithms (HS, RS, RRS, M.AHD, HCS,

and GS) on different number of processors...149
6.17 Percent increase in the number of primitives after redistribution for all

algorithms on different number of processors. Each value in the graph
represents the percent increase in the total number of primitives for the
mesh resolution the algorithm finds the best load balance, based on the

actual distribution of primitives.. 150

LIST OF FIGURES IX

6.18 Execution time of all algorithms on different number of processors. For
MAHD, HCS, and GS algorithms, the values represents the execution time
of the respective algorithm for the mesh resolution the algorithm achieves
the best load distribution.. 151

6.19 Speedup for only rendering phase when only the number of triangles in a
region is used to approximate work load in a region...................................... 158

6.20 Speedup for rendering phase (step 4 of the parallel algorithm) when spans
and pixels are incorporated into the subdivision algorithms........................ 158

6.21 Speedup values including the e.xecution time of subdivision algorithms. . 159
6.22 Errors due to bounding box approximation in calculating the number of

spans when vertical divisions are allowed...159
6.2.3 Rendering times in seconds, (a) Only rendering time excluding subdivision

overhead, (b) Rendering time including subdivision overhead.....................160

List of Tables

2.1 Relative performance results in parallel execution times (in seconds) of
different parallel algorithms for the form-factor computation phase. N
is the number of patches in the scene and M is the number of non-zero
entries in the form-factor matrix.. 43

2.2 Parallel execution times (in seconds) of various schemes in the solution
phase (using G J) along with the associated overheads. TOT is the total
execution time including overheads, i.e. TOT = (solution + preprocess
ing) time. N is the number of patches in the scene and M is the number
of non-zero entries in the form-factor matrix... 46

2.3 Performance comparison of parallel Gauss-Jacobi and Scaled Conjugate-

Gradient methods (1* denotes the estimated sequential timings). Timings
are in seconds. N is the number of patches in the scene and M is the
number of non-zero entries in the form-factor matrix.................................... 49

4.1 Scene characteristics in terms of total number of pi.xels generated (TPG),
number of triangles, and total number of winning pi.xels in the final picture
(TPF) for different screen sizes... 91

4.2 Relative execution times (in milliseconds) of full z-buffer merging and
PAIR-RS for N=400.. 92

4.3 Comparison of execution times (in milliseconds) of several pi.xel merging
schemes.. 93

4.4 Number of triangles in the test scenes.. 96

LIST OF TABLES XI

6.1 Dissection of execution time of each algorithm on different number of
processors.. 148

Chapter 1

Introduction

Rendering in computer graphics can be described as the process of generating a 2-
dirnensional representation of a data set defined in 3-dimensional space. Input to this
process is a set of primitives defined in a 3-dimensional coordinate system, usually called
world coordinate system, and a viewing position and orientation also defined in the same
world coordinate system. The primitives are objects, polygons, surfaces, or points con
nected in a predetermined way (as in volumetric data sets), which constitute the input
data set. The viewing position and orientation define the orientation and location of the
image-plane, which represents the computer screen. The output of the rendering process
is a 2-dimensional picture of the data set on the computer screen. Figure 1.1 illustrates
an example of computer graphics rendering with its input and output.

In this thesis, we investigate the utilization of distributed-rnernory multicomputers
in three different fields of computer graphics rendering:

Realistic simulation o f light propagation: One of the challenging fields in
computer graphics rendering is to model the light-object interactions and
propagation of light in an environment realistically. Ray tracing [102] and

radiosity [33] are two popular methods used in such applications. The target
method in this thesis is the gathering radiosity [33] method.

Polygon rendering: Algorithms and methods in polygon rendering field deal
with producing realistic images of computer generated environments com
posed of polygons.

CHAPTER 1. INTRODUCTION

The world coordinate system

Figure 1.1: An example of computer graphics rendering.

Volume rendering: Volume rendering techniques deal with visualization of
scientific data sets composed of large amounts of numerical data values asso
ciated with points in 3-dimensional space. This thesis investigates methods
for parallel rendering of unstructured grids, in which points are irregularly
distributed in 3-dimensional space.

Realistic illumination models and shading methods, like gathering radiosity, require
large memory space and computing power. Moreover, increased complexity of computer
generated environments has added more memory space and more computing power re
quirements in polygon rendering. Similarly, techniques applied in volume rendering and
huge size of data sets obtained in scientific applications require large memory space and
high computing power. It is unlikely to meet increasing reciuirements of these fields on
single processor machines with today’s technology, whereas distributed-memory multi

computers can provide a cost-effective solution. Large memory space and high computing
power requirements are met by connecting many processors with individual memories
and using these processors simultaneously. Each processor in the architecture can per
form computations asynchronously on different data values, thus providing a flexible

environment. Flexibility provides a cost-effective working environment for many appli
cations of different nature and characteristics. Distributed-memory multicomputers can
be upgraded and extended by adding more processors with individual memories to the
environment, thus providing a scalable environment. Scalability provides an inherent
power to meet increasing requirements of the applications. As the name implies, there
is no shared global memory in distributed-memory architectures. Each processor has its
owm local memory, which cannot be directly accessed by other processors. Synchroniza
tion and data exchange between processors are carried out via exchanging messages over
an interconnection network. Among many interconnection topologies, rings, meshes,
hypercubes, and multistage switch based networks are the most commonly used network
topologies.

In this chapter, brief overviews of gathering radiosity, polygon rendering, and vol
ume rendering are given. Following the overviews, contributions of the thesis work are
presented. Organization of the thesis is given in the last section.

CHAPTER 1. INTRODUCTION 3

1.1 Gathering Radiosity

Given a description of the environment, producing a realistic image of the environment
on the computer is accomplished in three basic steps; (1) - reading the description of
the environment and converting the description into appropriate form to apply rendering
algorithms, (2) - simulating the propagation of light in the environment, (3) - displaying
the environment on the computer screen.

At the first step, the description of the environment to be rendered is read into the
computer. The description of the environment is converted into appropriate form that is
suitable for algorithms to simulate light propagation and to display the environment. For
e.xarnple, surfaces and objects descriptions should be converted into polygons to apply

polygon rendering algorithms.
Next step is to simulate the propagation of light in the environment and light-object

interactions. Various methods are used in computer graphics rendering [95, 96, 77].
Simple methods, such a.s Phong method [68], only simulate the interaction of light,
coming directly from light sources, with the objects in the environment. These methods

CHAPTER 1. INTRODUCTION

result in moderate realism in the images because the contributions of light reflected
from other objects in the environment are not considered. More realistic and complex
methods account for the reflected and refracted light as well. There are two methods,
called ray tracing [102] and radiosity [.33], which are widely used for accurately simulating
propagation of light in an environment.

The radiosity method accounts for the diffuse inter-reflections between the surfaces in
a diffuse environment. There are two approaches to radiosity, progressive refinement [L5]
and gathering [33] methods. Gathering is a very suitable approach for investigating
lighting effects within a closure. In this method, every surface and object constituting
the environment is discretized into small patches (polygons), which are assumed to be
perfect diffusers. The algorithm calculates the radiosity value of each patch in the scene.
Initially, all patches, except for light sources, have zero initial radiosity values. The
light sources are also treated as patches. The algorithm consists of three successive
computational phases: form-factor computation phase, solution phase and rendering
phase.

The form-factor matrix is computed and stored in the first phase. In an environment
discretized into N patches, the radiosity bi of each patch “i’’ is computed as follows:

N
b, = e,· + ri bjF,j

j=i
(1.1)

where e, and r, denote the initial radiosity and reflectivity values, respectively, of patch
“i” and the form-factor F,j denotes the fraction of light that leaves the patch “i” and
incident on patch “j ” . The value of F,j depends on the geometry of the scene and it is
constant as long as the geometry of the scene remains unchanged. The Fa values are
taken to be zero for convex patches. This linear system of equations can be represented
in matrix form as follows

C b = (I - R F) b = e (1.2)

where, R is the diagonal reflectivity matrix, b is the radiosity vector to be calculated, e

is the vector representing the self emission (initial emission) values of patches, and F is

the form-factor matrix.
In the second phase, a linear system of equations is solved for each color-band (e.g.

red, green, blue) to And the radiosity values of all patches for these colors. In the last

phase, results are rendered and displayed on the screen using the radiosity values of the
patches computed in the second phase. The radiosity values are transformed into color
values for shading the polygons. Conventional polygon rendering methods [95, 77] (e.g.
Gouraud shading, z-buffer algorithm) are used in the last step to display the results.

CHAPTER 1. INTRODUCTION b

1.2 Polygon Rendering

.A.S noted in the previous section, the last step of realistic image generation is to dis
play the environment on the computer screen. A pipeline of operations is applied to
transform polygons from 3-dirnensional space to 2-dimensional screen space, perform
smooth shading of the polygons, and perform hidden-surface removal to give realism to
the image produced. Light-polygon interactions and shading of the polygons can also
be done concurrently with hidden-surface removal if simple methods to calculate light-
object interactions are used. Hidden-surface removal is a kind of sorting operation [86]
to determine the visible parts of the polygons. Polygons are sorted by their distance
to the screen. The overhead of sorting is decreased by utilizing some kind of coherency
existing in the environment. Among many algorithms, z-buffer and scanline z-buffer
algorithms are more popular due to wider range of applications and better utilization
of coherency. These algorithms are called image-space algorithms since hidden-surface
removal, hence sorting, is performed at pixel locations on the screen. In order to ac
complish this, polygons are projected onto the screen and distance values are generated
for screen coordinates covered by the projection of the polygon. Hidden-surface removal
at a pixel location is done by comparing the distance values generated at the pixel lo
cation. These algorithms utilize image-space coherency to calculate the distance values
at pixel locations. Calculation of distance value from one pixel to the next is done via
incremental operations.

1.3 Volume Rendering

Visualization of scientific data aims at displaying vast amount of numerical data ob
tained from engineering simulations or gathered by scanning real physical entities by

CHAPTER 1. INTRODUCTION

advanced scan devices. Visualization of volumetric data sets, in which numerical values
are obtained at sample points with 3-dimensional spatial coordinates in a volume, is
referred to here as volume rendering. Sample points in these sets form a 3-dimensional
grid superimposed on the volume. In this grid, sample points are connected to other
sample points in a predetermined way to form volume elements, referred to here cis cells.
A sample point may be shared by many cells. In addition, a cell may share a face with
other cells, forming a connectivity relation between volume elements. In volumetric data
sets, two types of grids are commonly encountered. In structured grids, the sample points
are regularly distributed in the volume. There exists implicit and regular connectivity

between volume elements. This type of grids are most common in medical imaging ap
plications. In unstructured grids, the sample points are distributed irregularly in the
3-dimensional space. There exists irregular connectivity between volume elements if a
connectivity relation exists at all. Unstructured grids are commonly used in engineering
simulations (e.g., computational fluid dynamics).

Volumetric data sets are rendered by finding the contribution of sample points to
the pixels on the screen. These contributions are determined via processing the volume
elements. Each of these contributions are transformed into color values to display the
volume. Among many techniques in volume rendering, ray-casting based direct volume
rendering [54, 92], which is the basis of research on parallel volume rendering in this the
sis, has become very popular. Direct volume rendering (DVR) describes the process of
visualizing the volume data without generating an intermediate geometrical representa
tion such as isosurfaces. In ray-casting based direct volume rendering, rays are cast from
pixel locations and traced in the volume. During the traversal in the volume, sample
points are taken along the ray. The contribution of the volume element that contains
the sample point is calculated. Then, these values at each sample point on the ray are
composited in a predetermined order (front-to-back or back-to-front) to obtain the con
tribution at the pixel. Determining the volume element that contains the sample point
is called point location problem and compositing the contributions in a predetermined
order is called view sort problem. Resolving point location and view sort problems is a

crucial issue that closely affects the performance of the rendering algorithm. Handling

point location and view sort problems in structured grids are easy due to regular distri

bution of sample points and implicit regular connectivity between volume elements. On
the other hand, irregular distribution of sample points and irregular connectivity relation
between volume elements (if it exists) make the point location and view sort problems
much more difficult to handle in unstructured grids.

Application of Polygon Rendering Algorithms in Volume Rendering

Although polygon rendering and volume rendering form two diverse application areas
of computer graphics in many aspects, techniques and algorithms used in one field can
easily be adapted to resolve the problems in the other field.

As is stated, ray-casting based direct volume rendering algorithms should resolve the
point location and view sort problems efficiently as these problems affect the perfor
mance directly. In many application, these problems reduce to finding the intersection
of ray with respective volume elements. These intersections are then sorted in increasing
distance from the screen so that composition of contributions of sample points is done

correctly.
In polygon rendering, image-space hidden-surface removal algorithms such as z-buffer

and scanline z-buffer actually perform a similar sorting of the object database to perform
hidden-surface removal correctly. In addition, polygons are rasterized (or scan-converted)
to generate color and distance values for the pixels covered by the polygon. This raster
ization corresponds, in a sense, to finding the intersection of the polygon with the rays
cast from those pixel locations. Image-space hidden-surface removal algorithms utilize

image-space coherency to decrease the overheads of sorting and rasterization. Such a co
herency also exists in ray-casting based DVR applications. Therefore, ray-casting based
DVR can benefit from the application of polygon rendering algorithms since the basic
problems are almost the same.

1.4 Contributions of the Thesis

CHAPTER 1. INTRODUCTION 7

In this thesis, utilization of distributed memory multicomputers in three fields, which
are gathering radiosity, polygon rendering and volume rendering, in computer graphics

is investigated. This section presents the contributions of the thesis work.

1.4.1 Parallel Gathering Radiosity

Parallelization of form-factor matrix computation and solution phases of the gathering
radiosity are the key issues in this work. The contributions of the thesis work in these
issues are the following.

• In parallel computation of the form-factor matrix, several algorithms were devel
oped. Interprocessor communication is decreased by sharing the memory space
between matrix elements and the objects in the scene. A demand-driven algorithm
is proposed to achieve better load balance among processors in form-factor com

putations. Our demand-driven approach is different from [12, 13]. Unlike their
approach, we avoid re-distribution of matrix rows after matrix is calculated by not
doing a conceptual partitioning of patches among processors. However, our scheme
necessitates two-level indexing in matrix-vector product operations in the solution
phase. A parallel re-numbering scheme is proposed to eliminate two-level indexing.

• All previous works used Gauss-Jacobi (G J) iterative algorithm in the solution
phase. We apply more efficient Scaled Conjugate-Gradient (SCG) algorithm in the
solution phase. The non-symmetric coefficient matrix is converted to a symmetric
matrix to apply SCG . This conversion is done without perturbing the sparsity
structure of the matrix.

• Parallel algorithms were developed for GJ and SC G algorithms for hypercube-
connected multicomputers. In order to achieve better load balance in the solution
phase, an efficient data redistribution scheme is proposed. This scheme achieves
perfect load balance in matrix-vector product operations in the solution phase. We
obtain high efficiency values in the solution phase using SCG with data redistri
bution.

CHAPTER 1. INTRODUCTION 8

A paper version of this work will appear in [50].

CHAPTER 1. INTRODUCTION

1.4.2 Parallel Polygon Rendering

Object-space parallelism (Section 3.2.1) is investigated for parallel polygon rendering on
hypercube-connected multicomputers. Briefly, in object-space parallelism, scene data is
partitioned into disjoint sets among processors. Each processor performs the rendering of
its local partition of primitives. This phrise of rendering is referred to as local rendering
phase. Then, full screen partial images in each processor are merged to obtain the final
image. This phase is called pixel merging phase. The pixel merging phase necessitates
interprocessor communication to merge partial images. In this work, hypercube inter
connection topology and message passing structure is exploited in pi.xel merging phase.
The contributions in this thesis are the following.

• Volume of communication in pixel merging phase is decreased by only exchanging
local foremost pixels in each processor after local rendering phase.

• A modified scanline z-buffer algorithm is proposed for local rendering phase. The
nice features of this algorithm are: It avoids message fragmentation by storing local
foremost pixels in consecutive memory locations efficiently. In addition, it elimi
nates initialization of scanline z-buffer for each scanline on the screen. Initialization
of z-buffer introduces a sequential overhead to parallel rendering.

• For pixel merging phase, we propose two schemes referred to here as pairwise ex

change scheme and all-to-all personalized communication (.A.4PC) scheme, which
are suited to the hypercube topology. Pairwise exchange scheme involves mini
mum number of communication steps, but it has memory-to-memory copy over
heads. All-to-all personalized communication scheme eliminates these overhead by

increasing the number of communication steps. Our AAPC scheme differs from 2-
phase direct pixel forwarding of Lee [53]. Our algorithm is 1-phase algorithm, i.e.,
pixels are transmitted to destination processors in a single communication phase.
Hence, our algorithm avoids the intermediate z-buffering in [53] totally.

• All of the processors are utilized actively throughout the pixel merging phase by
exploiting the interconnection topology of hypercube and by dividing the screen

among processors.

CHAPTER 1. INTRODUCTION 10

• We investigate load balancing in pixel merging phase. Two heuristics, recursive
subdivision and heuristic bin packing, were proposed to achieve better load bal
ancing in pixel merging phase. These heuristics are adaptive in that they utilize
the distribution of foremost pixels on the screen to subdivide the screen for the
pixel merging phase.

Most of the research work was performed on Intel’s iPSC/2 hypercube multicom
puter. Recently, the AAPC scheme with heuristic bin packing algorithm was ported
to Parsytec’s CC system with PowerPC processors. In the current implementation, a
hypercube topology is assumed and the topology of CC system is not exploited. Our pre
liminary results on the CC system achieves rendering rates of 300K - TOOK triangles/sec
on 16 processors.

An earlier version of the parallel polygon rendering work appears in [51].

1.4.3 Parallel Volume Rendering

In volume rendering field, image-space parallelism (Section 3.2.1) for parallel volume
rendering of unstructured grids is investigated. In image-space parallelism, the screen is
subdivided into regions. Each processor is assigned one or more subregions. The primi
tives (e.g., tetrahedrals) in the volume data are distributed among processors according
to screen subdivision and processor-subregion assignments. Then, each processor renders
its local subregions. The contributions in this thesis are the following.

• Main topic in this work is the adaptive subdivision of screen for better load balance.
Adaptive subdivision issue has not been investigated before in parallel volume ren
dering of unstructured grids. Only some researchers utilized adaptive subdivision
in parallel polygon rendering [76, 99, 65, 26] and in ray tracing/casting [5]. The
algorithms presented in this work can be grouped into two classes: 1-dimensional
array based algorithms and 2-dimensional mesh based algorithms.

• Among the 2-dimensional mesh based algorithms, graph partitioning based sub
division and Hilbert curve based subdivision algorithms are new approaches in
parallel rendering.

CHAPTER 1. INTRODUCTION 1 1

• An experimental comparison of the subdivision algorithms is performed on a com
mon frame work.

• The subdivision heuristics are employed in parallelization of a volume rendering
algorithm. The sequential volume rendering algorithm is based on Challinger’s
work [9, 10]. This algorithm is basically a polygon rendering based algorithm.
It requires volume elements composed of polygons and utilizes a scanline z-buffer
approach to resolve point location and view sort problems. In the previous works
on parallel polygon rendering, only the number of primitives in a subregion were
used to approximate the work load of the subregion. We experimentally show
that this approximation is not enough. Better speedup values can be obtained by
utilizing other criteria such as number of pixels and number of spans in a region.
By utilizing these additional criteria, the speedup values are almost doubled.

An earlier version of the parallel volume rendering work is published in [89].

1.5 Organization of the Thesis

The rest of the thesis is organized as follows.
In Chapter 2, parallel implementation of form-factor computation and solution phases

of gathering radiosity on hypercube-connected multicomputers is presented. A brief
description of iPSC/2 hypercube multicomputer, an overview of gathering radiosity and
previous work on parallel gathering radiosity are also included in this chapter.

Chapter 3 presents an overview of sequential polygon rendering. In addition, a tax
onomy of parallelism in polygon rendering is introduced. Previous works, classified with
respect to this taxonomy, are summarized in this chapter.

In Chapter 4, an object-space parallel algorithm for polygon rendering on hyper
cube multicomputers is presented. Several schemes for efficient implementation of local
rendering and pixel merging phases are described.

An overview of volume rendering for unstructured grids is presented in Chapter 5.
Previous works on parallel volume rendering of unstructured grids are summarized in

this chapter.

CHAPTER 1. INTRODUCTION 12

Spatial subdivision algorithms, developed in this thesis, for image-space parallel vol
ume rendering are described in Chapter 6.

Chapter 2

Gathering Radiosity on Hypercubes

Realistic synthetic image generation by computers has been a challenge for many years in
the computer graphics field. Realistic synthetic image generation requires the accurate
calculation and simulation of light propagation and global illumination effects in an
environment. The radiosity method [33] is one of the techniques to simulate the light
propagation in a closed environment. Radiosity accounts for the diffuse inter-reflections
between the surfaces in a diffuse environment. There are two approaches to radiosity,
progressive refinement [15] and gathering [33] methods. The gathering method (the term
radiosity method will also be used interchangeably to refer to gathering method) consists
of three successive computational phases: form-factor computation phase, solution phase
and rendering phase. The form-factor matrix is computed and stored in the first phase.
In the second phase, a linear system of ecjuations is formed and solved for each color-band
(e.g. red, green, blue) to find the radiosity values of all patches for these colors. In the
last phase, results are rendered and displayed on the screen using the radiosity values
of the patches computed in the second phase. Conventional rendering methods [95, 77]
(e.g. Gouraud shading, z-buffer algorithm) are used in the last phase to display the

results.
Gathering is a very suitable approach for investigating lighting effects within a closed

environment. For such applications, the locations of the objects and light sources in the
scene usually remain fixed while the intensity and color of light sources and/or reflectiv

ity of surfaces change in time. The linear system of equations are solved many times to

13

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 14

investigate the effects of these changes. Therefore, efficient implementation of the solu
tion phase is important for such applications. Although gathering is excellent for some
applications in realistic image generation, it requires high computing power and large
memory storage to hold the scene data and computation results. As a result, applica
tions of the method on conventional uniprocessor computers for complex environments
can be far from being practical due to high computation and memory costs.

In this chapter, parallelization of the first two phases of the gathering method is inves
tigated for hypercube-connected multicomputers. In parallel computation of form-factor
matrix, several algorithms were developed. Interprocessor communication is decreased
by sharing the memory space between matrix elements and the objects in the scene. A
demand-driven algorithm is proposed to achieve better load balance among processors
in form-factor computations. Our demand-driven approach is different from [T2, 13]. We
do not perform a conceptual partitioning of patches among processors. Thus, matrix
rows are not redistributed after the matrix is calculated. However, our scheme necessi
tates two-level indexing in matrix-vector product operations in the solution phase. .An
efficient parallel re-numbering scheme is proposed to eliminate the two-level indexing.

The previous works [12, 13, 67, 73] utilized Gauss-.Jacobi (G J) iterative algorithm
in the solution phase. We apply the more efficient Scaled Conjugate-Gradient (SCG)
algorithm in the solution phase. The non-symmetric coefficient matrix is converted into
a symmetric matrix to apply SCG . This conversion is done without perturbing the
sparsity structure of the matrix. Parallel algorithms were developed for G J and SCG
algorithms for hypercube-connected multicomputers. In addition, load balancing in the
solution phase is investigated. An efficient data redistribution scheme is proposed. This
scheme achieves perfect load balance in matrix-vector product operations in the solution
phase. We obtain high efficiency values in the solution phase using S C G with data
redistribution.

The organization of this chapter is as follows. Section 2.1 describes the computational
requirements and the methods used in the form-factor computation and solution phases.
The proposed SC G algorithm is described in this section as well. Section 2.2 briefly
summarizes the existing work on the parallelization of the gathering radiosity method.
Section 2.4 presents the parallel algorithms developed for the form-factor computation

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 15

phase. The parallel algorithms developed for the solution phcise are presented and dis
cussed in Section 2.5. Load balancing in the solution phase and a data redistribution
scheme are discussed in Section 2.6. Finally, experimental results on a 16-node Intel
iPSC/2 hypercube multicomputer are presented and discussed in Section 2.7.

2.1 Gathering Radiosity

Radiosity is based on the energy equilibrium within a closure. In this method, every
surface and object constituting the environment is discretized into small patches. Each
patch is assumed to be a perfect diffuser or an ideal Lambertian surface. The algorithm
calculates the radiosity value of each patch in the scene. The radiosity value of a patch is
defined to be the amount of light leaving that patch in equilibrium state. It is a function
of emitted and reflected light from the patch. Initially, all patches have zero initial
radiosity values. The light sources are also treated as patches except they possess non
zero initial radiosity values. In an environment discretized into N patches, the radiosity
6, of each patch “i” is computed as follows:

N
bi = e. + r, bjF,̂ (2 . 1)

where e, and r; denote the initial radiosity and reflectivity values, respectively, of patch
"i” and the form-factor Fij denotes the fraction of light that leaves the patch “i” and
incident on patch “j ” . The value of Fq depends on the geometry of the scene and it is
constant as long as the geometry of the scene remains unchanged. This linear system of
equations can be represented in matrix form as follows:

l - r i F n -I'lF n
-^2^21 1 - T2F22

-r^vF/vi - tnFm2

-riFiN

■f’2F2N
' ' ei

«2

b]̂ . e/v _

(2.2)

1 — rf^F^N

The Fa values are taken to be zero for convex patches. Assuming F„ = 0, the coefficient
matrix in Eq. (2.2) can further be decomposed into three matrices as

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 16

1 0 0 . .. 0 ^1 0 0 0 0 F n F i 3 . .. F i ;v

0 1 0 . .. 0 0 ^2 0 0 F21 0 F 2 3 .. F 2 N
0 0 1 .,.. 0 0 0 ^3 . .. 0 F 3 1 F 3 2 0 . .. F 3 n

0 0 0 1 0 0 0 . F n i F n 2 F m ·· . 0

I R

Hence, Eq. (2.2) can be re-written as follows:

C b = (I - R F) b = e (2.3)

where, R is the diagonal reflectivity matrix, b is the radiosity vector to be calculated, e
is the vector representing the self emission (initial emission) values of patches, and F is
the form-factor matrix.

2.1.1 Form-Factor Computation Phase

An approximate method to calculate the form-factors is proposed in [16], called the
hemi-cube method. In this method, a discrete hemi-cube is placed around the center of
a patch. Each face of the hemi-cube is divided into small squares (surface squares). A
typical hemi-cube is composed of 100x100x50 such scfuares. Each square “s” corresponds
to a delta form-factor (A /(s)) , which is a function of the area of the square, and the
displacement of the square in x,y or y,z directions depending on the square “s” being

located on the top face or side faces of the hemi-cube, respectively.
After allocating a hemi-cube over a patch “i” , all other patches in the environment are

projected onto the hemi-cube for hidden patch removal. The patches are passed through
a projection pipeline consisting of visibility test, clipping, perspective projection, and
scan conversion. This projection pipeline is analogous to a z-bufFer algorithm except for
the fact that patch numbers are recorded for each allocated hemi-cube surface square in
addition to z values. Then, each square “s” allocated by patch “j ” contributes A /(s) to
the form-factor Fij between patches “i” and “j ” . At the end of this process row of
the form-factor matrix F is constructed. This process is repeated for all patches in the

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 17

environment in order to construct the whole F matrix. Sum of the form-factor values in
each row of the F matrix is equal to 1 by definition.

The F matrix is a sparse matrix because a patch does not see all the patches in
the environment due to the occlusions. Almost 60%-85% of the F matrix elements are
observed to be zero in the test scenes. In order to reduce the memory requirements, F
matrix is stored in compressed form. Space is allocated for only non-zero elements of
the matrix dynamically during the form-factor computation phase. Each element of a
row of the matrix is in the form [column-id,value]. The column-id indicates the _/index
of an Fij value in the row.

2.1.2 Solution Phase

In this phase, the linear system of equations (Eq. (2.3)) is solved for each color-band.
Methods for solving such linear system of equations can be grouped as direct methods
and iterative methods. Direct methods such as Gaussian elimination and LU factoriza
tion [32] disturb the original sparsity of the coefficient matrices during the factorization.
Furthermore, direct methods necessitate maintaining a coefficient matrix and two fac
tor matrices for each color matrix for lighting simulations. As a result, direct methods
require excessive memory for the solution phase of the radiosity method.

Iterative methods start from an initial vector b® and iterate until a predetermined
convergence criterion is reached. The sparsity of the coefficient matrix is preserved
through out the iterations. Maintaining only the form-factor matrix F suffices in the for
mulations of the iterative methods proposed in this w'ork. Experimental results demon
strate that iterative methods converge quickly to acceptable accuracy values in the so
lution phase of the radiosity method. Furthermore, iterative methods are in general
more suitable for parallelization than direct methods. Hence, direct methods are not

considered in this work.
Three popular iterative methods widely used for solving linear system of equations

are Gauss-Jacobi (G J). Gauss-Seidel (GS), and Conjugate-Gradient (C G) [32]. The
computational complexity of a GS iteration is exactly equal to that of GJ scheme. In
general, GS scheme converges faster than the GJ scheme. Unfortunately, the GS scheme
is inherently sequential and hence it is not suitable for parallelization. Thus, only GJ

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 18

and C G schemes are described and investigated for parallelization in this work.

G auss-Jacobi M eth od

In the G J method, the coefficient matrix C is decomposed asC = D — L — U where D,
L and U are the diagonal, lower triangular and upper triangular parts of C respectively.
Then, the iteration equation can be represented in matrix notation as

b^+i = D " ‘ ((L + U)b* ̂+ e). (2.4)

Since C = I - R F and Fa = 0 for all i = 1,2,...,N, we have D = I and L + U = RF.
Hence, the iteration equation for the solution phase of the radiosity becomes

b^+i ^ RFb* + e. (2.5)

Recalling that the linear system of equations is to be constructed and solved for each
color band, the GJ iteration eciuations for different colors can be re-written as

= R{<',g,l>)Fh’‘ {r,g,b) + e{r,g,b). (2.6)

Note that, it suffices to store only the diagonals of the diagonal R matrix. Hence, matrix
and vector will be used interchangeably to refer to diagonal matrix. Therefore, Eq. (2.6)
clearly illustrates that the GJ algorithm necessitates storing only the original F matrix
and the reflectivity vector for each color in the solution phase. In order to minimize
the computational overhead during the iterations due to this storage scheme, the matrix
product R F , which takes 0 (A /) time, should be avoided in the implementation, where

M denotes the total number of non-zero entries in the F matrix. That is, the first term
in the right-hand-side of the Eq. (2.5) should be computed as a sequence of two matrix-
vector products X = Fb and R x, which take Q{M) and 0(A^) times, respectively. Since
M = O(N^) is asymptotically larger than N, this computational overhead is negligible.
The algorithm for G J method is given in Fig. 2.1. The computational complexity of an
individual GJ iteration is

T G j^ i2 M + 6N)Catc. (2.7)

Here, scalar addition, multiplication and absolute value operations are assumed to take

the same amount of time tcaic-

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 19

Initially, choose b°
for k = 1,2,3,...

1. form =, RFb* + e as
X = Fb*̂ ; y = Rx ; b^+' = y + e

2. r* = b*̂ +‘ - b^
3. check Norm(r*')/max(b*) < e

where Norm(r*) = |rf| and max{h^) = max{\b'-\)

Figure 2.1: Basic steps of the GJ method.

The convergence of the GJ method is guaranteed if the coefficient matrix is diagonally
dominant. In radiosity, the coefficient matrix C = I — R F satisfies diagonal dominance
since Fij — 1, Fa - 0 and 0 < r; < 1 (for each color band) for each row “i” .

Scaled C on jugate-G radient M ethod

The C G method [39] is an optimization technique, iteratively searching the space of
vectors b to minimize the objective function / (b) = 1/2 < b ,C b > — < e, b > where
b = [6i...., 6,v]/ / : R^ R and < ·, · > denotes the inner product of two vectors. If the
coefficient matrix C is a symmetric and positive-definite matrix the objective function
defined above is a strictly convex function and has a global minimum where its gradient
vector vanishes, i.e. = Cb — e = 0, which is also the solution to Eq. (2.3). The
C G algorithm seeks this global minimum by finding in turn the local minima along a
series of lines, the directions of which are given by vectors po, p i , ... in an N-dimensional
space.

As is mentioned earlier, the convergence of the C G method is guaranteed only if the
coefficient matrix C is symmetric and positive-definite. However, the original coefficient
matrix is not symmetric since c,j = r,F,j ^ TjFji — cji. Therefore, the C G method
cannot be used in the solution phase using the original C matrix as is also mentioned
in [67]. However, the reciprocity relation A{Fij = between the form factor values
of the patches can be exploited to transform the original linear system of equations in

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 20

Eq. (2.3) into
Sb = De (2 .8)

with a symmetric coefRcient matrix S = DC where D is a diagonal matrix D =
diag[Ai/ri, A 2 /t2 , ■■■, Ai>i/ri]̂. Note that matrix S is symmetric since = A{Fij =
AjFji — Sji for j ^ i. The row of the matrix S hcis the following structure

Sim — [A i F i i , , Ai/vi, A { F i ^ i ^ i , AiEiTv]

for i — 1,2,..., N. Therefore, matrix S preserves diagonal dominance since Fij = 1
and 0 < < 1 (for each color band) for each row “i” . Thus, the coefficient matrix
S in the transformed system of equations (Eq. (2.8)) is positive-definite since diagonal
dominance of a matrix ensures its positive-definiteness.

The convergence rate of the CG method can be improved by preconditioning. In
this work, simple yet effective diagonal scaling is used for preconditioning the coefficient
matrix S. In this preconditioning scheme, rows and columns of the coefficient matrix S
are individually scaled by its diagonal D = dia^[y4i/ri,..., Tyv/r^]. Therefore, the CG
algorithm is applied to solve the following linear system of equations

Sb = e (2.9)

where S = = D-i/^DCD-'/^ ^ d '/^C D -'/^ has unit diagonals, b =

D^/^b and e = Thus, the right-hand side vector D e in Eq. (2.8) is
also scaled and b must be scaled back at the end to obtain the original solution vector b
(i.e. b = D-'/^b). The eigenvalues of the scaled coefficient matrix S (in Eq. (2.9)) are
more likely to be grouped together than those of the unsealed matrix S (in Eq. (2.8)),
thus resulting in a better condition number.

