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ABSTRACT 

An abstract of the thesis of Rajesh Madukkarumukumana Sankaran for the Master of 

Science in Electrical and Computer Engineering presented October 27, 1995. 

Title: Performance Evaluation of Specialized Hardware for Fast Global Operations on 

Distributed Memory Multicomputers 

Workstation cluster multicomputers are increasingly being applied for solving 

scientific problems that require massive computing power. Parallel Virtual Machine 

(PVM) is a popular message-passing model used to program these clusters. One of the 

major performance limiting factors for cluster multicomputers is their inefficiency in 

performing parallel program operations involving collective communications. These 

operations include synchronization, global reduction, broadcast/multicast operations and 

orderly access to shared global variables. Hall has demonstrated that a .secondary 

network with wide tree topology and centralized coordination processors (COP) could 

improve the performance of global operations on a variety of distributed architectures 

[Hall94a]. 

My hypothesis was that the efficiency of many PVM applications on workstation 

clusters could be significantly improved by utilizing a COP system for collective 

communication operations. To test my hypothesis, I interfaced COP system with PVM. 

The interface software includes a virtual memory-mapped secondary network interface 

driver, and a function library which allows to use COP system in place of PVM function 

calls in application programs. My implementation makes it possible to easily port any 
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existing PVM applications to perform fast global operations using the COP system. To 

evaluate the performance improvements of using a COP system, I measured cost of 

various PVM global functions, derived the cost of equivalent COP library global 

functions, and compared the results. To analyze the cost of global operations on overall 

execution time of applications, I instrumented a complex molecular dynamics PVM 

application and performed measurements. The measurements were performed for a 

sample cluster size of 5 and for message sizes up to 16 kilobytes. 

The comparison of PVM and COP system global operation performance clearly 

demonstrates that the COP system can speed up a variety of global operations involving 

small-to-medium sized messages by factors of 5-25. Analysis of the example application 

for a sample cluster size of 5 show that speedup provided by my global function libraries 

and the COP system reduces overall execution time for this and similar applications by 

above 1.5 times. Additionally, the performance improvement seen by applications 

increases as the cluster size increases, thus providing a scalable solution for performing 

global operations. 
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CHAPTER I 

INTRODUCTION 

The Distributed Computing Scene 

One of the main motivations for developing powerful parallel computers has been 

to solve very large scientific problems. The objectives and focus of these development 

efforts is summarized in the report on "High Performance Computing and 

Communications: Foundation for America's Information Future" [Ostc95a] by the U.S 

Office of Science and Technology's Committee on Physical, Mathematical, and 

Engineering Sciences. The HPCC report includes a "wish list" of important 

computational problems that scientists and engineers would like to be able to solve in 

the 90's. 

The computational needs of these "Grand Challenge" problems are so great that a 

large massively parallel array of the fastest currently available processors will be 

required to meet them. In a distributed system, each compute node works in parallel with 

other nodes in the system and communicates with other nodes primarily by passing 

messages. The performance of many distributed applications depends on the efficiency 

of the underlying communication system. Workstation cluster multicomputers are 

increasingly being applied for solving scientific problems that require massive 

computing power [Begu93a]. Workstation clusters offers several advantages over other 

types of machines. These advantages include significant computing power, general 

availability, large cumulative resources and low cost. Many programming models have 

been developed for programming workstation clusters efficiently. Parallel Virtual 



2 

Machine (PVM) [Sund90a] is a popular message-passing model used to program these 

clusters. Many state-of-the art applications have been ported to this environment with 

encouraging results [Begu93a]. 

The major factors that limit the performance of these types of systems are the low 

interconnection network performance and the software overhead imposed by the 

"protocol stacks" which must be traversed in order to send a message to or receive a 

message from another machine in the cluster [Matts93a]. These factors are more visible 

in global program operations because these operations make very heavy use of network 

resources. The operations most likely to benefit from hardware acceleration include 

global operations such as barriers, broadcast/multicast, global reduction, scatter/gather, 

parallel prefix etc., because they are found to be very expensive on these systems. 

Careful analysis of previous attempts at hardware assist for global operations showed 

that all of them had serious limitations. However, Hall [Hall94a] has demonstrated that a 

secondary network with wide area topology and one or more centralized coordination 

processors (COPs) optimized for these global operations can improve the performance 

of global operations on a variety of multicomputer architectures. My hypothesis was that 

the efficiency of many PVM applications on workstation clusters can be significantly 

improved by utilizing the secondary network resources in a COP system for collective 

communication operations. To test my hypothesis, I used the following standard 

methodology. 

First, I developed software to interface PVM with the COP system. The software 

includes a virtual memory-mapped secondary network interface driver and an easy to 

use function library. The function library makes it possible to use the COP system in 

place of PVM function calls for various parallel program operations. Second, as the 

COP hardware prototype does not exist, I deduced the timings for various global 
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operations in the COP function library based on the analysis of software overhead of the 

COP interface pseudo device driver and the hardware timings reported originally by Hall 

for various COP operations [Hall94a]. I measured timings for the same global operations 

with PVM, and compared them with the timings deduced for the COP system. Third, I 

obtained and instrumented a complex, real-life molecular dynamics simulation PVM 

application ( 1 OOK lines) and made measurements to evaluate the cost of global 

operations on overall execution time. 

To show the various programming models available for cluster multicomputers, 

Chapter II provides a brief overview of several popular programming models. Chapter 

III provides justification for choosing the COP system to work with the PVM message 

passing model, and provides an overview of PVM. The collective communication 

primitives in pvm are discussed followed by a preliminary analysis of some of their 

performance limiting factors. Chapter IV is a detailed description of the COP system 

architecture and operations. Included are discussions on the cop network architecture, 

compute node to cop interface, and the cop itself. A discussion of how the target global 

operations are performed on the COP system is also provided in this chapter. 

In Chapter V, I first describe the cop software design followed by a detailed 

section on implementation of global operation primitives. This section also describes 

how the system works with pvm and how easily existing pvm applications can be ported 

to use the cop hardware features. In Chapter VI, I derive expressions for global operation 

timings with the COP system, and provide detailed analysis of the measurements done 

on pvm global operations. These measurements are then compared with the performance 

data derived for a COP-PVM combined system. The analysis of a sample molecular 

dynamics simulation application is provided to show the common communication 

patterns that can benefit from COP system, and their overall predicted improvement in 
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performance by using a COP system. 

Having thoroughly demonstrated the benefits of the COP hardware and software 

design, I then in Chapter VII compare and contrast other attempts to improve the 

efficiency of global operations on workstation clusters. Finally in Chapter VIII, I provide 

some suggestions to further improve the performance of the COP software system based 

on experience gained while working on this project and give my conclusions. 



CHAPTER II 

PROGRAMMING MODELS FOR CLUSTER MULTICOMPUTERS 

Introduction to Cluster Multicomputers 

The purpose of this chapter is to describe the advantages of workstation clusters 

and to describe various programming models used to program them efficiently. 

Considerable research effort in the recent past has been directed towards using 

clusters of workstations, loosely coupled by high speed networks, for distributed 

computing. Many state-of-the-art applications have been ported to this environment with 

encouraging results. For example, execution speeds for some molecular dynamics 

simulations, an application with a high volume of communication, using IBM RS/6000 

workstations averaged only 30 percent slower than an iPSC/860 hypercube with a 

comparable number of processors [Begu93a]. Applications like propagation of seismic 

waves [Ewing93a], molecular dynamics simulations [Heller91a], logic simulations, etc. 

have been successfully run on workstation clusters. 

The advantages of using clusters of networked workstations as multicomputers 

are: 

1. The computing power offered by present day workstation class machines has 

improved significantly such that they can easily deliver required performance for high 

speed computing applications. 

2. The workstation class machines are mostly general purpose machines which can 

perform many different functions and because of that are advantageous from a cost 
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standpoint. 

3. The cumulative resources like memory, disk space, compute power, 1/0 

capability of the workstation cluster can be very large. 

4. Above all, clustering these machines allow the harvesting of otherwise unused 

clock cycles for productive use. 

The major performance limiting factors for this class of machines are the low 

performance of the interconnection network and the software overhead of traversing the 

communication protocol stacks in order to send or receive messages [Matts93a]. The 

Local area networks (LAN s) used for interconnecting these workstation clusters 

commonly use Ethernet networks that have a maximum bandwidth of only 10 Mbits/sec. 

In addition to this relatively low hardware bandwidth, a further limitation of ethernet is 

its common bus topology which requires workstations to compete for network access. 

As the number of nodes on the network and/or the amount of message traffic increases, 

the effective bandwidth available to the application decreases. With newer generation 

networking technologies like switched Ethernet and ATM, the performance of the 

interconnection network is significantly improved, but they still impose the software 

overhead of traversing the protocol stacks in order to send or receive messages. 

The popularity of cluster based distributed computing can be easily understood 

from the large number of research groups and prototype systems currently in this field. 

Many programming models have been developed for programming workstation clusters 

efficiently. As my work is focused on these cluster based machines, a brief survey of the 

various programming models commonly used to program workstation cluster MIMD 

multicomputers is given next. 
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A Brief Survey of Multicomputer Programming Models 

Message Passing 

Message Passing is a programming model, generated by distributed-memory 

machines but applicable to others, for example multiprogrammed single-processors. 

Almost all other programming models have message passing in their lowest level. A 

program is divided into components or subprograms, which may run on different nodes 

of the machine. Nodes may all run copies of the same program (SPMD) or they may run 

completely different programs (MPMD). The nodes communicate with one another by 

explicitly sending and receiving messages, which are arrays of data copied from one 

node to another. Some of the popular models of this type includes p4 [Butl92a] from 

Argonne National Laboratory, Express [Flow9la] developed by ParaSoft, Inc., 

TCGMSG [Harr91a] maintained at Pacific Northwest Laboratory, Parallel Virtual 

Machine (PVM) [Manch94a] from Oak Ridge National Laboratory etc. There are 

hundreds of models in this class. The Message Passing Interface (MPI) [For93a] forum 

is an effort to collect the knowledge gained in the last ten years of building message­

passing systems into a single, standard programming interface. 

Virtual Shared Memory 

Virtual Shared Memory is a model that can be used to program either tightly­

coupled or distributed-memory multiprocessors. Messages can be implemented in terms 

of shared memory or vice-versa, and which of these is the lower layer is a performance 

issue. The Shrimp [Blum94a] system uses a virtual memory-mapped network interface 

to give applications protected but direct access to network hardware, eliminating the 

overhead of system calls. This allows high-bandwidth, low-latency data exchange and 

can be used to support either message-passing or shared memory. 
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Distributed Objects 

Distributed Objects is a programming system in which data structures or objects 

are shared across a set of processors, without specifying exactly how the sharing is done. 

These systems give the programmer the abstraction of distributed shared memory 

(DSM). DoPVM [Sund93a] is an object oriented distributed environment implemented 

on top of PVM (Version 3). It defines shared object classes, uses operator overloading to 

move data transparently between processes, and also provides process scheduling tools. 

There are a set of other systems currently under development that use shared objects for 

better performance in synchronization, load balancing and fault tolerance. 

Parallel Languages 

Parallel Languages for distributed systems try to automate the tasks of 

communication and synchronization in parallel applications. The challenge for parallel 

languages is to provide the programmer the necessary expressiveness to get his work 

done without specifying the inner details, and to build a compiler that can translate the 

language into something that runs efficiently. Clark [Clark92a] provides a detailed 

evaluation of some of the parallel languages in the context of molecular dynamics 

computations. 

Other models for parallel programming include systems like Linda (Scientific 

Computing Associates) that uses tuple spaces for sharing data between processes, 

process control etc. These models can be used easily on shared and distributed memory 

machines and networks. Distributed operating systems provide another level of 

primitives for parallel programming. They provide a more complete environment than 

other models, like file system and memory management, control of peripheral devices 

etc. But as they are custom made for the hardware of the target machine, they are less 
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portable than other systems. The Amoeba [Mull90a] distributed operating system treats 

nodes on a network as a central pool of processors, and uses remote procedure calls 

(RPC) both at the kernel and application level. Mattson [Matts93a] provides a thorough 

evaluation of these various programming models and discuss the pit-falls and strengths 

of each of them. 