The entries of the scaled coefficient matrix S are of the following structure:

Sij — <
Fij if i 7̂ j

otherwise.

The values of the scaling parameters v/r,vl,· and \JrjlAj depend only on the area and
reflectivity values of the patches and do not change throughout the iterations. Therefore,

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 21

the values of the scaling parameters can be computed once at the beginning of the
solution phase and maintained in two vectors (for each color band) representing two
diagonal matrices D i = diag[\/riAi,\/ri^A!<^] and D 2 = d гa g [^ J r ı/ A ı,^Jrt\/A,\].
The basic steps of the Scaled Conjugate-Gradient algorithm (SC G) proposed for the
solution phase of the radiosity method is illustrated in Fig. 2.2. The and r'‘ vectors
in Fig. 2.2 denote the direction and residual vectors at iteration k, respectively. Note
that, f = e — Sb*̂ must be null when is coincident with the solution vector.

The matrix-vector product = Sp*̂ looks as if the S matrix is to be computed and
stored for each color band. However, this matrix-vector product can be rewritten for

each color as

qH r,g,b) = S {r,g ,b)p\r,g ,b)

= [I - Di{r,g,b)FB2{r,g,b)]p\r,g,b)

= pH ^^g^b)-D i{r,g ,b)F D 2 {r,g,b)p^{r,g,b). (2.10)

Hence, it suffices to compute and store only the original F matrix, and two scaling vectors
Di and D2 for each color band for the SCG method. However, in order to minimize
the computational overhead during the iterations due to this storage scheme, the vector
D iF D 2 P*̂ should be computed as a sequence of three matrix-vector products, x = D 2 P*.
y = Fx and z = D jX which take 0 (A f),0 (M) and Q{N) times respectively. Since
M = 0{N^), the computational overhead due to the diagonal-matrix-vector products
X = D 2 P*, z = DiX and the vector subtraction = p*̂ — z (which also takes 0(.V)
time) is negligible. The computational complexity of a single SCG iteration is

TscG ~ (2M 18A'̂)tca/c· (2 .11)

Although the above operations convert the C matrix into a symmetric matrix, in
practice one should be careful when using the SCG method. The hemi-cube method
used in the form-factor calculations is an approximation. As a result, the form-factor
values calculated may contain numeric errors due to violation of some assumptions [7].

Therefore, the reciprocity relation may not hold due to these numerical errors, and above
operations may still result in a non-symmetric matrix.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 22

Initially, choose b® and let f° = e — Sb° and then compute < f°, f° >

for k = 0 ,1, 2 , ...

1. form q*' -- Sp* as
X = D 2P*̂ ; y = Fx ; z = Diy ; = p̂ - z

2. (a) ̂ = < p*,q^ >

(b) Q =

3. — o;q^
4. = b^ + ap^

.5. (a) 7 = < >
(b) /3 =
(c) r'̂ ^ D 2 f^ b"= ^ D 2b*̂

check Norm(r^)/maa:(b^) < e
'fc+l ^A+l(d) < > = 7

6. p*=+l = r^+1 + /3p̂

Figure 2.2: Basic steps of SC G method.

C onvergence C heck

The convergence of iterative methods is usually checked by comparing a selected norm
of the residual error vector r*̂ = e — Cb*̂ with a predetermined threshold value at each
iteration k. In this work, the following error norm is used for the convergence check

error^ — (2 .12)
ma.r(|fef|)

where | · | denotes the absolute value. Iterations are terminated when error becomes less
than a predetermined threshold value (e.g., error^ < e where e == 5x10“ ®). Note that,
the residual vector is already computed in the SCG method. On the other hand, the
residual vector = e — Cb* is not explicitly computed in the GJ scheme. However,

note that,

r* = e -C b * ' = e - (I -R F) b * = e + R F b *-b *

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 23

= (2.13)

Hence, the residual error vector r* can easily be calculated at each iteration of the GJ
scheme by a single vector subtraction operation.

2.2 Previous Work on Parallel Gathering Radiosity

There are various parallel implementations for progressive refinement and gathering
methods in the literature [12, 13, 73, 74, 14, 27, .35, 44, 24, 94, 67, 6, 22]. In this
section, parallel approaches for gathering method are summarized.

One of the approaches is by Price and Truman [73]. In their work, the gathering
method was parallelized on a transputer based architecture where processors organized
as a ring having a master processor, used for communicating with host and graphics
system, and a number of slave processors to do the calculations. Any data exchange
can be done using this ring interconnection. In their approach, they assume that total
scene data can be replicated in the local memories of the processors, hence form-factor
computations can be done without any inter-processor communication. The GJ iterative
scheme is used in the solution phase.

Another approach is by Purgathofer and Zeiller [74]. In their approach, they used a
ring of transputers. In form-factor computation phase, “receiving” patches are statically
distributed to worker proces,sors. The distribution of patches to processors are done
randomly to obtain a better load balance. The master processor sends global patch
information in blocks to first processor in the ring. Then, the patch information is
circulated in the ring. In their approach, the sparsity of form-factor matrix is exploited
and matrix is maintained in compressed form. The memory used for matrix rows and
hemi-cube information is overlapped allowing calculation of several rows of matrix at a
time in each processor. The number of rows calculated at a time decreases as more rows

allocate the memory shared with hemi-cube information.
Chalmers and Paddon [12, 13] use demand-driven approach in the form-factor com

putation phase and data-driven approach in the solution phase where data is assigned to
processors in a static manner. The target architecture is based on transputers arranged

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 24

in minimal path length structure. They discuss the trade-off’s between demand and data-
driven schemes in the parallelization of the form-factor computation phase in [67]. In
the former work [12], they addressed the need for data re-distribution for better toad
balancing in the solution phase. In their work in [13], a demand-driven approach is used
for form-factor calculation phase. In that work, the form-factor row computations are
conceptually divided evenly among the processors. The even decomposition here refers
to the equal number of row allocation to each conceptual region. Each processor is as
signed a task by the master from its conceptual region until all tasks in its region are
consumed. Idle processors whose conceptual regions are totally consumed are assigned
tasks from the conceptual regions of other processors. However, in such cases, the com
puted form-factor vectors are passed to the processors which own the conceptual region.
The GJ iterative scheme is used in the solution phases of all these works.

2.3 Intel’s iP SC /2 Hypercube Multicomputer

Intel iPSC/2 hypercube multicomputer is a distributed-memory multicomputer. Pro
cessors can perform different operations on different data simultaneously. There is no
shared memory in the system. Data exchange between processors and synchronization of
processors is done via exchanging messages between processors. A brief description of hy
percube interconnection topology [79, 75] and Intel’s iP.SC/2 hypercube multicomputer

is given here.
.A d-dimensional hypercube consists of P = 2*̂ processors (nodes) with a link between

every pair of processors whose binary addresses differ in one bit. Thus, each processor
is connected to d other processors. The hamming-distance between two processors in a
hypercube is defined to be the number of different bits between these two processors’
ids. Channel i refers to the communication link between processors whose processor ids

differ in only bit. A 4-dimensional hypercube with binary encoding of the nodes is
illustrated in Fig. 2.3. The circles in the figure represents a memory and a processor

pair.
Many other topologies, such as ring and mesh, can be embedded onto hypercube

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 25

Figure 2.3: A 16 node hypercube multicomputer

topology. Therefore, it is possible to arrange processors to the most suitable intercon
nection topology for the solution of the problem. A ring embedding and a 2-ditnensional
mesh embedding are given in Fig. 2.4 (a) and (b), respectively.

Each node processor of the iPSC/2 has 4 MBytes of local memory and 16-MHz
80386 CPU with 80387 math co-processor. The 80386/80387 pair can achieve a peak
performance of 300KFlops. Any communication on hypercube multicomputer is done
via using hardware modules called Direct Connect Modules (DCMs). Any node in the
hypercube can communicate to any other node even if they are not connected directly.
Communication between such nodes are done using the DCMs of other processors. Since
communications are handled by these hardware units, processors on the communication
route are not interrupted. The setup time (tsu) of Intel’s iPSC/2 hypercube is about 400
microseconds, and a maximum of « 2.8 MBytes can be transmitted in one second from
one processor to a neighbor processor. A host processor with 8 MBytes of memory and
with a 80386/80387 pair is also available to interface the nodes to disk and to user. This
host processor can sometimes be used for managing and synchronizing the nodes of the
hypercube. The host processor is connected to node 0 by a communication link.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 26

(a)

I ¿ ~ f __ ,
OlOD OlCl

1 101

01

1 1 10

K f 1010

(b)

Figure 2.4: (a) A ring embedding (b) A 2-dirnensional mesh embedding into a 4-
dimensional hypercube.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 27

2.4 Parallel Computation of the Form-Factor Matrix

In this section, parallel algorithms devised for form-factor matrix computation phase of
the gathering method are described. The parallel implementation of this phase requires
the decomposition and mapping of data and calculations among the processors of the
hypercube.

2.4.1 Static Assignment

In this scheme, each processor is statically assigned the responsibility of computing the
rows corresponding to a subset of patches prior to the parallel execution of this phase.
However, projection computations onto local hemi-cubes may introduce load imbalance
during the parallel form-factor computation phase. The complexity of the projection of
an individual patch onto a hemi-cube depends on several geometric factors. A patch
w'hich is clipped completely requires much less computation compared to a visible patch
since it leaves the projection pipeline in a very early stage. Furthermore, a patch with
larger projection area on a hemi-cube requires more scan-conversion computation than
a patch with a smaller projection area. Therefore, the assignment scheme should be
carefully selected in order to maintain the load balance in this phase.

In this work, we recommend two types of static assignment schemes, scattered and
random. In the scattered assignment scheme, the adjacent patches on each surface should
be ordered consecutiv’ely. Then, the successive patches in the sequence are assigned to
the processors in a round-robin fashion. That is, the first patch is assigned to processor
0, the next to processor 1, etc. When P patches are assigned, the next patch is assigned
to processor 0 and this process continues. Here, P denotes the number of processors in
the hypercube. Note that, hemi-cube fill process for the adjacent patches is expected
to take almost equal amount of computation due to the similar view-volume of adjacent
patches. Hence, scattered cissignment is expected to yield good load balance. The
scattered assignment of the patches on a regular surface (e.g. rectangular surface) is

trivial. Unfortunately, this assignment scheme may necessitate expensive preprocessing
computations for the irregular surfaces. The random cissignment scheme is recommended
if the scene data is not suitable for the preprocessing needed for the scattered assignment

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 28

scheme. In this eissignment scheme, randomly selected patches are similarly assigned
to the processor in a round-robin fashion. It is experimentally observed that random
assignment scheme yields fairly good load balance for sufficiently large ^ ratio. The
random assignment scheme is used in this work.

In both of these two assignment schemes, first (N mod P) processors in the decimal
processor ordering are assigned patches whereas the remaining processors are as
signed patches. After the cissignment, patches are re-numbered so that ^ patches
assigned to processor C are re-numbered from ^ ^ to ^ (^ -| -l) — 1. The new global num
bering (new patch-id’s) is not modified throughout the computations.

Patch C irculation

In this scheme, the host processor distributes only local patch information to node
processors. After receiving the local patch information, each processor calculates the
rows of the F matrix for its local patches. Each processor places a herni-cube around
the center of a local patch and calculates the form-factor row for that patch. The
calculation of a form-factor row requires the projection of all patches in the scene to
the respective hemi-cube. Each processor’s local patch information is circulated among
the processors so that each processor can project all patches to their local hemi-cubes.
The ring embedded hypercube structure, which can easily be achieved by gray code
ordering [75], is used for patch circulation. In the first concurrent step of the circulation,
processors send a copy of their local patch data to their left processor on the ring after
projecting this local set of patches onto their current local hemi-cube. In the following
concurrent steps, processors project the set of patches received from their right neighbor
onto their current hemi-cube and then send this set of patches to their left neighbor. If
the number of patches N is not a multiple of P, those processors having [^] local patches
require one more patch circulation phase than the processors having local patches.
Hence, those processors having patches participate in an extra patch circulation
phase, which does not include any local hemi-cube fill operation, for the sake of other
processors. The node algorithm in pseudo-code for this scheme is given in Fig. 2.5. It is
invoked with Set_of_patches = Set.oLallJocaLpatches and Maxiter =1"^].

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 29

procedure PATCH_CIRCULATION(Set_of_patches.MaxIter)
for each patch ” p” in Set_of.patches do

Place a hemi-cube around the patch ” p” ;
Project patches in Set_of_allJocaLpatches onto the hemi-cube;
/* data circulation in ring */
Current.patch.data = Set.oLallJocaLpatches;
repeat P—1 times do

Send Current.patch.data to the left neighbor processor;
Receive patch data from right neighbor processor;
Project the received patches onto the hemi-cube;
Current.patch.data = Received.patch.data;

Compute the corresponding row of the local form-factor matrix;
IterStep = Num.of_patches in the Set.of.patches;
while (IterStep < Maxiter) do

/* data circulation in ring */
Current.patch.data = Set.of.allJocal.patches;
repeat P — 1 times do

Send Current.patch.data to the left neighbor processor;
Receive patch data from right neighbor:
Current.patch.data = Received.patch.data;

IterStep = IterStep -|- 1;

Figure 2.5: The node algorithm in pseudo-code for patch circulation scheme.

Assuming a perfect computational load balance, information for 0 (^) patches is con
currently transmitted between successive processors of the ring in each communication
step. The total concurrent communication volume in a single circulation step is then
Q {^){P — 1) = Q{N). Hence, the total concurrent communication volume is
= 0 (^) · This communication overhead can be reduced by avoiding communication as
much as possible by duplicating the global patch information at each node processor.
The scheme to implement this idea is given in the following section.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 30

p roced u re AVOIDING-COMMUNICATION
for each local patch do

Place a hemi-cube around the local patch;
Project global patches onto the hemi-cube.
Calculate corresponding row of the local portion
of form-factor matrix;
if (memory is full) then

Broadcast MEMORYJFULL message to other nodes;
Calculate the number of remaining rows;
Terminate the for loop;

if (MEMORY-FULL message is received) then
Calculate the number of remaining rows;
Terminate the for loop;

Free the space allocated to non-local patch information;
Perform global maximum operation to obtain the
maximum (rnax-remaining) of the number of remaining rows;

if there are rows, not finished yet */
i f (rnax-remaining not equal to 0) then

call PATCH_CIRCULATION(Set-of_remairiingJocal_patches,max-iemaining);

Figure 2.6: The node algorithm in pseudo-code for form-factor computation by storage
sharing scheme.

Storage Sharing Schem e

Using dynamic memory allocation for the computed F matrix rows can be exploited
to share the memory needed for global patch information with the memory to be al
located for non-zero matrix elements. With such a sharing of memory, we can avoid
inter-processor communication until the memory allocated to global patch information
is required for a row of the matrix.

In this scheme, the global patch information is duplicated in each processor after
the local patch assignment and the corresponding global patch re-numbering mentioned
earlier. Then, processors concurrently compute and store the form-factor rows cor
responding to their local assignment avoiding inter-processor communication until no
more memory can be allocated for the new row. The node algorithm in pseudo-code

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 31

for this method is given in Fig. 2.6. If a processor cannot allocate memory space for
storing the computed from-factor row, it broadcasts MEMORYJFULL message so that
other processors can switch to communication phase as soon as possible and run patch
circulation scheme. Each processor, which receives the message or which cannot allocate
memory, calculates the number of remaining local rows to be computed. Before starting
to patch circulation, the space allocated to global patch information is deallocated (only
space allocated to local patches is not freed) to obtain space for the remaining rows.
Note that the patch circulation should be performed until all remaining rows of the F
matrix are calculated. Therefore, the data circulation phase in patch circulation scheme
(Fig. 2.5) should be repeated by the number of times equal to the maximum of the num
ber of unprocessed patches remaining. This number can be found by performing a global
maximum operation on the number of remaining patches in each processor after the for
loop (Fig. 2.6) is terminated. The global maximum operation recjuires log2 P concurrent
exchange communication steps and its communication structure is the same as that of
the global concatenate operation illustrated in Fig. 2.8.

2.4.2 Demand-Driven Assignment Scheme

This approach is an attempt to achieve better load balance through patch assignment
to idle processors upon request. The scheme proposed in this work differs from the
approach used in [12, 13]. Unlike their scheme, no conceptual division of patches is done.
When a patch is processed by a processor, the computed form-factor row remains in
that processor. In this scheme, each node processor demands a new patch assignment
from the host processor as soon as it computes the form-factor row(s) associated with
the previous patch assignment. Host processor sends the necessary information for a
predefined number of patch assignments to the requesting node processor. The number
of patch assignments at a time is a factor affecting the performance. The number of
node-to-host and host-to-node communications decre<ise with increasing number of patch
assignments at a time. However, this may decrease the quality of load balance.

Each node processor keeps an array to save the reflectivity and emission values of the

processed patches. The global ids of the processed patches are also saved in an array to
be used in the solution phase. In addition, each processor holds the information for all

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 32

patches in the scene to avoid inter-processor communication as is explained in storage
sharing scheme. Host processor behaves as a master. It is responsible for supplying
demands and synchronizing nodes between different phases. The host program maintains
an array for global patch information and keeps account of the remaining patches to be
processed. All node processors are synchronized by the host processor when one or more
of the nodes’ memory becomes full and processors have to switch to patch circulation
mode. Host is also responsible for the termination of form-factor computation phase.

2.5 Parallel Solution Phase

This section describes the parallel GJ and SC G algorithms developed for the solution
phase. The parallel implementation of the solution phase is closely related to the schemes
used in the form-factor matrix computation phase because patch distribution, thus row-
distribution, to processors differs in each scheme. In the following sections, parallel
algorithms for the solution phase are described assuming static a.ssignment scheme is used
in the parallel form-factor computation phase. An efficient parallel renumbering scheme
is described in Section 2.5.3 to adapt these algorithms if demand-driven assignment
scheme is used in the parallel form-factor computation phase.

2.5.1 Parallel Gauss-Jacobi Method

The G J algorithm formulated (Fig. 2.1) for the solution phase has the following basic
types of operations; matrix-vector product (x = Fb*), diagonal-matrix vector product
(y = Rx), vector subtraction/addition operations = y -f e, r*’ = — b*),
vector norm and maximum operations (step 3). All of these basic operations can be

performed concurrently by distributing the rows of the form-factor matrix F, and the
corresponding diagonals of the R matrix and the corresponding entries of the b and
e vectors. In the parallel form-factor computation phase, each processor computes the
complete row of form-factors for its local patches. Hence, each processor holds a row slice
of the form-factor matrix at the end of the form-factor computation phase. Thus, the

row partitioning required for the parallelization of the solution phase is automatically
achieved in the form-factor computation phase. The slices of the R, b and e vectors are

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 33

Initially, choose
for k = 1,2,3,...

1. (a) perform global-concatenate on
(b) "X-local — F/oca/b /̂ota/
(c) ylocal ~ B-local^local

(^) ^local ~ ylocal "I" ^local

^global

~k _ K*+l _ Kfc
^local ^^local ^local

3. (a) (Tiocai = Norm(rf„^„;)
^localmax ^^^^i}^local)

(b) perform one global-sum-max operation to compute
^local ̂^global 3.nci blocalmax ̂ bglobalmax

check O^globallbglobalmax ^ ^

F’igure 2.7: Parallel GJ algorithm.

mapped to the processors accordingly. Each processor is responsible for updating its own
slice of the global b vector in a local B array (of size N /P) at each iteration. Figure 2.7
illustrates the parallel GJ algorithm. In an individual GJ iteration, each processor
needs to perform a local matrix-vector product which involves ^ inner products of its
local rows with the global b vector. In order to perform this matrix-vector product, the
whole b vector computed in a distributed manner in a particular iteration is needed by
all processors in the next iteration. This requirement necessitates the global concatenate
operation which is illustrated for a 3-dimensional hypercube topology in Fig. 2.8. In the
global concatenate operation each processor I moves its local b array to the slice of
a working array GB of size N. Then, log2 P concurrent exchange communication steps
are performed between neighbor processors over channels j = 0 ,1 ,2 ,..., /0 ^2 ^ — 1 as
is illustrated in Fig. 2.8. Note that the amount of concurrent data exchange between
processors is only ^ in the first step and it is doubled at each successive step. That is,
at the communication step, processors exchange the appropriate slices of size 2̂ ·'“ ^^ ̂

of their local GB array over channel j — 1. Therefore, the total volume of concurrent

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 34

CoBununicatifMi orcr channel 0 .

Shaded segments are exchanged between processors.

Figure 2.8: Global concatenate operation for a 3-dimensional hypercube.

communication is

log-2P-i 2>yy
Volume o f communication — ^ —

j=o P

(P - 1)Â
words. (2 1-1)

The distributed vector add/subtract operations are performed concurrently as local vec
tor operations on vectors of size ^ without necessitating any interprocessor communi
cation. The partial sums computed by each processor must be added to form the global
sum to compute the vector norm |r,|). In addition, local biocaimax values should
be compared to obtain the global maximum {bgiobaimax)· Furthermore, the results should
be distributed to all processors in order to ensure the termination at the same iteration.
The distributed global norm operation can be performed by global-sum operation. The
exchange-communication sequence of the global-sum operation is exactly the same as
that of global-concatenate operation. The only difference is the local scalar addition op

eration performed after each exchange communication step [4] instead of the local vector

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 35

concatenate operation. This local scalar operation involves the addition of the received
partial-sum to the current partial-sum. Similarly, distributed global maximum can be
found by using global-max operation. The global-max operation can be done by replacing
the local scalar addition operation with comparison operation in global-sum operation.
Performing global-sum and global-max operations successively requires 2log2P set-up
time. Fortunately, this set-up time can be decreased to log2 P by combining global-max
and global-sum operations into a single global operation (global-sum-max). In this global
operation, partial sums and current maximums are exchanged after each exchange com
munication step. Therefore, assuming perfect load balance, the parallel computational
complexity of an individual G J iteration is

12M 6N P
Tq J ~ { —p H —j^)lcalc + ‘̂ log2Ptsu + (---p -N -f 2log2P)t tr · (2.15)

As is seen from this equation, communication overhead can be considered negligible for
sufficiently large granularity (i.e. M jP ^ N). Note that this equation is equivalent to
Eq. (2.7) for P = 1.

2.5.2 Parallel Scaled Conjugate-Gradient Method

The SC G algorithm formulated (Fig. 2.2) for the solution phase has the following
basic types of operations: matrix-vector product (y = Fx), diagonal matrix-vector prod
ucts (x = D 2 P^, z = Diy), vector subtraction (q '̂ = p^ —z), inner-products (< >,
< p*^,q* >), vector update operations in steps 3. 4, and 6, and vector norm and
maximum operations for the convergence check. All of these basic operations can be
performed concurrently by distributing the rows of the F matrix and the corresponding
entries of the e, Di, D2, x, y, z, b, p, f, and q vectors.

As discussed in parallel G J algorithm, during parallel form-factor computation phase,
the rows of the F matrix is assigned to the processors automatically. With such a map

ping each processor stores its own (local) row slice of the F matrix and the corresponding
slices of the e, D i, and D 2 vectors. Furthermore, each processor is responsible for up
dating its local slices of the x, y, z, b, p, f, q vectors. Figure 2.9 illustrates the parallel
S C G algorithm.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 36

for k = 0 ,1 ,2 ,...
1. (a) "X-local — ^2(local)Plocal

(b) perform global-concatenate on Xiocai -
(^) ylocal — Elocal^global

(d) 'Zlocal ~ IAi(^local)ylocal

(®) Q/oca/ Plocal ^local

2. (a) Ol^cal = < P foca h ^ L a l >
(b) perform global-sum on Olocal —>· Oglobal

(c) Oigloi)al —^ r , f '^global /^global

•3· rfoVal ^ical - <̂ globalf\Lal

ĝlobal

4· - f QglobalPfocal

5. (a) Xlacal —
(b) rf̂ ca/

^locah ^local ^

D2rfoca/> ^hcal 0 2 h ilocal

local/hiocaimax = aiocai = Norm(r
(c) perform one global operation to compute

^local ̂ ^global ? ^local ̂ ^globah, ^localmax

check (Jglobal / ^globalmax ^
(d) ¡̂ global ~ ĝlobal! <C f , F ĝlobal
(e) <C f ^ 7 f ^global— ^global

6· Pfoca/ = + 0globaiplcal

^globalmax

Figure 2.9: Parallel SCG method.

A sequence of distributed matrix and vector computations are needed for the dis
tributed computation of the vector. To perform the diagonal matrix-vector products

X = D2P*^ and z = D i y , processors concurrently compute their local Xiocai and Ziocai vec
tors by performing element-by-element product of pairs of local vectors which correspond
to their slices of the global D 2 ,p*̂ and D i ,y vectors, respectively. Thus, distributed di
agonal matrix-vector product does not necessitate any interprocessor communication.
As is also the case in the GJ method, the distributed computation of the matrix-vector
product y = Fx necessitates global-concatenate operation on the local Xhcai vector stored
in a local array X of size N /P in each processor. Then, processors concurrently compute
their local yiocai vectors by multiplying a local matrix corresponding to their slice of

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 37

the F matrix with the global Xgiobai vector, collected in an array G X of size N in their
local memories after the global-concatenate operation. Finally, processors concurrently
compute their local vectors by performing local vector subtraction operations.

All processors need the most recently updated values for the global scalars Qgiobai
and ĝlobal in order to perform their local vector updates in steps 3, 4, and 6. As is
seen in steps 2 and 5, the update of these global scalars involve the computation of
the inner-products < q*,p* > and < > at each iteration. Hence, all pro
cessors should receive the results of these distributed inner-product computations. In
order to perform these distributed inner-products, processors concurrently compute the
local inner-products (partial sums) corresponding to their slices of the respective global
vectors. Then, the inner-product result is accumulated in the local memory of each pro
cessor by performing a global-sum operation. At the end of the global-sum operation,
processors can concurrently compute the same value for the global scalars Ogiobai and
ĝlobal using these global inner-product results. In steps 3. 4, and 6, processors concur

rently update their local b/oca/, Iiocai and Phcai vectors. Note that the distributed norm
and maximum operations also necessitate global-sum-max operation after all processors
concurrently compute their local (partial) error norms and maximums which correspond
to the norm/maximum of their slices of the global г and b vectors. Fortunately, these
operations and the global inner-product < > can be concurrently accumulated
in the same global operation to avoid the extra log2 P set-up time overhead. In this global
operation, one local maximum and two partial sums are exchanged in each step of the
log-2 P concurrent exchange steps. Therefore, assuming perfect load balance, the parallel
computational complexity of an individual SCG iteration is

2M ISN P - 1
TsCG ~ i~ p ~ ----p “)̂ ca/c + 3log2Ptsu + (—p N -f Alog-iP)ttr· (2.16)

.As is seen from this equation, communication overhead can be considered negligible for
sufficiently large granularity (i.e. M/P ^ A'̂).

2.5.3 A Parallel Renumbering Scheme

In the form-factor computation phcise in static assignment scheme, patches are renum
bered and assigned to the node processors such that processor i has patches from Ipi to

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 38

+ 1) — 1 for ̂ = 0,1,2,..,P — 1. Therefore, the exchange sequence together with the
local concatenate scheme in the global-concatenate operations at step 1(a) of parallel GJ
algorithm and step 1(b) of parallel SC G algorithm maintains the original global patch
ordering of the static assignment scheme in the local copies of the global vectors. Dur
ing the concurrent local matrix vector products, the appropriate entries in the current
global vectors collected in local GB (in G J) and GX (in SCG) arrays can be accessed
for multiplication by indexing through the column-ids of the local non-zero form-factor
values. Unfortunately, this nice consistency between the global patch numbering and the
global F matrix row ordering among the processors is disturbed in the demand-driven
assignment scheme. So, the demand-driven assignment scheme necessitates two level
indexing (indirections) for each scalar multiplication involved in the local matrix-vector
products at each iteration. We propose an efficient parallel renumbering scheme to avoid
this two-level indexing.

During the form-factor matrix computation phase of the demand-driven assignment
scheme each processor saves the global-id of the patches it receives from the host pro
cessor in a local integer array ID. After the form-factor computation phase, a global-
concatenate operation on these local arrays is performed to collect a copy of global GID
array in each processor. Note that the collection operation is done in the same way as the
global-concatenate operation to be performed on the local B (in G J) and X (in SCG)
arrays during the iterations. Hence, there is a one-to-one correspondence between the
GB {GX) and G/Z) arrays such that the radiosity value in GB[i] (GA'[i]) belongs to the
patch whose original global-id=G'/D[i]. Then, each processor constructs the same permu
tation array PERM o(size N, where PERi\I[GID[i]] = i (for i=l,2,...,A^) by performing
a single for-loop. Here, PERM[i] denotes the new global-id for the patch in the
original global numbering. Then, each processor concurrently updates the colicmnJd
values of all its local non-zero form-factor values using PERM array as column Jd =
PERM[columnJ,d\. Note that this renumbering operation is performed only once as
a preprocessing step just before the solution phase, and it is not repeated when the
reflectivity and/or emission values are modified.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 39

2.6 Load Balancing in the Solution Phase: Data Redistribu
tion

Assigning equal number of rows of matrix F and the corresponding vector elements
suffices to achieve perfect load balance during the distributed vector operations involved
in the GJ and S C G iterations. However, the computational complexities of individual
G J and SC G iterations are bounded by the distributed matrix-vector products Fb and
Fx, respectively. So, the load balance during the distributed matrix-vector products
is much more crucial than that of the vector operations. Since we exploit the sparsity
of the F matrix in the matrix-vector products, the load balance in these computations
can only be achieved by assigning equal number of non-zero entries of the F matrix to
processors.

The factors that effect the load balance in the form-factor computation and the
solution phases are not the same. The assignment schemes mentioned earlier for the
form-factor computation phase aim at achieving load balance on the hemi-cube fill op
erations associated with the patches. However, even if two patches require almost equal
time for the hemi-cube fill operation, the number of non-zero entries in the respective
rows may be substantially different. Thus, an assignment scheme (e.g., demand-driven
assignment) which yields near perfect load balance in the form-factor computation phase
may not achieve a good load balance during the solution phase. Furthermore, it is not
possible to achieve perfect load balance in the form-factor computation phase through
static assignment since the amount of projection work is not known a priori. However,
once the sparsity structure of the F matrix is determined at the end of the form-factor
computation phase, static re-assignment can be utilized for better load balancing in the
solution phase. In other words, a redistribution of F matrix entries is needed for better
load balance during the distributed matrix-vector product operations. There are vari
ous data redistribution schemes in the literature [43, 78]. The main objective in those
schemes is to achieve a data redistribution in such a way that the number of data el
ements in different processors differ at most by one. However, these schemes do not
assume any hierarchy among the data elements. In our case, data elements belong to
the rows of the F matrix and it is desirable to minimize the subdivision of rows among

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 40

the processors because subdivided rows may require extra communication during the so
lution phase. Furthermore, the data movement necessitated by the redistribution should
be minimized to minimize the preprocessing overhead for the solution phase.

2.6.1 A Parallel Data Redistribution Scheme

In this section, an efficient parallel redistribution scheme is proposed. This scheme
allows at most one shared row between successive processors in the decimal ordering
(i.e. between processors I and 1 for ^=0,1,..,P — 2). That is, each processor T except
the first and the last processors (0 and P —1, respectively), may share at most two rows,
one with processor i —i and one with processor £+1. The processors 0 and P —1 may
share at most one row with processors 1 and P —2, respectively. Recall that successive
processors in the decimal ordering hold the successive row slices of the distributed F
matrix. We assume a similar global implicit numbering for the non-zero entries of the
distributed F matrix. Non-zero entries in the same row are assumed to be numbered in
the storage order. Non-zero entries in the successive rows are assumed to be numbered
successively. Hence, the global numbers of the non-zero entries in processor is
assumed to follow those of processor i.

In the parallel re-assignment phase, a global-concatenate operation is performed on
the local F matrix non-zero entry counts so that each processor collects a copy of the
global integer OLPMTP array of size P. At this stage, OLDMAP[i] denotes the num
ber of non-zero entries computed and stored in processor £ for £ = 0,1,..,P—1. Then,
processors concurrently run the prefix-sum operation on their OLDMAP array. After
the prefix sum operation, OLDMAP[i—l]+ l ■ ■ ■ OLDMAP[I] denotes the range of non
zero entries computed and stored in processor £ in the assumed ordering. Note that
OLDMAP[P—l] = M yields the total number of non-zero entries in the global F matrix.
Then, all processors concurrently construct the same integer NEWMAP array of size P,
where N ElVM AP[i]^\f] for £=0,l,...,(iV/ mod P) - l and N EW M AP[i]=[f\ for £ -(M
mod P),...,P —1. At this stage, NEWMAP[I] denotes the number of non-zero entries
to be stored in processor £ after the data redistribution. Then, processors concurrently
run the prefix-sum operation on their NEWMAP array. Therefore, after the prefix-sum
operation N EW M AP[t-l]+\ ··· NEWMAP[i] denotes the range of F matrix non-zero

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 41

entries to be stored in processor i in the assumed ordering after the redistribution. Each
processor, knowing the new mapping for their current local non-zero entries, can easily
determine its local row sub-slices to be redistributed and their destination processor(s).
Similarly each processor, knowing the old mapping for their expected mapping after the
data redistribution, can easily determine the source processor(s) from which it will re
ceive data during the redistribution and the volume of data in each receive operation.
However, sending processors should append the row structure of the data transmitted
in front of the messages during the data redistribution phase. Note that consecutive
row data is transmitted between processors and only the first and/or last rows of the
transmitted data may be partial row(s). The receiving processors store the received
data in row structure according to the global row ordering by performing simple pointer
operations.