Message passing was used as the underlying model in this work. Message passing 

works at a very low level compared to other programming models, and hence allows 

more flexibility in experimenting with innovative ideas. Also the COP architecture is 

easily adaptable to the message passing model. 

The task of next chapter is to provide an overview of the PVM message passing 

system. This chapter provides the justification for using the COP system with the 

Parallel Virtual Machine (PVM) and provide a brief overview of PVM. Also, a 

preliminary analysis of the collective communication primitives of PVM is provided in 

the next chapter. 



CHAPTER III 

CHOOSING A PROGRAMMING MODEL FOR THE COP SYSTEM 

The purpose of this chapter is to introduce the programming model followed for 

the COP system to work with workstation clusters. As described earlier in chapter II, 

there are a variety of programming models that have been developed for cluster based 

distributed memory MIMD machines. In this chapter I provide the justification for using 

the COP system with the Parallel Virtual Machine (PVM) programming model followed 

by a brief overview of PVM. I also discuss in detail the various parallel programming 

primitives offered by PVM and the reasons for low performance of some of the group 

functions. 

Why Choose PVM? 

The need to follow a popular programming model for the COP system was 

obvious even in the early stages of the cop software design. The primary motivation 

behind this is that a vast number of applications already have been developed 

successfully using this model. Also, as one of the design objectives of the COP system is 

to coexist with any existing distributed system, applications already developed for the 

original model would be easily portable to use the cop resources. 

The Parallel Virtual Machine (PVM) message passing system fulfills many of the 

requirements sought from a programming model. These include: 

1. PVM has more users than any other portable parallel programming environment 
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and has become the de facto standard for message passing environments. 

2. PVM further distinguishes itself from other message passing systems by being 

specifically designed to handle heterogeneous networks of computers. Given the 

architecture independent design of the COP system, this will help to apply the cop model 

to a variety of architectures. 

3. Many state-of-the-art applications which include molecular dynamics 

simulations, seismic wave studies, logic simulations, etc. already run on top of PVM. 

4. PVM ranks high in qualitative comparisons in areas like support groups, ease of 

debugging etc [Matts93a]. 

5. PVM provides some superior features like efficient task management, dynamic 

task groups, flexibility in using connection oriented communication protocols etc. 

6. Availability of the software package and the programmer's prior experience 

with using this system. 

7. Support based on the experiences of a large and accessible user base. When a 

problem is encountered - either with PVM or with expression of some algorithm in 

PVM, the chances are good that you will be able to find someone who has already 

encountered and solved a similar problem. 

8. Simplicity in cop software design to interface with PVM message passing 

system when compared to interfacing with any other model. 

The overhead of PVM function calls affect the performance of the COP software 

system if it is layered on top of PVM. As the cop software module has to extract 

information on task management, virtual machine configuration, dynamic groups etc. 

from the underlying PVM layer, the overhead involved in this can affect the 

performance of cop functions. Due to these above mentioned advantages and 

disadvantages the following design decisions were made for the COP system software 
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design: 

1. The cop software system should coexist with PVM, so as to take full advantage 

of the functionality provided by pvm which includes simple task management, central 

console to control the whole virtual machine, asynchronous notification of events, 

dynamic task groups etc. 

2. The cop software utilities should depend on the information supplied by PVM 

functions as little as possible to reduce the overhead involved. It use effective "Software 

Caching" mechanisms to reuse the information provided by pvm functions in multiple 

contexts, thereby reducing the effective number of pvm function calls. 

3. The application programmer should be given enough freedom to choose 

between a cop function, or an equivalent pvm function, or a hybrid of these two, to 

express any given algorithm. The application developer can make his choice by 

estimating the 1/0 requirements and the degree of communication/computation 

overlapping possible in the application algorithms. 

For these reasons the cop programming interface and libraries are designed in a 

machine independent style. The compute node interface device driver can be easily 

tuned to any target architecture and is designed as a loadable driver. i.e, the cop driver 

can be added to or deleted from the running kernel dynamically, without rebooting the 

system. 

These features of the COP system software provide enough portability for any 

existing or future pvm applications. Even though the task of choosing appropriate cop or 

pvm functions for a given problem decreases the ease of programming for application 

developers, this provides enough flexibility to investigate faster and efficient solutions 

on an experimental architecture such as the COP system. With the requirements for a 

message passing model for programming the COP system to work with workstation 
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clusters fresh in mind, I will provide a brief overview of the PVM message passing 

system. 

PVM Message Passing System 

The PVM (Parallel Virtual Machine) software package provides the software 

infrastructure for programming heterogeneous networks [Begu93a]. PVM provides 

mechanisms for configuring a virtual machine on a network, initializing processes on 

this network and communicating among these processes. It is a lightweight package 

intended for user installation. Nearly any UNIX or UNIX like machine can be used as a 

processor in a virtual machine as long as the user has an account on the machine and it is 

accessible over a network. The most important goals for version 3 release of the PVM 

package are fault tolerance, scalability, heterogeneity and portability. 

PVM is able to withstand host and network failures. It doesn't automatically 

recover an application after a crash, but it provides polling and notification primitives to 

allow fault-tolerant applications to be built. The virtual machine is dynamically 

reconfigurable. This goes hand-in-hand with fault tolerance, because an application may 

need to acquire more resources in order to continue running, once a host has failed or 

crashed. In pvm task management is made as decentralized and localized as possible, so 

virtual machines should be able to scale to hundreds of tasks. To allow pvm to be highly 

portable, the use of operating system and language features such as multi-threaded 

processes and asynchronous 1/0 etc., that would be hard to retrofit if unavailable are not 

used. To easily understand the theory of operation of the pvm system, I will provide the 

overview of important concepts used in pvm, followed by a detailed section on parallel 

programming primitives offered by pvm with emphasis on collective communication 

operations. 
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Architecture Classes 

PYM assigns an architecture name to each kind of machine I OS combination on 

which it runs. The reason behind this is to distinguish between machines that run 

different executables due to hardware or operating system differences. Many standard 

names are defined and others can be easily added. Some machines with incompatible 

executables use the same binary data representation. PYM takes advantage of this to 

avoid data conversion. Architecture names are mapped to data encoding numbers, and 

the encoding numbers are used to determine when it is necessary to do data conversion. 

A complete description of the various architecture classes supported by pvm is 

documented in "PYM 3 Users Guide and Reference Manual" [Geist94a]. 

PYM Daemon 

The pvm daemon (pvmd) is an important entity which runs on each host of a 

virtual machine. Pvmd serves as a message router and controller. It provides a point of 

contact and fault detection. An idle pvmd occasionally checks that its peers are still 

running. Pvmds continue to run even if application programs crash, to aid in debugging. 

Pvmds owned by (running as) one user do not interact with those owned by others, in 

order to reduce security risk, and minimize the impact of one PYM user on another. 

The first pvmd (started manually) is designated as the master, while the others that 

are started by the master pvmd are designated as slaves. During normal operation, all the 

pvmds are considered equal, but only the master can start new slaves and add them to the 

virtual machine configuration. Re-configuration requests originating on a slave host are 

forwarded to the master pvmd, and only the master pvmd can forcibly delete hosts from 

the virtual machine. 
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Programming Library 

The programming library "libpvm" allows a task to interface with the pvmd and 

other peer tasks in the virtual system. It contains functions for packing/composing and 

unpacking messages, and functions to perform pvm "syscalls" to send service requests 

to the pvmd. It is made as small and simple as possible. Since it shares an address space 

with unknown, possibly buggy, code, it can be broken or subverted. Minimal sanity 

checking of parameters is performed, leaving further authentication to the pvmd. The 

top-level of the libpvm library, including most of the programming interface functions, 

is written in a machine-independent style. The bottom level is kept separate and can be 

modified or replaced with a new machine-specific file while porting pvm to a new 

environment. 

Task Identifiers 

PVM uses a "Task Identifier" (tid) to address pvmds, tasks, and groups of tasks 

within a virtual machine. The tid contains four fields as shown in Figure 1. Since the tid 

is used heavily, it is made to fit into the largest integer data type (32 bits) available on a 

wide range of machines. Later I will show how the COP programming library redefines 

the pvm tids to manage the cop channel resources. 

31 18 0 

11111 1111 11111111111111 1111111111 
S G H L 

Figure 1. PVM Generic Task Identifier (tid) 

The fields S, G and H have global meaning. Each pvmd of a virtual machine 

interprets them in the same way. The H field contains a host number relative to the 
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virtual machine. As it starts up, each pvmd is configured with a unique host number and 

therefore owns a part of the tid address space. The maximum number of hosts in a virtual 

machine is limited to 2H -1 ( 4095). This is the same number of hosts that can be 

supported by a two-level COP system as described in later sections. 

The mapping between host numbers and hosts is known to each pvmd, 

synchronized by a global host table. Host number zero is used to refer to the local pvmd. 

The S bit is used to address pvmds, with the H field set to the host number and the L field 

cleared. The G bit is set to form multicast addresses (GIDs), which refer to groups of 

tasks. 

Each pvmd is allowed to assign its own format to the L field (with the H field set to 

its own host number), except that all bits cleared is reserved to mean the pvmd itself. 

The L field is 18 bits wide, there by allowing up to 218 - 1 tasks to coexist on each host. 

In the generic UNIX port, L values are assigned by a counter, and the pvmd maintains a 

map between L values and UNIX process ids. In multiprocessor ports the L field is 

subdivided as shown in Figure 2. The P field specifies a machine partition, (physical 

group of processors), sometimes called a process type or job. The node number (N) 

determines a processor in a partition, and the W bit indicates whether a task runs on a 

compute node or host processor (service node). 

31 18 0 

I 11 I I 111 I I 11 I 1111 11 I I 11 111 I I 11 11 I 
SG H W P N 

Figure 2. PVM Multiprocessor Task ID 

The design of the tid enables the implementation to meet the design goals. Tasks 

can be assigned tids by their local pvmds without off-host communication. Messages can 
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be routed from anywhere in a virtual machine to anywhere else, due to hierarchical 

naming. Portability is enhanced because the L field can be redefined. When sending a 

message, a task on a multiprocessor node can compare its own tid with destination tid to 

determine whether to use native communication or send to the pvmd for routing. Finally, 

space is reserved for error codes. When a function can return a vector of tids mixed with 

error codes, it is useful if the error codes don't correspond to legal tids. The tid space is 

divided as shown in Figure 3. 

Tids are intended to be opaque to the application and the programmer should not 

predict their values or modify them without using functions supplied in the 

programming library. More symbolic naming can be obtained by using a name server 

library layered on top of the raw PVM calls, if the convenience is deemed worth the cost 

of name lookup. 

Use s G H L 

Task identifier 0 0 l ... Hmax l ... Lmax 

Pvmd identifier 1 0 l ... Hmax 0 

Local pvmd (from task) 1 0 0 0 

Multicast address 0 1 l ... Hmax O ... Lmax 

Error code 1 1 small neg. number 

Figure 3. PVM tid Sub-Space Allocations 

Message Model 

PVM daemon and tasks can compose and send messages of arbitrary lengths 

containing data. The data can be converted using Sun Microsystem's "External Data 
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Representation Standard" (XDR) when passing between hosts with incompatible data 

formats. Messages are tagged at send time with a user defined integer code called 

message-tags, and can be selected while receiving by source address or message-tag. 

The sender of a message does not wait for an acknowledgment from the receiver, 

but continues as soon as the message has been handed to the network and the message 

buffer can be safely deleted or reused. Messages are buffered at the receiving end until 

received. PVM reliably delivers messages, provided the destination exists. Message 

order from each sender to each receiver in the system is preserved. If one entity sends 

several messages to another, they will be received in the same order. Both blocking and 

non-blocking receive primitives are provided, so task can wait for a message without 

consuming processor time by polling for it. A receive with time-out is also provided, 

which returns after a specified time if no message has arrived. 

Asynchronous Notification 

PVM provides notification messages as a means to implement fault recovery in an 

application. A task can request that the system send a message on events like a task 

exiting or crashing, a host getting deleted or crashing, or new hosts being added to the 

virtual machine. Notify requests are stored in the pvmds attached to the objects they 

monitor. Requests for remote events are kept on both hosts. The remote pvmd sends the 

message if the event occurs, while the local daemon sends the message if the remote host 

goes down. 