At the end of the data redistribution phase, the number of non-zero entries stored
by different processors may differ at most by one. Thus, perfect load balance is achieved
during the distributed sparse matrix-vector product performed at each iteration of both
GJ and SCG methods. However, shared rows need special attention during these dis
tributed matrix-vector product operations. Consider a row “i” (in global row number
ing) shared between processors £ and -̂f-1. This row corresponds to the last and first
(partial) local rows of processors £ and respectively. During the distributed matrix-
vector product these two processors accumulate the partial sums which correspond to
the inner-products of their local portions of the row of the F rnatri.x with the global
right-hand-side vector. These two partial sums should be added to determine the
entry of the resultant left-hand-side vector. As a result, row sharing necessitates one
concurrent interprocessor communication between successive processors after each dis
tributed matrix-vector product. In the proposed mapping, the computations associated

with the vector entries corresponding to the shared rows between processors £ and £+1
are assigned to the processor -̂f-1 for ^=0,1,...,P—2. Processors concurrently send the
partial inner product results corresponding to their last local row (if it is shared) to the
next processor in the decimal ordering. Only a single floating-point wwd is transmit
ted in these communications. Thus, this concurrent shift-and-add scheme for handling

shared rows introduces t,̂ -\-ttr-\-tadd concurrent communication and addition overhead

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 42

per iteration of both G J and SCG algorithms.

2.6.2 Avoiding the Extra Setup Time Overhead

We propose an efficient scheme for the GJ method which avoids the extra setup time
overhead by incorporating this extra communication into the global concatenation oper
ation. In the proposed scheme, the global-concatenate operation is performed on
array after step 1(d) (Fig. 2.7) instead of on array at step 1(a). That is, the global-
concatenate operation is actually performed for the next iteration. Note that the first
and/or last entries of the Xhcai array may contain partial results at the end of step 1(b)
due to the row sharing. Processors propagate these partial results to their arrays
through steps 1(c) and 1(d). So, the first and/or last entries of the array may con
tain partial results just before the global-concatenate operation modified to handle these
partial results. The exchange and local concatenate structure of the modified global-
concateriate operation is exactly the same as that of the conventional one. However,
just after the concurrent exchange step over channel j, processors whose bit of their
processor ids are 1(0) add the last(first) entry of the received array to the first(last) en
try of their local array in addition to proper local concatenate operation if this location
contains partial result. The concurrent addition operation after the exchange step over
channel j corrects the partial result corresponding to the shared rows between successive
processors of hamming-distance “j - f l ” for j=0,l,..../o5r2P—1. The proposed modification
introduces an overhead of {ttT+tadd)iog2 P to each global-concatenate operation. Since
tsu ^ ttT in medium-to-coarse grain parallel architectures (e.g., iPSC/2), the modified
global-concatenate scheme performs much better than the single shift-and-add scheme.
In SC G method, similar approach can be followed to incorporate the extra communica

tion overhead due to the shared rows into global inner-product operation at step 2(a)-(b)

in Fig. 2.9.

2.7 Experimental Results

The algorithms discussed in this chapter were implemented (in C language) on a 4-
dimensional Intel iPSC/2 hypercube multicomputer. These algorithms were tested on

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 43

Table 2.1: Relative performance results in parallel execution times (in seconds) of dif
ferent parallel algorithms for the form-factor computation phase. N is the number of
patches in the scene and M is the number of non-zero entries in the form-factor matrix.

scene
static assignm ent

patch
circulation

storage
sharing

dem and
driven

N M P random random tiled

2600 1804647 16 1.560.0 1193.6 1539.4 1149 .9
8 304 6 .4 2 3 8 0 .7 3024 .9 2299 .5

2208 1468.539 16 1227 .8 9 7 7 .5 1203.5 929.1
8 2 3 8 3 .4 1911 .2 2365 .5 18.57.3

16 7 5 7 .6 565 .5 751.0 530 .2
1728 746779 8 1450.9 1099.0 1482.3 1059.0

4 271 9 .5 216 1 .5 2909 .9 2110 .8

16 •564.9 4 4 3 .6 •535.4 423 .9
1412 4619 47 8 1078.1 867.1 994.0 843 .9

4 203 2 .6 1700.7 1923.0 1684.9
2 3 7 6 4 .7 .3399.2 3594 .3 3365 .3

16 3 2 2 .8 263 .7 309.9 251.2
1000 342003 8 616.1 512 .3 621.8 4 9 9 .7

4 1173.8 1012.5 1149.3 996.8
2 219 1 .2 201 4 .4 2223.8 1993.0

16 2 7 4 .4 224 .8 2.54.8 215.5
886 303146 8 519.1 4.39.0 492.3 428.9

4 9 9 7 .2 870 .2 955.7 8.53.9
2 1858.5 1719.0 18.58.3 1708.1

different room scenes containing various objects discretized into different number of
patches ranging from 496 to 2600 patches. In the tables, N is the number of patches in
the scene, M is the number of non-zero entries in the form-factor matrix, and P is the
number of processors.

Table 2.1 illustrates the relative performance results of different parallel algorithms
for the form-factor computation phase. The execution times of different algorithms are

also illustrated in Fig. 2.10(a) for 16 processors. Parallel timing results for the random
assignment scheme denote the average of 5 different executions for different random
assignments. As is seen in the table, storage sharing scheme gives better performance
results compared to the patch circulation scheme. In the storage sharing scheme, random

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 44
Efficiency Cun/es for Form-Factor Computation PhaseExecution Times for Form-Factor Computation Phase

Number of Procesaors « 1 6

Scene Complexity (Number of Patches)

(a) (b)

Figure 2.10: Form-factor computation phase, (a) Execution times for different schemes
on 16 processors, (b) EfRciency curves for different schemes.

decomposition yields better load balance than the tiled decomposition as is expected.
However, tiled assignment in storage sharing scheme yields better results in most of the
test instances (e.g., 15 out of 19) than the random assignment in patch circulation due
to the decrease in communication overhead. As seen in Table 2.1 and in Fig. 2.10(a),
demand driven scheme always performs better than the static a.ssignment scheme due
to better load balance. Note that experimental timing results for some of the instances
are missing for small number of processors due to insufficient local memory sizes. The
sequential timings could only be obtained for the smallest size scenes with N = 886 and
N = 1000 as 3418.7 seconds and 3981.3 seconds, respectively. The efficiency curves for
these scenes are illustrated in Fig. 2.10(b). Demand-driven scheme yields almost 0.99
efficiency even for these two small scenes on a hypercube with 16 processors.

The effects of the assignment granularity on the form-factor computation and so
lution phases for the demand driven assignment scheme are also experimented. The
results of these experiments are displayed in Figure 2.11. The assignment granularity
denotes the number of patches assigned and sent to the requesting idle processor by the
host processor. Small eissignment granularity (e.g., single patch assignment) gives better
performance in parallel form-factor computation phase due to the better load balance in

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 45

Effect of the A ssig n m en t Granularity
form-factor computation phase

Effect of the A ssignm en t Granularity
solution phase

Figure 2.11: The effect of the assignment granularity on the performance (execution time
in seconds) of the demand driven scheme for N = 886, P = 16.

spite of the increased communication overhead. Therefore, we can deduce that the cal
culation of a single form-factor row is computationally intensive and hence load balance
is a more crucial factor than the communication overhead in this scheme. .4s is also seen
in the figure, a similar behavior is observed in the solution phase when redistribution
of non-zero entries is not done. Note that higher granularity means a processor will
generate more rows for a single request. Hence, the number of non-zero entries in the
local slices of F matrix in each processor may be substantially different, incurring more
load imbalance in the solution phase for higher granularity values. As is expected, when
data redistribution is applied, the execution time of the solution phase remains constant
irrespective of the assignment granularity.

Table 2.2 illustrates the performance comparison of various schemes in the solution
phase along with the associated overheads. As is expected, data redistribution achieves
performance improvement due to better load balancing in spite of the preprocessing
overheads. The overall performance gain will be much more notable for repeated solu
tion operations as is required in lighting simulations since the data redistribution is to
be performed only once for such applications. As is seen in this table, the time spent
for renumbering and data redistribution operation is substantially smaller than even

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 46

Table 2.2: Parallel execution times (in seconds) of various schemes in the solution phase
(using G J) along with the associated overheads. TOT is the total execution time includ
ing overheads, i.e. TOT = (solution + preprocessing) time. N is the number of patches
in the scene and M is the number of non-zero entries in the form-factor matrix.

scene

P

static
rand.

dem and driven |
no redistribution redistribution |

T O T
preproc.

tim e
solution

tim e T O T
preproc.

tim e
solution

tim e T O T
N M renum. iter. total renum. redist. iter. total

16 28.3 0 .149 0.371 28.2 28 .3 0 .138 0 .170 0 .346 26.3 26.6 1
1412 4 6 2 K 8 54 .2 0 .257 0 .699 53.1 53.3 0 .250 0 .117 0 .680 51 .7 .52.1 1

4 104.9 0 .484 1.368 104.0 104.5 0 .477 0 .130 1.350 102.6 103.2
2 207.8 0 .935 2 .6 9 7 205.0 205.9 0 .932 0 .049 2 .691 204.5 205.5 1

16 18.2 0 .114 0 .2 8 0 17.9 18.0 0 .104 0 .093 0 .263 16.8 17.0 1
1000 .342 К 8 34.8 0 .195 0..523 33.5 33 .7 0 .189 0 .117 0 .514 32 .9 33.2

4 66.8 0 .364 1.030 65.9 66 .3 0..3.59 0 .085 1.020 65 .3 65.7
2 131.3 0 .708 2 .045 130.9 131.6 0 .702 0 .024 2 .042 130.1 130.9 1

16 16.0 0 .099 0 .2 4 2 15.0 15.6 0 .095 0 .074 0.2.30 14.7 14.9 1
886 303K 8 30.2 0 .173 0 .463 29.6 29.8 0 .167 0 .078 0.4.52 28 .9 29.2

4 58.2 0 .3 2 0 0 .9 0 3 57.8 .58.2 0 .316 0.0.38 0 .894 .57.2 •57.6
2 115.3 0 .627 1.811 115.9 116.5 0 .617 0 .030 1.783 114.1 114.8

the solution time per iteration and yields considerable performance increase during the
parallel solution. For example, by spending almost 0.6% of solution time in data re
distribution, we reduce the total solution time by almost 7.1% on 16 processors for the
scene with N = 1412 patches. The relative performance gain achieved by adopting data
redistribution is expected to increase with increasing number of processors. Table 2.2
also illustrates the decrease in the execution time of the parallel renumbering operation
whenever the data redistribution operation is performed. This is due to the fact that
load balance metric in both parallel renumbering and matrix-vector product operations
are exactly the same, i.e. equal number of non-zero matrix elements in each processor.

Table 2.3 illustrates the performance comparison of the Gauss-Jacobi and Scaled
Conjugate-Gradient methods for the parallel solution phase. Note that experimental

timing results for some of the instances on small number of processors are missing due
to the insufficient local memory size. However, sequential timings for the scenes with

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 47

Figure 2.12: EiBciency curves for the SC G method.

N = 1728, 2208, 2600 patches are estimated using the sequential complexity expressions
given in Eq. (2.7) and (2.11) and using tcaic = 5.87 microseconds for the sake of efficiency
computations. The number of iterations denote the total number of iterations required
for convergence to the same tolerance value (5x10“ ®) for three color bands (i.e., red,
green, blue). As is seen in Table 2.3, an individual SC G iteration takes more time than
that of GJ iteration. However, the SCG method converges much faster than the GJ
method as is expected. Therefore, we recommend the parallel SC G method for the
solution phase. Figure 2.12 illustrates the efficiency curves of the SC G method. .As
is seen in this figure, the efficiency remains above 86% for sufficient granularity (i.e.,
M lP > 11148).

2.8 Conclusions

In this work, a parallel implementation of gathering method on hypercube-connected
multicomputers has been discussed. Several algorithms have been developed for the
form-factor computation and solution phases.

In the form-factor computation phase, it has been illustrated that it is possible to
reduce the interprocessor communication by sharing the memory space for rows of the

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 48

tbnii-factor nicitrix with global patch data. It is also observed that demand-driven ap
proach, in spite of its e.xtra communication overhead, achieves better load balancing and
hence better processor utilization. Therefore, we conclude that demand-driven approach
is more suitable for the form-factor computation phase.

In the solution phase, almost perfect load balance has been achieved b}̂ an efficient
data redistribution scheme. This scheme brings negligible communication overhead while
mcuntaining much better load balancing during the iterations. The powerful Scaled
Conjugate-Gradient method has been successfully applied in the solution phase. VVe
conclude that the Scciled Conjugate-Gradient method is a much better alternative to the
conventional Gauss-.Jacobi method for the parallel solution phase.

Although the target architecture is hypercube-connected multicomputer in this work,
algorithms developed can be adopted for other interconnection topologies (e.g., rings
and meshes). Static assignment schemes for the form-factor computation phase need
no modification if a ring can be embedded on the target architecture. Demand-driven
scheme uses the host processor of iPSC/2 to process patch requests from node processors.
If there is no separate host processor in the parallel machine, one of the node processors
can process patch requests from other processors in addition to calculating form-factor
values. It is likely that this additional work on that node processor will degrade the
performiince. However, it can be expected that performance decrease will not be high
because processing a request is not very computation intensive. It only involves selecting
a patch from global patches and sending it to the requesting node processor. In the
solution phase, communication structures of the global operations in parallel GJ and
SC G scliernes need to l)e modified for the target architecture.

CHAPTER 2. GATHERING RADIOSITY ON HYPERCUBES 49

Table 2.3: Performance comparison of parallel Gauss-Jacobi and Scaled Conjugate-
Gradient methods (1* denotes the estimated sequential timings). Timings are in seconds.
N is the number of patches in the scene and M is the number of non-zero entries in the
form-factor matrix.

scene Gauss-Jacobi Scaled Conjugate-Gradient
exec. time # o f exec. time # o f

N M P total iter. iter. total iter. iter.
16 124.0 1.35 92 54.1 1.39 39

2600 1804647 8 246.2 2.68 92 106.7 2.74 39
1* 1957.6 21.28 92 837 21.47 39
16 102.1 1.10 93 46.4 1.13 41

2208 1468539 8 202.6 2.18 93 91.3 2.23 41
r 1610.6 17.32 93 716.4 17.47 41
16 51.5 0.57 91 23.6 0.59 40

1728 746779 8 101.6 1.12 91 46.1 1.15 40
4 202.0 2.22 91 91.0 2.28 40
1* 803.4 8.83 91 358 8.95 40
16 12.6 0.15 87 6.1 0.16 38
8 24.2 0.28 87 11.4 0.30 38

1188 178374 4 47.4 0.55 87 21.9 0.58 38
2 93.9 1.08 87 43.1 1.13 38
1 186.7 2.15 87 83.5 2.20 38

16 4.1 0.05 89 2.4 0.06 41
8 7.1 0.08 89 4.0 0.10 41

880 45889 4 13.3 0.15 89 7.1 0.17 41
2 26.1 0.29 89 13.6 0.33 41
1 51.4 0.58 89 25.8 0.63 41

16 4.8 0.06 83 2.5 0.07 38
8 8.8 0.11 83 4.4 0.12 38

496 66900 4 17.2 0.21 83 8.4 0.22 38
2 33.8 0.41 83 16.4 0.43 38
1 67.0 0.81 83 31.5 0.83 38

Chapter 3

Polygon Rendering: Overview and Related
Work

In this chapter, an overview of sequential polygon rendering is given and previous works
on parallel polygon rendering algorithms are summarized.

3.1 Sequential Polygon Rendering

In simple terms, polygon rendering is the process of displaying three dimensional objects
and scenes composed of polygons. It is basically a pipeline of operations applied to the
polygons and objects in the scene to produce a realistic picture on the computer screen.
This pipeline is illustrated in figure 3.1.

3.1.1 Reading Environment Description

At this step, the environment description is read into the computer. The description
of the environment is converted into a suitable form to perform other operations in
the pipeline. For example, if there are objects or surfaces in the environment that

are not planar polygons, these objects and surfaces are approximated by polygons. A
polygon is defined by a set of vertices, a set of vertex normals, a surface normal and
refiectivity values for red, green and blue colors. Figure 3.2 illustrates a polygon with 5
vertices. The set of vertices is represented as an ordered list of points, with 3-dimensional
spatial coordinates as (x , y , z) in world coordinate system. Two successive vertices in

50

CHAPTERS. POLYGON RENDERING: OVERVIEW AND RELATED WORK 51

Figure 3.1: The polygon rendering pipeline.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 52

Pol̂ oStnictiire;

Lislofftflias V1,V;V3,V4,V5|

Verta Nonuk VNl, VN; VN3, VN4, VN5;

SurCmNoninlSN;

ReftcliTitj nJMs Vl(Rl,GI3IUV5(ll5i535)

Figure 3.2: A polygon with 5 vertices.

the list define an edge of the polygon. Although the surface normal of the polygon
is constant over the surface of the polygon, vertex normals need not be aligned with
the surface normal. If the polygon is a part of a surface or object, a vertex normal
actually indicates the surface normal of the object or surface at that vertex. Similarly,
vertex reflectivity values indicate the reflectivity values of the object or surface at the
corresponding vertices.

3.1.2 Lighting Calculations

The light-object interactions are calculated at this step to simulate the propagation of
light in the environment. Simple methods or more realistic methods can be used. If
simple methods, which do not account for the reflected light, are utilized, this step can
be done after backface culling. Backface culling eliminates polygons that are facing

away from the viewing direction. Therefore, lighting calculations are avoided for those
polygons. Vertex normals and reflectivity values at the vertices of the polygon are used in
lighting calculations in simple methods. If more realistic methods are used, like radiosity
that accounts for the reflected light as well, this step should be performed before backface

culling.

3.1.3 Geometry Processing

Geometry processing is applied to transform polygons from world coordinate system
to viewing coordinate system (Fig. 3.3) and to eliminate polygons that are not visible

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 53

Figure 3.3: World and viewing coordinate systems.

from the viewing direction and orientation. First, polygons that are facing away from
the viewing direction is eliminated. Backface culling is performed using the surface
normal of the polygon and the surface normal of the screen. Remaining polygons are
transformed from world coordinate system to viewing coordinate system. The viewing
coordinate system describes the viewing direction, position and orientation of the screen.
Viewing transformations are performed by creating a 4 x 4 viewing m a t r i x (or transfor
mation matrix) from viewing parameters (e.g., orientation of the screen, distance of the
screen from the origin of the world coordinate system, etc.) and multiplying vertices of
each polygon by this matrix. Note that each polygon vertex is represented in cartesian
coordinate representation, i.e., coordinates of the vertex is represented as { x , y , z) . In
order to multiply coordinates of a vertex with viewing matrix, homogeneous coordinate

representation is adopted, i.e., coordinates of a vertex is represented as { x ' , y ' , z \ h) such
that X = y — ^ and z = j . Perspective transformation is applied to give realism to

images. Polygons are clipped to screen boundaries [8-5] to eliminate parts of the polygons
that are not visible from the viewing direction and orientation.

3.1.4 Shading and Hidden-surface Removal

Hidden-surface removal and smooth shading of the transformed polygons are performed
to produce a realistic image of the environment. Shading and hidden-surface removal are

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 54

the most time consuming steps of the polygon rendering pipeline. In practice, shading
calculations and hidden-surface removal operations are done concurrently in a single step
rather than separate steps cis is illustrated in Fig. 3.1.

If simple methods are used for lighting calculations, smooth shading of the polygons
can be performed by using either Gouraud shading method or Phong shading method.
In Gouraud shading method [34], the light-polygon interactions are calculated at the
vertices, producing intensity values. These intensity values are interpolated over the
polygon surface to shade the polygon. In Phong shading method [68], vertex normals
are interpolated over the polygon surface and intensity values at a point on the polygon
are calculated using the interpolated normal at that point. If more realistic methods
are used, smooth shading of polygons can be done in a way similar to Gouraud shading
method.

Hidden-surface removal determines which polygons are visible at certain screen loca
tions (pixel locations). The hidden-surface removal process is a kind of sorting opera
tion [86] to determine the visibility and visible parts of the polygons. Basically, polygons
are sorted by their distance (z) to the screen. The overhead of sorting is reduced by utiliz
ing some coherency property existing in the environment such as image-space coherency.
The algorithms in hidden surface removal can be classified into two groups as object-space
algorithms and image-space algorithms [86, 95, 77]. In object-space algorithms, visibil
ity of polygons is determined in 3-dimensional space. Since these algorithms operate in
continuous domain, visibility calculations can be performed at any precision. Objects
in the environment are compared with each other to determine the visible parts. After
the visible parts of the polygons are determined, these parts are displayed on the screen.
In image-space algorithms, visibility is determined on the screen, on which the image
of the environment is generated. The sorting operation is done at pixel locations. In

order to accomplish this, each polygon is projected onto the screen. Distance and color
values are generated for screen coordinates that are covered by the projected polygon.
This process is called rasterization or scan-conversion. Note that screen coordinates are
discrete quantities. Therefore, unlike object-space algorithms, image-space algorithms
operate in a discrete domain. The distance values of the pixels generated for the same
pixel location are compared and pixel closest to the screen (foremost pixel) is stored into

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 55

Figure 3.4: The z-bufFer array.

the frame buffer (displayed on the screen). Image-space algorithms are more popular
than object-space algorithms due to better utilization of coherency and wider range of
applications. Use of coherency in image-space allows incremental calculation of distance
and color values over the surface of the polygon.

Two irnages-space algorithms are quite popular in computer graphics rendering.
These algorithms are called z-buffer and scanline z-buffer algorithms. Main difference
between these algorithms is the order in which polygons are rasterized. The z-buffer
algorithm performs rasterization operations in polygon-order, whereas scanline z-buffer
algorithm performs rasterization in scanline-order.

Z-bufFer Algorithm

In z-buffer algorithm, a 2-dimensional array, called z-buffei', is used to perform hidden
surface removal (Fig. 3.4). There exists one-to-one correspondence between z-buffer and
the screen. The entry at array location (x,y) corresponds to the pixel location (x.,y)

on the screen. Distance value of the foremost polygon at this pixel location is stored
into the z-buffer. Initially, distance values at all z-buffer locations are set to infinity.

Each projected polygon is rasterized one-by-one. The color and distance values are
interpolated over the surface of the polygon to generate pixels with distance and color
information. The distance value of the pixel generated for pixel location (x,y) on the
screen is compared with z-buffer position {x,y) . If the distance of the pixel generated is
smaller than the value at z-buffer location (a:, y), the distance value of the pixel is stored
into that location and the color of the pixel location {x,y) on the screen is set to the
color of pixel generated.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 56

Scanline Z-buffer Algorithm

In scanline z-buffer algorithm, hidden-surface removal is performed in scanline-order.
The algorithm proceeds from one scanline to the next starting from the lowest num
bered scanline on the screen. A scanline is a row of pixels on the screen (similarly on
z-buffer array as is illustrated in Fig. 3.4). Polygons whose projections intersects the
current scanline are processed. A one dimensional array, called scanline z-buffer, is used
to perform hidden surface removal. There is one-to-one correspondence between array
locations and pixel locations on the current scanline. The array location x stores the
distance of foremost polygon at pixel location x on the current scanline. The initial step
of the algorithm inserts polygons into y-bucket structure, which is an array (of size N,
where N is the y-dimension of the screen) of linked lists. There e.xists one-to-one cor
respondence between array locations and scanlines on the screen. A polygon is inserted
to the linked list at y-bucket location which corresponds to the lowest scanline that in
tersects the projection of polygon. After this initialization step, hidden-surface removal
is performed in scanline-order starting from the lowest numbered scanline. Polygons in
the y-bucket of the current scanline and polygons whose y-extend covers this scanline
are processed. Edge intersection of these polygons with the current scanline is found.
These intersections create line segments, called spans, which are rasterized one-by-one
generating pixels for pixel locations on the current scanline. As in z-buffer algorithm, the
distance value of the pixel generated is compared to the distance value at corresponding

scanline z-buffer array. If the distance of the pixel is smaller, its distance value is stored
into array location x in scanline z-buffer and the color of the pixel location on the screen

is updated. Scanline z-buffer algorithm utilizes image-space coherency from scanline-
to-scanline and pixel-to-pixel. Edge intersections are found by incremental calculations
from scanline-to-scanline. Distance and color calculations are also done incrementally
within a span from pixel-to-pixel in the current scanline. Scanline z-buffer is re-initialized
by setting distance values in all array locations to infinity before processing the current
scanline.

3.2 Previous Works on Parallel Polygon Rendering

In this section, previous works on parallel polygon rendering are summarized. First, we
introduce a taxonomy of the parallel polygon rendering algorithms. After the presenta
tion of the taxonomy, previous works, which are classified with respect to taxonomy, on
parallel polygon rendering are described.

3.2.1 A Taxonomy of Parallelism in Polygon Rendering on
Distributed-Memory Multicomputers

There are various classifications for parallelism in polygon rendering [21, 99, 61, 18]. In
this thesis, a taxonomy, based on the domain that is partitioned among the processors,
is given. The screen, on which the result of the rendering is displayed, constitutes the
output domain (image-space domain) of the rendering process. The input domain, which
is also referred to as object-space domain, of the rendering process is the input data set
defined in 3-dimensional space.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 57

Image-space Parallelism

The domain of decomposition in this parallelism approach is the output domain of the
rendering process. The screen is divided into subregions and each processor is assigned
one or more of the subregions to render (Fig. 3.5). The object database is also par
titioned according to screen subdivision and primitives are re-distributed to respective
processors. The term re-distribution is used to indicate that primitives may already
be in local memories of the processors. Each processor may require the knowledge of

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 58

Figure 3.5: An example of image-space parallelism. The screen is partitioned and sub-
regions are assigned to processors (PO, P I , P2, P3).

how screen is stibdivided and assigned to other processors. Primitives that belong to
more than one subregion are duplicated or divided into smaller primitives. Therefore,
image-space algorithms may cause an increase in the number of primitives in the overall
system. .After the primitive distribution, each processor performs rendering of subregions
assigned without further inter-processor communication. Primitives are re-distributed
among processors when viewing point and orientation changes and/or screen is subdi
vided again and/or subregions are re-assigned to processors. In a recent paper [61],
image-space parallelism has also been subdivided into two subclasses as sort-first and
sort-middle according to when in the polygon rendering pipeline the primitives are re
distributed. In sort-first approach, a simple processing is performed on primitives before
geometry processing of rendering pipeline to find the regions each primitive belongs to.
Then, primitives are distributed to respective processors. Receiving processors perform
geometry processing, shading and hidden-surface removal. In sort-middle approach,
primitives are re-distributed after sending processor performs geometry processing on
the primitives. All local primitives are transformed and clipped to subregion boundaries
in each processor. Transformed and clipped primitives belonging to regions assigned to
other processors are transmitted to corresponding processors. Receiving processors only

perform shading and hidden-surface removal operations.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 59

rndlM{(

Figure 3.6: An example of object-space parallelism.

Objtect-space Parallelism

In object-space parallelism, the domain of decomposition is the input domain of the ren
dering process. The primitives (polygons, objects, etc.) that constitute the environment
are divided into groups and distributed among the processors. Usually, primitives are
not re-distributed when viewing position and orientation, or screen resolution changes.
Primitive re-distribution may be necessary if larger primitives are divided into smaller
ones or smaller primitives are combined into larger primitives. Division and combination
operations are application dependent and are not related to the parallel algorithm. Note
that each primitive is assigned to a unique processor in object-space parallelism. There
fore, unlike image-space parallelism, the original number of primitives remains constant.
After distribution of primitives, each processor performs rendering of local primitives,
thus producing partial images. After this local rendering phase, partial images in each
processor are merged to obtain the final picture because primitives in different processors
may contribute to the same pixel location on the screen. This pixel merging (or image
composition) phase is performed by exchanging local image buffers fully or partially over
the inter-connection network. Figure 3.6 illustrates an example of object-space paral
lelism on four processors. Object-space parallelism is also called sort-last approach [61].

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 60

Comparison of Image-space Parallelism and Object-space Parallelism

Both approaches have been explored and applied for parallel computer graphics render
ing by researchers. This section discusses advantages and disadvantages of image-space
and object-space parallelism with respect to utilization of distributed-memory multicom
puters.

The main source of inter-processor communication in image-space parallelism is the
re-distribution of primitives among the processors according to screen subdivision and
assignment of screen regions to processors. Note that re-distribution of primitives also
takes place when viewing position and orientation changes even if the shape and number
of screen regions and assignment of regions to processors do not change. The volume of
communication depends on the number of primitives re-distributed and the amount of
information to represent a primitive. It is irrespective of the resolution of the screen and
the amount of information stored at each pixel. Advantage of the image-space parallelism
is that no inter-processor communication occurs when screen regions are assigned to
processors statically and viewing parameters do not change. This type of application
occurs in lighting simulations in radiosity and in volume rendering when scientist wants
to visualize the volume using different transfer functions, which map the contribution
of data values to color values. The image-space parallelism can also be advantageous
for interactive applications where the viewing parameters change gradually and only few
primitives are likely to be re-distributed. However, for large number of primitives, even
a small perturbation of the viewing parameters may result in re-distribution of many
primitives.

The main source of inter-processor communication in object-space parallelism is the
pixel merging phase. In pixel merging phase, the pixels on the screen are exchanged
among processors. Therefore, the volume of communication in object-space parallelism
depends on the resolution of the screen, number of pixels actively covered by polygons in
each processor, and amount of information stored in each pixel location. It is irrespective
of the amount of information used to represent primitives. However, it depends on the
number of primitives and the size of primitives in an indirect way. When the number

or size of the primitives increase, it is likely that the number of pixels covered by these
primitives will increase, resulting in more pixels to be exchanged in the pixel merging

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 61

phase. Advantage of the object-space parallelism is that primitives are not re-distributed
even viewing parameters change.

In image-space parallelism, load balancing heuristics operate on the screen to achieve
an even distribution of load. Since the image-space is a discrete environment, the ac
curacy of load balancing depends on the resolution of the screen. Achieving the best
assignment of regions to the processors is another problem that exists in image-space
parallel algorithms. In object-space parallelism, load balancing heuristics operate on
object-space to achieve a good load balance in local rendering phase. However, load bal
ancing in pixel merging phase is also another important issue in object-space parallelism.
Note that pixel merging is performed in 2-dimensional image-space. If algorithms, which
only exchange pixels covered by local polygons, are utilized in pixel merging phase, the
distribution of pixels on the screen affects the load distribution in this phase. As a result,
load balancing heuristics that operate on image-space subdivisions (as in image-space
parallelism) are also needed to achieve load balancing in pixel merging phase.

In image-space parallelism, a primitive is duplicated in different processors if the
primitive overlaps regions assigned to different processors. As a result, the number of
primitives in the overall system increases in image-space parallelism. Since primitives
are assigned to unique processors in object-space parallelism, primitive duplication does
not occur.

The type of algorithms used for rendering of the primitives and the characteristics
of application may impose serious problems on object-space parallelism due to pixel
merging phase. For example, anti-aliasing techniques may introduce more complicated
implementation of pixel merging phase. In addition, the view sorted composition restric
tion in volume rendering may impose complications in both subdivision and assignment
of primitives to processors and on the algorithms used in pixel merging phase. These
complications usually do not occur in image-space parallelism since after the assign
ment of regions and primitives to processors, each processor effectively runs a sequential
rendering algorithm.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 62

3.2.2 Previous Works on Parallel Polygon Rendering

This section describes the previous works, which are classified with respect to the tax
onomy described in the previous sections, on parallel polygon rendering. In image-space
parallelism, subdivision of the screen and load balancing are the key issues that were cov
ered by the researchers. Hence, summaries of previous work in image-space parallelism
focus on how screen is divided and how load balancing is performed in these works. In
object-space parallelism, the focus in the summaries of these works will be on how pixel
merging phase is implemented by different researchers.

Previous Works on Image-Space Parallelism

Mueller [65] presents a sort-first [61] parallel rendering algorithm for interactive applica
tions. Static and adaptive division of the screen is examined for load balancing. In static
subdivision scheme, the screen is subdivided into rectangular regions which are assigned
to processors in round-robin fashion using a scattered assignment for load balancing.
In this assignment strategy, adjacent regions are assigned to different processors such
that processor i is assigned regions ¿, i P, i + 2P. and so on. Here, P denotes the
number of processor in the multicomputer. In adaptive subdivision scheme, the screen
is subdivided adaptively using the distribution of triangles on the screen until the num
ber of regions is ecjual to the number of processors. In order to find the distribution of
triangles on the screen, a “fine mesh” is superimposed on the screen. The number of
primitives, which cover the mesh cell, is counted for each mesh cell. An amount inversely
proportional to the number of cells a primitive covers is added to corresponding mesh
cell count to avoid errors caused by counting large primitives multiple times. A single
processor collects counts from each processor and forms a summed-area table [20], which

has the same resolution as the fine mesh. This processor divides the screen recursively in
alternate directions at each step using the summed-area table. The summed-area table
allows binary search to determine the division line. The screen subdivision information
is broadcast to each processor so that primitiv'es are re-distributed according to new
subdivision. Adaptive subdivision exploits frame-to-frame coherence existing in inter
active applications. Current frames distribution is used to perform subdivision for the

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 63

next frame. Static and adaptive subdivision schemes are evaluated experimentally using
a simulator with respect to various factors such as number of regions, mesh resolution,
effect of the number of processors.

Crockett and Orloff [19] present a parallel polygon rendering algorithm on Intel
iPSC/860. Their algorithm distributes triangles to processors in round-robin fashion
using a scattered assignment scheme. Each processor receives an even number of tri
angles. The screen is subdivided into horizontal bands of equal number of consecutive
scanlines and each region is assigned to one processor. Local triangles in each processor
are transformed, clipped and light interactions are calculated. Resulting 2-dimensional
triangles are split into trapezoids at the boundaries of horizontal bands. Each trapezoid
is inserted into a message buffer to send it to the processor that owns the horizontal
band, to which the trapezoid belongs. The receiving processor performs rasterization
of trapezoids and hidden-surface removal. In order to have better utilization of proces
sors, trapezoid generation and transmission is multiplexed with rasterization of received
trapezoids. In the paper, the impact of the length of the message buffer and communi
cation overheads are examined analytically and experimentally. Load balancing issues
are not discussed.