Protocols 

PVM communication is based on TCP and UDP. While other, more appropriate 

protocols exist, they are not as generally available as TCP and UDP. One drawback of 

TCP is that it cannot take full advantage of the performance of modern high speed 
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networks due to a window size limit of 64.kB. Experimental ports of pvm using other 

networking technologies and protocols like the ATM adaptation layer (AAL5) 

[Chang95a] are being developed to solve these problems. 

PVM daemons communicate with one another through UDP sockets. UDP is an 

unreliable delivery service which can lose, duplicate or reorder packets. So an 

acknowledgment and retry mechanism is used. UDP also limits packet length, so pvm 

fragments long messages. TCP is not used for pvmd-to-pvmd communications due to 

several reasons. First is scalability. In a virtual machine of N hosts, each pvmd must 

have connections to the other (N - 1) pvmds. If TCP is used each connection consumes a 

file descriptor in the pvmd, and some operating systems limit the number of open files to 

as few as 32. But a single UDP socket can communicate with any number of remote 

UDP sockets. The second factor is overhead. N pvmds require a total of N(N-1)/2 TCP 

connections, which would be expensive to set up. The PVM/UDP protocol can be 

initialized with no communication as it is a connectionless protocol. Third factor to 

choose UDP over TCP for pvmd-to-pvmd communications is fault tolerance. The 

communication system detects when foreign pvmds have crashed or exited, or the 

network has gone down. For these features time-outs need to be set in the protocol layer. 

The TCP keep-alive option offer similar features, but not all operating systems provide 

adequate control over the TCP parameters. 

A task talks to its pvmd or to other tasks through TCP sockets. TCP is used 

because it delivers data reliably. UDP can loose packets even within a host. Unreliable 

delivery requires retry (using timers) at both ends, but tasks should not be interrupted 

while computing to perform 1/0. This provides the reason for selecting TCP for task 

communications. 
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PVM Communication Facilities 

PVM provides two types of communication modes, Normal mode and Direct 

mode. In the Normal mode, for a source task to communicate with a remote task, it must 

first communicate through a UNIX domain socket to its local pvmd daemon. The local 

pvmd daemon of the source task then communicates through a UDP socket to the remote 

pvmd. The remote pvmd then communicates locally to the destination task again 

through a UNIX domain socket. Thus two TCP connections and two UDP connections 

are required for bidirectional communications between any two communicating 

application processes. 

In the direct mode, PVM sets up a direct TCP connection between the two 

communicating processes or tasks via the indirect mode mechanism. The detailed 

transmission facilities of the direct and normal modes are hidden from the end-users. 

The advantage of the direct mode is that it provides a more efficient communication path 

than the normal mode. The major reason for providing the normal mode, despite its 

lower performance, is because of the limited number of file descriptors some UNIX 

systems provide. Thus the drawback of the direct mode is its limited scalability and the 

latency in setting up the connections. 

Sending a message is composed of three steps in pvm. First, a send buff er must be 

initialized by a call to pvm_ini ts end () or pvm_mkbuf (). Second, the message 

must be packed into this buffer using any number and combination of pvm_pk * ( ) 

routines. Third, the completed message is sent to another process by calling the 

pvm_send () routine or multicast with pvm_mcast () routine. (pvm_bcast () can 

be used for broadcasting). PVM also supplies the routine, pvm_psend () which 
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combines the three steps into a single call. This allows for the possibility of faster 

internal implementations, particularly by MPP vendors. pvm_ps end only packs and 

sends a contagious array of a single data type. A message is received by calling either a 

blocking or non-blocking receive routine and then unpacking each of the packed items 

from the receive buffer. The pvm_upk* () routines provide the unpacking features. 

The receive routines can be set to accept any message, or any message from a specified 

source, or any message with a specified message tag, or only messages with a given 

message tag from a given source. PVM also supplies the routine, pvm_precv ( ) , 

which combines a blocking receive and unpack call. Like pvm_psend, pvm_precv is 

restricted to a contiguous array of a single data type. 

The encoding options provided by PVM include PvmDataDefault, PvmDataRaw 

and PvmDatalnPlace. For PvmDataDefault, XDR encoding is used because pvm cannot 

know if the user is going to add a heterogeneous machine before this message is sent. If 

the user knows that the next message will only be sent to a machine that understands the 

native format, then he can use PvmDataRaw encoding and save on encoding costs. If the 

PvmDataRaw encoding option is used, no encoding is done. Messages are sent in their 

original format. If the receiving process cannot read this format, it will return an error 

during unpacking. For the PvmDatalnPlace scheme, as the name specifies the data is left 

in place. Buffers only contain sizes and pointers to the items to be sent. When 

pvm_send() is called the items are copied directly out of the user's memory. This option 

decreases the number of times the message is copied at the expense of requiring the user 

to not modify the items between the time they are packed and the time they are sent. 

Another use of this option would be to call pack once and modify and send certain items 

(arrays) multiple times during an application. An example would be passing of boundary 

regions in a discretized PDE implementation. 
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PVM Collective Communication Primitives 

PVM provides facilities to do collective communications that operate over a entire 

group of tasks. This includes primitives for common parallel program operations like 

barriers, global reductions, multicast/broadcast, scatter/gather etc. Before describing the 

actual pvm functions or routines to perform these operations, I will discuss the dynamic 

process group features in pvm. 

Dynamic process groups are implemented on top of PVM3. In this implementation 

a process can belong to multiple groups, and groups can change dynamically at any time 

during a computation. Pvmd does not perform the group operations. This is handled by a 

special group server that is automatically started when the first group function is 

invoked. There are trade-offs between using static and dynamic groups, and future 

versions of pvm. may include efficient collective communications between static group 

members. (Currently pvm_staticgroup () can be used to declare a group as static). 

PVM group functions are designed to be very general and transparent to the user at 

some cost in efficiency. Any pvm task can join or leave any dynamic group at any time 

without having to inform any other task in the affected groups. Tasks can broadcast 

messages to groups of which they are not a member, and in general any pvm task may 

call any group functions at any time. The exceptions are pvm_lvgroup called by a task to 

leave a group, pvm_barrier called by a task to participate in a barrier construct and 

pvm_reduce called by a task to perform a global reduction. These functions by their 

inherent nature require the calling task to be member of the specified group. 

The functions pvm_j o ingroup ( ) allows a task to join a user named group. The 

first call to pvm_j o ingroup creates a group with the specified name, and puts the 

calling task in this group. It returns the instance number (inum) of the process in this 



23 

group. Instance numbers run from 0 to number of group members minus 1. The routine 

pvm_l vgroup ( ) allows a task to leave a specified group. The task calling 

pvm_l vgroup to leave a specified group will still be member of all other groups it had 

joined. The routine pvm_get tid () returns the tid of the process with a given group 

name and instance number. pvm_gettid allows two tasks with no knowledge of each 

other to get each other's tid by simply joining a common group. pvm_getinst () 

returns the instance number of a specified tid in the specified group. pvm_gsize () 

returns the number of members in a specified group. As I show later, these pvm group 

management functions are used appropriately by the cop software library to manage the 

cop communication channels. 

The barrier is a common parallel programming construct. In pvm a barrier is 

implemented as a function pvm_barrier () that blocks the process until the specified 

number of group members have called the barrier function. In general count should be 

the total number of members of the group, but it is required as a function argument 

because with dynamic process groups pvm cannot know how many group members are 

in a group at a given instant. It is an error for processes to call pvm_barrier with a group 

it is not a member of. It is also an error if the count argument across a given barrier call 

does not match. pvm_bcas t ( ) labels the current message with an integer identifier 

(message tag), and broadcasts the message to all tasks in the specified group except itself 

(if it is a member of the group). pvm_reduce () performs arithmetic operation across 

the group, for example, global sum or global max. The result of the global operations is 

returned only to the task that is specified as the root. If other members of the group 

require the reduced result the root task should ship it to them using pvm_mcast () or 

pvm_bcast () functions. The reduction operation is done element-wise on the input 
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data. PVM also supports using any user specified reduction function. Even though this 

feature makes global reductions very flexible, most of the real applications seem to use 

only the common predefined functions like global sum, product, max, min, logical 

operations etc. 

Multicast 

Libpvm function pvm_mcast(), sends a message to multiple destinations 

simultaneously. The current implementation only routes multicast messages through the 

pvmds. It uses a 1 :N fanout to ensure that failure of a host doesn't cause the loss of any 

message (other than ones to that host). The packet routing layer of the pvmd cooperates 

with the libpvm to multicast a message. 

To form a multicast address tid (GID), the G bit in the tid is set (Figure 2). The L 

field is assigned by a counter that is incremented for each multicast, so a new multicast 

address is used for each message, then recycled. To initiate a multicast, the task sends a 

message containing a list of recipient tids to its pvmd. The pvmd creates a multicast 

descriptor and gid. It sorts the addresses, removes bogus ones and duplicates and caches 

them. It sends a message to each destination pvmd (ones with destination tasks), with gid 

and destinations on that host. The gid is sent back to the task. Later the task sends the 

multicast message to the pvmd, addressed to the gid. As each packet arrives, the routing 

layer copies it to each local task and foreign pvmd. When a multicast packet arrives at a 

destination pvmd, it is copied to each destination task. Packet order is preserved, so the 

multicast address and data packets arrive in order at each destination. Due to this type of 

implementation the pvm multicast is dependent on the UDP based pvmd-to-pvmd 

communication schemes. 

Finally, to use collective constructs in application programs, there is a separate 
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library libgpvm3 .a that must be linked with user programs. Later I show that in a much 

similar way, the COP library (libcop.a) linked to application programs can use the cop 

resources for efficiently performing global operations. 

Performance Limiting Factors in PVM 

PVM has several performance limiting factors. Some of these exist due to the 

trade-offs made to provide enough generality to the application user, and due to the 

inherent heterogeneous nature in the design. The networks used during the development 

of the package are the ethernet based networks that has a maximum bandwidth of only 

10 Mbits/sec. The primary communication protocol followed (TCP) cannot take full 

advantage of the performance of modern high speed networks due to its window size 

limits. Other major performance limiting factor is the overhead of traversing the 

protocol stacks to send/receive messages to/from other tasks. A typical example is the 

number of times an application data buff er is copied before it makes it to the application 

layer of the peer task. Apparently, most of the on-host latency results from copying of 

large numbers of data buffers [Sten94a]. The low performance of the networking 

medium and communication protocols accounts for the low inter-host performance. 

These performance limitations have more effect on the collective communication 

primitives because of their heavy use of the network resources. For example, the generic 

port of pvm assumes the underlying network cannot support multicast. As a result it 

cannot directly make use of the inherent multicast capabilities of networking 

technologies like ATM. Also the overhead due to additional communications needed 

with the group-server, to perform broadcasts limits the usability of the broadcast 

primitives in pvm. The scalability of the multicast feature is limited due to the 1 :N direct 

fanout, because of the heavy contention caused by the acknowledgment messages. A 
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more detailed explanation of the performance limiting factors in pvm is given later when 

I provide the performance measurements and analysis of stand alone PVM and 

combined COP-PVM system for workstation clusters. 
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CHAPTER IV 

COP SYSTEM ARCHITECTURE AND OPERATIONS 

This Chapter describes the original COP system architecture, associated hardware 

modules, and their theory of operation. For accuracy, this chapter follows the work of 

Hall [Hall94a] closely. 

Goals 

The goals of the COP system are: 

1. Be applicable to "Big Iron" multicomputers, workstation cluster 

multicomputers, and distributed shared memory systems. 

2. Improve the efficiency of a wide variety of common parallel programming 

operations so as to better justify the cost of implementation. 

3. Retrofit easily to the hardware of current generation machines so that it would 

not be necessary to wait for the next generation of machines to gain the benefits. 

4. Require minimum modification of existing programming paradigms so as to not 

waste the massive efforts that have been invested in them. 

5. Be compatible with MPI, PVM, and other current efforts to insulate 

programmers from low level system details. 

6. Be compatible with advances such as thread scheduling and object oriented 

parallel programming that are likely to be included in future machines. 

7. Have a high benefit-to-cost ratio. 
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As I discuss the COP architecture and the software in the following sections, I will 

describe how the COP hardware and software was designed to meet these goals. 

Top Level View 

Figure 4 shows the network topology for a single level COP system. As shown, 

each compute node in a group of 64 is connected to a coordination processor (COP) by 

an independent high-speed, half-duplex serial data link. 

Half Duplex 
Serial Line 

Workstation # 0 • • 

Half Duplex 
Serial Lines 

COP 

• • 
Workstation # 63 

Figure 4. Single Level COP System Topology 

Since the communication links between compute nodes and a cop controller are 

independent, all the compute nodes in a group can send data words or synchronization 

signals to their controller simultaneously. With these dedicated direct links, the source 

and destination are hardwired, so no complex message formatting is required. To send a 

word to its controller, a compute node simply does a write to its cop channel interface 

port. The dedicated signal lines also mean that no time is required to establish a 

connection with the controller, and there is no network contention. The result of these 
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capabilities is that each compute node can transmit a synchronization signal or data to its 

controller in a very short time. The independent communication links also mean that a 

cop controller can broadcast a synchronization signal or data to all the compute nodes in 

its group simultaneously. 

Bit-serial data transmission was chosen to minimize the number of conductors in 

each link and for compatibility with relative inexpensive, non-multiplexed fiber-optic 

data transmission. 

Half Duplex 
Serial Line 

Workstation 
#0 

Workstation 
#63 

Half Duplex 
Serial Line 

Workstation 
#4032 

Figure 5. Two Level COP system Topology 

Workstation 
#4095 

The decision to assign 64 compute nodes to each controller was made partially so 

masks, bit-vectors, etc. are compatible with the data path widths of the latest compute 

node processors [Hall94a]. Assigning 64 compute nodes to each controller means that a 
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two level hierarchy of cop controllers can service up to 4096 compute nodes as shown in 

Figure 5. Keeping the number of levels low reduces the number of controllers and the 

number of connecting links for a given size machine. Keeping the number of levels low 

also reduces the overhead involved in traversing the tree for global operations in which a 

large number of compute nodes participate. To broadcast a value to all 4095 other nodes, 

for example compute node 0 send to controller 0, controller 0 sends the value to the 

Level 2 controller, the level 2 controller broadcasts the value to all the Level 1 

controllers, and each of the level 1 controllers broadcasts the value to its 64 compute 

nodes. The whole process requires only three passes through a cop level. 

A very important point here is that the topology of the COP system is independent 

of the topology of the underlying machine. This means that the COP system is equally 

applicable to "Big Iron" multicomputers, cluster multicomputers, and distributed shared 

memory multiprocessors. Note that the COP system will be most efficient if a particular 

physical partition or "virtual machine" is created with all its compute nodes connected to 

one cop, but this is not required. In this case only the level 1 cop is used for all 

operations within the partition. For a two level system it is somewhat more efficient to 

assign the compute nodes of a partition to level 1 cops that are connected to adjacent 

input channels on the level 2 cop, but again, this is not required. 

The software receive latency for a cop broadcast is usually very low because the 

receiving node is waiting for the control data word and immediately reads it from the 

cop network interface as soon as it arrives. In the case of a global sum operation, for 

example, a compute node would most likely write its data value and the appropriate 

opcode to its cop interface port, poll the cop interface port Data Ready strobe until the 

global sum arrives, and then immediately read the sum from the port. 
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Each cop controller has one extra serial channel in addition to those used to 

connect to 64 compute nodes or to lower level cops. One of the 64 channels is used to 

connect to a higher level COP if present. The extra serial channel can optionally be used 

to export performance or debugging data to external recording equipment. 

A 64-bit integer ALU in each cop is used for performing global integer SUM, 

MIN, MAX, bitwise AND, bitwise OR, and bitwise EXOR operations. A floating point 

unit in cop controller is used for performing global floating point SUM, MIN and MAX. 

Each cop controller also contains a bank of very fast RAM which is used to hold 

intermediate results and shared write-able variables, to function as a global name space, 

and to accumulate performance data. A second, smaller bank of RAM holds broadcast/ 

multicast masks. A third, small bank of RAM holds bit vectors which identify the 

compute nodes participating in a barrier or other global operation. As a brief, 

introductory example of how a COP system works, we will use a global sum operation. 

To start, each compute node writes a command consisting of a data value and the 

appropriate opcode to its cop network interface port. The cop network interface 

controller then automatically transmits the command to the cop controller. Arrival of a 

command at the network port of a controller sets a DATA_RDY flag for that input 

channel. The controller cycles through the input channel service requests on a round­

robin basis. When the controller services a channel, it adds that channel's contribution to 

the intermediate result and resets the appropriate bit in the bit vector which identifies the 

compute nodes participating in the operation. When all the compute nodes have 

contributed, the controller broadcasts the sum simultaneously to all the participating 

compute nodes. 

Operations that a COP system can directly perform include: synchronized read­

modify-write access to global variables, barriers, integer and floating point global sum, 
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MIN, MAX, bitwise AND, OR, EXOR, one-to-all broadcast or multicast, and all-to-all 

broadcast or multicast. 

The Compute Node to COP Network Interface 

Figure 6a shows a block diagram of the compute node to cop network interface. 

This interface is basically just a serial port with receive buffering, deadlock detection, 

and virtual machine protection capabilities. The compute node can interact with the 

interface on either a polled or an interrupt basis. To the compute node the interface 

appears simply as a 64-bit read/write port. 

Each communication between a compute node and a cop consists of one to four 

32-bit words. The first word in a cop command is always an instruction word with the 

format shown in figure 4b. Depending on the particular command, this instruction word 

is inserted by a user instruction, an operating system command, or hardware. The U/S bit 

in the instruction word indicates whether the command is a user level command or a 

supervisor level command which can only be invoked within an operating system call. 

The PPN in the instruction word is a number which identifies the physical partition to 

which the processor has been assigned. The X bit is used to indicate whether the 

physical partition extends beyond the local, level 1 cop. In other words, the X bit 

specifies whether a COP command should be passed on to a level 2 cop and applied to 

more than one level 1 cop. The PID in the command word includes context, group, and 

rank numbers which identify the process sending or receiving the command. This 

process identification mechanism was chosen for compatibility with the Message 

Passing Interface Standard [tennea]. The cop software interface section described in 

later chapters describes how this basic message format of the COP system was adapted 

to be used on workstation clusters. 
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Figure 6a.b. COP Channel Interface 
(a) Compute Node to COP network interface circuitry 
(b) Format for COP instruction word showing sub-fields. 

The opcode bits in the instruction word specify the operation to be performed. 

The MASK bit in the instruction word is used to select one of two programmable masks 

in the cop mask RAM. Additional bits in the instruction word are reserved for future use. 

If required, the second word in a command contains an address which is used to 
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access a global shared variable or partial result in the cop Data RAM. The third and 

fourth words in a command are used for 32-bit data values, 64-bit data values, or 64-bit 

mask values. The basic message format offered by the cop hardware is carefully broken 

down into software defined fields and is described in later sections on cop programming 

libraries. 

If a command consists of more than one word, the additional words are transferred 

to the dual-port RAM buffer as they are written to the interface by the compute node. 

However, as soon as an instruction word is written to the buffer, the interface controller 

transfers it to the UART and the UART automatically sends the word on to the 

controller. Additional words of a command are transferred to the UART and sent to the 

cop controller in sequence. In the current design, the actual UART sections of both the 

compute node to cop network interface and the network to cop interface use Motorola 

MC100SX1451 Autobahn Spanceivers rather than custom modeled devices. These 

devices not only fill a need in the COP system, but also demonstrate that 200-400 

Mbyte/sec serial transmission is possible with currently available commercial 

technology. 

The spanceiver serializes each 32-bit word and transmits it over a positive emitter 

coupled logic (PECL) differential transmission line. High quality triaxial cable can be 

used to connect spanceivers that are within 10 feet of each other. For longer distance 

connections between spanceivers, the PECL signals can be converted to non­

multiplexed optical signals and transmitted over relatively inexpensive multi-mode fiber 

optic cables. The deadlock timer on the interface can be used to trap to the operating 

system if a compute node sends a command to its controller and does not receive a reply 

within some pre-programmed time interval. 

In summary, the compute node to cop network interface provides fast data transfer 
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with the protection features required for virtual machine operation. The relative 

simplicity and standard bus connections of this interface allow it to be implemented as a 

small daughter board which can be added to an existing compute node for performance 

enhancement or can be easily included in a new system design. 

COP Architecture and Operations 

The COP to COP Network Interface 

Figure 7 shows block diagram of a cop controller. Each of the cop to network 

interfaces has a Motorola MC 1OOSX1451 spanceiver, four 32 bit registers for buffering 

words received from a compute node, four 32 bit registers for buffering words to be sent 

to a compute node, and a mini-controller. The first register in each set is an instruction 

register. The second register in each set is used for data RAM addresses which identify 

global shared variables or partial results. The third and fourth registers in each set are 

used for 32-bit or 64-bit words and 64-bit masks. 

When the first word arrives at the cop, the interface controller transfers the word to 

the first buffer register, and extracts two bits which specify the number of words in the 

command. As additional words are received, they are transferred to the appropriate 

buffer register.If the spanceiver detects an error while receiving a word, it will assert its 

error signal. If this signal is asserted, the interface controller aborts the receive operation 

and, as soon as the spanceiver is available, writes a "resend" command to the spanceiver 

for transmission back to the compute node. In response to a resend command, the 

compute node interface controller resends the entire command which is still in the RAM 

buffer on the compute node interface. After some number of unsuccessful attempts to 

receive a message from a compute node, the buffer controller sends an error word which 

causes a trap to the operating system on the compute node. A major advantage of this 
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approach is that the compute node to controller link can cycle through multiple attempts 

to deliver a message without involving the controller. This reduces the cop controller 

overhead. 

When all of the words of a command have been received without errors, the cop 

interface controller asserts a DATA_RDY signal. The cop controller polls the 
I 

DATA_RDY signals of the 64 network interfaces on a round-robin basis and services 

ready interfaces in sequence. As soon as the cop controller reads a command from a 

ready interface, the interface controller writes an acknowledge word to the spanceiver 

for transmission back to the compute node. Arrival of this acknowledge word at the 

compute node indicates that the receive registers on the cop end of the link are available. 

Requiring that the compute node interface waits for this acknowledge prevents 

overwriting the receive buffers on the cop and assures that a command is still available 

in the compute node interface RAM buffer for resending in case of an error. 

To send a command to a compute node, the cop controller transfers the command, 

address and data components of the command in parallel to the four transmit buffer 

registers in the interface. The interface controller then transfers the buffered words to the 

spanceiver in sequence for transmission. If the compute node interface detects an error 

in received word, it will direct the cop interface controller to resend the command for a 

pre-programmed number of times. 

COP network communication links are asynchronous. This means that no global 

clock is required and that cables do not have to be cut to specific lengths in order to 

synchronize transmitters and receivers. This makes it easier to use the COP system with 

cluster multicomputers. 
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Overview of COP Operations 

As mentioned previously, a cop controller contains a 64-bit integer ALU, a double 

precision floating point unit, three banks of 64-bit wide, very fast RAM, and a hardwired 

controller. The data RAM can be used to hold shared write-able variables, hold 

intermediate computational results, function as a global name space, and accumulate 

performance data. The mask RAM holds programmable masks which are used to enable 

the desired output channels during broadcast and multicast operations. The terminal 

count RAM holds the bit vectors that are used to keep track of which compute nodes 

have participated in a global operation. In this section I will give a brief overview of the 

original cop hardware design. Detailed theory of operation of each major hardware 

block is provided by Hall [Hall94a]. Later in the software design sections I will describe 

how these cop hardware features are used in a workstation cluster environment. 

As a first example of how a cop controller operates, suppose that one compute 

node needs to broadcast a data value to all or a subset of the other nodes in its partition. 