Ellsworth [26] proposes a parallel rendering algorithm for interactive applications on
an Intel Touchstone Delta multicomputer. The screen is divided into equal size rectangu
lar regions (close to square to decrease the number of polygons shared between regions)
which are distributed to processors using a greedy multiple-bin-packing heuristic. Work
load in each region is taken to be the number of polygons in that region. The regions are
sorted in decreasing polygon counts. Starting from the region with highest polygon count
and continuing in sort order, each region is assigned to the processor which currently
has the minimum work load. After assignment of regions to processors, each processor
performs geometry processing on its local polygons. During geometry processing each
polygon is classified according to the regions it overlaps. After geometry processing,
each polygon is sent to the processor, which owns the region(s) the polygon overlaps,
for rasterization and hidden-surface removal. The algorithm utilizes frame-to-frame co

herence to achieve an even load distribution among processors. Polygon distribution
in the current frame is used to find assignment of regions in the next frame. During

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 64

rasterization step, each processor finds local polygon counts at each region using the
local polygons. The polygon counts are directed to a single processor (processor 0 in
the paper) in a summing tree to find global polygon counts in each region. Processor 0
performs region assignments and assignment information is broadcast to all processors
in the multicomputer.

Whitman [99, 100] presents several algorithms for a BBN Butterfly shared-memory
multiprocessor. This architecture provides a distributed shared memory in the form of
memory boards associated with each processor. Processors access to the shared memory
locations through a network called Butterfly switch. The software library provides a
task generation mechanism that generates the next task to be assigned to processors
dynamically [99, 11]. In his work, data non-adaptive, data adaptive, and task adaptive
schemes are proposed and evaluated with respect to various factors such as communi
cation overhead and load balancing. In the data adaptive and non-adaptive schemes,
processors request task from task generator when they become idle. In the first non-
adaptive scheme, each scanline on the screen is designated as a task. In the second
scheme, the screen is divided into equal size rectangular regions, each of which is con
sidered as a task. Various strategies are also presented to access the data associated
with each task. In data adaptive scheme, screen is subdivided adaptively using polygon
distribution on the screen. A 2-dimensional mesh is superimposed on the screen space
and polygon counts are calculated in each mesh cell by using bounding boxes of the
polygons. Adjacent mesh locations are combined hierarchically in a tree. Each node
of the tree stores the number of polygons in the corresponding combined region. This
tree is traversed in top-down fashion by splitting the region with the largest number of
polygons until a desired number of regions is reached. In his work, the number of regions
is taken to be ten times the number of processors. The top-down traversal of the tree is
done sequentially on a single processor. After regions are created, each region is assigned
to processors dynamically as in non-adaptive schemes. In addition to data partitioning
algorithms, a task adaptive scheme is presented. In this scheme, idle processors share
the work load of heavily loaded processors.

Roble [76] presents a scanline z-buffer algorithm for iPSC hypercube. A separate
processor, called the cube manager (host) of the hypercube, reads polygon data and

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 65

performs geometry processing on the polygons. Afterwards, polygons are distributed
to node processors in round-robin fashion using scattered assignment scheme. Initially,
screen is subdivided into equal size rectangular regions with each region assigned to a

processor. Processors obtain the polygon counts in each region and these counts are
transmitted to cube manager. The cube manager combines lightly loaded contiguous
regions into one region and divides heavily loaded regions into two subregions. After
subdivision and combination operations, each processor is again assigned a single region.
Polygon counts in each region only indicates the work load of the region but no infor
mation is provided on the distribution of polygons. Hence, no information is provided

on how to find the optimal division line in a region. As is mentioned in the paper,
the load balancing step may be repeated multiple times to obtain a better distribution.
After cube manager performs subdivision of the screen, screen subdivision information
and region assignments are broadcast to all processors and polygons are re-distributed
according to new subregions.

Highfield and Bez [40] present and empirically compare parallel implementations of
four rendering algorithms; recursive subdivision, scanline z-buffer, painter’s, and z-buffer
algorithms [77]. Their target architecture is a distributed-memory multicomputer com
posed of transputers with one “master” processor and a “chain” of “worker” processors.

In parallel recursive subdivision algorithm, each worker processor is assigned a subregion
of the screen to execute sequential recursive subdivision rendering algorithm. Master pro
cessor transmits polygon data to workers through the chain so that each worker receives
a local copy of all polygons. Scanline z-buffer algorithm is parallelized by scattered as
signment of the scanlines to processors in round-robin fashion. Polygon data is passed
down the chain to worker processors as in recursive subdivision algorithm. In paral
lel z-buffer algorithm, two implementations are considered. Initial implementation is

an object-space parallel approach as it partitions the polygon data among processors
for rasterization. Each processor scan-converts the local polygons and sends rasterized
polygon information to a single processor (screen processor) to do the hidden-surface re
moval. The single processor to perform the hidden-surface removal becomes a bottleneck
that degrades the performance of the algorithm. An alternative implementation, which
exploits image-space parallelism is devised. As in scanline z-buffer algorithm, scanlines

CHAPTERS. POLYGON RENDERING: OVERVIEW AND RELATED WORK 66

are scattered and each processor performs sequential z-bufFer for scanlines assigned to
it. The polygon data is passed down the chain as in scanline z-bufFer algorithm. In the
parallel painter’s algorithm, again two implementations are considered as in the parallel
Z-bufFer algorithm. First implementation partitions the polygon data among processors
and each processor sorts the local polygons. The locally sorted lists are merged into a
global sorted list by the master processor which then passes the global sorted list down
the chain to workers. The worker processors scan convert the polygons in order, sending
scanliiies up the chain to screen processor for display. As in z-bufFer algorithm, screen
processor causes a bottleneck and degradation in the performance. .An alternative al
gorithm which divides the screen among processors (as in parallel z-buiFer algorithm) is
also implemented.

Gupta and Fisher [36] present a parallelization of the scanline z-bufFer on a linear
array of processors. The linear array (which is rather a ring of processors) is divided into
sets of equal number of processors. During the scanline processing, the current scanline
is partitioned into equal number of pixels among the processor sets with each portion
assigned to a different set. The polygon data is duplicated such that each set owns all of
the polygons. Polygons are partitioned among the processors in a set so that each pro
cessor holds equal number of polygons. Similarly, scanline partitions are further divided
equally among the processors in a set. After rendering of local polygons for the local
scanline portion, each processor transmits the scanline partitions to the left neighbor in
the ring. Receiving processor processes the local set of polygons for the received scanline
portion. If there are k processors in a set, then these left-shifts of scanline portions
are performed k times. Their algorithm can be considered to combine object-space and
image-space parallelism. It is an image-space parallel algorithm because scanlines, thus
screen, is divided among the processors. On the other hand, pixel information is also cir
culated between processors as in pixel merging phase of object-space algorithms. Their
algorithm can also be considered as a “fine-grain” parallelization of scanline because
portions of a single scanline is circulated in the linear array.

Li and Miguet [56] propose a parallel z-bufFer algorithm implemented on a transputer
architecture with reconfigurable interconnection network. The network is configured as
a ring of transputers in their implementation. Initially, polygons are distributed to

processors so that each processor receives equal number of polygons. The image-space
is divided into horizontal bands of equal number of scanlines. In order to improve the
load balance, the bounding box of the environment is found by combining bounding
boxes of polygons. Only the scanlines within the boundaries of the bounding box are
divided into horizontal bands. Each band is assigned to a single processor. Polygons are
re-distributed according to band assignments to processors.

Kaplan and Greenberg [46] discuss algorithms for a distributed-memory architecture
with a central processor and node processors connected by a time-shared bus. The oper
ation of the architecture is simulated in software. They present algorithms for scanline
z-buffer and Warnock’s area subdivision algorithms [77]. All of the polygon data is
duplicated in the local memories of each processor. The screen is divided into group
of scanlines for scanline z-buffer and rectangular regions for Warnock’s algorithm. A
central processor schedules tasks to parallel processors as they become idle.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 67

Previous Works on Object-Space Parallelism

Cox and Hanrahan [17] propose a pixel merging algorithm developed for architectures
with network broadcast capability. Their algorithm distributes polygons to processors in
a round-robin fashion using scattered assignment scheme. Each successive polygon in the
polygon database is assigned to successive processors in the architecture so that processor
i receives polygons г, i -f P, and so on. Here, P denotes the number of processors. Each
processor applies polygon rendering pipeline to local polygons for the full screen. .After
this local rendering phase, pixel information (distance and color values) at each “active”
pixel location, defined as the pixel location covered by at least one local polygon, is
broadcast over the network to perform pixel merging phase. Starting from processor 1
and continuing in increasing processor number, processor к broadcasts over the network
the local pixel information in local active pixel locations to a global frame-buffer (screen)
and to processors к + I, к + 2,...,Е that “snoop” the network to catch pixel information
broadcast. Each snooping processor compares the distance values of received pixels with
local pi.xels and eliminates hidden local pixels from further consideration. In this way, the
number of pixels broadcast by the next processor is expected to decrease. The authors
present an analytical discussion of expected case network traffic of their algorithm and

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 68

compare the analytical analysis with trace-driven simulations. No speedup figures are
provided in the paper.

Scopigno et al. [81] present a parallel hidden-surface removal (HSR) paradigm based
on divide-and-conquer approach. The hidden surface removal problem is solved by sub
dividing the problem into equal size subproblems recursively until the size of the sub-
problem is sufficiently small. In that case, HSR is done on the subproblem by “ leafHSR
processes” . The results of the leafHSR processes are then merged to obtain the final re
sult. Authors present simulation results for tree-based and shared-memory architectures.
In tree-based architecture model, each processor is assigned either to a leafHSR process
or to a merge process. In shared-memory model, a scheduling processor assigns proces
sors to leafHSR and merge processes. Message passing overhead and memory contention
issues are not included in their simulations.

Li and Miguet [56] present an algorithm for transputers interconnected by a recon-
figurable network. Their implementation configures the network as a tree structure.
Polygon data is distributed to processors so that each processor receives an equal num
ber of polygons. Pixel merging phase is done using the tree structure. In order to
increase processor utilization and reduce memory requirements, the screen is divided
into horizontal bands and processing of these bands are pipelined. Once a processor
finishes the w'ork on a band, it merges the results from its children in the tree and sends
the merged band to its parent. In this way, while a processor processes band of the
screen, its parent processes the {k — 1)®' band and its children process {k -|- 1)*‘ band.
In their implementation, ternary tree, binary tree and unary tree (ring) interconnection
topologies are investigated for pixel merging phase.

Molnar et al. [62] present a object-space parallel rendering algorithm and architecture.
In their work, partial images are merged in a pipelined “ image-composition” network.
-After rendering of local polygons, full z-buffer in each processor is injected into the
network, and each “compositor” in the pipeline network merges the partial image it
receives and local partial image and directs the resultant full z-buffer to other compositors
in the lower levels of the pipeline. In their paper, they present a hardware design to

perform rendering and image composition (merging) operations.
In a very recent work, Lee et al. [53] present several algorithms for pixel merging

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 69

phase suited for 2-dimensionaI mesh multicomputers. Their target machine is Intel’s
Delta computer with 512 processors. In their schemes, they perform pixel merging in
two stages. For this, the 2-dimensional mesh (with r x c processors) is organized as
c independent rings, each consisting of r processors, in the rows and r independent
rings, each consisting of c processors, in the columns. In the first stage, the full screen
partial images in each processor are divided into r horizontal regions. These regions are
merged concurrently in the rings in the rows. At the end of first stage, each processor
has intermediate partial subimage (I/?·'* of the full screen image). In the second phase,
the subimages in each processor are further divided into c horizontal regions. These
regions are merged concurrently the rings in the columns to produce the final image.
In their first scheme, regions of full z-buffer is circulated in the rings. In the second
scheme, the volume of communication is reduced by sending bounding boxes that cover
only active pixels. In these two schemes, screen regions are circulated in the rings by
merging and forwarding received partial images to neigbour processors until they reach
the destination processor. In their direct pixel forwarding scheme, the partial images are
sent directly to destination processor. This scheme is also carried out in two stages. In
the first stage, as in previous schemes, screen is divided into r horizontal regions and each
processor in the ring is assigned a region. In each processor, a send queue is associated
with each region. Processors store the active pixels generate during local rendering in
the corresponding queue according to screen region. Pixel’s x and y coordinates, color
values, and z value are stored in the send queue. Xo local z-buffering is performed
in this stage. That is, all generated pixels are stored into send queues. These send
queues are directly transmitted to destination processors in the ring in the row. Each
processor, then, z-bufFers the received pixels to reduce the volume of communication for
the next stage. In the next stage, active pixels in each processor are merged in the rings
in the columns as in the first stage. Their last pixel merging scheme multiplexes local
rendering and pixel merging computations. The pixel merging is done using direct pi.xel
forwarding. However, processors keep fixed length buffers and during local rendering
they send a buffer to destination processor when it is full. Thus, each processor switches
between local rendering and pixel merging calculations. Lee et al. also address the

load balancing in pixel merging phase. The subregions assigned to processors consist of

interleaved scanlines rather than consecutive scanlines for better load balance in pixel
merging phase.

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 70

Other Previous Works

The algorithms presented in the previous works above are designed for coarse-grain
multicomputers. Other works also exist in literature that exploit different approaches
and different architectures. Some of these works is summarized below.

Theoharis and Page [91] give a parallelization approach for SIMD 2-dimensional
processor arrays. The image space is mapped to processor array as a 2-dimensional
grid. Assuming there are P x P processors in the SIMD array, the screen is partitioned
into regions of P x P pixels each. Each processor is assigned a pixel from each region. The
rendering operations are formulated as linear functions. The processor array performs
rendering operations for a single polygon by evaluating these linear functions in parallel
for the pixels in a region. Evaluation of linear functions in different regions are done by
incremental calculations to utilize coherency.

Pineda [70] explores a similar approach to that of Theoharis and Page to rasterize a
polygon by evaluating linear functions. The parallel algorithm presented utilizes a group
of "interpolators” , each being responsible for evaluating linear functions for a single pixel
within a contiguous block of pixels. No implementation of the algorithm is given in the
paper.

Dyer and Whitman [2-5] discuss the vectorization of the scanline z-buffer on Convex
C-1 computer. The proposed algorithm in their work basically vectorizes the shading
calculations, and interpolation steps from one scanline to the next.

Weinberg [97] describes an architecture for rendering with anti-aliasing and presents
simulation results. The proposed architecture is composed of series of processors, namely
object processors, comparators, and filter processors to carry out rasterization, hidden-
surface elimination and anti-aliasing.

The previous works summarized in this section do not cover all the previous work in
parallel rendering field. Surveys of other previous works can be found in [99, 101, 8, 18].

CHAPTERS. POLYGON RENDERING: OVERVIEW AND RELATED WORK 71

3.3 Discussion of Previous Works

In object-space parallelism, efficient parallelization of the pixel merging phase is the most
critical issue because pixel merging phase introduces overhead to the parallel execution.
The approaches in [81, 56] use architectures whose processors are interconnected in a
tree structure for pixel merging phase. Simulation results, which do not include com
munication overheads, are presented in [81] for an architecture in which processors are
connected in a binary tree interconnection topology. On the other hand, a transputer
based architecture with different tree interconnection topologies (binary, ternary, and
unary) is utilized in [56]. The main disadvantage of the both approaches is the low
processor utilization in pixel merging phase due to tree topology. The processors in the
lower levels of the tree (such as processors at the leaves) have substantially less work
than those in the upper levels of the tree. Another approach presented in [17] utilizes
network broadcast capability for pixel merging phase. The first advantage of the work
presented in the paper is that it decreases the volume of communication by injecting
only pixel information for “active” pixel locations in each processor into the network.
Second advantage is that the volume of communication is expected to decrease at each
broadcast step since each processor, which has not yet broadcast its local pixel informa
tion, deletes the local hidden pixels. This approach is well suited to architectures with
network broadcast or with shared memory because the cost of broadcast is small in these
machines. However, it has two disadvantages that make it not suitable for distributed-
memory machines. First of all, the communication overhead will be high since each
pixel should be broadcast to each processor. In addition, another main disadvantage
of the work is the low processor utilization: once the processor k broadcasts its local
pixels, it waits idle until the end of pixel merging phase while processors ̂ -f- 1, k + 2,
..., P do some work. An architecture with a pipelined image-composition network to
perform pixel merging is presented in [62]. However, full z-buffers in each processor is
injected into communication network resulting in unnecessary volume of communication.
In summary, low processor utilization is one of the problems in the previous approaches.
Only one previous work [53] addresses this problem by dividing the screen during pixel
merging phase. Therefore, it is worth to investigate algorithms that will achieve even

CHAPTERS. POLYGON RENDERING: OVERVIEW AND RELATED WORK 72

load distribution and higher utilization of processors - full utilization if possible - in pixel
merging phase. Load balancing in pixel merging phase is another issue that is covered in
only one work [53]. However, in that work, static interleaved assignment of scanlines is
utilized to achieve better load balance. Adaptive division of the screen for load balance
in pixel merging computations remains a.s an alternative to be investigated. The com
munication overhead is another issue which should be considered carefully. Volume of
communication can be decreased by exchanging only foremost pixels in each processor.
Exchanging foremost pixels rises one important question as how to extract local fore
most pixels to avoid message fragmentation in pixel merging phase. No algorithms are
presented in the previous works to answer this question. Therefore, efficient algorithms
to perform extraction of local foremost pixels in the local rendering phase need to be
investigated.

The basic concern in image-space parallelism is how to partition the image-space
so that even distribution of work load is achieved and re-distribution of primitives is
minimized. There are two strategies in the previous works to partition the image-space:
screen is subdivided either non-adaptivdy [36, 40, 91. 19, 99, 100, 46] or adaptively [65,
26, 99, 100, 76].

In non-adaptive schemes, screen is subdivided into a number of equal size subre
gions. This raises an important question as how many regions should there be and what
should be the shape of the regions. These questions are not easily answered since they
depend on the characteristics of the object database to be rendered, the algorithms that
are employed for rendering, and the parallel architecture. Usually, regions are shaped as
rectangular regions close to square. The advantage of the rectangular shape is the higher
scalability of the algorithm. The square shape is chosen to decrease the length of the
boundaries, thus to decrease number of primitives duplicated and distributed. The num
ber of regions is kept larger than the number of processors to improve the load balance.
In the previous works, two assignment strategies are utilized to assign subregions to pro
cessors. Regions are assigned either in a scattered way or dynamically on demand-driven
basis. Scattered assignment has the advantage that assignment of screen subregions to

processors is known a priory and static irrespective of the data. However, since scat
tered assignment assigns adjacent regions to different processors, it loses the coherency

CHAPTER 3. POLYGON RENDERING: OVERVIEW AND RELATED WORK 73

in image-space and increases the duplication of polygons in the overall system. In ad
dition, since subdivision is done irrespective of input data, it is still possible that some
regions of the screen is heavily loaded and some processors may perform substantially
more work than others. In demand-driven approaches, regions are assigned to processors
when they become idle. Demand-driven assignment may incur a lot of communication
overhead in distributed-memory multicomputers. First of all, since region assignments
are not known a priory, each assignment should be broadcast to all processors so that
necessary polygon data is transmitted to the corresponding processor. In addition, since
many processors will inject polygons to the network for different processors or for the
same processor many times it is very likely that dynamic scheme will introduce high
link contention. Another disadvantage of the dynamic allocation is that adjacent regions
may be assigned to different processors, which results in lose of coherency and increase
in the number of primitives duplicated.

In adaptive subdivision schemes, the screen is subdivided into subregions using poly
gon data distribution on image-space so that each subregion has almost equal work.
In these schemes, the number of subregions is less than that of non-adaptive schemes.
Therefore, adaptive subdivision schemes are good alternatives to non-adaptive schemes
because they are expected to decrease the communication overhead and primitive dupli
cation by keeping the number of regions at the minimum. However, the schemes utilizing
adaptive subdivision require more complicated subdivision heuristics. In the previous
works that utilize adaptive subdivision [65, 26, 99, 100], a 2-dimensional coarse mesh is
superimposed on the screen. This mesh is used to perform screen subdivision. Therefore,
the accuracy of divisions depend on the resolution of this mesh. However, execution time
of subdivision heuristic and storage space also increases by mesh resolution. In all of the
previous works on adaptive subdivision, polygon counts are used and subdivision heuris
tics execute sequentially on a single processor. In many applications, other factors such
as the projection area (in number of pixels) of the polygons, which are not considered
in the previous works, also affect the work load in a region.

Chapter 4

Active Pixel Merging on Hypercubes

In this dissertation, object-space parallelism (section 3.2.1) for parallel polygon render
ing on hypercube-connected multicomputers is investigated. Hypercube interconnection
topology and message passing structure of the hypercube multicomputer are exploited in
this work. Please refer to section 2.3 for a description of the hypercube multicomputer.

A modified scanline z-buffer algorithm is proposed for local rendering phase. The
nice features of this algorithm are: It avoids message fragmentation in pixel merging
phase by storing local foremost pixels in consecutive memory locations efficiently. In
addition, it eliminates initialization of scanline z-buffer for each scanline on the screen.
Initialization of z-buffer introduces a sequential overhead to parallel rendering.

.All of the processors are utilized actively throughout this pixel merging phase by
exploiting the interconnection topology of hypercube and by dividing the screen among
processors. The volume of communication is decreased by only exchanging local foremost
pixels in each processor after local rendering phase. We propose two schemes referred
to here as pairwise exchange scheme and all-to-all personalized communication (AAPC)
scheme, which are suited to the hypercube topology. Pairwise exchange scheme involves
minimum number of communication steps, but it has memory-to-memory copy overhead.
All-to-all personalized communication scheme eliminates this overhead by increasing the
number of communication steps. Our AAPC scheme differs from 2-phase direct pixel
forwarding of Lee [53]. Our algorithm is 1-phase algorithm, i.e., pixels are transmitted
to destination processors in a single communication phase. Hence, our algorithm av'oids
the intermediate z-buffering in [53] totally.

74

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 75

VVe investigate load balancing in pixel merging phase. Two heuristics, recursive
subdivision and heuristic bin packing, are proposed to achieve better load balancing in
pixel merging phase. These heuristics are adaptive heuristics meaning that they utilize
the distribution of foremost pixels on the screen to subdivide the screen for the pixel
merging phase.

Organization of this chapter is as follows. In Sections 4.1 and 4.2, some definitions
and basic algorithm are presented. Section 4..3 presents the modified scanline z-buffer
algorithm for the local rendering phase. Pixel merging phase on hypercube multicom
puters is described in Section 4.4 where we present several algorithms utilizing different
communication strategies and embedding on hypercube. We give a comparison of these
schemes based on the communication overhead incurred in each scheme. Section 4.5

presents the load balancing issue in the pixel merging phase. Two algorithms are de
scribed to divide the screen adaptively in pixel merging phase. Experimental results on
an Intel’s iPSC/2 hypercube multicomputer are given in Section 4.6. Some results on a
Parsytec CC system recently installed in our department are presented in Section 4.7.

4.1 Some Definitions

.A pi.xel location ix,y) on the image plane is said to be active if at least one pixel is
generated for that location. Otherwise, it is called an inactive pixel location. Note that
different processors may generate pixels for the same location.

A pixel is said to be a foremost (winning) pixel, if it is the current pi.xel whose * value
is minimum for the active pixel location. At the end of the pixel merging operation there
remains only one winning pixel for each active pixel location.

4.2 The Parallel Algorithm

The algorithm for object-space parallel polygon rendering on hypercube multicomputer
consists of the following steps:

Step 1: Polygon information is distributed to node processors by the host processor.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 76

In this work, the host processor distributes polygons to node processors using scattered
assignment scheme. In this scheme, successive polygons in the sequence are assigned to
the processors in a round-robin fashion.

Step 2: (Local rendering phase) Each processor performs geometry processing,
hidden-surface removal and shading for its local polygons. In this work, hidden-surface
removal is accomplished by a modified scanline z-buffer algorithm. This algorithm is
presented in Section 4..3.

Step 3: (Pixel merging phase) After local z-buffering, pixels generated in each pro
cessor should be merged because more than one processor may produce a pixel for the
same screen coordinate. The global z-buffering operations during the pixel merging phase
can be considered as an overhead to the sequential rendering. Furthermore, each global
z-buffering operation necessitates interprocessor communication. Efficient implementa
tion of the pixel merging phase is thus a crucial factor for the performance of object-space
parallel rendering. In its simplest form, pixel merging phase can be performed by ex
changing pixel information for all pixel locations between processors. We will call this
scheme/u// z-buffer merging. This scheme may introduce large communication overhead
in pixel merging phase because pixel information for inactive pixel locations are also
e.xchanged. This overhead can be reduced by exchanging only local foremost pixels in
each processor. This scheme is referred to here as active pixel merging.

4.3 A Modified Scanline Z-buflfer Algorithm

In distributed-memory multicomputers, transmitting all data elements in one send oper
ation takes less time than transmitting each element in distinct steps due to setup time of

each message. In order to prevent message fragmentation in active pixel merging, the lo

cal foremost pixels should be stored in consecutive memory locations. In this section, an
algorithm, called modified scanline z-buffer algorithm, which utilizes a modified scanline
z-buffer scheme to store foremost pixels in consecutive memory locations efficiently, is
presented. This algorithm also avoids initialization of scanline z-buffer for each scanline

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 77

by sorting polygon spans at each scanline in increasing minimum x-intersections.
When polygons are projected onto the screen (of resolution NxN), some of the scan

lines intersect the edges of the projected polygons. Each pair of such intersections is
called a span. In the first step of the algorithm, these spans are generated and put into
the scanline span lists. The scanline span lists involve a linked list for each scanline which
contains the respective polygon spans. Each span is represented by a record, which con
tains the intersection pair (minimum x-intersection Xmin and maximum x-intersection
r̂nax) and necessary information for z-buffering and shading. Scanline span lists are

constructed by inserting the spans of the projected polygons to the appropriate scanline
lists in sorted (increasing) order according to their Xmin values. This sorting allows to
perform local z-buffering without initializing the scanline array for each scanline on the
screen.

In the second step, spans in the scanline lists are processed, in scanline order {y
order), for local z-buffering and shading. Two local arrays are used to store only local
foremost pixels. The first array is called Winning Pixel Array (WP.'^), used to store
the foremost (winning) pixels. Each entry in this array contains location information.
~ value, and shading information about the respective local foremost pi.xel. Since z-
buffering is done in scanline order, the pi.xels in WP.-\ are in scanline order and pixels
in a scanline are stored in consecutive locations. Hence, for location information, only x
value of the pixel generated for location (x,j/) needs to be stored in WPA. The second
array, called Modified Scanline Array (MS.A) of size N, is a modified scanline z-buffer.
MS.A[x] gives the index in WPA of pixel generated at location x. At the beginning,
each entry of the MSA is set to zero. Moreover, a “range” value is associated with each
scanline. The “range” value of the current scanline is set to one plus the index of the last
pixel, which is generated by the previous scanline, in WPA. The “range” value for the
first scanline is set to 1. Since spans are sorted in increasing Xmin values, if a location
-c in MSA has a value less than the “range” value of current scanline, it means that
location X is generated by a span belonging to previous scanlines. For such locations,
the generated pixels are directly stored into WPA without any comparison. Otherwise,
the generated pixel is compared with the pixel pointed by the index value. This indexing
scheme and sorting of spans in scanline span list avoid re-initialization of MSA at each

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 78

scan line. However, due to comparison made with “range” value, an extra comparison is
introduced for each pixel generated. These extra comparison operations are reduced as
follows. The sorted order of spans in the scanline span lists assures that when a span s
in scanline y is rasterized, it will not generate a pixel location x which is less than Xmin
of the previous spans. The current span s is divided into two segments such that one of
the segments cover the pixels generated by previous spans in the current scanline and
other segment covers the pixels generated by spans of the previous scanline. Distance
comparisons are made for the pixels in the first segment. The pixels generated for the
second segment are stored into WPA without any distance comparisons.

4.4 Pixel Merging on Hypercube Multicomputer

This section presents pixel merging algorithms developed for a d-dimensional hypercube
multicomputer with P = 2̂ processors. In these algorithms, each processor initially
owns local foremost pixels belonging to the whole screen of size N x N. Then, a global
z-buffering operation is performed so that each processor gathers pixels belonging to a
horizontal screen subregion of size N x N/P.

The algorithms presented in this section use different inter-processor communication
strategies and different interconnection topologies that can be embedded onto hypercube.
The communication overhead of each algorithm is analyzed for full z-buffer merging and
active pixel merging. For the analysis, it is assumed that there are /1 = N x N pi.xel
locations on the screen. In addition, for active pixel merging, we assume that each
processor has F foremost pixels after local z-buffering, which are distributed evenly on
the image-space along y-dimension, and we also assume that at each communication
step processors are perfectly load balanced. Perfect load balance and even distribution
assumptions are made to simplify the analysis of each algorithm.

4.4.1 Ring Exchange Scheme

One way of performing pixel merging is to embed a ring on the d-dimensional hypercube
as in Fig. 2.4(a) and perform the pixel merging on the ring. In the ring exchange scheme,
each processor receives pixels from right neighbor in the ring and sends pi.xels to the left

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 79

neighbor. In this scheme, the screen is divided into P regions and numbered from 0 to
P — 1. At exchange step i (i = — 1), processor p transmits the pixels in the
region mod P to the left neighbor in the ring and receives the pixels in the region
(A: + i + 1) mod P from the right neighbor. Here, k denotes the position of the processor
in gray-code ordering [75, 79]. The receiving processor merges the pixels in the received
screen region with the local region and stores them in order to transmit in the next step.
These exchange operations are repeated P — I times.

For full z-buffer merging, at each communication step, A/P pi.xels are sent and
received. The communication time in this scheme is equal to

P - 1
Tcomm (P l)̂ su T ̂ ^itrfull· (4.1)

For active pixel merging ̂ at exchange step i, the processor p sends the foremost pixels
to the left neighbor in the ring and receives active pixels from the right neighbor. The
receiving processor merges these pixels with the local foremost pixels. The number of
pixels after this merge operation is equal to the number of active pi.xel locations in the
union of two sets: set of local active pixel locations and set of received pixel locations.
If the processor has L foremost pixels and receives R pixels, then at the end of merge
operation at step i, the number of foremost pixels will be T -|- Ci, where 0 < C,· < R,
a.ssuming R < L. If two sets are totally distinct then no pixels are merged, making C\
equal to R. Therefore, the communication time in active pixel merging is equal to

f p - l P-2 \
Tcomm — { P ~ l)̂ ju + ^—p P + ^ (P ~ 2 — 1)C,J ttractive- ("̂ -2)

As is seen from the equation, the volume of communication in active pixel merging
depends both on the number of local foremost pixels and the distribution of pixels in
the subregion for which merging is performed. In the equations above, ttr/uii denotes the
time to transmit one pixel location on z-buffer and ttractive denotes the time required to
transmit one active pixel information. The setup time for a message is denoted by tsu-

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 80

4.4.2 2-dimensional Mesh Exchange Scheme

A 2-dimensional mesh wiih M = columns and K — rows can be embedded
in a hypercube with P — M x K processors. Note that in mesh embedding, each row
and each column of the mesh form separate rings in gray-code order. Pixel merging can
be done using these rings in the mesh embedding. F'irst, the screen is divided into iV/

regions and the processors at each row, independently from other rows, merge these M
regions in the row they belong. After these merge operations, nodes on the same column
have the same screen region of size A/M pixels. Each of these screen regions are further
divided into K regions, and pixel merging is done in the columns of the mesh.

The communication time required for 2-dimensional mesh exchange scheme is the
sum of the communication time required for row exchange {Trow) and column exchange
{Tcoiumn)· That is the communication time Tcomm is equal to

— Trow + To,olumn · (4.3)

Since rows and columns are simply rings, we can use the equations for ring exchange
scheme. For full z-buffer merging, A/M pixels are sent and received at each exchange
stage. Therefore, communication time for the row exchanges is equal to

M - 1
Trow — {N 1 — l) i s u H-------- ^7— ^ L r f u l l ·

M
(4.4)

After the row exchanges, the screen is further divided. Hence, for full z-buffer merge,
A/{AIK) pixels are transmitted and received. As a result, the communication time for
column exchanges is equal to

1.
Tcoiumn ~ l)^5u “t" ^ t̂rfull· (4.5)

Total time of communication in 2-dimensional mesh exchange scheme for full z-buffer
merging is

— Trow ”1” Tcoiumn

CHAPTFM 4. ACTIVE PIXEL MERGING ON HYPERCUBES 81

P - 1
= (AI A K — 2)iju H-----—— Atirfuii- (4.6)

Using a similar approach, communication time for row e.xchanges in active pixel
merging is equal to

/ M - 1 \
T tow = (A I — l)tsu + I — — E + ~ ' ~ 1)̂ <J ttTactive- (4.7)

After the row exchanges, the remaining number of foremost pi.xels {Lforemost) at each
processor is equal to

p M - \

foremost ■ r + E c·
i=l

(4.8)

As in full z-buffer merging the remaining pi.xel set is further divided to exchange in
the columns of the mesh. Therefore, the communication time for column exchange is
equal to

Tcol urnn — 1)^5U “i“ i L foremost ”i~ ^ ̂ ̂ ^tractive

/ K - \ K — 1
- { K - ' ^) t s u + (- ^ F A ^ — ^ Y ^ C ,

1 = 1

K - 2 \

+ E (̂ ̂— i — 1)5, I ttractive-
1=1 /

As a result, total communication time [Tcomm) is equal to

(4.9)

Tcomm = { M A K - 2) G , , + [^ j ^ F A ^ ^ { M - l - \) C i

K - 1 Ai-l K - 2

K— E C·· + E - * - 1)̂ · ^tractive. (4.10)
:=1 »■=1

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 82

The 2-dimensional mesh is a generalized version of ring exchange scheme since a ring
can be considered as a 2-dimensional mesh with M = P and N = 1. It is possible
to embed meshes of higher dimensions onto the hypercube. In the following section, a
general k-dimensional mesh exchange scheme is derived and analyzed.

4.4.3 K-dimensional Mesh Exchange Scheme

Assume we embed a k-dimensional mesh onto the hypercube a.s P = 2'̂ —

Here, Li represents the number of processors in dimension of the mesh with Z-, ^ 1
for i = 0,..., A; — 1 and T,· = 1 for z = Ar,..., d — 1. A ring is obtained by making Lq — P
and Li = 1 for i — 2, . . . ,d — 1. In the k-dimensional mesh, a similar exchange scheme
as in 2-dirnensional mesh exchange is applied. That is, pixel merging is done over the
rings embedded at each dimension. At the stage i of the pixel merging in k-dimensional
mesh, the rings embedded in dimension i is utilized to perform the pixel merging.