To do this the compute node sends the data word and the appropriate instruction word to 

its cop controller. When the cop controller reads the command, it will use the PPN, PID, 

and a couple of other bits in the instruction word as a pointer to the Mask RAM. The 

mask read from this RAM will enable the transmit buffers of the channels that are to 

receive the broadcast data word. After the transmit buffers are enabled, the controller 

writes the data word to all of them simultaneously. The interface controllers then 

transmit the data word to all the destination compute nodes at the same time. 

If the partition is larger than can be serviced by a single cop, then the local, Level 

1 cop forwards the command on to the Level 2 cop. The level 2 cop uses a mask in its 

Mask RAM to broadcast the command to the appropriate level 1 cops and each of these 

then uses a mask from its Mask RAM to broadcast the data value to the desired nodes. 
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To enable the compute node to efficiently broadcast vectors larger than the eight­

byte maximum for a single broadcast command, the cop controller has a channel lock 

capability. When a cop controller receives a lock command, the round-robin servicing of 

input channels is disabled so the controller continues servicing the locked channel until 

it receives an unlock command. This feature allows the node associated with the locked 

channel to pipeline back-to-back sequences of words through the cop. Using the PPN 

and PID to access a mask assures that the mask belongs to the currently executing 

process. 

The COP system can also be used to implement a barrier very efficiently. As 

mentioned earlier, the Terminal Count (TC) RAM in the COP is used to hold bit vectors 

which identify the compute nodes participating in global operations such as barriers, 

reductions etc. Each bit in one of these vectors corresponds to one of the attached 

compute nodes. When each participating compute node reaches the barrier, it sends a 

single 32-bit command word to the cop. In response to this word the cop controller resets 

the corresponding bit in the barrier bit vector and determines if all the bits are reset. If all 

the bits in the barrier vector are reset, the 'done' signal is asserted. In response to the 

done signal, the cop controller writes a barrier exit command word to all the network 

interfaces which are enabled by the corresponding mask from the Mask RAM. The 

barrier exit command is thus broadcast to all the participating compute nodes 

simultaneously rather than sequentially. 

Global sum and other similar global operations can also be performed very 

efficiently by a COP system. For this operation each compute nodes sends a contribution 

to its cop. The cop adds each contribution to a partial result stored in a Data RAM 

location. When all the values have been added, the controller uses a mask from the Mask 

RAM to broadcast the result to the participating compute nodes. For protection, the PPN 
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and PID in the instruction word are used as part of the address for the temporary result in 

the Data RAM and for the mask in the Mask RAM. Note that each intermediate result 

could be broadcast to all or to a subset of the participating nodes at the same time as it is 

written back to the Data RAM, if this were required by the particular algorithm. 

Still another type of operation that a COP system can easily perform is global 

shared variable access. For simple read access, a compute node sends the appropriate 

command and a variable identifier (address) to its cop. The cop controller uses the 

variable identifier, the PPN, and the PID received from the compute node to address the 

desired location in its data RAM and sends the addressed data value back to the compute 

node. In a case where it is important that a compute node should very quickly read a 

series of values from the Data RAM or write a series of values, the channel lock feature 

can be invoked. 

Read-Modify-Write access to the COP Data RAM is essentially the same, except 

that as the value read from the Data RAM is being copied to an interface transmit buffer, 

it is passed through the ALU, modified as specified in the command, and then written 

back to controller memory. 

Table I shows the list of commands that the original version of the cop controller is 

programmed to implement. Note that with the COP design there is no conflict if, for 

example, one node sends a Data RAM read (RSRAM) command, while a global 

reduction is in progress. Assuming the controller services the interface with the global 

sum command first, the cop controller will simply add that interface's contribution to the 

intermediate sum in the data memory. If the global sum is now complete, the controller 

will broadcast it to all the nodes waiting for the sum. As mentioned earlier, an instruction 

is broadcast along with the sum to identify the sum for the receiving nodes. (The cop 

software design has more features like message tags to identify specific messages). If the 
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global sum was not complete, the cop controller will just go on servicing other channels 

in a round robin basis and eventually the channel that issued RSRAM message will get 

serviced. 

The COP system provides reliable communication between the compute nodes 

and the COP controller over the COP channels. As a result, the key issue is that, unlike 

the PVM model, application tasks are not required to traverse the protocol stacks to 

access the COP channels. Figure 8 below shows the protocol stacks in PVM (normal 

route) and the COP. A final point here is that the COP system does not prevent use of the 

standard features on a given system. It simply provides a more efficient mechanism for 

global operations. 
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Figure 8. (a) Protocol stacks for PVM (normal route) 
(b) Protocol stacks for COP system 
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TABLE I 

COP COMMANDS AND OPCODES 

Command Opcode Description 

RSRAM32 1011100 Read 32-bit data from Data RAM 

WSRAM32 1011101 Write 32-bit data to Data RAM 

RMW32 1011110 Read-Modify-Write 32-bit data 

SUMI32 1010000 32-bit integer global sum 

MAXl32 1010001 32-bit integer global Maximum 

MINI32 1010010 32-bit integer global Minimum 

OR32 1011000 32-bit global logical OR 

AND32 1011001 32-bit global logical AND 

EXOR32 1011010 32-bit global logical EXOR 

RSRAM64 1111100 Read 64-bit data from Data RAM 

WSRAM64 1111101 Write 64-bit data to Data RAM 

RMW64 1111110 Read-Modify-Write 64-bit data 

SUMI64 1110000 64-bit integer global sum 

SUMF 1110100 64-bit floating point global sum 

MAXI64 1110001 64-bit integer global Maximum 

MAXF 1110101 64-bit floating point global Maximum 

MINI64 1110010 64-bit integer global Minimum 

MINF 1110110 64-bit floating point global Minimum 

OR64 1111000 64-bit global logical OR 

AND64 1111001 64-bit global logical AND 

EXOR64 1111010 64-bit global logical EXOR 

BENTRY 0000001 Barrier entry and broadcast 
LOCK 0000010 Lock a channel 

UNLOCK 0000011 Unlock a locked channel 

XMIT 0000100 Retransmit a message 

ACK 0001000 Acknowledgment for a message 

BCAST32 0011100 Broadcast 32-bit word 
SETBM 0111110 Set Broadcast Mask 

SETTC 0111111 Set TC Bit vector 

BCAST64 0111100 Broadcast 64-bit word 



CHAPTERV 

DESIGN AND IMPLEMENTATION OF THE COP SOFTWARE 

In Chapter IV, we discussed the basic programming model followed for the COP 

system, and a brief overview of the cop software design goals. As mentioned originally, 

the cop software subsystem is designed to work with the PVM message passing system. 

Chapter III showed that pvm provides the necessary software utilities to program 

heterogeneous networks. With the cop hardware features and pvm model fresh in mind, 

in this chapter I will provide the cop software subsystem design and implementation. 

Since the size of most of the present day workstation cluster multiprocessor systems is 

well below the capacity of a two level COP system ( 4096 compute nodes), the cop 

software design discussed here concentrates on a single level COP system. A single 

level COP system can support a maximum cluster size of 64. Features are provided 

whereever possible to easily extend the software design for a multilevel COP system. 

Also, even though the underlying pvm model allows multiple concurrent users, only one 

user can access the cop resources on a compute node at a time. This restriction was made 

to make the design simple, but it can be removed later and the software can be modified 

to add concurrent simultaneous users. 

COP Message Format 

As mentioned originally, the basic message format between a compute node and a 

cop controller consists of one to four 32-bit words. The first word is the instruction word 

and specifies the basic operation requested by the compute node. The second word is 
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specified as the address word and is used to address variables in controller memory 

owned by any task using the cop resources. The third and the fourth words are data 

words, and are used to carry either application data or mask bit vectors. Figure 6b in 

Chapter IV showed a basic partitioning of the instruction word as originally proposed. 

For the work here, the entire message structure is re-partitioned to better use the cop 

resources along with the pvm model. The cop hardware design can be easily modified to 

support the current specifications. Figure 9 shows the message format supported by the 

COP software. The number of words belonging to a single logical message varies from 

one to four depending on the type of operation specified in the instruction word. 
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The U/S bit in the instruction word differentiates an application message from an 
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operating system generated message. The X bit specifies whether the message should be 

restricted to the local controller or whether it should be forwarded to a higher level cop 

controller. The X bit needs to be used only for a multi level COP system, which has more 

than 64 compute nodes. The OPCODE specifies the operation requested by the compute 

node sending this message. The opcodes supported by the COP system is illustrated in 

Table I included in chapter IV. The M bit is used to select one of the two programmable 

masks on the cop controller. The Z bit is set if the compute node sending this message 

wishes to access the address space of other channels either on the same controller or on a 

different controller. If the other channel belongs to a different controller the X bit 

discussed before will be set along with the Z bit. If the Z bit is off in a instruction word, 

the cop controller automatically use the current value of the channel poll counter as the 

channel number (CHNO). This is appropriate as the poll counter always indicates the 

channel currently serviced. The cop controller address spaces are described later in this 

chapter. 

The task number (TKNO) field represents a specific task using the controller 

resources. The channel number (CHNO) field in the address field represents a specific 

cop channel. As each channel is attached to a compute node, the 'CHNO' field indirectly 

points to the host connected to the respective channel. As a result of this partitioning of 

message space, a (CHNO, TKNO) tupule can easily identify any task that use the cop 

controller resources in a cluster. In the next section I will show how the (CHNO,TKNO) 

tupule replaces the task identifiers (tids) used in the pvm model to identify tasks. The 

MSGTAG field in the address word serves the same function as message-tags for pvm 

messages. They help to de-multiplex one received message from another. Additionally, 

message-tags in a COP system provide the offsets from the base address of variables in 

COP Data RAM. The datal and data2 words in the cop message are used to carry either 
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32164 bit data or the 64 bit masks. The 'RSRVD' fields are reserved for future use. 

Channel Identifiers 

PVM uses 32 bit Task Identifiers (tids) to address pvmds, tasks, and groups of 

tasks within a virtual machine. Figure 1 in Chapter III showed a generic pvm task 

identifier. Out of the 32 bits, 12 bits (H field) are used as host identifiers. The H field 

identifies the location of a task in the virtual machine; i.e., the host on which a given task 

resides. The L field in the tid has eighteen bits and is used to identify a given process 

local to a host. The H and L fields together can identify any process in the workstation 

cluster. This hierarchical naming allows pvm to assign tids to local tasks by their local 

pvmds without costly off-host communication. This prevents a bottleneck at an ID 

server. 

The cop software uses Channel Identifiers ( cids) to identify any task using the cop 

controller resources. The cid consists of three fields: a controller number (CNTNO) 

field, a channel number (CHNO) field and a task number (TKNO) field. The controller 

number field addresses a particular cop controller. This is always zero for a single level 

cop, but ranges from 0 to 63 in a 2 level COP system. The CNTNO and CHNO fields 

together is analogous to the H field in pvm task identifiers. From the perspective of the 

cop controller, CHNO is a way of addressing the cop channels. As each host in the 

cluster has a single channel, channel number (CHNO) indirectly identifies a specific host 

in the cluster. The TKNO in cid is analogous to the L field in pvm task identifiers. Task 

numbers (TKNOs) are assigned local to a host and identifies a task within the host. 

The cop software system creates a channel identifier ( cid) for any given pvm task 

identifier. Two approaches are considered for performing the H field in tid to CHNO in 

cid mapping. First is a table lookup method to convert any given tid to a cid. The table 
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requires an initialization phase, and is updated whenever a task is spawned or completed. 

Each compute node keeps a copy of this table. The cop function library is designed in 

such a way that, if a new local task is spawned or completed it gets notified by the pvm 

notify function, updates its local table, and broadcasts the changes to all other compute 

nodes to provide consistency. As the cop channels cannot be used before the 

initialization of this table, pvm collective communication primitives are used to initialize 

the lookup table on all the compute nodes. But once the initialization is over, the cop 

channels are used to broadcast the changes due to tasks entering or leaving the system. 

For example, if there are N compute nodes, and one task per compute node, the table 

contains N entries for all the N tasks. The initialization is done via all-to-all broadcasting 

mechanisms, each compute node sending its contribution to all other N-1 compute 

nodes. 

As the table-lookup procedure discussed above proved to be inefficient due to the 

use of slow pvm group functions for table initialization, a second method was devised to 

overcome this overhead. This method is very simple and makes use of the mechanism 

used to assign tids in pvm. PVM assigns host numbers using a simple counter policy. 

The host numbers are provided in the same order as hosts are added. Even though pvm 

provides features to add or delete a host dynamically, most applications use a static host 

cluster. Each channel in a cop controller is linked to a host in the cluster. As described in 

the previous chapters, the cop controller polls each channels using a poll counter on a 

round robin basis. In the current cop hardware design, the channel numbers cannot be 

configured automatically. Each channel has a channel number between 1 and 64, and is 

the value of the poll counter used to poll them (Value of zero is not used as the H field in 

pvm tids is used by pvm to identify the local pvmd). If hosts are added to the pvm 

system in the order of their channel numbers, there will be a one-to-one correspondence 
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between the channel numbers and the host numbers assigned by pvm. For a single level 

cop, as the maximum cluster size is only 64, the H field can be mapped directly to the 

CHNO field in the cid. The controller number CNTNO is always zero for a single level 

COP system. For a cluster size of 4096, we require 64 level 1 cop controllers and a level 

two cop controller. As the H field in tid is 12 bits long, the maximum cluster size 

supported by pvm is 4095 (A zero in H field identifies a local pvmd). In a 2 level COP 

system, a cop controller with CNTNO of zero is attached to hosts with host numbers 

ranging from 1 to 64, a controller with CNTNO of one will be attached to hosts with 

their H fields ranging from 65 to 128, and so on. 

The only restriction on the direct H-to-CHNO mapping mechanism is that, pvm 

should add hosts to the system in the order of channel numbers. This is fair for almost all 

applications as most of them do not care about the order in which hosts are added to the 

cluster. As the L field in a tid is assigned locally to a host, it is used as the TKNO field in 

cid. As a result of this mapping, any task in the cluster that owns part of the tid space 

also owns a part of the cid space in the COP system. Similarly the L field in pvm tid is 

assigned locally to a host using a simple counter when tasks are spawned. Due to this 

simple local assignment of process numbers by pvm, the L field of the tid is used directly 

as the task number (TKNO) field in cid. 

Either of the mapping schemes can be selected, depending on requirements. The 

first scheme is more general and does not impose any restrictions on the applications, but 

is inefficient. The second method is simple and requires no overhead of initialization, but 

restricts the order in which hosts can be added or deleted from the cluster. I will follow 

the direct host number to channel number mapping in my further discussions for sake of 

simplicity. 
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Layered Architecture of the COP-PVM System 

PVM runs as a user process and uses the protocols built into the operating system 

of the compute nodes. A pvm daemon runs on each compute node and functions as a 

message router and controller for pvm messages. They also assist in additional functions 

like task management, host failure notification etc. Application programs that use pvm 

functions are linked to the 'libpvm.a' and 'libgpvm3.a' libraries. 

Application 

I 
COP Functions Library PVM Functions Library 

TCP I PVMDaemon 
UDP 

COP Interface Driver IP 

Network Interface Driver 

COP Channel & Controller Network Hardware 

Figure 10. Combined COP-PVM Model Communication Resources 

Figure 10 shows the layered architecture of the combined COP-PVM model's 

communication resources. The application programs can access the pvm resources 

directly using the original libpvm functions. They can access the cop resources using the 

functions in 'libcop.a' library. A detailed explanation of the libcop library is provided 

later in this chapter. As the cop functions make use of the task management and dynamic 

group features of pvm, part of the COP library is layered on top of pvm. This allows cop 

functions to extract information about tasks, dynamic groups etc. from pvm as shown in 
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Figure 10. As this dependency on pvm adds additional overhead, the number of pvm 

function calls is made as small as possible. Effective 'software caching' schemes allow 

the task information to be used in multiple contexts. 

The pvm asynchronous event reporting functions are used by the cop library 

functions to determine events like host failure, task existence etc. As the latency of the 

cop channels is very low for small messages, the cop channels are considered for 

features for providing "heartbeat" messages between the compute nodes in future 

software versions. This will provide reliable and fast notification of events like host 

failures. 

Compute Node to COP Channel Interface Registers 

The compute node channel interface hardware provides a clean interface for 

accessing the cop channels. There are registers available on the compute node channel 

interface for control, status, data transmission and data reception functions. The control 

and status features are provided by a Control & Status Register (CSR) on the compute 

node interface. The control functions are valid on a write to this register and status 

functions are valid while reading the register. Figure 11 shows the structure of the CSR 

register. 

The RST control bit is used to reset the cop channel interface by the compute 

node. When the interface is powered up or a reset is applied using the RST control bit, 

the interface hardware performs a self test and reports the status using the status bits in 

the CSR register. If the self test has passed, the RDY status bit will be set by the 

hardware. The cop device driver use this RDY signal to check whether the interface is 

ready for use or not. The enable-interrupt (EIN) control bit is used to enable or disable 

receiver interrupts. The interface issues an interrupt to the compute node whenever a 
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message arrives at the interface, if it is configured in the interrupt model. 
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Figure 11. Control and Status Register (a) Control Bits (b) Status Bits 

The RDY status bit is used to verify the status of a message transmitted over the 

channel. When the interface receives an acknowledgment from the cop controller for the 

current message, the RDY bit is automatically set. The cop driver software can check 

this bit to verify the status of the last transmission. If the acknowledgment (ACK) for the 

message transmitted does not show up before the transmit timer goes off, the interface 

posts the error through the ERR status bit. The ERR bit is set to notify time-outs during 

transmission, checksum and parity errors while transmission/reception, or if the cop 

controller responded with a negative acknowledgment (NACK) for the current message 

transmitted. The ERR_ CODE bits specify a predefined error code to distinguish between 

the various error conditions. The driver software checks the ERR and ERR_CODE bits 

to check the status of a transmission. 

The MOD status bit is used to read back the current mode of the compute node 

interface to check whether interrupts are enabled or not. The RCV status bit is set 

automatically by the interface hardware whenever there is an unread message in the 

compute node interface. This bit is automatically reset by the interface controller when 



52 

all the messages are read in by the compute node. This feature allows the driver to read 

in multiple messages upon single interrupt notification by the interface. 

Other registers on the compute node interface include a DataTransmit register, 

DataReceive register and a Pid register. The Pid register allows the compute node 

interface to provide enough protection for messages arriving from the COP channel to 

various local tasks. Due to this mechanism, a message arriving at the compute node 

interface from the channel can be read only by the destination task. Provisions are 

provided in the interface hardware to tune the channel parameters like transmit time-out 

period, number of retransmissions etc. 

COP Controller Address Spaces 

As described in the cop hardware design in chapter IV, the COP controller has 

three independent memory banks, namely Data RAM, Terminal Count Mask RAM and 

Broadcast Mask RAM. As the name specifies the Data RAM is used to store user data, 

the broadcast Mask RAMs are used to store the multicast and broadcast masks which 

specify the channels that should receive the partial/final result of a collective parallel 

operation. The terminal count mask specifies the channels that participate in a collective 

operation. 

Data RAM CDRAM) 

The Data RAM of a cop controller is used to store the data portion of application 

messages. The data space is divided primarily into three different address spaces based 

on the type of cop operations possible on these address spaces. They are: (a) channel 

address spaces(CAS), (b) a global address space (GAS) and (c) a system address space 

(SAS). Figure 12 shows the sub-divisions of the Data RAM. 
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The Channel Address Space on the cop controller Data RAM is sub-divided 

primarily into 64 channel spaces, so that each channel owns a part of the total channel 

address space. They are identified as CAS 1 to CAS64 for the 64 channels attached to a 

cop controller. Each CAS space is further divided into different task address spaces 

(TAS). As a result each task spawned on a host attached to the cop controller gets a 

chunk of memory on the controller. Figure 13 shows the task address space partitions 

within a channel address space. Presently the CAS and TAS address space locations and 

limits are statically allocated, with the maximum number of tasks per host using the cop 

resources restricted by available cop memory. As the task numbers are always locally 
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assigned within a host by pvm, the base of each task address space within a channel 

space can be easily derived from the TKNO in the instruction word. Better allocations of 

CAS and TAS address spaces, such as dynamically allocating them whenever a task is 

spawned and registered to use the cop resources can be designed, but is left out in the 

current design to make it simpler. In the current design each CAS base is derived by the 

controller from the corresponding channel number (CHNO) (either specified in message 

or the value of channel poll counter) and each TAS address space base is derived from 

the corresponding task number (TKNO) used in the cop message instruction word. 
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Figure 13. Task Address Space Partitions within a Channel Address Space 

Each memory location in a task's address space is derived by adding an offset to 

the TKNO base. The message tags (MSGTAG) used by the application while calling the 

cop functions is directly used as offset into the TAS space. This memory model of the 

task address spaces is very much similar to the classical segmentation model. The limit 

checking mechanisms of the cop controller provides graceful error reporting if the tasks 

try to access unauthorized address spaces. It is the responsibility of the applications to 

use sensible message tags for their messages depending on controller memory 
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configuration. 

Task Address Space as Protected Shared Memory 

The task address spaces are configured in such a way that only tasks that own a 

TAS have write access to them. But all tasks that use the COP controller resources have 

read access to all task address spaces. As a result, the task address spaces work as a one 

directional way of passing information between tasks. This is much similar to the 

classical PIPES used in UNIX systems for inter process communication. 

The task address spaces allows participating tasks to use the COP controller 

memory as some kind of protected shared memory mechanism. This is specially useful, 

if a variable is occasionally modified by the owner task, but is very frequently read by 

other participating tasks. Storing these shared variables in the COP controller allows 

efficient and faster access to them by other tasks. Also this sharing does not use any 

processing time of the task that actually owns the address space. Later I will show how 

this feature is implemented by the cop software system using the read (RSRAM) and 

write (WSRAM) RAM operations. 

Global Address Space (GAS) 

The global address space is primarily an address space to perform parallel 

operations between participating tasks that involve collective communications. PVM 

allows tasks to join groups, so as to easily perform group operations. The original idea 

behind the global address space, was that it can be dynamically partitioned into group 

address spaces. Only tasks belonging to the specific group can access its group address 

space. To reduce the complexity of the software and hardware design, this was not 

attempted in the current version of the COP system. If multiple global operations are 

done simultaneously by one or more groups of tasks, the application should take care not 
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to use the same sub-sections in global address space. This can be easily achieved by 

making sure that the message tags used along with the group operations do not overlap. 

All the global operation data manipulations are performed in the global address 

space. This implementation allows tasks participating in a group operation to read the 

partial results of the operation, simply by reading the appropriate locations in the global 

address space. 

The system address space contains initialized variables like the controller number 

(CNTNO) of the cop controller if it is multilevel COP system. Also this space was 

allocated so as to implement any messaging protocols between level-1 and level-2 cop 

controllers in a multi-level COP system in future versions. 

Terminal Count Mask RAM <TCMASK RAM) 

As described in chapter IV, this is a 64 bit wide memory and holds the terminal­

count mask. Each bit in the TC mask corresponds to a channel attached to the cop 

controller. The terminal-count mask specifies which all channels will participate in 

global operation. For each location in the global address space in the Data RAM, there is 

a corresponding address in the TC RAM. For example, a TC entry with all bits set at 

offset N in the TC RAM indicates that, all the 64 channels of the cop controller have to 

participate in the global operation performed on the variable at address offset N in the 

global address space of the Data RAM. As message tags are directly used as offsets in 

the global address space, a global operation performed by the participating tasks with 

message tag N requires the contribution from all the 64 cop channels. Later I will show 

how tasks local to a channel/host performs a partial global operation and then one of 

these tasks sends the partial result to the cop controller as the contribution from the 

channel they represent. As mentioned in Table I in Chapter IV, the TC mask can be set 
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only using the SETTC operation. A transmit mask entry can be read from the TC Mask 

RAM using a RSRAM64 message with the mask bit (M) set to indicate the mask type. 

Thi°s allows any participating task to query the cop controller to find out which all 

channels already contributed for a current global operation. 