For full z-buffer merging, communication time is equal to the sum of communication
times at each stage. The communication time (T,) at stage i is equal to the communica
tion time for pixel merging in the corresponding ring in dimension i of the k-dimensional
mesh:

Ti — {Li — l)iju + — — — Attrfuil·
1Ij=o Lj

The total communication time is eqxial to

(4 .ii;

it-i
T - V Tcomm — / V i

:’=0

— ^ (T , · — l)Aju + Y~2HtrJull
1=0 1=0 I lj=0

P - \
— ̂ (̂Lj 1)Aju T ^ Atir/u//·

For active pixel merging, the communication time at stage i is equal to

(4.12)

Ti = {Li — l) t , u + ViitracUve (4 .13)

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 83

where volume of communication (K) is equal to

K·
n;=o Li

i - l /■ . _ 1

j=o lh=j+i n=i

+ E
j=i

(4.14)

Here, C[represents volume of communication incurred due to the distribution of
active pixel locations in a region at the communication step / in the ring embedded in
dimension j of the mesh.

The first and second terms in Eci· (4.14) represent the volume of communication
incurred due to the active pixel locations in each processor before stage i. The last term
in the equation represents the volume of communication incurred due to the distribution
of active pi.xels in a region in each processor. This term also affects the volume of
communication in the later stages of the pixel merging since it affects the number of
active pixels in a processor after stage i. Therefore, if the volume of communication due
to this term is minimized at each stage, the total volume of communication is expected
to reduce. One way to minimize the value of this term is to control the distribution of
active pixel locations in each region. Controlling the active pixel distribution requires a
preprocessing step before the distribution of primitives to processors. This preprocessing
results in redistribution of polygons between processors before local z-buffering. Note
that this preprocessing step should be repeated when viewing direction and orientation
changes. Another way to minimize the value of the last term in the equation is to
minimize the value of Li at each stage. The last term is minimized when = 2 (for
i = 0, ...,d — 1) is chosen for the rings at each dimension and a d-dimensional mesh is
embedded onto the hypercube.

Figure 4.1 illustrates volume of communication on different k-dimensional meshes on
16 processors for different scenes (see figures 4.14 - 4.16 for the rendered images of the

scenes). As is seen in the figure volume of communication decreases as the dimension of
the mesh increases. The lowest volume of communication is achieved on 4-dimensional

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 84
Volume of communication on 16 procesors

Figure 4.1: Volume of communication on different meshes embedded on the hypercube
of 16 processors for different scenes.

mesh while highest is obtained on 1-dimensional mesh, i.e., ring exchange scheme. This
figure supports our discussion and analysis in this section that lowest volume of commu
nication is expected to occur when a d-dimensional mesh is embedded on a d-dimensional
hypercube.

The scheme to implement pixel merging on the d-dirnensional mesh (with T, = 2) on
hypercube is given in the next section. This scheme is called pairwise exchange scheme.

4.4.4 Pairwise Exchange Scheme

This scheme exploits the recursive-halving idea widely used in hypercube-specific global
operations. This operation requires d concurrent divide-and-exchange stages. Within
each stage i (for i = 0 ,1 ,2 ,..., d — 1), each processor divides horizontally its current active
region of size N x n into two equal sized subregions (each of size N x n/2), referred here
as top and bottom subregions, where n — N during the initial halving stage. Meanwhile,
each processor divides its current local foremost pixels into two subsets as belonging to
these two subregions, which are referred here as top and bottom pi.xel subsets. Then,
processor pairs which are neighbors over channel i exchange their top and bottom pixel
subsets. After the exchange, processors concurrently perform z-buffering operations
between retained and received pixel subsets to finish the stage.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 85

For full z-buffer merging ̂at each exchange stage half of the current screen is transmit
ted and merged. Therefore, the total time required for inter-processor communication is
equal to

d - i

1=0

/ A— dtsu ----- 5— AttTfuU- (4.15)

For active pixel merging, at each exchange stage, each processor transmits half of
the current foremost pixels. Assuming perfect load balance at each exchange step, the
communication time in active pixel merging is equal to

Tcomm — d.tg
p __ 1 d -2 n (d - i - l)

+ i ^ ^ F + y r
1=0

·>(</-.-1) -c i)t tractive· (4.16)

4.4.5 A ll-to-All Personalized Communication Scheme

rhe schemes discussed above are also called store-and-forward schemes. At each ex
change step, the received pixels are stored into the local memory of the processor. These
pi.xels are compared and merged with the pixels stored before. After this merge opera
tion, some part of the foremost pixels are sent at the next exchange step, i.e., they are
forwarded towards the destination processor through other processors at each concur
rent communication step. Note that during this store-compare-and-forward steps, pixels
may be copied from memory of one processor to memory of the other processors more
than once as is seen in the equations. This memory-to-memory copy operations can be
reduced by sending the pixels directly to destination processors. This section presents a
scheme called all-to-all personalized communication to implement this idea.

In iPSC/2 hypercube multicomputer, with DCM technology, communication between
two non-neighbor processors is almost as fast as neighbor communications if all the links
between two processors are not currently used by other messages. The communication
hardware uses the e-cube routing algorithm [66]. Using DCMs, we can exchange messages
between non-neighbor processors by the following algorithm [1]. This algorithm ensures

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 86

that at each exchange step, the pixel data is directed to destination processors with the
pixel data following disjoint paths,

m : this node’s id
Bk : pixel data belonging the partition of screen assigned to processor k.
for i = 1 to P — 1 do

k = m 0 i; { 0 represents the bitwise exclusive-or }
send pixel data to processor k;
receive pixel data from processor k;
sync,

en d for
In all-to-all personalize communication, the screen is divided into P regions. Each par
tition is implicitly assigned to a processor. Then, processor i sends the pixels belonging
to the partition of the processor k directly to processor k. Processors, after receiving
the pixels, wait for the synchronization {sync) so that no processor gets ahead of the
others and blocks the links to be used by others. This synchronization operation can
be executed in 0 (d) time. After P—1 exchange steps, each processor z-buffers the local
pixels and the pi.xels it receives form other processors. For this, each processor holds a
z-buffer of size NxN/P. Local pixels are scattered onto the z-buffer without any distance
comparisons. Then, each received pixel’s value is compared with the s value in the
pixel location in the z-buffer. After all the pixels are processed z-buffer contains the
winning pi.xels belonging to the final picture.

For full z-bulfer merging, the communication time is equal to

— {P — 1)(1 + d)tsu +
1

P
Attr full·

For active pixel merging, the communication time is equal to
P - 1

Tcomm = { P ~ I)(I + d)tsu H------ 5--- Pttraciive·

(4.17)

(4.18)

4.4.6 Comparison of Pixel Merging Schemes

As is seen from the equations, the volume of communication in full z-buffer merging is
not affected by distribution of foremost pixels in screen regions. The volume of commu
nication in active pixel merging in all of the store-and-forward schemes are affected by

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 87

the distribution of pixels in a region in active pixel merging, pairwise exchange scheme
being the least affected. The volume of communication in all-to-all personalized commu

nication scheme, on the other hand, is not affected by the distribution of pixels. Hence,
among all schemes, all-to-all personalized communication scheme is expected to give the
lowest volume of communication in active pixel merging. For large number of proces
sors with high communication latency, the number of steps, which directly affects the
total setup time, in pixel merging phase is also a crucial factor. In pairwise exchange
scheme, the number of communication steps increases with d, being the smallest among
store-and-forward schemes, whereas it increases in 0 {Plog2 P) in all-to-all personalized
communication scheme. For large number of processors, the number of steps may be
a dominating factor in communication time in active pixel merging phase. Therefore,
among all schemes presented in this section, pairwise exchange scheme and all-to-all
personalized communication scheme are most suitable for pixel merging on hypercube
multicomputers. Only these two schemes are experimentally investigated in this work.

4.5 Load Balancing in Pixel Merging Phase

In this section, two heuristics that implement adaptive subdivision of screen among
p)rocessors to achieve good load balance in pixel merging are presented.

4.5.1 Recursive Adaptive Subdivision

This scheme recursively divides the screen into two subregions such that number of pixels
in one subregion is almost equal to the number of pixels in the other subregion. This
scheme is well suited to the recursive structure of the hypercube and can be done in
parallel.

Each processor counts the number of local foremost pixels at each scanline and stores
them in an array. Each entry of the array stores the sum of local foremost pixels at the
corresponding scanline. An element-by-element global sum operation is performed on

this array to obtain the distribution of foremost pixels in all processors. Then, using
this array, each processor divides the screen into two horizontal bands of consecutive
scanlines so that each region contains an equal number of active pixel locations. Along

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 88

with the division of the screen, the hypercube is also divided into two equal subcubes
of dimension d — 1. Top subregion is assigned to one subcube while bottom subregion
is assigned to the other subcube. Subcubes perform subdivision of the local subregions
concurrently and independently. Since the screen is divided into horizontal bands, the
global array obtained by global sum operation is used for further divisions of the screen.

This algorithm needs an extra step for all-to-all personalized communication scheme.
In all-to-all personalized communication scheme, each processor requires the information
on screen subregions assigned to other processors. In order to gather this information
on all nodes, a global collect operation is performed on the screen subregions assigned
to each processor after the subdivision of the screen is done.

4.5.2 Heuristic Bin Packing

In the recursive adaptive subdivision scheme, the subdivision of the screen is done on
scanline basis, i.e., scanlines are not divided. For this reason, it is difficult to achieve
exactly equal load in each subregion. In addition, when a division point is found and
the screen is divided into two subregions, each subregion is subdivided independent of
the other one. As a result, at each recursive subdivision, the load imbalance between
the subregions may propagate and increa.se. At the end of recursive subdivision, some
processors may still have substantially more work load than others. A better distribution
of work load among the processors can be achieved by using a different partitioning
scheme, called heuristic bin packing. In this scheme, the goal is to minimize the difference
between the loads of the maximum loaded processor and minimum loaded processor. In
order to realize this goal, a scanline is assigned to a processor with minimum work
load. In addition, scanlines are assigned in decreasing number of pixels they have, i.e.,
scanlines that have large number of pixels are assigned at the beginning. In this way,
large variations in the processor loads due to new assignments are minimized towards
the end.

In each processor, the total number of pixels at each scanline after local hidden surface
removal step is found. Then, scanlines are sorted with respect to number of pixels in
decreasing order. This sorting is done in parallel. Assume that the size of the set of
scanlines, which have non-zero number of pixels, is 5. For parallel sorting, each processor

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCVBES 89

sorts a disjoint subset of size S/P of this set of scanlines in parallel. Then, sorted arrays
in each processor are merged to obtain the final sorted array. This merge operation
can be performed in d concurrent communication steps. In this work, load balancing
in parallel sorting operation is not considered. Various parallel sorting algorithms can
be found in [1, 71]. In this scheme, the minimum work loaded processor to assign the
scanline is found using a binary heap.

During local hidden surface removal, the foremost pixels are stored into WPA in
scanline order in consecutive locations. However, the load balancing algorithm may
assign consecutive scanlines to different processors. Hence, non-consecutive scanline
data in the winning pixel array of the processor / can be assigned to the processor k.
As a result, in order processor / to send the pixels belonging to scanlines assigned to
processor it has to gather those pixels in another array so that they are stored in
consecutive memory locations. In order to avoid this e.xtra gather operation, the load
balancing algorithm is executed before local hidden surface removal and scanlines are
renumbered so that scanlines assigned to a processor are numbered consecutively. In this
way, pi.xels generated for these scanlines are stored in consecutive locations in winning
pixel array. However, the load metric in heuristic bin packing algorithm is the number of
pixels in each scanline after local hidden surface removal is performed. In order to find
the number of winning pixels after local hidden surface removal without running local
z-buffer operations, each processor executes the algorithm called extended span algorithm
given in Fig. 4.2 on spans in the span list structure.

In this algorithm, intersecting spans in scanline y are merged to form extended spans.
The number of pixels in these extended spans gives the number of winning pixels after
local z-buffering for scanline y. Remember that during scanline span list creation, spans
are sorted with respect to their x/ values in increasing order. Because of the sorting, there
is no need to store the extended spans. In addition, checking the intersection of a span
6' with the extended span can be done by only checking x; of span s with extiKLspan_Xr.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 90

Initialize ScanPixelCount array to zero,
for (each scanline j/) do

extndjspaii-jTr = ~1;
extnd_span_x/ = 0;
for (each span s in scanline y) do

if (X; < extnd_span_a:r) then
if (OTr > extnd^pan_.Tr) then

extndjspan-Xr = Xt'·,
en d if

else
ScanPixelCount[i] = extnd_span_.rr — extnd_span_a:/ + 1;
extnd_span_a:r = Xr',
extnd_span_ar/ = xf,

en d if
endfor
ScanPi.xelCount[i] = extnd-span_arr — extndjspan_.r/ + 1;

endfor

Figure 4.2: Extended span algorithm.

4.6 Experimental Results on an iP SC /2 Hypercube Multi

computer

The algorithms proposed in this work were implemented in C language on a 16-node Intel
iPSC/2 hypercube multicomputer. Algorithms were tested for scenes composed of I, 2,
4, and 8 tea pots for screens of size 400 x 400, 640 x 640, and 800 x 800. The abbrevia
tions in the figures and tables are AAPC: all-to-all personalized communication scheme,
P.AIR: pairwise exchange scheme, RS: recursive subdivision scheme, HBP: heuristic bin
packing scheme, ZBUF-EXC: full z-buffer merging. .All timing results in the tables are
in milliseconds.

Table 4.1 gives the characteristics of the scenes in terms of total number of pixels
generated, number of polygons and total number of winning pixels in the final picture
for different screen sizes. Rendered images of the scenes from the viewing directions used

in the experiments are given in figures 4.11 - 4.1-3.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 91

Table 4.1; Scene characteristics in terms of total number of pi.xels generated (TPG),
number of triangles, and total number of winning pixels in the final picture (TPF) for
different screen sizes.

Scene
1 POT
2 POT
4 P0T_1
4 P 0T .2
8 P0T_1
8 P0T_2

Num. Of Triangles
3751
7502
15004
15004
30008
30008

N=400
TPG
59091
66802
71578
81735
154187
99589

TPF
43247
37084
26328
35629
52258
36043

N=640
TPG

137043
151881
146468
171480
324464
201829

TPF
110515
94840
66727
90692
133617
91729

Table 4.2 illustrates the performance comparison of P.A.IR-RS scheme with full z-
buffer merging. The timings for some scene instances for ZBUF-EXC scheme could not
be obtained due to insufficient local memory. Those cases are indicated by a in this
table. .A .S seen in Table 4.2, P.'\IR-RS gives much better results than ZBUF'-EXC in pi.xel
merging phase. Since pixel information for inactive pixel locations are also exchanged,
the volume of communication in ZBUF-EXC is larger than that of PAIR-RS. As is also
seen from the table, the PAIR-RS performs better than ZBUF-EXC also in local z-buffer
phase since it avoids initialization of z-buffer.

Table 4.3 illustrates the performance comparison of A.APC-HBP, AAPC-RS, and
P.AIR-RS schemes. The timing results for local z-buffer do not include the time spent on
span list creation, because all algorithms use the same span list creation algorithm. The
overheads associated with load balancing operations are incorporated into local z-buffer
operation. If we compare the pixel merging times, AAPC-HBP scheme gives the best

results among all schemes. This is because of the fact that the heuristic bin packing
scheme achieves better load balancing than recursive adaptive subdivision scheme. As
is also seen from the table, PAIR-RS scheme gives worst performance results in pixel
merging phase. This is because of the store-and-forward overhead associated with this
scheme. If performance of the algorithms are compared with respect to execution time of

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 92

Table 4.2: Relative execution times (in milliseconds) of full z-buffer merging and PAIR-
RS for N=400.

Scene

P A IR -R S
Span List
Creation

Local
z-buffer

Pixel
Merging

Z B U F -E X C
Span List
Creation

Local
z-buffer

Pixel
Merging

1 P O T 322 434 348 316 578 2015

16
2 P O T 481 471 341 470 585 1940
4 P O T .l 1038 520 323 1015 647 1930
4 P O T -2 1124 579 408 1099 702 1958
8 P O T -1 2142 1079 684 2104 1128 2043
8 P O T -2 2087 701 451 2029 805 1958
1 P O T 630 815 468 612 952 1941
2 P O T 947 886 475 920 989 1882
4 P O T -1 2037 989 419 1968 1093 1798
4 P O T .2 2268 1109 545 2186 1191 1881
8 P O T -1 4219 2030 861

local z-buffer operation, algorithms that use recursive adaptive subdivision scheme per
form better. This is due to the fact that recursive adaptive subdivision scheme introduces
less overhead to the execution. In Total (local z-buffer -f pixel merge) execution time.
A.APC-HBP scheme achieves best performance for all instances.

Performance comparison of load balancing heuristics is done in Fig. 4.3. The load im

balance is the ratio of the difference of the work loads of maximum and minimum loaded
processors to average work load. The work load of a processor was taken to be the num
ber of pixel merging operations it performs in the pixel merging phase. As seen from the
figure, heuristic bin packing achieves much better load balance than recursive adaptive
subdivision as expected. Load balance improves with increasing screen resolution due
to better accuracy in dividing the screen. As is also seen from Fig. 4.3(a), heuristic bin
packing scales better than recursive subdivision for larger number of processors.

Total volume of concurrent communication (in bytes) for various pixel merging schemes
are illustrated in Fig. 4.4. The total volume of concurrent communication is calculated
as the sum of the maximum volume of communication at each communication step. As

seen from the figure, all-to-all personalized communication scheme results in less volume
of communication than pairwise exchange scheme as expected. Note that the volume
of communication in active pixel merging is proportional to the number of active pixel

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 93

Table 4.3: Comparison of execution times (in milliseconds) of several pixel merging
schemes.

N Scene

A A P C -H B P
Local

z-bufF.
Pixel
Merg. Total

A A P C -R S
Local

z-buff.
PLxel
M erg. Total

P A IR -R S
Local

z-buff.
Pixel
M erg. Total

400

16 4 P O T -1 550 181 731 524 218 742 520
8 P O T .l 1126 302 1428 1083 376 1459 1079
4 P O T -1 1031 250 1281 992 291 1283 989
8 P O T -1 2098 464 2562 2034 543 2577 2030

323
684
419
861

843
1763
1408
2891

640

16 4 P O T .l 1060 333 1393 1016 418 1434 1011
8 P O T -1 2238 611 2849 2170 794 2964 2165
4 P O T .l 2013 540 2553 1951 636 2587 1947
8 P O T -1 4250 1050 5300 4146 1242 5388 4142

702
1502
936
1957

1713
3667
2883
6099

locations in each processor. As the number of processors increases, the number of active
pixel locations per processor is expected to decrease. Hence, it is expected that vol
ume of communication decreases as the number of processors increases as is also seen in
Fig. 4.4(a). The increase in volume of communication in PAIR-RS scheme on 4 proces
sors is due to store-arid-forward overheads. It is also experimentally observed that better-
load balance in pixel merging indirectly affects the volume of communication as well. As
illustrated in Fig. 4.4(b), heuristic bin packing results in less volume of communication
than recursive adaptive subdivision.

Speedup curves for different schemes are illustrated in figures 4.5 - 4.6. Due to
insufficient local memory in node processors, speedup figures could only be obtained for
screen sizes 400 x 400 and 640 x 640 for 1 POT and 2 POT scenes and speedup figures
for ZBUF-EXC scheme could only be obtained for 400 x 400 screen. Figures represent
the speedup curves for total execution times (span list creation -f- local z-buffering -1-

pixel merging). As is seen from figures, AAPC-HBP scheme achieves higher speedup
than other schemes because of less volume of communication, less number of global z-
buffering operations and better load balancing in the pixel merging phase. Among all
the schemes, the ZBUF-EXC scheme gives worst speedup results. This is because of
the unnecessarily large volume of communication and large number of global z-buffering
operations in pixel merging phase.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 94

(a) (b)

Figure 4.3: Comparison of RS with HBP. (a) Different number of processors for 2 POT
scene, A — 400 x 400. (b) Different screen resolutions and different scenes on 16 proces
sors.

4.7 Results on a Parsytec CC System

This section presents the preliminary experimental results on the Parsytec CC system
recently installed in our department. Each processing node of the CC system has 64
Mbytes of memory and each I/O node has 128 Mbytes of memory. The I/O nodes can
also be used as processing nodes. However, unlike processing nodes, they are connected
to hard disks used to store user files etc. Each node has PowerPC 604 processor running
at 133 Mhz. The interconnection topology of the CC system installed in our department
is shown in Fig. 4.7. Message passing between any two nodes is done through the
multistage switch network using routers.

The pixel merging schemes AAPC-HBP and ZBUF-EXC were coded on the Parsytec
CC system for the experiments. In these experiments, we assume a hypercube inter
connection topology on the Parsytec system. The algorithms were coded in C language
and PVM 3.3 [30, 72] was used for message passing. The algorithms were tested on
6 scenes from the publicly available SPD database [37]. The number of triangles in
these scenes range from 102K to 524K. Table 4.4 gives the number of triangles in each
scene. All results presented in this section are the timings for rendering the images in

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 95

(a) (b)

Figure 4.4: Volume of communication for (a) 2 POT scene on different processors, A =
400 X 400. (b) A = 400 x 400 and A = 640 x 640 for different scenes on 16 processors.

Speed-up Curve for 1 POT, A = 400x400 Speed-up Curve for 2 POT, A = 400x400

(a) (b)

Figure 4.5: Speedup figures for A = 400 x 400. (a) 1 POT scene (b) 2 POT scene.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 96
Speed-up Curve for 1 POT, A = 640x640 Sp>eed-up Curve for 2 POT, A = 640x640

Number of Processors

(a) (b)

Figure 4.6: Speedup figures for A = 640 x 640. (a) 1 POT scene (b) 2 POT scene,

figures 4.14 - 4.16 at the screen resolution of 512 x 512.

Table 4.4: Number of triangles in the test scenes.

Scene Description Number of Triangles
Teapot 102080 102K

Balls 157440 157K
Lattice 235200 235K
Rings 343200 343K
Tree 425776 426K

Mountain 524288 524K

Figure 4.8 illustrates the rendering rate of AAPC-HBP and ZBUF-EXC scheme in
terms of number of triangles per second. Figure 4.9 illustrates the speedup achieved
by AAPC-HBP and ZBUF-EXC algorithms. The AAPC-HBP scheme achieves render
ing rate of 300K - TOOK triangles per second on 16 processors. However, ZBUF-EXC
scheme can achieve much lower rendering rates of lOOK - 350K triangles per second.
This verifies that exchanging only active pixels result in considerable gain in rendering
rate of the object-space parallelism. As is seen in figure 4.9, AAPC-HBP achieves better
speedup than ZBUF-EXC scheme. The AAPC-HBP scheme achieves speedup of 5-10

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 97

while ZBUF-EXC achieves speedup values 2-6 on 16 processors. The speedup values
on Parsytec CC system are lower than those on iPSC/2 system. There are various fac
tors for the lower speedup values. One main factor is that PowerPC processors used
in Parsytec system are much more powerful than 80386/387 processors of iPSC/2 hy
percube. A PowerPC processor has peak performance of 266 MFlops while 80386/387
processor in iPSC/2 has peak performance of 300 KFlops. While PowerPC processors
are approximately 1000 times faster than 80386/387, the peak communication band
width between two nodes of Parsytec CC system (40 MBytes/sec) is approximately 14
times faster than that of iPSC/2 (2.8 Mbytes/sec). Hence, interprocessor communica
tion affects the performance of the algorithm more in Parsytec system than it affects in
iPSC/2 system. In addition, PVM, which is slower than native message passing library
of Parsytec system, was used for message passing in the current implementations. An
other important factor is that the interconnection topology of the Parystec CC system
is not hypercube. Our algorithms exploit the connection topology of the hypercubes and
the interprocessor communication structure of our current implementations on Parsytec
CC system assumes a hypercube topology. It is likely that during message passing some
contention for some links will incur, resulting in serialization of messages in the system.

CHAPTERJ. ACTIVE PIXEL MERGING ON HYPERCUBES 98

We note that the volume of concurrent communication decreases with increasing num
ber of processors since each processor injects less number of pixels into communication
network. However, total volume of communication increases with increasing number of
processors since more processors transmit pixels through the interconnection network.
This situation is illustrated in Fig. 4.10. The values are the average of communication
volume of all test scenes.

4.8 Conclusions

In this work, efficient algorithms were proposed for active pixel merging on hypercube
multicomputers. The algorithms proposed in this chapter reduce the volume of commu
nication by exchanging only active pixel locations in pixel merging phase. The message
fragmentation in active pixel merging is avoided by storing local foremost pixels to
consecutive memory locations in local z-buffering phase. An efficient algorithm, called
modified scanline z-buffer, is proposed to store the local foremost pi.xels into consecutive
memory locations efficiently. This algorithm also avoids initialization of scanline z-buffer
for each scanline on the screen.

It is experimentally observed that active pi.xel merging with modified scanline z-buffer
algorithm performs better than full z-buffer merging. It is also experimentally observed
that all-to-all personalized communication scheme achieves less communication overhead
than pairwise exchange scheme due to less store-and-forward overheads in active pixel
merging.

Two load balancing heuristics were proposed to distribute load evenly in pixel merg
ing. The heuristic bin packing achieves better load balance and scales better than re

cursive adaptive subdivision in active pixel merging. Therefore, it is recommended that
all-to-all personalized communication with heuristic bin packing scheme should be uti

lized for active pixel merging on hypercube multicomputers.
Note that the modified scanline z-buffer algorithm and load balancing heuristics pro

posed in this work are independent of the interconnection topology. Hence, the algorithm
and heuristics can be used, without any modification, in distributed-memory multicom
puters with an interconnection topology other than hypercube. The only restriction

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 99

with recursive adaptive subdivision is that the number of processors needs to be a power
of two. However, this restriction can be relaxed by dividing the screen into two parts
at each step so that the ratio of work loads in each part is equal to the ratio of the
number of processors in those parts. As in hypercube topology, exchanging foremost
pixels is expected to give higher rendering rates than merging full z-buffers in pixel
merging phase on other topologies due to much less volume of communication. However,
the message exchange sequence of pixel merging schemes should be modified to avoid
link contention in the target architecture to get maximum performance. The all-to-
all personalized communication scheme is expected to achieve better performance than
store-and-forward schemes (e.g., pairwise exchange) for many interconnection topologies
since it has less memory-to-memory copy overheads. For example, 2-phase direct pixel
forwarding scheme of Lee et al. [53] achieves better performance on 2D meshes than their
store-and-forward schemes.

In this thesis, a preliminary implementation of all-to-all personalized communication
with heuristic bin packing was done for a Parsytec CC system. This implementation
achieves rendering rates of 300K - TOOK triangles per second on 16 processors using
data sets from SPD database [37]. Our preliminary implementation assumes hypercube
topology and uses PV'M for message passing. Thus, it is expected to achieve higher
rendering rates with an implementation suited to interconnection structure of Parsytec
and using native message passing library.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 100

8 16
number of processors

(a) (b)

F îgure 4.8: flendering rates of algorithms on Parsytec CC system, (a) .AAPC-FFBP (b)
z b u f -f: x c .

All-to-all personalized com m unication Z-buffer Exchange

(a)
number of processors

(b)

Figure 4.9: Speedup values achieved by the algorithms on Parsytec CC system, (a)
-A.APC-HBP (b) ZBUF-EXC.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 101

Figure 4.10: Total volume of communication and concurrent volume of communication.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 102

(a) (b)

Figure 4.11: Rendered images of the scenes used in the experiments on iPSC/2. (a) 1
POT scene (b) 2 POT scene.

(a) (b)

Fi gure 4.12: Rendered images of the scenes used in the experiments on iPSC/2. (a) 4
P O T .l scene (b) 4 POT.2 scene.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 103

(a) (b)

Figure 4.13: Rendered images of the scenes used in the experiments on iPSC/2. (a) 8
POT_l scene (b) 8 POTj2 scene.

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 104

V ' ■ '■ . V
,· v*vv*^. '

(a) (b)

Figure 4.14; Rendered images of the scenes used in the experiments on the Parsytec
CC system, (a) Teapot scene (102080 triangles, rendering time is 0.332 seconds on
16 processors) (b) Balls scene (157440 triangles, rendering time is 0.495 seconds on 16
processors).

^ Uki# wup «iier»\ijr·

F£iim

(a) (b)

Figure 4.15: Rendered images of the scenes used in the experiments on the Parsytec
CC system, (a) Lattice scene (235200 triangles, rendering time is 0.7 seconds on 16
proce.ssors) (b) Rings scene (343200 triangles, rendering time is 0.821 seconds on 16
processors).

CHAPTER 4. ACTIVE PIXEL MERGING ON HYPERCUBES 105

(a) (b)

Figure 4.16: Rendered images of the scenes used in the experiments on the Parsytec
CC system, (a) Tree scene (425776 triangles, rendering time is 0.576 seconds on 16
processors) (b) Mountain scene (524288 triangles, rendering time is 1.052 seconds on 16
pi’ocessors).

Chapter 5

Volume Rendering: Overview and Related
Work

In many fields of science and engineering, computer simulations provide a cheap and
controlled way of investigating physical phenomena. The output of these simulations
is usually large amount of numerical values. Vast amounts of numerical data are also
obtained by scanning physical entities by advanced scan devices. In medical imaging, for
example, a specific part of human body is scanned by advanced scan devices using tech
niques such as magnetic resonance imaging (MRI). The outcome of the scan operation
is large amounts of numerical data representing the properties of different tissues in that
part of the human body. The large quantity of data makes it very difficult for the scientist
and researcher to extract useful information from the data to derive .some conclusions.
1 herefore. visualizing large quantities of numerical data as an image provides an indis
pensable tool for researchers. In many engineering simulations and in medical imaging,
data sets consist of numerical values which are obtained at points (sample points), with
3-dirnensional coordinates, distributed in a volume that represents the physical entity or
the physical environment. The sample points constitute a volumetric superimposed
on the volume. The process of visualizing such grids is called volume visualization [48],
referred to here as volume rendering.

In this chapter, an overview of ray-casting based direct volume rendering of unstruc
tured grids is given. There are two important problems the direct volume rendering
algorithms for unstructured grids have to solve; point location and view sort problems.

106

Ihese problems are introduced in the following sections and approaches to solve point
location and view sort problems are presented. Previous works on parallel volume ren
dering of unstructured grids are summarized in the la.st section.

5.1 Nomenclature

A data set is called volumdric data set or volume data if data points of the set are defined
in 3-dimensional space in a volume. The term volume rendering is used to refer to the
process of visualizing volumetric data sets. The term sample point is used to refer to a
point with 3-dimensional spatial coordinates for which a numerical value is associated.
Sample points in the volume data are connected in a predetermined way to form volume
elements, also referred to here as cells. Sample points that form a cell are called vertices
of the cell. There are various cell shapes; rectangular prism, he.xahedra, tetrahedra and
polyhedra being the most common ones. Figures .5.1(a) and 5.1(b) illustrate a typical
volume with sample points connected to form tetrahedral cells. In v'olumetric data sets,
two or more cells may share a face. Therefore, there may exist a connectivity relation
between cells. If a face of a cell is shared by two or more cells, that face is called interior
face. If it is not shared by any other cell, the face is called e.rterior face. A cell with
at least one exterior face is called e.xterior cell or boundary cell. Otherwise, it is called
interior cell.

In a volumetric data set, the sample ¡toints constitute a volumetric grid superimposed
on the volume. Therefore, the type of the grid also defines the spatial characteristics
of the volumetric data set. which are important in the visualization process. There are
various classifications for volumetric grids in literature [11, 84, 106, 28, 105, 90]. In
this work, volumetric grids are classified into two main categories as structured and un

structured grids. Figure 5.2, based on the illustration by Yagel [106], illustrates types of

grids that are commonly encountered in volume rendering. The common characteristic
of the structured grids is that sample points are distributed regularly in 3-dimensional
space. The distance between sample points may be constant or variable. Although this
type of distribution is obvious in cartesian, regular, and rectilinear grids, this situation
is not so obvious in curvilinear grids. In curvilinear grids, sample points are distributed

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 107

CHAPTER 5. VOLUME RENDERIA G: OVERVIEW AND RELATED WORK 108

Sample Points
• ·

(a)

(b)

Figure 5.1: A volumetric data set. Figure illustrates a 2-diniensional projection of the
volume, (a) Volume is sampled at 3-dimensional space. Each small filled circle represents
the sample points with 3-dimensional spatial coordinates. Dashed lines represent the
boundaries of the volume, (b) Sample points are connected to form volume elements.
A tetrahedral cell, which is formed by connecting four distinct sample points, is also
illustrated.

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 109

in such a way that the grid fits onto a curvature in space. Hence, there exists a reg
ularity in the distribution of sample points and this type of grids are also categorized
as structured grids. The cell shapes in structured grids are hexahedral cells formed by
eight sample points. These type of grids are also called array oriented grids since these
grids are usually represented as a .3-dimensional array, for which there exists a one-to-one
correspondence between array entries and sample points. Due to array oriented nature
of St ructured grids, the connectivity relation between cells are provided implicitly. In
unstructured grids, on the other hand, sample points in the volume data are distributed
irregularly over three dimensional space and there may be voids in the volumetric grid.
The spacing between sample points is variable. There exists no constraint on the cell
shapes. Common cell shapes are tetrahedra and hexahedra shapes. Unstructured grids
are common in engineering simulations such as computational fluid dynamics (CFD),
finite volume analysis (FV’A) simulations, and finite element methods (FE.M). In addi
tion, curvilinear grid types are also common in CFD. ITistructured grids are also called
cell oriented grids. They are represented as a list of cells with pointers to sample points
that form the respective cells. Due to cell oriented nature and irregular distribution of
sample points, the connectivity information between cells are provided explicitly if it
e.xists. In some applications, simulations do not require a connectivity information. In
such cases, the connectivity between cells may not be provided at all. Unstructured grids
can further be divided into three subtypes as regular, in which cell shapes are consistent
and usually tetrahedral cells with at most two cells sharing a face, irregular, in which
there is not consistency in cell shapes and a face may be shared by more than two cells,
and hybrid, which is the combination of structured and unstructured grids.

In this work, the term direct volume rendering (DVR) refers to the process of visualiz
ing the volume data without generating an intermediate geometrical representation such
as isosurfaces. Other technicjues, called surface rendering [48], are out of the scope of
this research. In those techniques, volume data is visualized by first creating a geometric
representation such as isosurfaces in the volume and then displaying the surface.