Broadcast Mask RAM <BCAST RAM) 

The broadcast Mask RAM is 64 bit wide memory and holds the broadcast mask if 

required for global operations. The broadcast mask specifies which all channels should 

receive the result of a global operation. Similar to the TC Mask RAM, for each location 

in global address space in Data RAM, there is a corresponding address in the BCAST 

Mask RAM. For example a BCAST mask entry with all bits set at offset N in the 

BCAST Mask RAM indicates that, all the 64 channels of the cop controller will receive 

the result of the global operation performed on the variable at address offset N in the 

global address space of Data RAM. In other words, this implies that all the 64 channels 

will receive the result of the global operation with message tag N. The broadcast mask 

can only be setup using the SETBM operation of the cop controller. Similar to the case 

of TC masks, a broadcast mask entry in the BCAST Mask RAM can be read out by 

issuing an appropriate RSRAM64 message to the cop controller. 

Additional COP Hardware Features 

During the cop software development, a set of additional hardware features were 

devised for the COP system. All these features increase the programmability of the cop 

controller and allow the cop software system to reduce the overhead when used along 

with the pvm message passing system. These features are described in detail in the 

following paragraphs. 
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1. A new command to probe the channel number (CHNO) of an attached channel 

by the compute node interface is introduced. Any task can probe the cop controller to get 

the channel number assigned to that host. The cop controller will simply send the current 

value of the channel poll counter, upon receiving the probe command. This allows hosts 

to automatically configure the virtual machine for effectively using the cop resources. 

2. The Mask RAMs were modified so that each mask entry in the terminal count 

and broadcast Mask RAMs has an 'accessed' bit associated with it. When a mask entry 

is initialized by a task, its 'accessed' bit is automatically set by hardware. For the 

terminal-count mask, this bit will be automatically reset when all the channels specified 

by the corresponding mask entry have contributed for the global operation. For the 

broadcast mask, the hardware resets the accessed bit when the global operation result is 

broadcast to all the channels specified in the corresponding broadcast mask entry. 

Therefore a mask entry with the 'accessed' bit 'on', implies that the global operation 

corresponding to that mask entry is in process. During the SETTC and SETBM 

operations to initialize a mask, the cop controller first verifies that the target mask entry 

is not already initialized or in use by other tasks, by checking the 'accessed' bit. If the 

'accessed' bit is already set, the cop controller reports the error condition to the channel 

that initiated the SETBM/SETTC operation. The task that initiated the mask 

initialization operation can read the error condition reported by the cop controller from 

the 'ERROR-CODE' field in compute node interface status register. 

Another reason for introducing this hardware feature is to support the 'spmd' 

(single program multiple data) programming model followed by some applications. The 

group operations in a classical master-slave model are initiated by the master task, and 

the slave programs simply contribute to the group operation. In a COP system, the 
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master task can be responsible for all mask initialization, and the slave tasks simply 

contribute to the global operation performed on the cop controller. But in 'spmd' 

programming models, all the tasks run the same program. The tasks arbitrate between 

themselves based on a well defined rule (for example, the task who joined the group first 

becomes the master) to perform any initialization. Simple software techniques include 

using spinlocks, mutex locks etc. This mechanism requires application programmers to 

provide very fine load balancing between participating tasks, so that no tasks wait for the 

master to perform the initialization. In the case of a COP system all the tasks probe the 

cop controller to check whether the respective masks are already initialized. The task 

that first access the cop controller succeeds in initializing the TC/BCAST masks, thereby 

setting the 'accessed' bit on. All the other tasks participating in the global operation see 

that the masks are already initialized and simply continues by making their contribution 

to the global operation. In summary, the 'accessed' bit for mask entries in a cop 

controller provides necessary protection from application bugs, and also allows efficient 

'spmd' programming model used by many applications. 

3. Another hardware feature considered for the cop controller was to provide ways 

to initialize an array of consecutive mask entries using a single SETTC/SETBM 

operation. Each entry in the terminal-count/broadcast mask corresponds to an address 

location in the Data RAM global address space. Therefore, in-order to perform global 

operations on application data arrays, the corresponding mask arrays need to be 

initialized. It is grossly inefficient to initialize a TC/BCAST mask array of size N by 

issuing N SETTC/SETBM operations. The revised hardware feature provides a count 

parameter to be used along with SETTC and SETBM operations to initialize a mask 

array. Figure 14 shows the cop message format for a SETTC operation. 
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31 30 23 21 4 3 2 0 

I UIS I x I SETIC IM I MASK ARRAY SIZE I z I RSRVD I 

31 30 29 18 17 0 

I RSRVD I CHNO I MSG TAG 

31 0 

LOW ORDER MASK BYTES 

31 0 

HIGH ORDER MASK BYTES 

Figure 14. COP Message Format for SETTC operation 

The COP Software Implementation 

A brief introduction to the layered architecture of the COP system was shown in 

Figure 10 earlier in this chapter. One of the philosophical decisions made in the early 

stages of the design was to provide the user enough flexibility to select a pvm function or 

an equivalent cop function for any given operation. In the following sections of this 

chapter, I will discuss the implementation of the COP software system with function 

prototypes for various parallel operations. 

The COP Interface Driver 

The interface driver is the lowest layer in the cop software system. The interface 

driver is implemented as a generic UNIX pseudo-device driver, as the hardware 

prototype was not available. This can be easily ported to support the cop interface 
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hardware when it becomes available. The cop interface driver runs in kernel space and 

needs to be integrated into the operating system by re-configuring the kernel running on 

each compute node. In order to avoid rebuilding the kernel to attach the driver, the cop 

driver is implemented as a 'loadable' driver. Loadable drivers can be easily attached to 

or detached from a running kernel using the standard UNIX [Sunm90] 'modload' I 

modunload' features. The prototype driver was designed, coded and tested for SUNOS 

on SUN4 architectures. 

One of the primary overheads incurred by pvm functions is time to traverse the 

communication protocol stacks. The most important reason behind this overhead is the 

number of times the application data buffer is copied before it reaches the destination. 

Profiling results of many applications has shown function 'bcopy()' accounting for a 

major percentage of the processing power and time [Manch94a]. The cop driver reduces 

these overhead problems by providing direct, but protected network interface access to 

the application tasks [Blum94a]. As a result of this direct network access, the application 

data buffers are directly transferred to the network. The COP driver entry point to 

application tasks is provided through the '/dev/cop' device file. The entry points 

provided include open (), close (), read (), write (), ioctl () and rnrnap () 

system calls. The device can be set to a normal or direct mapped mode using a standard 

ioctl function call. When in direct map mode, the mmap system call is used by the cop 

library layer to provide memory mapped direct access to the network interface. The cop 

driver maps the hardware registers into a given virtual memory location in user address 

space in response to the rnrnap system call. Due to protection reasons, as there is no 

buffering of service requests from application tasks in the COP interface driver, the 

current implementation does not allow multiple concurrent users of the cop resources 

when the hardware is mapped for direct access by any task. A simple semaphore lock 



/ 
:' 

62 

mechanism is used to share the cop channel access between multiple tasks. 

The COP interface driver makes use of the Pid register in the compute node 

interface to provide necessary protection for application tasks. The application task 

provides its TKNO (deduced from PVM tid) when it requests the COP driver for direct 

access to the COP channel interface. The COP driver updates an internal table with the 

requesting task's process-id (pid) and the TKNO provided in the system call. The driver 

initializes the Pid register on the channel interface with the TKNO provided, and maps 

the DataRead/DataWrite registers to the calling task's address space. From now on, the 

channel interface will only allow those messages to be read out that has the TKNO field 

identical to the value in its Pid register. All messages with different TKNO values (out of 

context messages) will be buffered in the channel interface. Whenever the internal 

buffers cross a pre-specified watermark the COP driver will read those messages out to a 

shared memory block attached to the driver. This protection mechanism makes sure that 

even in direct mapped mode, an application task cannot read in messages arriving for 

other local tasks. 

If a message which is not expected by the local task currently accessing the 

interface arrives at the interface, the message will be saved in an attached shared 

memory block. Later, when the task expecting this message accesses the interface, it can 

read out the message from the shared memory provided its TKNO matches the value in 

the TKNO field in the message. This simple shared buffer allows buffering of out of 

context messages that may arrive at a compute node. A simple example for the need to 

buffer out of context messages will be a broadcast over the cop channels. If the out of 

context message buffering were not available at the channel interfaces, a task 

performing broadcast would have to make sure that all the recipient tasks in various 

hosts are currently accessing the channel before actually starting the broadcast. Access 
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to the shared memory block is restricted to only the process that owns the cop channel 

interface at any given time. These features allows the cop driver to perform data 

transfers over the cop channels with the least overhead. Also as the channels are 

dedicated links, there is no overhead incurred due to packet assembly/reassembly as in 

general purpose networking protocols used by pvm. Also the driver makes use of the 

dead-lock detection timer and automatic re-try mechanism of the cop channel interface. 

Libcop Library 

The libcop library functions provide the entry points for application tasks to use 

the cop resources. Part of the libcop library is layered on top of the pvm library, so as to 

make use of the various pvm features like task management, dynamic groups, 

asynchronous notification of events etc. The libcop functions masks all the inner details 

of the COP channel access and messaging protocols from the application developer. 

Also effort is made to keep the cop function prototypes similar to the corresponding pvm 

functions whenever possible, so as to allow easy porting of existing pvm applications. 

Libcop is written in C and directly supports C and C++ applications. A Fortran library 

can be easily written to wrap the current libcop library so that it conforms to the fortran 

calling conventions. 

The access to the compute node interface is protected by means of a semaphore 

lock mechanism. Tasks belonging to a group can be distributed in different channels/ 

hosts. For global operations like barrier/reductions, a partial reduction is performed 

between tasks local to a host/channel using shared memory and semaphore mechanisms. 

The partial reductions helps to reduce the number of access to the cop channels 

otherwise needed. The partial reduction results are sent to the cop controller by one of 

the participating local tasks from each channel. The cop controller performs the 
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reduction on contributions from all channels, and broadcast the result to the appropriate 

channels. All the local tasks on a host waiting for the global reduction result share the 

result received from the channel, again using a shared memory/semaphore mechanism. 

In summary, tasks local to a host perform partial synchronization/reduction using shared 

memory constructs, and channels perform the global synchronization/reduction on the 

cop controller. This approach allows to reduce the contention for the channels. Also 

tasks who only contribute, but do not require the global operation result can continue as 

soon as their contribution is passed for local reduction, instead of spinning for the 

operation to be over. 

The functions currently provided by libcop library includes initialization functions 

like cop_mytid (), management function like cop_setopt (), cop_getopt (), 

cop_notify (), point-to-point communication functions like cop_wri te (), 

cop_read () and global operation function like cop_barrier (), cop_bcast (), 

cop_mcas t ( ) , cop_reduce ( ) . Some of the other possible constructs include 

cop_rmw ( ) for read modify write operations, cop_sca t ter ( ) for scatter 

operations and cop_gather () for gather operations. With the basic software 

architecture of the COP system fresh in mind, next I will discuss in detail the design, 

implementation of each cop function and their resemblance to the parent pvm functions. 

Task Initialization Functions 

int tid = pvm_mytid(); 

This pvm routine enrolls a process into pvm on its first call and generates a unique 

tid if this process was not spawned already. pvm_mytid returns the tid of the calling 

process and can be called multiple times in an application. 

int tid = cop_mytid(); 
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The equivalent function provided by the libcop library is cop_mytid (). The 

function prototype is identical to pvm_mytid and is essentially a wrapper around the 

pvm_mytid () function. Similar to the original function, the new function returns the 

pvm tid assigned by the pvm daemon. Additionally, the function verifies the presence of 

a healthy channel to the cop controller, probes the attached controller for the channel 

number (CHNO) assigned to the channel, and retrieves the controller number of the 

attached controller (CNTNO) if it is a multi-level COP system. The channel/controller 

numbers are stored in static variables internal to the libcop library. The function call 

reports error if it encountered with a problem in channel initialization. Other 

management functions in the libcop library are cop_setopt () and 

cop_getopt (). Using cop_setopt we can specify a pvm group of tasks as static, 

which indirectly calls the pvm function pvm_staticgroup. All the tids of member tasks in 

the group will be stored in internal variables to libcop. Later, if a libcop function needs 

to access the tids of member tasks of this group, the internally stored values will be used 

instead of retrieving them from the pvm group server. cop_getopt simply allows a 

program to probe the options set using cop_setopt. 