Direct volume rendering algorithms can be classified in two main groups as object-

space approaches and image-space approaches. In object-space approaches [82, 92, 98,
103, 93], the volume is processed in object-order, i.e., each volume element is processed in

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WVRK 110

Structured Grids

Cartesian

Unstructured Grids

Regular Rectilinear Curvilinear

Regular Hybrid

F igure 5.2: Types of grids encountered in volume rendering.

some order and its contribution to the pi.xels on the screen is calculated. In image-space
approaches [54. 55, 92. 49, 29, 31, 88]. the volume is processed in pixel-order, i.e.. each
pi.xel on the screen is processed in some order and contributions of the volume elements
to this pixel location are calculated.

5.2 Ray-casting Based Direct Volume Rendering

Ray-casting based direct volume rendering (ray-casting DVR) [54, 55, 92] is an image-
space approach in which a ray is cast from each pixel location and is traversed throughout
the volume. An example of ray-casting DVR is illustrated in Fig. 5.3. The color value of
the pi.xel is calculated by finding contributions of the cells intersected by the ray and by
integrating these contributions along the ray. The traversal of ray through the volume
and calculating the color of the pixel introduces two problems referred to here as point
location and view sort problems. Efficient solution of these problems is crucial to the
performance of the underlying algorithm. In the following sections, point location and
view sort problems are described and existing approaches to resolve these problems are

presented.

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 111

Figure 5.3: Ray-casting based direct volume rendering.

5.2.1 Point Location and View Sort Problems

Ray-ca.sting DVR algorithms can be divided into two phases; resampling phase and
composition phase.

In resampling phase, the ray is traversed through the volume and new sample points
are taken along the ray. In unstructured grids, the ray is traversed in the volume to
determine the list of cell intersections by the ray. Each ray-cell intersection means an
entry point and an exit point of the ray through the cell. The entry and exit points are
utilized to find the contribution of numerical data values at the vertices of the cell to
the sample point(s) on the ray [29, 31, 49, 90]. In [90], for each ray-cell intersection, a
new sample is computed at the midpoint of the ray between its entry and exit points
on the cell (Fig. 5.4). The numerical data at vertices of the cell is interpolated to find
the value at the new sample point on the ray. Inverse distance interpolation [90] can be
used to calculate color and opacity values. First, distance of each vertex to the sample
point on the ray is calculated. Then, contribution of each vertex to the new sample point
is calculated inversely to the distance of the vertex to new sample point. That is, the
smaller is the distance, the larger is the contribution of the vertex.

1 1 1 composition phase, the contributions of the cells intersected by the ray are corn-
posited in a predetermined way either from back-to-front [54, 23]. starting from the last
cell intersected by the ray in 3-dimensional space, or from front-to-back [55, SO. 92],
starting from the first cell intersected by the ray in 3-dimensional space. First, the
scalar va,lue(s) at each sample point on the ray is mapped to a color (Cs) and an opacity
value (Oi) via applying a mapping function, also called transfer function, which converts
numerical value to color and opacity to represent the characteristics of the physical envi
ronment and simulation results. The determination of right mapping function is out of
the scope of this research. The color and opacity values are composited to form the color
at the pixel on the screen. If composition is performed from back-to-front, following
equation [54. 23, 96] is evaluated to find the composited color at the pixel

c.+ i = c , (i - a) + c o , (5.1)

where Ci+i is color after the sampling point on the ra}'. C, is the color composited from
previous sampling points on the ray, C, is the color at the current sampling point on
the ray and is the opacity on at the current sampling point on the ray. Initially,
a background with opacity (9,, = Oj = 1 is placed behind the volume and Cs = C\ =
background color is taken as the starting point. If front-to-back composition is used,
following equation [55] is evaluated to calculate the composited color

CHAPTER o. VOLUME RENDERING: OVERVIEW AND RELATED WORK 112

C,+iO,+, = C,0, + CsOsil - Oi)

Oi+i = 0 , + 0 s (l - 0 ,) (.5.2)

where Ci+i/0.:+i is the color/opacity after processing sample point, CijOi is the color/o-
pacity before processing sample point, and CsjOs is the color/opacity at the sample
point. Initially, Co and Oo are set to zero. Note that equations (5.1) and (5.2) are
associative, but not commutative. Hence, the composition of the sample points should
be done in a predetermined order. This restriction requires that either sample points on
the ray should be sorted or ray-cell intersections should be determined in a sorted way.

Determining the volume element that contains the sample point on the ray in the
re-sarnpling phase is called point location problem. For unstructured grids, it involves

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 113

v o l i m e ELEMENTS (CELLS)

Figure 0.4: Re-sampling phase of the ray-casting DV R. The color and opacity values at
the sample point on the ray are calculated by finding the contributions of original sample
points which form the cell. After re-sampling, sample points on the ray are composited
to gemuate the color on the screen.

finding the intersection of the ray with the cell. Sorting sample points on the ray or find
ing the intersections in a sorted order is defined as view sort problem. These problems
are relatively easy to solve in structured cartesian, reejular, and rectilinear grids. The
regular distribution of data points over .■3-dimensional space and implicit connectivity
between volume elements make these problems almost trivial ones to solve. However,
solving point location and view sort problems is more difficult in curvilinear and unstruc

tured grids. In unstructured grids, data points (original sample points), hence volume
elements, are distributed irregularly over 3-dimensional space. .A. naive algorithm may
need to search all cells to find an intersection, thus requiring very large execution times
for large data sets. In addition, sorting sample points on a ray takes a lot of time, if
not handled efficiently, because many cells may be intersected by the ray. Therefore, the
performance of the underlying algorithm closely depends on how efficiently it resolves
these problems.

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 114

5.2.2 Approaches to Solve Point Location and View Sort Prob
lems

In this section, existing work on point location and view sort problems on unstructured
grids are summarized. These algorithms use the coherency in the volume and on the
image-space to increase the efficiency of the algorithms.

Garrity [’29] proposes an algorithm that utilizes connectivity between volume ele
ments. First, rays are intersected with exposed (e.xterior) faces to find the first inter
section of the ray with the volume. In order to further decrease the search for the first
intersection, all e.xposed faces are geometrically sorted into a coarse 3-dirnensional grid.
The ray is intersected with this grid first and only the faces in the grid locations, which

are intersected by the ray, are tested for intersection with ray. Once the intersection of
the ray with a cell is found, this intersection is the entry point of the ray into the cell.
Entry point of the ray to the next cell, which is the exit point of the ray from the current
cell, is found by only considering the faces of the current cell. After an exit point is
calculated, through the connectivity information between cells, next cell that shares the
face, is also found. Since unstructured grids may be curved or may have voids in the

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 115

volume, if a ray exists the volume at a point, exterior faces are intersected with the rav
again to find the next entrance point of the ray to the volume.

Koyarnada [49] describes an algorithm for unstructured grids with tetrahedral volume
elements. The ray-cell intersections are carried out using connectivity between volume
elements. The first intersection of the ray with the volume is found by projecting and
scan-converting the exterior face on the screen. In order to reduce the number of exterior
laces scan-converted, only front-facing (for front-to-back traversal) or back-facing (for
back-to-front traversal) exterior faces are projected and scan-converted. When scan
converting an exterior face, a ray is cast from each pi.xel generated and it is traversed
in the volume. The next cell that the ray intersects is found by only checking the faces
of the current cell. If the ray exists the volume, composited color and opacity values
are stored to the pixel location. Note that when another exterior face is projected to
the same pi.xel location, the composition step uses the color and opacities at the pixel
location as initial values. For non-convex volumes, front-facing or back-facing exterior
fcices are assigned a depth-priority so that rays intersect these faces in order of increasing
distance to the screen. The depth-priority is calculated by simply sorting the distance
of centroids of the front-facing or back-facing e.xterior faces. .Since this sorting is an
approximate sorting, it may result in artifacts in the image due to incorrect priority. It
is stated in the paper that these cases are rather rare and if needed more complex sorting
algorithms such as list-priority algorithms [77] can be u.sed.

Tabatabai et al. [88] describe methods to visualize volumes composed of non-linear
elements. The intersection of the ray with a cell face is calculated by solving a set of
linear ecjuations. The first intersection of the ray is found by only considering exterior
faces of the volume. The algorithm divides the image space into contiguous pixel regions
of the same size. The projected bounding box of the face is used to mark regions

as possibly containing this face. Hence, the ray-face intersection is calculated by only
considering faces in a region. The next volume element intersected are found by using
the connectivity between volume elements.

All of the above approaches require connectivity between volume elements to traverse
the ray through the volume efficiently. If such connectivity is not given, the algorithm
should construct such a relation as a preprocessing step. If connectivity does not exist

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 116

between cells, then efficiency of these algorithms may degrade considerably. The follow
ing two approaches do not reciuire connectivity, thus provide more general solutions to
point location and view sort problems.

Giertsen [31] utilizes a scan-plane buffer to solve point location and view sort prob
lems. The scan-plane buffer is a 2-dimensional array and stores information within a
plane perpendicular to one scanline on the screen, i.e., the scan-plane extends in x and
z directions perpendicular to screen while screen extends in x and y directions in 3-
dimensional space. In this algorithm, the z-dimension is also discretized in a sense due
to scan-plane buffer. The algorithm proceeds from one scanline on the screen to the next.
At each scanline, the intersection of scan-plane with volume elements is calculated. The
volume elements that are intersected by this scan-plane are sliced by finding edge inter
sections of faces of volume elements with scan-plane. The intersection calculations from
one scanline to the next one are done by incremental calculations using a list of active
cells, whose y-extend covers the current scanline. In order to update active cell list for
the current scanline efficiently and decrease the slicing calculations, two methods are pro
posed in the paper. In the first method, all the cells are bucket-sorted into a y-bucket as
in scanline z-buffer algorithm in polygon rendering according to their minimum y value.
The active cell list is updated using this y-bucket. .Another method to build active cell
list and decrease slice calculations is proposed for volumes with large opaque regions. In
this method, the cells are bucket-sorted into a z-bucket according to their minimum z
value. Then, the z-bucket is traversed in increasing order of z so that cell slices closest
to the screen is inserted into the scan-plane buffer. If the foremost point of the slice is
opaque, the algorithm only processes segments before the opaque slice. After volume
elements are sliced for the current scanline, each slice is divided into triangles and each
triangle is further decomposed into line segments in z direction. A line segment is stored
into the scan-plane location corresponding to the foremost end of the line segment. In
this way, view sort operations is done efficiently. A run-length encoding which shows the
expected location for the next segment is also stored at the same location. Run-length
encoding avoids extensive searching during composition phase. Giertsen uses Sabella s
method [80] for color and opacity calculations in the composition phase. The compo
sition is carried out by processing the line segments in front-to-back order and linearly

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 117

interpolating the ray along them. Since scan-plane buffer discretizes the 3-dimensional
volume in .x and z directions. The quality of images and performance of the algorithm
depends on the discretization level (i.e., resolution of the scan-plane buffer).

Challinger [9, 10, 11] employs a scanline z-buffer based algorithm to solve point
location and view sort problems. In the former work [9]. a cell-by-cell approach is
used. Intersection of the ray with cells is found using scanline algorithm. First, cells
are bucket-sorted into a v-bucket as in scanline z-buffer algorithm. Then, algorithm
processes each scanline starting from the lowest scanline on the screen, .^n active cell
list is created for the current scanline using the y-bucket list. The active cells for the
current scanline are bucket-sorted into an x-bucket with respect to their minimum x
coordinate. When processing pixels on the current scanline, an active cell list is created
tor the current pixel using the x-bucket. In this way, the number of cells to be tested
for intersection is reduced largely. In the latter works [10, 11], face-by-face approach
is used. Cells are divided into faces and algorithm operates on the faces of the cells
to find ray-face intersections. The algorithm is based on conventional scanline z-buffer
hidden surface algorithm used in polygon rendering. The algorithm needs cells with
planar polygonal faces as in the former work. Non-planar faces are broken into two
triangular polygons. In this algorithm, instead of casting rays from pixels and finding
their intersection with polygons, which make up the face of a cell, projection of polygons
are processed (rasterized as in polygon rendering algorithms) in scanline-order to find ray-
face intersections. .\‘ote that if a pi.xel in the current scanline is covered by the projection
o f a face, then the ray shot from that pi.xel intersects the corresponding face. In the first
step of the algorithm, all polygons are bucket-sorted into a y-bucket according to their
minimum y coordinate. As in the former work, the algorithm proceeds from one scanline
to other scanline on the screen and from one pixel to the next in the same scanline. An
active list of polygons are created for the current scanline using the y-bucket. The active
poh'gons, whose y-extend covers the current scanline, are intersected with the current
scanline to find edge intersections. The spans created by edge intersections are bucket-
sorted into an x-bucket. As pixels are processed in the current scanline, an active edge
list (or span list) is created using the x-bucket. The spans are rasterized to generate ray-
polygon intersections at the current pixel. The distance of each ray-polygon intersection

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 118

and related information (e.g., a pointer to the cell) are inserted into a sorted linked list,
called intersection list (referred to here as zdist), which is sorted in increasing distance
values. This sorted list is utilized in composition phase. Note that two consecutive
ray-polygon intersections in the z-list corresponds to entry and e.xit points of ray with
the cell. During the composition phase for the current pixel, the list is traversed in
order and each pair of intersections is used to find corresponding sample point on the
ray. During traversal of the list, these sample points are composited. The algorithm
uses image-space coherency to efficiently find the intersection of scanlines with cell faces
and to avoid sorting the z-list for each pixel in the current scanline. Projections of the
cell faces cover consecutive scanlines on the screen. Hence, the intersection of scanline
with polygon edges can be carried out using incremental calculations. Each span in the
current scanline covers consecutive pixel locations. Therefore, sorting of z-intersections
with polygons are avoided as long as the list of polygons intersected by the ray does not
change.

In addition to above algorithms used in ray-casting based DVR approaches, algo
rithms developed in object-space approaches can also be utilized to solve point location
and view sort problems. In object-space approaches, the volume elements are view sorted
instead of sorting ray-cell intersections. This sorted order of cells can be utilized to find
ray-cell intersections efficiently. Williams [104] describes a method to view sort cells in
linear time in number of cells and their faces. His algorithm constructs a directed acyclic
graph using plane equations of faces, view point location and interconnectivity relation
between cells. Then, a topological sort operation is carried out using either a depth-first
or a breadth-first search. This sort produces the view sorted order of volume elements.
He gives complete algorithm for convex meshes. .Algorithm for non-convex meshes has
few limitations and may not handle all non-convex meshes. The algorithm may result

in cycles in the graph for non-convex meshes even if such a cycle does not exist.

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 119

5.3 Previous Works on Parallel Direct Volume Rendering of
Unstructured Grids

This section summarizes the previous work on parallel direct volume rendering of un
structured grids. Most of the previous work on parallel direct volume rendering has
been carried out for parallel direct volume rendering of structured grids. Some of these
approaches and related references can be found in [58. 63, 87, 107, 59, 2, 52]. Utiliza
tion of parallel processing in direct volume rendering of unstructured grids has been
investigated by few researchers [9. 10, 11, 57, 105. 60]. .Although the previous works
by Challinger [9, 10, 11] also address parallel implementations for curvilinear grids, the
algorithms do not e.xploit the nature of curvilinear grids and are designed to handle
unstructured grids as well.

Challinger [9, 10, 11] pre.sents algorithms for BBN TC2000 multicomputer. The BB.M
TC2000 provides a distributed shared memory in the form of memory boards associated
with each processor. Processors access to the shared memory locations through a network
called Butterfly switch. The software library provides a task generation mechanism that
generates the ne.xt task to be assigned to processors dynamically [99, 11]. In the former
work [9]. two algorithms are presented. The y-bucket and v'olurne data is stored in
a scattered fashion in the globally shared memory across the "local'' memory blocks
assigned to each processor. Each entry of the y-bucket corresponds to a scanline on the
screen. The y-bucket is initialized by processing volume cells and inserting pointers at the
bucket locations corresponding to lowest numbered scanline intersecting the cell. In the
"single-phase"’ algorithm, each scanline on the screen is considered as a task. Dynamic
task allocation on demand-driven basis is performed to assign scanlines to processors.
In this scheme, each processor gets a scanline to render when it becomes idle. After
receiving a scanline, each processor creates local x-buckets using the cells active at the
current scanline. The local x-buckets, which are duals of y-buckets, are stored in the
local memory blocks associated with each processor. Each processor, then, creates an
intersection list for each cell active at the current pixel using the local x-bucket. The
intersection list is then processed to perform composition. In “two-phase” algorithm, the
sampling and composition steps are separated as two phases. Scanlines on the screen

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 120

are scattered to processors in a round-robin fashion statically. In the sampling phase,
processors sweep through scanlines assigned to them and create intersection lists for each
pi.xel on each scanline a.ssigned to them. The.se intersection lists are stored in the local
memories. In composition step, each of these intersection lists are processed to perform
composition of sample values for the corresponding pi.xel. In two-phase algorithm, since
intersection lists are saved, when a new transfer function is used to generate colors, onlv
composition phase is executed. The main disadvantage of scanline based task generation
is the low scalability. The scalability of the algorithm is limited by the number of
scanlines on the screen. In the latter works [10, 11], image space is divided into square
tiles which are considered as tasks and are assigned to processors dynamicallv. Volume
data is scattered across the memory blocks associated to processors as in [9]. .Since the
algorithm employed to solve point location and view sort problems operate on faces,
volume elements are decomposed into faces and face groups (groups of faces) are created
in both parallel implementations. As is stated in the paper [10], structured grids are
naturally decomposed into face groups since they are represented as three dimensional
arrays. In the paper, decomposition of unstructured grids are very briefly mentioned
but no specific algorithm is given. The creation of face groups and decomposition of
cells into faces is done in parallel by dynamically assigning cells to processors. Vertices
of the faces are transformed with respect to viewdng parameters by assigning each row
of the grid to processors dynamically. Then, cell faces are sorted according to image
tiles they fall into. This sort is done in two passes due to inefficiency in shared memory
allocation routines. In the first pass, number of faces crossing each tile is calculated using
bounding boxes of the faces. Face groups are assigned to processors dynamically and each
processor increments local counters corresponding to image tiles. Local counters, which
are not zero, are added to global counters in shared memory after all cell faces processed.

Necessary space for image tile buckets are then allocated in the shared memory. Note
that if there are already allocated buckets in the memory, they are reallocated if their size
is less then the current count of faces in that bucket. In the second pass, face groups are
assigned dynamically as in the first pass to generate pointers to faces. Each processor
now generates local pointers to faces for image tile buckets. These local pointers are
then copied to the shared bucket lists. The viewing transformation and sorting steps

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 121

are followed by the rendering phase. There are two implementations for the rendering
phase as in [9]. In the first implementation, composition and sampling phases are done
simultaneously, whereas in the second irnplementaiion, intersection lists found in the
re-sarnpling phase are stored into the local memories of processors to use when only
transfer functions change. In both of the implementations, image tiles are assigned to
processors dynamically. Image tiles, hence tasks, are sorted according to the number of
cells associated to them, Larger tasks are assigned first to achieve better load balancing.

Williams [lOo] pre.sent algorithms for parallel volume rendering on Silicon Graphics
Power Series (SGIPS) machine. The target machine is a shared-memory multicomputer
with computer graphics enhancement through the use of graphics processors. The pro
cessors in SGIPS does not contain local memories and access to shared memory is done
over a bus. The serial algorithms for direct volume rendering are based on object-
space methods (such as projection and splatting). The cells are view sorted for proper
composition by the view sort technique developed by Williams [105, 104]. The sorting
technique, called meshed polyhedra visibility ordering (MPV'O) algorithm, topologically
sorts an acyclic directed graph generated from connectivity relation between cells. The
topological sort is done by using either breadth-first search (BF.S) or depth-first search
(DFS) techniques on directed graph. Parallelization of the algorithms are divided into
two stages: (1) the parallelization of generating directed graph used by the MPVO al
gorithm and (2) parallelization of topological view sort of the graph and rendering of
the view sorted cells. Two algorithms are presented for stage (1). In the first algorithm,
stage (1) is parallelized by assigning a cell to each processor to process. Each processor
keeps local data structures (queues) to store the “source celf’ u.sed in the view sorting
phase. These data structures are then merged and stored in the global memory. This
scheme results in evaluating plane equation of shared faces twice. The second algorithm

avoids this redundancy by evaluating the plane equation of the shared face only for the
lower numbered cell of both cells sharing the face. This eliminates redundancy but in
troduces a search for each cell to find the desired faces and a separate sweep is required
to update each cell accordingly. The parallelization of stage (2), i.e. view sort (based
on BFS) and rendering (splatting based rendering) of cells, is done as follows for con-
ve.x grids. In the first scheme, each processor takes a source cell from global queue and

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 122

splats it onto the screen. Since BPS on the graph produces cells that are spatially not
overlapping, splatting of the cells can be done in parallel. Then, each processor finds the
children of the source cell it splats and puts them into a local queue. When all source
cells in the global queue is processed, local queues are merged into global queue. In the
second scheme, two global queues are used. .A single processor (procO) performs BPS on
the graph using source cells in the first global queue. This processor finds the children of
all source cells in the first global queue and stores them in the second global queue, while
other processors splat the cells in the first global queue. When all cells in the first global
queue are processed and when procO finishes constructing the first queue, pointers to
global queues are exchanged. Thus, first global queue becomes second queue and second
becomes first queue. If procO finishes its work before others, it also helps splatting of
the cells in the first queue. Parallelization of the algorithm for non-convex meshes is
also presented. The MPVO algorithm for non-convex meshes requires Df\S of the graph.
One processor (procO) performs DPS on the graph and the other processors perform
the splatting of the cells. Two queues are used for this purpose. While procO updates
first queue, cells in the second queue are processed. Since cells need to be proces.sed in
the order they are output from the DP'S routine, only limited amount of work can be
parallelized such as transformation of cells and partitioning of cells for projection.

Lucas [57] describes a volume rendering algorithm for shared-memory multiconiput-
ers. The algorithm consists of two steps. In the first step, viewing transformations and
lighting calculations are done. These calculations are performed on partitions of the
volume data set. The data set is partitioned into rectangular regions. Unstructured
data sets are partitioned by dividing the data recursively. Details of how to perform the
subdivision is not given in the paper. The second step of the algorithm is the rendering
of the volume partitions. In this step, screen is divided into non-overlapping rectangular

regions and processors render one or more of the screen regions. Each screen region
is processed in three steps; checking each partition if it falls into corresponding screen
region, then checking each primitive in the partition for quick rejection of totally clipped
primitives, and clipping and scan-converting primitives that overlap the partition. The
effect of the number of screen partitions and number of volume partitions to the algo
rithm performance is examined to obtain an optimum division of the screen and volume

data set. It is unclear from the paper how screen regions are assigned to processors for
achieving even load distribution.

Ma [60] present an object-space parallel algorithm for distributed memory multicom
puters. This is the only known work on parallel volume rendering of unstructured grids
on distributed-memory multicomputers. The multicomputer used in Ma’s work is an
Intel Paragon with 128 processors. In Ma’s algorithm, the volume data is divided into P
subvolumes, where P is the number of processors. The volume is considered as a graph
and partitioned into subvolumes of ecjual number of volume cells (e.g., tetrahedrals)
using Chaco graph partitioning tool [38]. The ray-casting volume rendering algorithm
of Garrity [29] is used to render subvolumes in each processor. The subvolumes may
have local e.xterior faces due to partitioning and it is possible that rays will exit from
these faces and re-enter the volume from such faces, creating ray segments. The equa
tions (5.1) and (5.2), used in the composition of colors and opacities, are associative,
but not commutative. Thus, each processor inserts ray-segments (in sorted order) to
linked lists. The partial images in each processor are composited to generate the final
rendered image. In image-composition, screen is divided evenly into horizontal bands.
Each processor is assigned a band to perform image-composition. The linked lists in
each processor are packed and sent to respective processors for composition. Receiving
processor unpacks the lists and sorts them. Then, these sorted lists are merged for the
final image. Ma overlaps sending of ray segments with rendering computations to reduce
the overhead of communication.

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 123

5.4 Discussion of Previous Works on Parallel Volume Ren

dering of Unstructured Grids

Most of the pi'evious work on parallel rendering of unstructured grids evolved on shared-
memory multicomputers [9, 10, 105, 57]. The algorithms developed in [105] can be
considered as fine-grain algorithms and exploit the use of shared memory in the system.
Load balancing is done dynamically assigning a cell to the idle processor for rendering.
Such an assignment scheme will introduce a lot of communication overhead due to fine
granularity of the assignments. In addition, parallel algorithms developed for sorting

CHAPTER 5. VOLUME RENDERING: OVERVIEW AND RELATED WORK 124

the cells reciuire a global knowledge of the database. Therefore, these algorithms are not
very suitable for distributed-memory multicomputers.

The only work on distributed memory multicomputers is by Ma [60]. Ma uses object-
space parallelism. The volume is partitioned using a graph partitioning tool into sub
volumes of equal number of elements. Unfortunately, the sequential rendering algorithm
employed in the implementations is very slow. Thus, it hides many overheads of the
parallel implementation. For example, image-composition operations take seconds even
on large number of processors. In addition, composition time does not decrease linearly
with increasing number of processors. This is basically due to sorting required on ray-
■segments for correct composition of colors and opacities. Moreover, even when viewing
direction is fixed (to visualize volume under different transfer functions), inter-processor
communication is still needed for image-composition.

Image-space parallelism is explored in [9. 10, 57]. Screen is subdivided into equal
subregions and load balancing is achieved by dynamic allocation of subregions to proces
sors [9, 10; or by scattered distribution [9]. The non-adaptive image-subdivision schemes
in volume rendering has the same disadvantages as in parallel polygon rendering counter
parts. Therefore, adaptive subdivision of the screen is a good alternative to non-adaptive
subdivision.

Chapter 6

Spatial Subdivision for Volume Rendering

In this dissertation, we investigate image-space parallelism (section 3.2.1) for direct vol
ume rendering of unstructured grids on distributed memory multicomputers. In this
chapter, we present several algorithms for adaptive subdivision of the screen for efficient
parallel \'olume rendering. .Adaptive subdivision of the screen was only investigated in
parallel polygon rendering algorithms [76, 99, 65, 26] and in ray tracing/casting [42, 5].
In volume rendering, screen is divided into equal subregions, which are assigned to pro
cessors either dynamically [9, 10] or by scattered distribution [9].

The common characteristic of the algorithms presented in this chapter is that they
divide the image-space adaptively, using the primitives in the volume data, to achieve
even distribution of rendering computations and data among the processors. The algo
rithms presented in this chapter can be grouped into two classes; 1-dimensional array
ba.sed algorithms and 2-dimensional mesh ba.sed algorithms.

In the first group of algorithms, one-dimensional arrays for each dimension of the
screen are used to represent the distribution of work load on the screen. The screen is
partitioned using these arrays. Three algorithms are presented in this group: Horizon

tal. rectangular., and recursive rectangular subdivision algorithms. Horizontal subdivision
algorithm is the simplest algorithm and divides the screen into horizontal bands of con
secutive scanlines. Rectangular subdivision algorithm subdivides the screen rectangular
regions. .At the first stage, the screen is divided into horizontal bands. Then, each hor
izontal region is further divided vertically. Recursive rectangular subdivision algorithm
is the most general type of these algorithms. It subdivides the screen recursively into

12.5

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 126

rectangular regions. This algorithm is based on the work by İşler [42, 5]. The implemen
tation ot the algorithm pre.sented in this chapter slightly differs. During the subdivision,
work load distribution arrays are updated using only the e.xchanged bounding boxes.

In the second group of algorithms, a 2-dimensional coarse mesh is superimposed on
the screen. .Subdivision algorithms use the work load distribution on this 2-dimensional
mesh to subdivide the screen. Three algorithms are presented in this group: Mesh-based
adaptive hierarchical decomposition, Hilbert curve based subdivision, and graph partition

ing based subdivision algorithms. The first algorithm is based on Mueller’s work [65].
This algorithm uses a summed area table [20] to subdivide the screen. The second al
gorithm is based on Hilbert space filling curve. In this algorithm. 2-dimensional mesh
is traversed using the Hilbert space-filling curve [41]. This curve converts 2-dirnensional
representation into a one-dimensional array. This array is used to subdivide the screen.
Hilbert curve and other space-filling curves have been used in various application ar
eas [45. 83, 3. 69]. However, spatial-subdivision using Hilbert curve is a new approach
in parallel rendering field. The last algorithm is a new algorithm and the most general
type of these algorithms. In this algorithm, the subdivision of the screen is modeled
as a graph partitioning approach. The 2-dimensional mesh is converted into a graph
representation. This graph is partitioned using a state-of-the-art partitioning package,
namely Metis [47].

After introducing the spatial subdivision algorithms, we experimentally compare and
evaluate all algorithms with respect to load balancing performance, the number of shared
primitives, and execution time of algorithms. In previous works on parallel polygon ren
dering [76, 99, 65, 26], the number of primitives in a region is used to represent the work
load associated with that region. That is, screen is divided into regions and/or screen
regions are assigned to processors using the primitive distribution on the screen. In all
of these works, screen-space bounding box of a priniitiv'e is used to appro.ximate the
coverage of the primitive on the screen. This is done to avoid expensive computations
to determine the exact coverage. In the experimental evaluation of the algorithms, the
same appro.ximations are used. That is. the number of primitives with bounding box
appro.ximation is taken to be the work load of a region for evaluating load balancing per
formance of the algorithms. The second criteria used in the comparisons is the number

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 127

of shared primitives after division of the screen. Shared primitives are the primitives
that cross two or more regions assigned to different processors. Reducing the number
of shared primitives is desirable since they potentially introduce overheads and waste
system resources [42]. The most obvious is the waste of memory in the overall machine
since such primitives have to be duplicated in differenl processors. They also introduce
duplicated computations such as geometry processing in polygon rendering, intersection
tests in ray tracing [42], etc. Execution time of the subdivision algorithms is another im
portant criteria. A long execution time may take away all the advantages of a particular
algorithm.

The algorithms proposed and presented in this chapter are also utilized for parallel
implementation of a volume rendering algorithm. The secjuential volume rendering algo
rithm is based on Challinger’s work [9, 10]. This algorithm is a polygon rendering ba.sed
algorithm. It requires volume elements composed of polygons and utilizes a scanline
z-buffer approach to resolve point location and view sort problems. VVe discuss the ap
plication of the subdivision algorithms for this volume rendering algorithm. We present
experimental speedup figures for rendering of some volume data sets on a Parsytec CC
system installed in our department.

The rest of this chapter is organized as follows. Section 6.1 presents the spatial sub
division algorithms. Experimental comparison of these algorithms is given in section 6.2.
The sequential volume rendering algorithm is presented in .section 6.3. Parallelization of
this sequential algorithm is presented in section 6.4. Section 6.5 presents the experimen
tal results on Parsytec CC system.

6.1 Spatial Subdivision Algorithms

This section presents the subdivision algorithms covered in this work. In the following
discussions, w'e assume that the number of primitives (based on the bounding bo.x ap-
pro.ximation) in a region is the work load of that region. The algorithms discussed in
this section have three basic steps:

Step 1: Create screen space bounding boxes of the primitives. Initially, each processor

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 128

receives M/P primitives. Here, AI is the total number of primitives and P is the number
of processors. After receiving the primitives, each processor creates screen space bound
ing boxes of the local primitives. The bounding box of a primitive has the following
structure:

structure bbox {
short xmin^ymin;
short xmax, ym ax‘,

}:

Here, {xmin, ymin) is the lower left corner coordinates and {xrnax, yrnax) is the up
per right corner coordinates of the bounding box on the screen.

Step 2: S ubdivide the screen into P regions using the primitive distribution on the
screen. Each processor is assigned a single region after subdivision.

Step 3 : Redistribute the local primitives according to screen subregions and proces.sor-
subregion assignments. In order to carry out redistribution step, each processor should
know about the region assignments to other processors. For this reason, each proces
sor receives screen subdivision information from other processors if such information is
distributed among processors during subdivision.

After the redistribution of primitives, each processor renders the screen region as
signed to that processor.

6.1.1 Horizontal Subdivision (HS)

In thi.s scheme, the image plane is divided into P horizontal bands of consecutive scan
lines. By allowing consecutive scanlines in each region, coherence in the image-space is
preserved to some extent and the number of shared primitives is expected to decrease as
there are less number of boundaries between processors. The division of the image plane
is carried out using the distribution of work load in y-dimension of the image plane. .An
example of horizontal division is given in Fig. 6.1.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 129

Figure 6.1; An example of horizontal subdivision for eight processors.

Basically, one-dimensional arrays are used to find the distribution of primitives over y-
dimension of the screen. The first array is the y-dimen.sion local primitive start {YPS'toc'ji)
array of size N, where N is the resolution of the screen in y-dimension. The second array
is the y-dirnension local primitive end {YPEiocai) array of size N. Each entry of these
arrays corresponds a scanline on the screen. Each processor updates these arrays using
local bounding boxes by the following algorithm.

for each local bounding box [bbox) k do
yrnin — bbox[k].ymin\ymax = bbox[k].yrnax:

Y PS locally rn in] = Y PS locally niin] E
YPEiocailymax] - YPEiocailynmx]+ 1;

endfor

After all local bounding boxes are processed, YPSiocailj] gives the number of local
primitives that start at scanline j . Similarly. Y PS'iocailj] gives the number ol local
primitives that end at scanline j . A global sum operation is performed on these two arrays
so that each processor receives the global arrays V PSgiohai n̂id Y PEgiobah containing the
information for all primitives in the scene. Then, prefix sum operation is performed

on each global array to obtain prefix sum arrays, YPSprc/ix and YPEpre/ix- The value
FP5pre/tx[i] gives the number of primitives that start before scanline j , including the

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 130

scanline j . Y PEprejiilj]·! on the other hand, gives the number of primitives that end
before scanline j , including that scanline. Note that memory allocated for VPSio.yii and
^ P Hlocal can be reused for Y P S p r ^ / i x and Y PEpr^/ix arrays. The number of primitives
in a region bounded by scanlines s and e > s is given by the following equation:

Number o f primitives - V PSpreiix[C\ - Y'PEpr,_jix[s - 1]. (6 .1)

Note that this equation gives the exact number of primitives in a horizontal region
bounded by [.s.e].

Processors subdivide the screen recursively using these prefix arrays until the number
of regions is ecpial to the number of processors. In this way. a full binary tree, whose
root being the whole screen, is conceptually generated. .At each subdivision level i

{i = 1 ,..... log2 P), a region bounded by scanlines .s and e is divided into two regions
[.s,y] and [y + l,e]. The division line y that separates two subregions is determined, by
checking all possible lines, such that the following expression is minimized.

rnax{workload[s, j]· u'orkload[j + l.e]) — — . (6.2)

In this expression, function max{a.b) returns the maximum of a and b. The value
workload[s. j] gives the work load in the region bounded by scanlines s and y. In our case,
work load is ecjual to the number of primitives in that region. Similarly, workload[j +
l,e] gives the work load of the region bounded by scanlines y + 1 and e. The minus
term A //2 ‘ repre.sents the average load at subdivision level i. Here, M is the original
number of primitives in the scene. Note that perfect load balance is achieved when each
processor processes M/P primitives after redistribution step. In this respect, the minus
term also represents the perfect load balance condition at each subdivision level. The
expression given above also tries to decrease the number of shared primitives since the
term rnax{icorkload[s,j],workload[j + l,e]) will be equal to A //2 ‘ when there are no

shared primitives.
In the horizontal subdivision scheme, the atomic task is defined to be a scanline, i.e.,

scanlines are not divided. Due to this restriction, the scalability of horizontal division
scheme is limited by the number of scanlines. In addition, the work load at each region
is determined by the work load at each scanline. Hence, if there are large differences in

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 131

Figure 6.2: An e.KampIe of rectangular division for S processors organized into 4 clusters
and 2 processors in each cluster.

the work loads of scanlines, the load imbalance between regions may still be large. The
limitations of the horizontal subdivision can be eliminated to some e.xtent by using work
load distribution in both dimensions of the screen. The scheme to implement this idea
is given in the next section.

6.1.2 Rectangular Subdivision (RS)

In the rectangular subdivision scheme, processors are organized into a two dimensional
h X L mesh, thus forming L clusters of K processors in each cluster. Then, the image
plane is divided into L horizontal bands as in the horizontal subdivision. .After parti
tioning image plane into L regions, the work load distribution in x-dimension in each
region is calculated. Then, each region is divided into K vertical bands of consecutive
vertical lines in .x-dimension. An example of rectangular division scheme for 8 proces.sors
is illustrated in Fig. 6.2.

In this scheme, after L horizontal partitions are found, each processor treats each
horizontal region as a new image plane rotated 90 degrees. Hence, the number of scanlines
in each new image plane is equal to the number of vertical scanlines in x-dimension of
the global image plane. Each processor uses the bounding boxes of local primitives to

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 132

Figure 6.3; An example of recursive subdivision for eight processors.

find the work load distribution in each horizontal band. If a bounding box spans two or
more horizontal regions it is divided into segments and work load distribution of each
region is updated according to the corresponding segment. After this step, a global sum
operation is performed to obtain the global work load distribution in x-dirnension in each
region. .Afterwards, each processor finds vertical partitioning in the horizontal region of
the cluster that processor belongs.

In order to redistribute primitives, processors need the vertical division information
in other clusters so that they can find the rectangular region the bounding box of a
local primitive crosses. At the last step, a global concatenate operation, on the vertical
divisions in each cluster, is performed so that each processor has the information about
vertical divisions in other clusters.

6.1.3 Recursive Rectangular Subdivision (RRS)

In this scheme, the image plane is divided into P rectangular regions in log2 P steps. .At
each subdivision step i {i = 1, ...Jog2 P), the subregion assigned to a group of processors
is divided into two new subregions either vertically or horizontally. An example of

recursive subdivision is given in Fig. 6.3.
In this scheme, primitive distribution over two dimensions of the screen is required

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 133

to be able to divide the screen horizontally or vertically. This scheme uses the same
data structures used in horizontal subdivision scheme. However, data structures used
for horizontal load distribution are duplicated for vertical load distribution. That is,
in addition to YPSiocat and YPEiocai arrays for y-dimerision. each processor allocates
XPSiocai and XPEiocai arrays for x-dirnension of the screen. Initially, each processor
is assigned the whole screen as its local image region. Each processor, then, updates
its local copy of the YPShcah NPS'iocai, YPEiocah and XPEi^^ai arrays using the local
bounding bo.xes as follows:

for each local bounding box (bbox) k do
xrnin = bbox[k].xmin\ xrnax — bbox\k].xmax\
yrnin = bbox[k].ymin\yrnax = bbox[k].ymax]
YPSiocai[ymin] - YPSiocai[ymm] + 1:
Y PEiocai[yrn(ix\ = Y PEiocai[yrnax]+ 1;
X PSlocal[x>nin] = XPStocali-f^fnin] + 1;
X P Eiocatl-T̂ fnax] = XPEiocatli'fnax] + 1;

endfor

The work load distribution in two dimensions are obtained by performing global prefix
sum operations on these arrays to obtain PSprejix and PEprejix arrays for each dimension
of the screen. However, unlike the horizontal subdivision, the memory locations used
for PSiocai and PEijcai arrays cannot be reused for prefix sum arrays in this scheme.
The reason for this restriction will be apparent in the next paragraph. After performing
global prefix sum, each processor divides its local image region into two subregions either
horizontally or vertically. The division that achieves better load balance is chosen. Note
that for the group of processors that are assigned the same image region, the division will
be the same. .After the division, half of the processors are assigned one of the regions,
and the other half of the processors are assigned the other region. F'ollowing the region
assignment, bounding boxes crossing the boundary between two regions are exchanged
between neighbor processors assigned to the other subregion. .Neighborhood between
processors can be defined according to various criteria such as interconnection topology of
the architecture, labeling of the processors etc. In this work, we chose hypercube labeling

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 134

for neighborhood definition since it is very simple. A processor k sends the local bounding
boxes belonging to other region to the processor whose processor id is ̂ at
subdivision step i. After this exchange operation, each processor has bounding boxes
that projects onto its new local image region and the subdivision operation is repeated
for new image region.

In order to subdivide the new region, we need to update PSiocai and PEiocai arrays
for each dimension of the new subregion. \\’e update these arrays incrementally using
bounding bo.xes exchanged between processors. Each processor decrements the appropri
ate positions in PSiocai aiicl PEî .ŷ i arrays for bounding boxes sent to the other processor
and increments the appropriate locations in PSiocai and PEiocai arrays using received
bounding boxes. In order to perform updates incrementally in this way, local PSiocai
and PEiocai arrays should be maintained. Hence, prefix sum arrays cannot share the
.same memory locations with these arrays unlike horizontal subdivision scheme.

After log2 P steps, each processor is assigned a unicjue rectangular region of the screen.
.\ global concatenate operation is performed on these rectangular region information so
that each proces.sor receives the region assignments to be used in redistribution step.
-\'ote that recursive subdivision method is a superset of horizontal and rectangular sub
division schemes. Horizontal subdivision scheme is obtained if we avoid vertical divisions
at all subdivision levels. Rectangular subdivision scheme is obtained if we avoid verti
cal divisions for logiL levels and perform only vertical divisions in the remaining log^N
levels.

6.1.4 Mesh-based Adaptive Hierarchical Decomposition Sche
me (M A H D)

In mesh-based adaptive hierarchical decomposition [65] scheme, bounding boxes of the
local primitives are tallied to mesh cells after the mesh is superimposed on the screen.
Some primitives may cross multiple cells. In order to decrease the errors due to counting
such primitives many times, Mueller uses a simple heuristic. Each primitive increments
the weights of each cell it intersects by a value inversely proportional to the number
of cells the primitive crosses. In this heuristic, if we assume that there are no shared

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 135

primitives between screen regions, the sum of the weights of individual cells forming a
region gives a value linearly proportional to the exact number of primitives in that region.
However, shared primitives still cause some errors but it can be expected that such errors
are less than counting such primitives multiple times while adding cell weights. Mueller
also points out in the paper that this heuristic gives better results.

.After all primitiv'es in each proces.sor are tallied, local mesh values are globally
summed so that each processor receives the global mesh values representing the dis
tribution of all primitives. Each processor then converts the global mesh into a summed
area table (.SAT) [20]. The summed area table can be generated by performing a prefix
sum on each individual row of the mesh followed by a prefix sum on each individual
column. The screen is subdivided into regions at cell boundaries recursively using this
summed area table. The summed area table allows to find the work load in a rectan
gular region, whose corner points are (.r,„,>,, i/,«,,,) and (xmar ̂l/max) using the following
expression:

lo(ld[{xjyiiri 1 Urnin)' (max· í/ma.r)] S A T 1 mar] [,!//nar]

*5 T[.i mar] [¿/miM f]

- ,5'.-ir[.rm.„ - l][i/mm]

+ >SAJ'[.rmin — l][.!/min ~ f] · (6 - 3)

A t each subdivision step longer dimension of the intermediate region is divided. Di
viding the longer dimension aims at reducing the length of the perimeter of the final
regions as an attempt to reduce the number of shared primitives crossing the region
boundaries. .An example of M.AHD is illustrated in figure 6.4.

In this scheme, resulting regions are rectangular and each region consists of adjacent

cells.

6.1.5 Hilbert Curve Based Subdivision (HCS)

In this scheme, the 2-dimensional mesh is traversed in a predetermined way and locations
of the mesh cells are mapped to a one-dimensional array. This array is used to subdivide

the screen.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 136

F'igufe 6.4: .An e.xample of rnesh-based adaptive hierarchical decomposition for eight
processors. Mesh resolution is 8 x 8.

The curves, which are used to traverse the 2-dimensional mesh, belong to the set
of space filling curves [69. 64]. Among various space filling curves [64]. Hilbert curve
is widely used in many applications. An example of traversing the 2-dimensional mesh
with Hilbert curve and corresponding mapping of mesh cells to one-dimensional array
are illustrated in F'ig. 6.5. The numbers on each cell represents the indices of the array
the cell is mapped. Mapping of two dimensional mesh indices to one dimensional array
indices can be done by the algorithm given in [45]. The advantage of Hilbert curve over
other space filling curves is that large jumps in the 2-dirnensional mesh do not occur.
This means that nearby cells are mapped to near locations on the 2-dimensional array.
Therefore, we may expect that the length of the perimeter of the resulting regions will
be less compared to the regions obtained by using other curves.

In HCS scheme, bounding boxes of primitives are tallied to mesh cells as in MAHD
scheme. Like MAHD scheme, a bounding box contributes to a cell it intersficts a value
inversely proportional to the number of cells the bounding box cros.ses. Then, the mesh
is traversed using hilbert space filling curve to map mesh locations to a one-dimensional
array. A global prefix sum is performed on the one-dimensional arrays in each processor
as in horizontal subdivision scheme. Afterwards, each processor divides this array into P
regions such that each region has almost equal work load. The subdivision of the array

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 137

5 6 9 10

4 7 8 11

3 2 13 12

0
1 14

15

Figure 6.5: Traversing of the 2-dimensional mesh with Hilbert curve and mapping of the
mesh cells locations into one-dimensional array indices.

corresponds to the subdivision of the image-space. .-\n example of Hilbert curve based
subdivision is given in figure 6.6.

In this scheme, resulting regions ma}· be non-rectangular. However, they still consist
of adj¿icent cells on the mesh.

6.1.6 Graph Partitioning Based Subdivision (GS)

This partitioning scheme models the spatial subdivision as a graph partitioning problem.
Each cell in the mesh is assumed to be connected to its north, south, west and east neigh
bors. The vertices of the graph are the mesh cells and conceptual connections between
mesh cells form the edges of the graph. The weight of a cell represents the number of
primitives intersecting this cell. The weight of the edge between two cells reprccsents the
number of primitives crossing the boundary between these two cells. The objective in
graph partitioning is to minimize the cut-size among the parts while maintaining the bal
ance among the part sizes. Here, cut-size refers to the weighted summation of cut edges
which connect more than one part. The size of a part refers to the weighted summation
of the vertices in that part. In our case, balanced partitioning corresponds to maintain
ing computational load balance during rendering. Minimizing cut-size corresponds to
minimizing the number of shared primitives. A state-of-the-art graph partitioning tool.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 138

Figure 6.6; An example of Hilbert curve based subdivision for eight processors. Mesh
resolution is 8 X S.

Metis [47], is used in this work. An example of graph partitioning based subdivision is
given in figure 6.7.

In this subdivision scheme, each processor tallies local primitives and updates corre
sponding cell and edge weights. Cell weights are updated in the same way as in .M.AHD.
Edge weight update scheme will be described in the next paragraphs. Each local graph
is globally merged to obtain the graph representing the distribution of all primitives in
the scene. After the global merge, each])rocessor has the global graph to be partitioned.
The mesh representation of the graph is converted into the representation used by Metis.
In the original mesh representation, cell and edge weights are real numbers. These values
are converted into integers since Metis operates on integer vertex and edge weights.

Metis uses multilevel partitioning approach consisting of three phases; coarsening,
initial partitioning, and refinement. In the coarsening phase, the graph is coarsened
down level-by-level to decrease the number of vertices by combining vertices to form
new vertices. The coarsest graph is partitioned in the initial partitioning phase and this

partitioning is refined in the refinement phase.
In the coarsening phase, various matching schemes can be irsecl in Metis to combine

appropriate vertices. The matching scheme used in this work is called heavy edge match

ing. In heavy edge matching scheme, at each level of coarsening, an unmatched verte.x

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 139

Figure 6.7: An example of graph partitioning based subdivision for eight proces.sors.
Mesh resolution is 8 x 8 .

is combined with another unmatched vertex such that the weight on the edge between
two \ertices is maximum. When two vertices are matched and combined to form a new
vertex, which is used in the next level of coarsening, the weight of a new vertex is the
sum of the weights of the cells forming this new vertex. The weight of the edge between
two \'ertices on the same level is equal to the sum of weights of the edges between vertices
forming these two new vertices. Since edge weights are directly added, the weight of the
edge between two mesh cells should be updated appropriately during the tallying phase
to reflect the number of shared primitives between vertices in the coarse graph. In order
to decrease errors caused by primitives shared between more than two cells, we adopt the
following scheme to update edge weights. First, we classify shared primitives into three
categories; vertical primitives, horizontal primitives, and general primitives. Vertical
primitives are the ones that cross only the cells in a single column. Similarly, horizontal
primitives cross only the cells in a single row. General primitives cross cells in different
rows and columns. The weight of the edge between two cells is incremented by a value

proportional to the number of vertical or horizontal primitives crossing those two cells.
On the other hand, the weight of the edge betw'een two cells is incremented by a value
inversely proportional to the number cells a primitive crosses for general primitives. In
this way. we try to minimize the errors incurred on the edge weight between two vertices

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 140

formed by cells in neighboring rows or columns.
The graph partitioning approach subdivides the screen in the most general way.

Unlike previous subdivision algorithms, noncontiguous sets of cells may be assigned to
a processor. In addition, generated regions may be non-rectangular regions.

6.1.7 Redistributing the Primitives

.\lter subdivision of the screen, each processor needs the primitives overlapping the region
it is assigned in order to perform the rendering calculations. Thus, local primitives in
each processors should be redistributed according to new regions and processor-region
assignments.

Each processor classifies the local primitives according to the regions they overlap.
•According to the classification, each primitive is stored in the respective send buffer of
that region. If a primitive overlaps multiple regions, the primitive is stored in the send
buffers of those regions. These buffers are exchanged to complete redistribution of the
primitives.

The subdivision algorithms HS, RS, RRS. and M.AFID divide the screen into rectan
gular regions. The algorithm to classify the local primitives in these algorithms is given
in figure 6.8. Since the regions are rectangular, the bounding box structure is used to
represent regions for each processor. The variable region\p\ denotes the region assigned
to processor p.

The resulting regions in HCS and GS algorithms may be non-rectangular regions.
Furthermore, regions may consist of disconnected mesh cells in GS algorithm. Therefore,
the intersection test of the bounding box with the screen regions to classify the primitives
will be more complicated for these algorithms. Instead, a different classification scheme is
used in thc.se subdivision algorithms. Just after the subdivision of the screen, each mesh
cell is marked with the processor number whose screen region covers this particular cell.
•\ote that each cell will be marked with a unique processor number. At the redistribution
step, primitives are tallied to mesh cells as in subdivision step. During tallying of a
primitive, the primitive is stored into the respective send buffers according to the marks
of the cells the primitive covers. The algorithm to classify the primitives is given in

figure 6.9.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 141

for each bounding box (bbox) Ic do
for each processor p do

if {ixiteTsect{bbox[k],region\p]) = = TRUE)
Store the primitive k into the send buffer of processor p

endfor
endfor

intersect(66or[A·], region[p])

if { b b o x [k] . x rn in > r e g i o n [p] . x m a x)

return F'ALSE
else if (66o,r[A’].,rmaj· < r e g i o n [p] . x m i n)

return FALSE
else if { b b o x [k] . y m i n > 7'egio7i[p] .ymax)

return FALSE
else if {bbox[k].yrnax < 7'egion[p].ymin)

return FALSE
else

return TRUE

Figure 6.8: The algorithm to classify the primitives at redistribution step of HS. RS,
RRS, and MAHD algorithms.

The stored array (of size P) is used to prevent storing a primitive into the same send
buffer multiple times. Initially, each entry of the array is set to —1.

6.2 Experimental Comparison of Subdivision Algorithms

The algorithms presented in this chapter were implemented on a Parsytec’s CC .s\ stem
using C language and PVM .3.3 [30. 72] for message passing. Each processing node of the
CC system has 64 Mbytes of memory, each I/O node has 128 .Mbytes of mernor}'. Each
node has PowerPC 604 processor running at 133 MHz. Experiments were done using two
data sets called blunt fin and post data set. These data sets are used by many researchers
in volume rendering field. Both blunt fin and post data sets are curvilinear sets, for the

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 142

for each bounding box (bbox) k do
for each mesh cell c the bbox[k] covers do

p = mark of the cell c
if [stored[p] < k) then

stored\p] = k
Store the primitive k into the send buffer of processor p

endfor
endfor

Figure 6.9; The algorithm to classify primitives in HCS and GS algorithms.

experiments and to be used in the rendering algorithm, which will be described in the
next sections, these data sets were converted first into tetrahedrals [29, 82], by dividing
each cell into five tetrahedrals, then into set of distinct triangles. Each triangle in the
data set represents a face of a tetrahedral. The blunt fin data contains .381548 triangles
and post data contains 1040588 triangles after conversion. All results presented in this
section are the averages of results for two data sets obtained for three different viewing
locations for each data set for the screen resolution of 512 x 512. Figure 6.10 illustrates
rendered images of data sets from one view used in the experiments.

We use the number of primitives in each processor to measure load balancing per
formance and to measure percent increase in the total number of primitives after subdi
vision. The load balancing values were calculated as MaxjAverage. Here, Max is the
maximum of the number of primitives in each processor after subdivision. Average is
the average number of primitives and is calculated by dividing the number of primitives
in the scene before redistribution by the number of processors.

The subdivision algorithms MAHD, HCS, and GS use a 2-dirnensional mesh super
imposed on the screen for subdivision. The mesh resolution affects the performance
of these algorithms. In addition, these algorithms calculate an estimated number of
primitives in a region. This is because of the fact that a bounding box contributes to
a cell a value inversely proportional to the number of cells the primitive crosses. This
scheme w'ill give exact number of primitives in a region only when there are no shared
primitives in the region. The effects of these factors for these subdivision algorithms are

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 143

(a) (b)

Figure 6.10: Rendered images of the data sets used in the e.xperirnents. (a) Blunt fin
(38154S triangles, rendering time is 6.27 seconds on 16 processors) lb) Post data (1040588
triangles, rendering time is 8.55 seconds on 16 processors).

illustrated in figures 6.11 - 6.12. Figure 6.11 illustrates the load balancing performance
of the algorithms, based on estimated loads in a region, for different mesh resolutions (of
32 X 32, 64 X 64, 128 x 128 256 x 256, and 512 x 512 on 16 processors) and for different
number of processors. We see that algorithms perform better as the resolution of the
mesh increases. This is expected since higher resolution means more possible division
lines and, thus, more search space. On different number of processors, HCS achieves
almost perfect load balance. Note that MAHD subdivides the screen into rectangular
regions while the screen is subdivided into non-rectangular regions in HCS scheme. .-Vs
a result. HCS achieves better load balance than MAFID. We would expect GS algorithm
to perform better than the other two since GS subdivides the screen in most general way.
However, GS explicitly tries to reduce number of shared primitives using edge weights
on the mesh graph. Minimizing number of shared primiti\es and achieving even work
load distribution can be conflicting for some cases. MAHD implicitly tries to reduce
shared primitives by dividing the longest dimension at each subdivision step, whereas
HCS does not do anything to reduce number of shared primitives at all. This situation

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 144

(a)

—O MAHD, estimatec
-ir: HCS, estimated
—O GS. estimated

2 4 8 16
number of processors

___j

(b)

Figure 6.11: Load balancing performance, based on the approximate load calculations,
of the MAHD, HCS, and GS algorithms (a) Different mesh resolutions on 16 processors,
(b) Different number of processors.

is illustrated in figure 6.12. HCS gives highest percent increase in the number of prim
itives after redistribution while GS achieves lowest increase. In GS scheme, heavy edge
matching was used as the matching algorithm, the number of vertices the graph should
be coarsened down in the coarsening phase was taken as 100, the refinement algorithm
used was Boundary Kernighan-Lin. These algorithms and values were chosen based on
the observations in [47].

Figure 6.13 illustrates the load balance performance, based on the actual primitive
distribution, of MAHD, HCS, and GS for different mesh resolutions and for different
number of processors. MAHD achieves better load balance with increasing mesh res
olution. GS and HCS, on the other hand, shows slightly different behavior. On 16
processors, both algorithms achieve best load distribution at the resolution of 128 x 128.
For different number of processors, GS achieves best load balance while the performance
of HCS is the worst among the three algorithms. In addition, all algorithms achieve much
worse load balance figures when compared with load balance figures based on estimated
loads. As is seen in the figures 6.13(b) and 6.14, there exists a relation between number
o f shared primitives and the load balancing performance, based on the actual primitive

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 145

Figure 6.12: Percent increase in the number of primitives after primitive redistribution.
Each value in the graph represents the percent increase in the total number of primitives
for the mesh resolution the algorithm finds the best load balance, based on the estimated
load distribution.

distribution, of the algorithms. Load balance graphs and graphs representing percent
increase show a similar pattern for each subdivision algorithm. Shared primitives cause
errors while calculating the number of primitives in a region. Hence, minimizing number
of primitives tends to minimize errors incurred in load balancing calculations.

As is seen from figure 6.15, the execution time of the algorithms increases with mesh
resolution as expected. The execution time in the figure is the sum of execution time for
bounding box creation, division and redistribution phases. MAHD is the fastest among
the three algorithms. MAHD involves simpler data structures and simpler operations
for subdivision. In HCS, traversal of the mesh is required to map mesh cells into Hilbert
curve. The GS scheme has an extra overhead of converting mesh graph to the graph
representation of Metis. In addition, more volume of communication incurs in GS during
combination of local meshes to form global mesh structure since mesh data structure
includes edge weights between mesh cells in addition to mesh cell weights. For these
reasons, execution times of GS and HCS are more sensitive to mesh resolution than that
of MAHD.

Figure 6.16 illustrates the performajice of all algorithms (HS, RS, RRS, MAHD, HCS,
and GS) on different number of processors. We note that the load imbalance increases

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 146

(a)

Figure 6.13: Load balancing performance, based on the actual primitive distribution, of
the MAHD, HCS, and GS algorithms (a) Different mesh resolutions on 16 processors,
(b) Different number of processors.

with increasing number of processors. This is expected since the subdivision is done on
a finite resolution screen. As the number of regions increases (with increasing number of
processors) resolution of each subregion decreases. Hence, subdivision algorithms has to
operate on regions of lower resolution, severely restricting the search space. Worst load
balance is achieved by HS and HCS algorithms. Although exact number of primitives
in a region can be calculated in HS, allowing only horizontal subdivision lines restricts
the search space of this algorithm. Among all of the algorithms, RRS achieves best
load balance figures. Like HS and RS algorithms and unlike MAHD, HCS, and GS
algorithms, the number of primitives in a region is calculated precisely in RRS algorithm.
In addition, RRS divides the screen horizontally and vertically, whichever gives the better
load balance at each subdivision step. This relaxes the restrictions on search space in
HS and RS schemes to some extent. Figure 6.17 illustrates the percent increase in
the number of primitives after redistribution for all algorithms on different number of
processors. We observe a similar pattern to that of load balance figures in this case as
well. The HS and HCS algorithms give the highest percent increase. For HS algorithm,
this is basically due to the fact that the length of the perimeter of the subregions is

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 147

Figure 6.14: Percent increase in the number of primitives after primitive redistribution.
Each value in the graph represents the percent increase in the total number of primitives
for the mesh resolution the algorithm finds the best load balance, based on the actual
distribution of primitives.

greater that that in RS and RRS algorithms.
Figure 6.18 illustrates the execution time of all algorithms on different number of pro

cessors. The execution time includes bounding box creation, division time, and primitive
redistribution time for each algorithm. The values for MAHD, HCS, and GS represents
the execution time of respective algorithm for the mesh resolution the algorithm achieves
the best load balance. As is seen from the figure, HS is the fastest among all algorithms,
since it is the simplest algorithm. We also observe that GS and HCS algorithms are
faster than MAHD although they involve more overheads and more complex structures.
This is due to the fact that MAHD achieves the best load balance on mesh resolution of
•512 X 512 (except for 2 processors on which it achieved the best load balance on 2-56 x 256
mesh resolution), whereas GS and HCS algorithms achieve the best load balance at lower
mesh resolutions. For example, GS achieves the best load distribution at mesh resolu
tion of 128 X 128 for all number of processors. In general, we see that execution time of
all algorithms decreases as the number of processors increases. However, starting from
8 processors the decrease in the execution time starts saturating. Table 6.1 illustrates
dissection the execution time of each algorithm on different number of processors. As
is seen from the table, the bounding box execution time decreases almost linearly with

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 148

m «s n aim ensfo n

Figure 6.15: Execution time of MAHD, HCS, and GS for different mesh resolutions.

increasing number of processors. However, division time and redistribution times do not
decrease cis such. The communication overheads in division and redistribution steps do
not decrecise with increasing number of processors.

Table 6.1: Dissection of execution time of each algorithm on different number of proces
sors. Timings are in seconds.

HS RS R R S
P b ox d iv is ion redist. box d iv ision red ist. b ox div ision redist
2 1.43 0 .04 0.75 1.43 0.13 0.75 1.43 0.40 0.75
4 0.75 0 .03 0.62 0.75 0.09 0 .59 0.75 0.38 0.59
8 0.39 0 .03 0.55 0.39 0.09 0.55 0.39 0.35 0.52
16 0.21 0 .04 0.67 0.21 0.09 0.63 0.21 0.33 0.61

M A H D HCS GS
P b ox d iv is ion redist. box division re d is t . b o x division redist
2 1.43 0.42 0.75 1.43 2.60 2 .27 1.43 0.51 0.95
4 0.75 1.00 0.59 0.75 0.62 0 .86 0.75 0.40 0.70
8 0.39 0 .86 0.54 0.39 0.23 0 .59 0.39 0.35 0.55
16 0.21 0.81 0.63 0.21 0.24 0.62 0.21 0.37 0.61

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 149

Figure 6.16: Load balance performance of all algorithms (HS, RS, RRS, MAHD, HCS,
and GS) on different number of processors

6.3 Volume Rendering of Unstructured Grids: A Scanline Z-
buifer Based Algorithm

The algorithm chosen for rendering is based on the algorithm developed by Challinger [10,
11]. This algorithm adopts the basic ideas in standard polygon rendering algorithms
to perform hidden-surface removal operations efficiently. As a result, the algorithm
requires that volumetric data set is composed of cells with planar faces. In this work,
it is assumed that volumetric data set is composed of tetrahedral cells. If a data set
contains volume elements that are not tetrahedral, these elements can be converted into
tetrahedral cells by subdividing them [29, 82]. A tetrahedral has four points and each
face of the tetrahedral is a triangle (Fig. 5.1 (b)), thus easily meeting the requirement of
cells with planar faces. Since algorithm operates on the polygons, the tetrahedral data
set is further converted into distinct triangles. Only triangle information is stored in the

data files. The algorithm reads and performs rendering operations on triangles in this
work.

The algorithm proceeds from one scanline to other scanline on the screen and from
one pixel to the next in the same scanline. Basic steps of the algorithm is given below:

Step 1: Read volume data. In our case, the algorithm reads triangles representing faces

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 150

Figure 6.17: Percent increase in the number of primitives after redistribution for all
algorithms on different number of processors. Each value in the graph represents the
percent increase in the total number of primitives for the mesh resolution the algorithm
finds the best load balance, based on the actual distribution of primitives.

of tetrahedrals from the data files.

Step 2 : Transform the triangles into screen coordinates by multiplying each vertex by
4 x 4 transformation matrix. Perform y-bucket sort on the triangles. The y-bucket is one
dimensional array of pointers that point to triangles of the input database. Each entry of
the y-bucket corresponds to a scanline on the screen and a linked list of pointers is stored
at each entry. The pointer to the triangle is inserted at the entry which corresponds to
the lowest numbered scanline that intersects the triangle.

Step 3: Update active polygon and active edge lists for each new scanline, starting from
the lowest scanline and continuing in increasing scanline number. The active polygon
list stores the triangles that are starting and continuing at the current scanline. Before
processing the current scanline, the corresponding entry of the y-bucket is inspected for
new triangles. If there are new triangles, they are inserted into active polygon list. At
the end of processing the scanline, triangles that end at the current scanline are deleted
from the active polygon list. The active edge list stores the triangle edges that are in
tersected by the current scanline. Edges of triangle in the active polygon list are tested

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 151

Figure 6.18: Execution time of all algorithms on different number of processors. For
MAHD, HCS, and GS algorithms, the values represents the execution time of the respec
tive algorithm for the mesh resolution the algorithm achieves the best load distribution.

for the intersection. Note that if a triangle is already in the active polygon list, then a
pair of its edges is in the active edge list. For such triangles, new edge intersections are
calculated incrementally using the edge information in the active edge list.

Step 4 : For each active edge pair for the current scanline, generate a span, clip the
span to the region boundaries, and put it in x-bucket. The x-bucket is one dimensional
array of pointers. Each entry corresponds to a pixel location on the current scanline and
stores a linked list of spans starting at that pixel location.

Step 5: Update z-list for each new pixel on the current scanline. The z-list is a linked
list and each entry of the z-list stores the z-intersection of the triangle with the ray shot
from the pixel location, span information, a pointer to the triangle, and a flag to indicate
whether the triangle is an exterior or an interior face. Note that two consecutive trian
gles, if at least one of them is interior triangle, make up the corresponding tetrahedral
cell in the volume. Hence, during the composition step, two consecutive triangles can
be used for the determination of the sampling points on the ray. The z-intersections
are calculated by processing the spans stored in the x-bucket. The z-intersections are
updated incrementally by rasterizing spans. Each z-intersection is inserted into the z-list

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 152

in such a way that the list remains sorted in increasing z-intersection values. The z-list
can also be considered as an active span list because span information for only spans
that are active at the current pixel location is inserted into the list. Note that as long
as no new spans are inserted, there is no need to sort list again for the next pixel.

Step 6: Composite the sample values for the current pixel location using z-list ordering.
Repeat steps 3-6 until all scanlines and pixels are processed.

The algorithm uses image-space coherency for efficiency. The calculations of inter
sections of polygons with the scanline, insertion and deletion operations on the active
polygon list are done incrementally. This type of coherency is referred to here as inter

scanline coherency. For each pixel on the current scanline, the intersection of the ray
shot from the pixel and spans that cover that pixel are determined and put into the
z-list, which is a sorted linked list, in the order of increasing z-intersection values. The
z-intersection calculations, sorting of z-intersection values, insertion to and deletion from
z-list are done incrementally. This type of coherency is referred to here as intra-scanline
coherency.

6.4 The Parallel Algorithm

The parallel algorithm consists of the following basic steps:

Step 1: Read volume data. Initially, each processor receives M/P triangles. Here, M
is the total number of triangles and P is the number of processors.

Step 2: (Subdivision phase) Create bounding boxes of the local triangles.

Step 3: (Subdivision phase) Divide the screen and redistribute the local triangles
according to new screen regions and processor-region assignments.

Step 4: (R endering phase) Perform steps 2-6 of the sequential algorithm on the local

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 153

screen region.

Steps 1-3 are the same steps of the subdivision algorithms. At step 4, the sequential
algorithm steps are executed on local screen region using local primitives (triangles in
our case) after primitive redistribution.

The screen is divided into regions using one of the spatial subdivision algorithms
described in the previous sections. Determining the actual computational work load in a
region is crucial to achieve even distribution of computational load among processors. As
is stated in the previous sections, number of primitives are used to approximate the work
load in a region in all previous works [76, 99, 65, 26]. We used the same approximations
in the experimental comparison of the spatial subdivision algorithms. However, in the
sequential and parallel algorithms given above, there are three parameters that affect
the computational work load in a screen subregion. First one is the number of triangles,
because the total work load due to insertion operations into y-bucket and insertions into
and deletions from active polygon list are proportional to the number of triangles in a
region. The second parameter is the number of scanlines each triangle extends. This
parameter represents the computational work load associated with the construction of
edge intersections - hence, corresponding spans - , clipping of spans to region boundaries,
and insertion of the spans into x-bucket list. The total number of pixels generated by
rasterization of these spans is the third parameter affecting the computational load in a
region. Each pixel generated adds computations required for sorting, insertions to and
deletions from z-list, interpolation and composition operations. The operations on each
parameter takes different amount of time. Therefore, the work load {W L) in a region
can be approximated using Eq. (6.4).

W L = oNt + bNs + cNp (6.4)

where Np, Ns, and Np represent the number of triangles, spans, and pixels, respectively,
to be processed in a region. The values a, 6, c represent the relative computational
costs of operations associated with triangles, spans, and pixels, respectively. F'inding
exact number of pixels and spans generated in a region due to an overlapping primitive
requires rasterization of the triangle. In order to avoid this overhead, the bounding box

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 154

approximation is used for pixels and spans. That is, a triangle with a bounding box with
corner points {xmin, ymin) and {xmax, ymax) is a.ssumed to generate ymax — ymin + 1
spans and {ymax — ymin -f 1) x {xmax — xmin + 1) pixels.

The subdivision algorithms presented in the previous sections utilize only the num
ber of triangles for work load. Incorporating the pixels and spans to these algorithms
is accomplished as follows: Basically, each span and pixel generated due to bounding
box of the triangle are treated as triangles with computational loads of b and c, respec
tively. That is, for a triangle whose bounding box has corner points {xmin, ymin) and
{xm ax, ymax), there is one triangle with computational load of a, there are ymax —
ymin -f· 1 triangles, whose height is one pixel and width is xmax — xmin -|- 1 , each with
computational load of b, and there are {ymax — ymin + l) x { xmax— xmin + i) triangles,
whose height and width are one pixel, each with computational load of c.

6.5 Experimental Results

The parallel algorithm described in the previous section is implemented on Parsytec
CC system using C language and PVM for message passing. This section presents
experimental speedup results on two data sets blunt fin and post, which are used in
the experimental comparison of the spatial subdivision algorithms. All results presented
in this section are the averages of results for two data sets obtained for three different
viewing locations for each data set for 512 screen resolution.

Figure 6.19 illustrates speedup for only rendering phase (step 4 of the parallel algo
rithm) obtained when only the number of triangles are used to approximate work load in
a region. In this case, maximum speedup obtained is 5.24 on 16 processors. Figure 6.20
illustrates speedup for the rendering phase when spans and pixels are incorporated into
the subdivision algorithms. In this case, speedup increases to 11.44 on 16 processors,
which is more than double the speedup when only the number of triangles is considered.

Figure 6.21 illustrates the speedup values when execution time (in seconds) of sub
division algorithms are included in the running times. We observe that speedup values

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 155

degrades in this case. This is expected since performing the subdivision introduces over
head to parallel execution. The maximum speedup achieved is 9.40 on 16 processors.

As is seen in figures 6.20 and 6.21, best speedup values are achieved by HS algorithm.
This is an unexpected result since HS algorithm is the most restricted algorithm in terms
of search space among other algorithms. However, this algorithm has advantage over the
other algorithms for the volume rendering algorithm chosen in this work. It only disturbs
inter-scanline coherency. It does not disturb intra-scanline coherency since screen is
not divided vertically in HS scheme. Hence, HS incurs overheads due to inter-scanline
coherency in step 4 of the parallel algorithm. However, other algorithms disturb both
coherence incurring more overheads in step 4 of the parallel algorithm. In addition,
bounding box approximation used for spans and pixels is likely to introduce more errors
when screen is divided in horizontally and vertically than it is divided only horizontally.
For example, the number of spans in a region can be calculated more precisely when
only horizontal division lines are allowed. However, when vertical divisions are also
allowed, bounding box approximation for the number of spans in a region introduces
errors. Figure 6.22 illustrates such a case. As is seen in the figure, 9 spans are added
to the work load of region A due to bounding box approximation while there are only 2
spans actually in that region.

The speedup values are not very close to linear. One of the reasons for this deviation
from linear speedup is the bounding box approximation for triangles. The number of
spans and pixels generated due to a triangle are calculated erroneously. Thus, the work
load in a region calculated using bounding boxes does not truly reflect the actual work
load. The second reason is that determining relative work loads of a triangle, a span and
a pixel (i.e., constants a, b, and c in equation 6.4) is not easy. These values should be
determined experimentally and the operations involving triangles, spans and pixels are
not separated by solid boundaries. It is difficult to separate operations exactly related to
a triangle, a span, and a pixel in the implementation. In our experiments, these values
were determined after several trials using one viewing direction on blunt fin data, and
the values that gave the best speedup on 16 processors were chosen. Another important
reason for the deviation is the characteristics of data sets used in the experiments. In

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 156

these sets, many of the triangles are very small (even as small as one pixel) and the
projection of triangles are clustered towards small regions of screen. Thus, subdivision
algorithms should operate on small regions which restrict their search space.

Figure 6.23 illustrates the rendering times in seconds. Only rendering times (ex
cluding overhead of subdivision) are given in figure 6.23(a). The running time of the
sequential algorithm is 53.09 seconds. On 16 processors, rendering time drops to 4.78
seconds using HS algorithm. When subdivision overhead is included (figure 6.23(b))
parallel execution time on 16 processors increases to 5.66 seconds using HS algorithm.

6.6 Conclusions

In this work, image-space parallelism for volume rendering of unstructured grids has been
investigated. Several adaptive subdivision algorithms were presented in this chapter.
These algorithms can be classified into two groups: algorithm based on one-dirnensional
arrays and algorithms based on two-dimensional mesh. Horizontal subdivision (HS),
rectangular subdivision (RS), and recursive rectangular subdivision (RRS) algorithms
belong to first group, while mesh-based adaptive hierarchical decomposition (MAHD),
Hilbert curve based subdivision (HCS), and graph partitioning based subdivision (GS)
algorithms are the algorithms in the second group.

If the number of primitives in a region is taken as the work load of the region, our
experimental results show that

• Among the algorithms in the second group, GS performs better than the other two
algorithms. Since subdivision is modeled as graph partitioning in this scheme. It

has larger search space than the other algorithms.

• There exists a relation between load balancing performance of MAHD, HCS, and
GS and the number of shared primitives in a region. When number of shared prim
itives decrease algorithms achieve better load balance. These algorithms calculate
the number of primitives in a region approximately. The shared primitives cause
errors in these approximate amounts. Hence, they affect the load balance.

• Among all algorithms, RRS algorithm is the best in terms of load balance and

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 157

it results in lowest number of shared primitives. The better performance of this
algorithm is due to the fact that the number of primitives in a region can be
calculated exactly unlike MAHD, HCS, and GS. In addition, the algorithm divides
the screen horizontally and vertically. Thus, it has larger search space than RS
and HS algorithms.

These algorithms were employed in the parallelization of a volume rendering algo
rithm. It has been observed that only the number of primitives in a region does not
provide a good approximation to actual computational load. The number of spans and
pixels generated during the rendering of primitives were incorporated into the algorithms
to approximate work load better. It has been experimentally shown that speedup values
are almost doubled using these additional factors. On the average, we can render the
data sets used in the experiments in about 6 seconds on 16 processors of Parsytec CC
system.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 158

Speedup based on primitive distribution

Figure 6.19: Speedup for only rendering phase when only the number of triangles in a
region is used to approximate work load in a region.

sp eed u p (only rendering time)

Figure 6.20: Speedup for rendering phase (step 4 of the parallel algorithm) when spans
and pixels are incorporated into the subdivision algorithms.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 159

sp eed u p (rendering+divislon time)

Figure 6.21: Speedup values including the execution time of subdivision algorithms.

Figure 6.22: Errors due to bounding box approximation in calculating the number of
spans when vertical divisions are allowed.

CHAPTER 6. SPATIAL SUBDIVISION FOR VOLUME RENDERING 160

Only rendering time Rendering time (including division o f the screen)

(a) (b)

Figure 6.23: Rendering times in seconds, (a) Only rendering time excluding subdivision
overhead, (b) Rendering time including subdivision overhead.

Chapter 7

Summary and Conclusions

In this thesis, we investigate utilization of distributed-memory multicomputers in three
fields of computer graphics rendering: gathering radiosity, polygon rendering, and volume
rendering of unstructured grids.

In this section, the contributions of the thesis work in each field are summarized and
conclusions are presented.

7.1 Parallel Gathering Radiosity

The main issues in this work are the parallelization of form-factor matrix computation
and solution phases of gathering radiosity. The contributions of the thesis are the fol
lowing.

• In the form-factor computation phase, interprocessor communication is decreased
by sharing the memory space between matrix elements and the objects in the
scene. We propose a new demand-driven scheme to achieve better load balance in
the form-factor computations. The scheme proposed in this work differs from [12,
13]. Unlike their approach, patches in the scene are not conceptually partitioned
among processors. In this way, after matrix is calculated, matrix rows are not
redistributed. However, our scheme necessitates two-level indexing in matrix-vector
product operations in the solution phase. This two-level indexing is eliminated by
an efficient parallel re-numbering scheme.

161

CHAPTER 7. SUMMARY AND CONCLUSIONS 162

• Gauss-Jacobi (G J) algorithm was utilized by all previous works in the solution
phase. We utilize the more efficient Scaled Conjugate-Gradient (SCG) algorithm
in the solution phase. In order to apply SCG , the non-symmetric coefficient matrix
is converted into a symmetric matrix without perturbing the sparsity structure of
the matrix.

• Parallel algorithms are developed for GJ and SC G methods for hypercube-connected
multicomputers. In addition, load balancing in the solution phase is investigated.
.An efficient data redistribution scheme is proposed. This scheme achieves perfect
load balance in matrix-vector product operations in the solution phase.

For the form-factor computation phase, experimental results indicate that it is pos
sible to reduce the interprocessor communication by sharing the memory space for rows
of the form-factor matrix with global patch data. It has been observed that demand-
driven approach achieves better processor utilization in spite of its extra communication
overhead.

In the solution phase, almost perfect load balance has been achieved by an effi
cient data redistribution scheme. This scheme brings negligible communication overhead
while maintaining much better load balance during the iterations. The powerful Scaled
Conjugate-Gradient method has been successfully applied in the solution phase. High
efficiency values have been obtained using SC G with data redistribution.

We conclude that demand-driven approach is more suitable for the form-factor com
putation phase and SCG method is a much better alternative to GJ method in the
solution phase.

7.2 Parallel Polygon Rendering

Object-space parallelism is investigated for parallel polygon rendering on hypercube-
connected multicomputers. The contributions of this thesis can be summarized as fol

lows.

• We decrease volume of communication in pixel merging phase by only exchanging
local foremost pixels in each processor after local rendering phase.

CHAPTER 7. SUMMARY AND CONCLUSIONS 163

• For the local rendering phase, a modified scanline z-bulFer algorithm is proposed.
This algorithm stores local foremost pixels into consecutive memory locations ef
ficiently. Thus, it avoids message fragmentation while exchanging foremost pixels.
In addition, initialization of scanline z-buffer. which is a sequential overhead to
parallel operation, is eliminated with this algorithm.

• For pixel merging phase, we propose two schemes referred to here as pairwise
exchange scheme and all-to-all personalized communication (AAPC) scheme, which
are suited to the hypercube topology. Minimum number of communication steps
is achieved by the pairwise exchange scheme. However, this scheme has memory-
to-memory copy overhead. AAPC scheme, on the other hand, eliminates this
overhead at the expense of more communication steps. Our AAPC scheme differs
from 2-phase direct pixel forwarding of Lee [53]. The algorithm proposed in this
work is a 1-phase algorithm, i.e., pixels are transmitted to destination processors
in a single communication phase. Hence, our algorithm avoids the intermediate
z-buffering in [53] totally.

• All of the processors are utilized actively throughout the pixel merging phase by
exploiting the interconnection topology of hypercube and by dividing the screen
among processors. We propose two heuristics, recursive subdivision and heuristic
bin packing, to divide the screen adaptively for better load balancing. These
heuristics utilize the distribution of foremost pixels on the screen to divide the
screen.

In this work, most of the research was performed on Intel’s iPSC/2 hypercube multi
computer. It is experimentally observed that exchanging only foremost pixels decreases
e.xecution time considerably. It is experimentally observed that active pixel merging
with modified scanline z-buffer algorithm performs better than full z-buffer merging.
The modified scanline z-buffer algorithm does not introduce much overhead to the ex
ecution. Among pixel merging schemes, all-to-all personalized communication is better
than pairwise exchange scheme due to less store-and-forward overheads in spite of larger
number of communication steps.

CHAPTER 7. SUMMARY AND CONCLUSIONS 164

It has been observed that the heuristic bin packing achieves better load balance and
scales better than recursive adaptive subdivision in active pixel merging. Therefore, it
is recommended that all-to-all personalized communication with heuristic bin packing
scheme should be utilized for active pixel merging on hypercube multicomputers.

Preliminary implementation of all-to-all personalized communication with heuristic
bin packing on a Parsytec CC system achieves rendering rates of 300K - TOOK trian
gles per second on 16 processors using data sets from SPD database [-37]. The current
implementation assumes hypercube topology and PVM is used for message passing. It
is expected to achieve higher rendering rates with an implementation more suited to
interconnection structure of Parsytec and using faster native message passing library.

7.3 Parallel Volume Rendering

In this work, image-space parallelism for parallel volume rendering of unstructured grids
is investigated. The contributions in this thesis are the following.

• Our research focuses on the adaptive subdivision of screen for better load balance.
Adaptive subdivision issue has not been investigated before in parallel volume
rendering of unstructured grids. Few researchers in parallel polygon rendering [76,
99, 65, 26] and in parallel ray tracing/casting [5] investigated adaptive subdivision.

• Algorithms presented in this work can be grouped into two classes: 1-dimensional
array based algorithms and 2-dimensional mesh based algorithms. Graph parti
tioning based subdivision and Hilbert curve based subdivision algorithms, which
are mesh based algorithms, are new in parallel volume rendering field.

• The subdivision algorithms are compared experimentally on a common frame work.

• The subdivision algorithms are employed in parallelization of a volume render
ing algorithm. The sequential volume rendering algorithm, based on Challinger’s
work [9, 10], is basically a polygon rendering based algorithm. In the previous
works on parallel polygon rendering, only the number of primitives in a subregion
was used to approximate the work load of the subregion. The experimental results

CHAPTER 7. SUMMARY AND CONCLUSIONS 165

in our work show that the number of primitives in a region is not an enough ap
proximation for work load. In this work, other criteria such as number of pixels
and number of spans have also been utilized to approximate the work load in a
region. By utilizing these additional parameters, the speedup values are almost
doubled.

If the number of primitives in a region is taken as the work load of the region, the
experimental results on a Parsytec CC system show that:

• Among the mesh based algorithms, graph partitioning based subdivision (GS)
performs better than mesh based adaptive hierarchical decomposition (MAUD)
and Hilbert curve based subdivision (HCS). Since subdivision is modeled as graph
partitioning in this scheme, it has larger search space than the other algorithms.

• There exists a relation between load balancing performance of MAHD, HCS, and
GS and the number of shared primitives in a region. When number of shared
primitives decreases algorithms achieve better load balance. These algorithms
calculate the number of primitives in a region approximately. The shared primitives
cause errors in these approximate amounts. Hence, they affect the load balance.

• Among all algorithms, recursive rectangular subdivision (RRS) algorithm is the
best in terms of load balance and it results in lowest number of shared primitives.
The better performance of this algorithm is due to the fact that the number of
primitives in a region can be calculated exactly unlike MAHD, HCS, and GS. In
addition, RRS algorithm divides the screen horizontally and vertically. Thus, it
has larger search space than rectangular subdivision and horizontal subdivision
algorithms.

These algorithms were employed in the parallelization of a volume rendering algo
rithm. It has been experimentally observed that speedup values are almost doubled using
additional factors such as number of pixels and number of spans in a region. Using these
additional parameters, we can render the data sets used in the experiments in about 6
seconds, on the average, on 16 processors of Parsytec CC system.

Bibliography

[1] B. Abalı, F. Ozgüner, and A. Bataineh. Balanced parallel sort on hypercube multi
processors. IEEE Trans, on Parallel and Distributed Systems, 4(5), 572-581 (1993).

[2] M. B. Amin, A. Grama, and V. Singh. Fast volume rendering using an efficient,
scalable parallel formulation of the shear-warp algorithm. In Proceedings of 1995
Parallel Rendering Symposium, 7-14 (October 1995).

[3] T. Asano. D. Ranjan, T. Roos, E. Welzl, and P. VVidmayer. Space filling curves and
their use in the design of geometric data structures. In 2nd Inter. Symp. of Latin
.American Theoretical Informatics LATIN’95, Lecture Notes in Computer Science,
vol. 911, 36-48 (1995).

[4] C. Aykanat, F. Ozgüner, F. Erçal, and P. Sadayappan. Iterative algorithms for
solution of large sparse systems of linear equations on hypercubes. IEEE Trans,
on Computers, 37(12), 1554-1568 (1988).

[5] C. Aykanat, V. İşler, and B. Özgüç. Efficient parallel spatial subdivision algo
rithm for object-based parallel ray tracing. Computer-Aided Design, 26(12), 883-

890 (1994).

[6] C. Aykanat, T. K. Çapın, and B. Özgüç. A parallel progressive radiosity algorithm
based on patch data circulation. Journal of Computers and Graphics, 20(2) (1996).

[7] D. R. Baum, H.E. Rushmeier, J.M. Winget. Improving radiosity solutions through
the use of analytically determined form-factors. Computer Graphics, 23(3), 325-

334 (1989).

166

BIBLIOGRAPHY 167

[8] A. Burke and W. Leler. Parallelism and graphics: an introduction and annotated
bibliography. In Course Notes for Siggraph Course 28, ACM Siggraph Conference,
111-140 (1990).

[9] J. Challinger. Parallel volume rendering for curvilinear volumes. In Proceedings
of the Scalable High Performance Computing Conference, IEEE Computer Society
Press, 14-21 (April 1992).

[10] J. Challinger. Scalable parallel volume raycasting for nonrectilinear computational
grids. In Proceedings o f the 1993 Parallel Rendering Symposium, IEEE Computer
Society Press, 81-88 (October 1993).

[11] J. Challinger. Scalable Parallel Direct Volume Rendering for Nonrectilinear Com

putational Grids, PhD. Thesis, University of California, Santa Cruz (1993).

[12] A. G. Chalmers and D. J. Paddon. Implementing a radiosity method using a par
allel adaptive system. In Proceedings of the First Inter. Conf. on Appl. of Trans

puters (1989).

[13] A. G. Chalmers and D. J. Paddon. Parallel radiosity methods. In 4‘ ̂ North Amer

ican Transputer Users Group, Ithaca, USA (1990).

[14] A. G. Chalmers and D. J. Paddon. Parallel processing of progressive refinement ra
diosity methods. In Proc. of 2nd Eurographics Workshop on Rendering, Barcelona,
Spain (1991).

[15] M. F. Cohen, S. Chen, J. Wallace, and D. P. Greenberg. A progressive refine
ment approach for fast radiosity image generation. Computer Graphics, 22(4),

75-84 (1988).

[16] iM. F. Cohen and D. P. Greenberg. The Hemi-Cube : A radiosity solution for
complex environments. Computer Graphics (SIGGRAPH‘85 proceedings), 19(3),

31-40 (1985).

BIBLIOGRAPHY 168

[17] M. Сох and Р. Hanrahan. Pixel merging for object-parallel rendering: A distributed
snooping algorithm. In Proceedings o f the 1993 Parallel Rendering Symposium.
IEEE Computer Society Press, 49-56 (October 1993).

[18] T. W. Crockett. Parallel rendering. Technical Report, ICASE Report No. 95-31,
Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, April 1995.

[19] T. W. Crockett and T. OrlofF. A MIMD rendering algorithm for distributed mem
ory architectures. In Proceedings of the 1993 Parallel Rendering Symposium, IEEE
Computer Society Press, 35-42 (October 1993).

[20] F. C. Crow. Summed-area tables for texture mapping. Computer Graphics, 18(3),
207-212 (1984).

[21] F’. C. Crow. Parallelism in rendering algorithms. In Proceedings of Graphics Inter

face 88, 87-96 (1988).

[22] T. K. Çapın. Parallel Processing for Progressive Refinement Radiosity, M.S. Thesis.
Bilkent University (September 1993).

[2-3] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer Graph

ics, 22(4), 65-74 (1988).

[24] S. M. Drucker and P. Schroeder. Fast radiosity using a data parallel architecture.
In Proc. of 3rd Eurographics Workshop on Rendering, Bristol, UK, 247-2.58 (1992).

[2.5] S. Dyer and S. Whitman. A vectorized scanline z-buffer rendering algorithm. IEEE
Computer Graphics & Applications, 7(7), 34-45 (1987).

[26] D. Ellsworth. A multicomputer polygon rendering algorithm for interactive appli
cations. In Proceedings o f the 1993 Parallel Rendering Symposium, IEEE Computer
Society Press, 43-48 (October 1993).

[27] M. Feda and W. Purgathofer. Progressive refinement radiosity on a trans
puter network. In Proc. o f 2nd Eurographics Workshop on Rendering, Barcelona,

Spain (1991).

BIBLIOGRAPHY 169

[28] T. Frühauf. Raycasting of nonregularly structured volume data. EUROGRAPHICS
'9 4 , Eurographics Association, 13(3), 293-303 (1994).

[29] M. P. Garrity. Raytracing irregular volume data. Computer Graphics, 24(5), 35-
40 (1990). Proceedings of San Diego Workshop on Volume Visualization.

[30] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam. PVM:
Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel
Computing, The MIT press, 1994.

[31] G. Giertsen. Volume visualization of sparse irregular meshes. IEEE Computer
Graphics & Applications, 40-48 (March 1992).

[32] G. H. Golub and C. F. Van Loan. Matrix computations, 2"“̂ Ed., The Johns Hopkins
University Press (1989).

[33] G. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modeling the inter
action of light between diffuse surfaces. Computer Graphics, 18(3), 213-222 (1984).

[34] H. Gouraud. Continuous shading of curved surfaces. IEEE Trans, on Computers,

c-20(6), 623-629 (1971).

[35] P. Guitton, J. Roman, and C. Schlick. Two parallel approaches for a progres
sive radiosity. In Proc. of 2nd Eurographics WorhUiop on Rendering, Barcelona,

Spain (1991).

[36] -A. Gupta and A. L. Fisher. Flexible parallel polygon rendering. In Proceedings of
International Conference on Parallel Processing, Vol.III, 87-91 (1990).

[37] E. Haines. A proposal for standart graphics environments. IEEE Computer Gr-
pahics & Applications, 7(11), 3-5 (November 1987).

[38] B. Hendrick,son and R. Leland. The Chaco user’s guide (Version 1.0), Tech. Rep.
SAND93-2339, Sandia National Labs. Albuquerque, NM (1993).

[.3 9] .M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
,s\-steins. Nat. Bur. Standards J. Res, 49, 409-436 (1952).

BIBLIOGRAPHY 170

[40] J. C. Highfield and H. E. Bez. Hidden surface elimination on parallel processors.
Computer Graphics Forum, 11(5) 293-307 (1992).

[41] D. Hilbert. Über die stetige Abbildung einer Linie auf Flächenstück. Math. Annln,
38 (1891).

[42] V. İşler. Spatial Subdivision for Parallel Ray Casting/Tracing, PhD. Thesis, Bilkent
University (February 1995).

[4 .3] J. Jajá and K. W. Ryu. Load balancing and routing on the hypercube and related
networks. .Journal of Parallel and Distributed Computing. 14, 431-435 (1992).

[44] J.P. Jessel, M. Paulin, and R. Caubet. An extended radiosity using parallel ray-
traced specular transfers. In Proc. of 2nd Eurographics Workshop on Rendering,
Barcelona, Spain (1991).

[45] M. Kaddoura, C. W. Ou, and S. Ranka. Mapping unstructured computational
graphs for adaptive and nonuniform computational environments. Manuscript sub
mitted to IEEE Trans, on Parallel and Distributed Technology (1995).

[46] M. Kaplan and D. P. Greenberg. Parallel processing techniques for hidden surface
removal. Computer Graphics, 13(2), 300-307 (1979).

[47] G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse
matrix ordering system. Version 2.0. Dept, of Computer Science, University of
Minnesota, h t tp : / / w w w . c s . umn. edu/~karypis

[48] A. Kaufman. Volume visualization. In Volume Visualization, IEEE Computer So

ciety Press Tutorial, 1-18 (1990).

[49] K. Koyamada. Fast traversal of irregular volumes. In Visual Computing, Integrating
Computer Graphics with Computer Vision, 295-312 (1992).

[50] T. M. Kurç, C. Aykanat, and B. Özgüç. A parallel scaled conjugate-gradient al
gorithm for the solution phase of gathering radiosity on hypercubes. The Visual
Computer, International Journal of Computer Graphics, to appear (1996).

BIBLIOGRAPHY 171

[51] T. M. Kurg, C. Aykanat, and B. Ozgiig. Active pixel merging on hypercube mul
ticomputers. In Lecture Notes in Computer Science, vol. 1067, 319-326 (1996).

[52] P. Lacroute. Real time volume rendering on shared memory multiprocessors using
the shear-warp factorization. In Proceedings o f 1995 Parallel Rendering Sympo
sium, 15-22 (October 1995).

[53] T. Y. Lee, C. S. Raghavendra, and J. B. Nicholas. Image composition schemes for
sort-last polygon rendering on 2D mesh multicomputers. IEEE Trans, on Visual
ization and Computer Graphics, 2(3), 202-217 (1996).

[54] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics & Ap

plications, 8(3), 29-37 (1988).

[55] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics,
9(3), 245-261 (1990).

[56] J. Li and S. Miguet. Z-buffer on a transputer-based machine. In Proceedings of
the Sixth Distributed Memory Computing Conf. IEEE Computer Society Press.
315-322 (April 1991).

[57] B. Lucas. A scientific visualization renderer. In Proceedings of IEEE Visualization
'92, IEEE Computer Society Press, 227-234 (October 1992)

[58] K. Ma and .J. S. Painter. Parallel volume visualization on workstations. Computers
& Graphics, 17(1), 31-37 (1993).

[59] K. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume rendering
using binary-swap compositing. IEEE Computer Graphics and Applications, 14(4),

59-67 (1994).

[60] K. Ma. Parallel volume ray-casting for unstructured-grid data on distributed-
rnemory multicomputers. In Proceedings of 1995 Parallel Rendering Symposium,

23-30 (October 1995).

BIBLIOGRAPHY 172

[61] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel
rendering. IEEE Computer Graphics & Applications, 14(4), 2.3-32 (July 1994).

[62] S. Molnar, J. Eyles, J. Poulton. PixelFlow: high-speed rendering using image
composition. Computer Graphics, 26(2), 231-240 (1992).

[63] C. Montani, R. Perego, and R. Scopigno. Parallel rendering of volumetric data set
on distributed-memory architectures. Concurrency: Practice and Experience, 5(2),
153-167 (1993).

[64] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering
properties of hilbert space-filling curve. Technical report UMCP-CSD:CS-TR-.3611,
Umiacs, University of Maryland (1996).

[65] C. Mueller. The sort-first rendering architecture for high-performance graphics. In
Proceedings o f 1995 Symposium on Interactive 3D Graphics, 7-5-84 (1995).

[66] S. F. Nugent. The iPSC/2 direct-connect communications technology. In Proceed

ings o f Third Conf. Hypercube Concurrent Comput. and AppL. 51-60 (January
1988).

[67] D. J. Paddon, A. Chalmers, and D. Stuttard. Multiprocessor models for the ra-
diosity method. In Proc. of the First Bilkent Computer Graphics Conference on
Advanced Techniques in Animation, Rendering, and Visualization, B. Ozgiig and
V. Akrnan (Eds.), Ankara, 85-103 (1993).

[68] B. T. Phong. Illumination for computer generated pictures. In Tutorial: Computer
Graphics, 2̂ '̂ edition, Graphics and Image Processing, Computer Society Press,
449-455 (1982). Reprinted from Communications of ACM, 18(6), 311-317 (1974).

[69] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform struc
tured workloads with spacefilling curves. IEEE Trans, on Parallel and Distributed

Systems, 7(3), 288-299 (1996).

[70] J. Pineda. A parallel algorithm for polygon rasterization. Computer Graphics,

22(4), 17-20 (1988).

BIBLIOGRAPHY 173

[71] C. G. Plaxton. Load balancing, selection and sorting on the hypercube. In Pro

ceedings of 1989 ACM Symp. Parallel Algorithms and Architectures^ 64-73 (1989).

[72] PowerPVM/EPX for Parsytec CC systems: PowerPVM/EPX User’s Guide, Ce
nias Software GmbH.

[73] M. Price and G. Truman. Radiosity in parallel. Applications of Transputers., IOS
Press, Washington (Proc. of the First International Conf. on App. of Transputers,
Aug. 1989), 40-47 (1990).

[74] VV’. Purgathofer and M. Zeiller. Fast radiosity by parallelization. In Proceedings of
the Eurographics Workshop on Photosimulation, Realism and Physics in Computer
Graphics, Rennes, 173-184 (1990).

[75] S. Ranka and S. Sahni. Hypercube Algorithms with Applications to Image Processing
and Pattern Recognition, Bilkent L’niversity Lecture Series, Springer-Verlag (1990).

[76] D. R. Roble. A load balanced parallel scanline z-buffer algorithm for the iPSC
hypercube. In Proceedings of Pixim’ 88, Paris, 177-192 (October 1988).

[77] D. F. Rogers. Procedural Elements for Computer Graphics, McGraw-Hill (1985).

[78] K. W. Ryu and J. Jajá. Efficient algorithms for list ranking and for solving graph
problems on the hypercube. IEEE Trans, on Parallel and Distributed Systems,
1(1), 83-90 (1990).

[79] Y. Saad and M. H. Schultz. Topological properties of hypercubes. Research Report

YALEÜ/DCS/RR-389 (June 1985).

[80] P. Sabella. A rendering algorithm for visualizing 3D scalar fields. Computer Graph

ics, 22(4), 51-58 (1988).

[81] R. Scopigno, A. Paoluzzi, S. Guerrini, and G. Rumolo. Parallel depth-merge:
A paradigm for hidden surface removal. Computers & Graphics, 17(5), 583-

592 (1993).

BIBLIOGRAPHY 174

[82] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume ren
dering. Computer Graphics, 24(5), 63-70 (1990). Proceedings o f San Diego Work
shop on Volume Visualization.

[83] J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A parallel adaptive fast mul
tipole method. In Proceedings of Supercomputing 93, 54-65 (1993).

[84] D. Speray and S. Keiinon. Volume Probes: interactive data exploration on arbitrary
grids. Computer Graphics, 24(5), 5-12 (1990). Proceedings of San Diego Workshop
on Volume Visualization.

[85] I. E. Sutherland and G. W. Hodgman. Reentrant polygon clipping. In Tutorial:
Computer Graphics, 2"“̂ edition, Graphics and Image Processing, Computer Society
Press, 270-280 (1982). Reprinted from Communications of ACM, 17(1) (1974).

[86] I. E. Sutherland, R. F. Sproull, and R. A. Schurnacker. A characterization of ten
hidden-surface algorithms. ACM Computing Surveys, 6(1), 1-55 (1974).

[87] A. State, J. McAllister, U. Neumann, H. Chen, T. J. Cullip, D. T. Chen, and
H. Fuchs. Interactive volume visualization on a heterogeneous message-passing
multicomputer. In 1995 Symposium on Interactive 3D Graphics, 69-74 (1995).

[88] B. Tabatabai, E. A. Sessarego, and H. F. Mayer. Volume rendering on non-regular
grids. In Proceedings o f EUROGRAPHICS ’94, Eurographics Association, 13(3),
248-258 (1994).

[89] E. Tanin, T. M. Kurg, C. Aykariat, and B. Ozgii^. Comparison of two image-
space subdivision algorithms for direct volume rendering on distributed-memory
multicomputers. In Lecture Notes in Computer Science, vol. 1041, 503-512 (August
1995).

[90] E. Tanin. Comparison o f Image Space Subdivision Algorithms for Parallel Volume
Rendering, M.S. Thesis, Dept, of Computer Engineering and Information Sci.,

Bilkent University (July 1995).

BIBLIOGRAPHY 175

[91] Τ. Theoharis and I. Page. Parallel incremental polygon rendering on a SIMD pro
cessor array. In Parallel Processing for Computer Vision and Display, Eds. P. M.
Drew, T. R. Hey wood, and R. A. Earnshaw, Addison-Wesley, 329-337 (1989).

[92] C. Upson and M. Keeler. VBUFFER: Visible volume rendering. Computer Graph
ics, 22(4), 59-64 (1988).

[93] A. Van Gelder and J. Wilhelms. Rapid exploration of curvilinear grids using di
rect volume rendering. Technical Report, UCSC-CRL-93-02, Computer and Info.
Sciences, University of California, Santa Cruz (1993).

[94] A. Varshney and J. F. Prins. An environment-projection approach to radiosity for
mesh-connected computers. In Proc. o f 3rd Eurographics Workshop on Rendering,
Bristol, UK, 271-281 (1992).

[95] A. Watt. Fundamentals of Three-Dimensional Computer Graphics, Addison-
Wesley (1989).

[96] A. Watt and M. Watt. Advanced Animation and Rendering Techniques, theory and
practice, Addison-Wesley (1992).

[97] R. Weinberg. Parallel processing image synthesis and anti-aliasing. Computer
Graphics, 15(3), 55-62 (1981).

[98] L. Westover. Footprint evaluation for volume rendering. Computer Graphics, 24(4),

.367-376 (1990).

[99] S. Whitman. Multiprocessor Methods for Computer Graphics Rendering, Jones and
Bartlett Publishers (1992).

[100] S. Whitman. Computer graphics rendering on a parallel processor. In Course Notes
forSiggraph ’90, Course 28, 167-183 (1990).

[101] S. Whitman and R. Parent. A survey of parallel hidden surface removal algorithms.

In Proceedings of Pixim’ 88, Paris (1988).

BIBLIOGRAPHY 176

[102] T. Whitted. An improved illumination model for shaded display. In Graphics and
Image Processing, Communications of the ACM, 26(6), 342-349 (1980).

[103] J. Wilhelms and A. Van Gelder. A coherent projection approach for direct volume
rendering. Computer Graphics, 25(4), 275-284 (1991).

[104] P. L. Williams. Visibility ordering meshed polyhedra. ACM Trans, on Graphics,
11(2), 103-126 (1992).

[105] P. L. Williams. Interactive Direct Volume Rendering of Curvilinear and Unstruc

tured Data, PhD. Thesis, University of Illinois at Urban a-Champaign (1992).

[106] R. Yagel. Volume viewing: state of the art survey. In Visualization ‘93, Tutorial #9,
Course Notes: Volume Visualization Algorithms and Applications, 82-102 (1993).

[107] R. Yagel and R. Machiraju. Data-parallel volume rendering algorithms. The Visual
Computer, 11, 319-338 (1995).