Memm:y Write/Read Functions 

As described before, the COP system Data RAM is divided into channel address 

spaces, and later into task address spaces. A task address space can be accessed for 

writing only by the owner task, but any task can read any task address spaces. Only read­

modify-write operations from a task can write to the task address spaces of other tasks. 

Therefore the task address spaces are used for unidirectional communication between 

tasks using the COP system. This remote shared memory operation is a by-product of 

the COP system architecture and as I show later, it is a effective mechanism for low 
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latency communications. Even though these operations extends beyond a message 

passing model, they are included in the COP functions library. The cop functions 

cop_ write and cop_read allows an application program to write/read variables in task 

address spaces on cop controller RAMs. The function prototype for write operation is: 

int ret = cop_write (void *data, int count, int datatype, 

int tid, int msgtag, int mode) 

The function cop_ write allows an application task to write to its own task address 

space on the cop controller. The first argument is a pointer to the data array that needs to 

be written to the task address space. The 'count' argument specifies the number of 

elements in the data array. The 'datatype' argument specifies the type of data present in 

the data buffer. The supported types are integer, float and double. The 'tid' argument 

specifies the tid of the task that owns the target task address space. Presently, the only 

valid value of this argument is the calling task's tid, as the calling task can write only to 

its own address space. This argument is present in the function prototype to support any 

future changes in access restriction policies. The 'msgtag' argument specifies a tag for 

the cop operation. It is used as an offset into the task address space to start storing the 

data buffer. Two types of modes can be specified using the 'mode' argument: Urgent and 

Normal. In the urgent mode, the software locks the cop channel, sends all the elements 

of the data buffer to the cop controller one by one, and then unlocks the channel. This 

mode allows programs to atomically initialize data buffers in task address space, but will 

stall operations on other channels until the lock is released. In the normal mode, the lock/ 

unlock features are not used. As a result the controller may service requests from other 

channels between sending two consecutive elements in the data array to the controller. 

The data elements are sent to the cop controller as WSRAM messages. 

The read operation on task address space is performed by application tasks using 
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int ret = cop_read (void *data, int count, int datatype, 

int tid, int msgtag, int mode) 
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The 'data' argument points to the buffer to read in the data array from task address 

space. The 'tid' argument specifies the task identifier of the task which owns the task 

address space to be read. The CHNO and TKNO values that point to the base of the task 

address space are derived from the Hand L fields in the 'tid' argument (direct mapping). 

'count' number of data elements are read out one after the other, starting from offset 

'msgtag' in the target task address space. The data elements are read out by issuing 

RSRAM messages to the COP controller. The datatype, msgtag and mode arguments 

work the same as for the cop_ write function. 

The read modify write operation works exactly the same as cop_write and 

cop_read. The function is called with the data to be used for modifying the variable in 

the 'data' array. The cop controller modifies the specified variable by adding the new 

data to the old variable value. The old value of the variable before modification is 

returned to the compute node. On return the 'data' array will contain the variables before 

it was modified. The RMW32/64 opcode is used in these cop messages. The function 

prototype is similar to cop_ write as 

int ret = cop_rmw (void *data, int count, int datatype, 

int tid, int msgtag, int mode) 

Collective Communication Functions 

The richness of cop architecture is designed mostly for collective communication 

functions. Some of the global operations implemented on the COP system include 

broadcast, multicast, global reductions and barriers. In this section, I will explain in 
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detail how these operations are implemented. 

Broadcast/ Multicast Implementation 

PVM uses the pvm_bcast function to broadcast the data in the active message 

buffer. The function prototype is: 

int info = pvrn_bcast (char *group, int msgtag) 

where the argument 'group' is an existing group name and 'msgtag' is an integer tag 

supplied by the user to distinguish between different kinds of messages. A return value 

of less than zero indicates an error. 

In a COP system, the equivalent function for broadcasting is cop_bcast. The 

function prototype is 

int info = cop_bcast (void *data, int count, int datatype, 

char *group, int msgtag, int mode, int srctid) 

where argument 'data' points to the data array which needs to broadcast, 'count' 

specifies the number of elements in data array, 'datatype' specifies the type of data in the 

array, 'group' specifies an existing pvm group name and 'msgtag' is a user specified tag 

which gets used as an offset in the global address space of cop controller. The 'mode' 

argument specifies whether the function is called to send a broadcast or to receive a 

broadcast from some other tasks. When in receive mode, the 'srctid' argument specifies 

the process tid which originally performed the broadcast. A value of -1 for srctid will 

receive broadcasts from any peer tasks. 

As the cop software functions do not explicitly pack or unpack data buffers, there 

are no active send/receive buffers as in pvm. The COP hardware follows a specific data 

format and byte order and compute nodes are required to do the format translations for 

any application data before sending to the COP controller. A separate function library 
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can be easily developed similar to the PVM pack/unpack functions to perform this 

translation if needed. 

From the group name provided, the cop_bcast function retrieves the tids of all 

tasks who are members of the specified group from pvm's group database. The broadcast 

to all local tasks (tasks in the same hosts) in this group is performed using a shared 

memory mechanism. The data elements are broadcast to tasks in other compute nodes 

using the cop channels. 

The sender allocates a local shared memory and a lock with message tag as their 

key, if there are any local recipient tasks for the broadcast. The sender copies the 

broadcast data to the shared memory and leaves it unlocked. The broadcast to foreign 

tasks in other compute nodes continues from the sending tasks's local buffer. The 

receiving tasks call the cop_bcast function in the receive mode. The tid argument is used 

to identify whether the sender is a local task or a foreign task. If the sender is a local task, 

the broadcast data is read out of the local shared memory, co-operating with other local 

recipient tasks. If the sender is a foreign task, the cop channel is accessed to read out the 

broadcast data. If there are multiple recipient tasks at a remote compute node, a shared 

memory mechanism is used to share the broadcast data received from the channel. 

If there are foreign recipient tasks, the sender will use the cop channel to perform 

the broadcast. This is done in the following way: The channel is first locked to assure 

memory consistency in the cop controller global address space currently used. The tids 

of all recipient tasks in the group are analyzed to generate a broadcast mask. i.e if there 

is at least one recipient task on a compute node connected to cop channel 'X', the Xth bit 

is set in the broadcast mask. The SETBM message is issued to the cop controller, which 

in tum will initialize the mask entries at offsets 'msgtag' to 'msgatg+count' in the 

BCAST RAM. A mask entry per data element in the array has the potential for 
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combining scatter operations after reduction operation on a data array. If any of these 

mask entries are already in use, the controller will return an error using the negative 

acknowledgment (NACK) message. When a data element is received for broadcast by 

the cop channel, it is broadcast to all channels specified by the corresponding broadcast 

mask. As a result broadcast data elements will start showing up in the receive buffers of 

all receiving channels even before all the elements of data array is sent by the sending 

channel. After all the data elements are sent, the function unlocks the channel using an 

UNLOCK operation, and returns the status of the broadcast to the sending task. 

A cop multicast is very similar to a cop broadcast, but instead of the group name, 

the application provides the task identifiers of all recipient tasks. COP multicast is more 

efficient than cop_bcast as there is no overhead due to pvm function calls to get the tids 

of tasks belonging to the given group (The tids of member tasks in the group is assumed 

to be retrieved in the initialization phase of applications to be used later for multicasts). 

The function prototype for COP multicast is 

int info = cop_mcast (void *data, int count, int datatype, 

int *tids, int numtasks, int msgtag, int mode, 

int srctid) 

where argument 'tids' point to an array of recipient task identifiers, and 'numtasks' 

specify the size of tids array. All the other arguments work exactly same as in cop_bcast 

function. 

COP broadcast does not send the message back to the sender in the current 

implementation. A task can broadcast to a group, even if it is not a member of the group. 

cop_bcast is asynchronous. Computation on the sending processor resumes as soon as 

the message is safely on its way to the receiving tasks. Due to the simultaneous 

broadcast on all specified cop channels by the cop controller, cop_bcast is highly 
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efficient. 

Barrier Implementation 

The PVM function pvm_barrier blocks all the calling processes until all 

processes in a group have called the function. The function prototype is: 

int info = pvm_barrier (char *group, int count) 

where the argument 'group' is an existing group name and 'count' is an integer 

specifying the number of group members that must call pvm_barrier before they are all 

released. 

Though not required, count is expected to be the total number of members of the 

specified group. A count parameter is required, because with dynamic process groups 

pvm cannot know how many members are in a group at a given instant. During any 

given barrier call all participating group members must call barrier with the same count 

value. Once a given barrier has been successfully passed, pvm_barrier can be called 

again by the same group using the same group name. A return value of less than zero 

indicates an error condition encountered. 

In a COP system, the equivalent function for barrier synchronization 1s 

cop_barrier. The function prototype is 

int info = cop_barrier (char *group, int count, int msgtag) 

where argument 'group' and 'count' arguments function exactly same as in pvm_barrier. 

'msgtag' argument is used as an offset in the global address space where the barrier 

operation is performed. 

Similar to the cop_bcast function, the cop_barrier function retrieves the tids of all 

member tasks of the specified group from the pvm group database. The function waits 

until 'count' number of members have joined the group. If there are multiple local tasks 
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(tasks in same host) participating in the barrier, a partial barrier is performed between 

them at the compute node. This is done using shared memory and semaphores. The first 

local task entering the barrier, grabs the 'barrier_start' lock and initializes the barrier 

variable (counter) in shared memory. Later, the lock is released and the task waits for the 

'barrier_end' lock. All the other participating tasks wait for the 'barrier_start' lock, 

update the barrier variable in shared memory when the lock is granted, and wait for the 

'barrier_end' lock. The last local task entering the barrier will access the cop channel to 

perform the barrier operation between compute nodes, if there are participating tasks in 

other compute nodes. The channel access for barrier is done as follows: 

First the terminal-count and broadcast mask bit vectors are generated from the tids 

of all tasks in the group. As mentioned originally, the terminal-count mask indicates the 

channels participating in a global operation, and the broadcast mask indicates the 

channels to which the result of a global operation will be broadcast. For a barrier, as 

tasks on each participating channel will be blocked until the barrier is completed, the 

broadcast mask is same as the terminal count mask. So if there is at least one task in the 

specified group residing in the host connected to channel 'X', the Xth bit will be set in 

the terminal count and broadcast mask vectors. The channel is first locked by issuing a 

LOCK message to the cop controller. Then a SETTC message is issued to the cop 

controller to initialize the terminal count mask. The controller computes the address of 

the mask entry in the Mask RAM from the message tag supplied in the SETTC message, 

and initializes it with the mask bit vector specified in the data fields of the message. If 

the mask is already initialized by a participating task from another channel, the cop 

controller sends a negative acknowledgment indicating the mask already exists. The 

'accessed' bit associated with each mask entry will be used by the cop controller to 

determine whether it was already initialized or not. If the response for the SETTC 
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operation indicates that masks are already initialized, the SETBM operation to initialize 

broadcast mask is skipped. This saves the overhead involved in trying to set the 

broadcast mask, when we know that a peer channel has already initialized them. The 

broadcast mask and terminal-count mask will be in sync for barriers, because we do 

them atomically by locking the channel. If the SETTC operation was successful, the 

broadcast mask is initialized using the SETBM operation. Next, the contribution from 

the channel for the barrier operation is registered by issuing a BENTRY message. Upon 

receiving this message, the cop controller resets the bit corresponding to the channel in 

the terminal-count mask entry. The channel is unlocked for other channels to participate 

in the barrier. Upon receiving the contributions from all channels, all the bits in tc-mask 

vector will be reset and the controller broadcasts the barrier completion message to all 

the channels specified in the corresponding broadcast mask entry. 

The sending tasks at each channel block for the barrier completion response 

broadcast from the controller. When the barrier completion response finally arrives, the 

sending task in each channel updates (decrements) the barrier variable (counter) in 

shared memory, and unlocks the 'barrier_end' lock. Local tasks waiting for this lock, 

grab the lock one after another and update the barrier variable. The last local task leaving 

the barrier performs additional book-keeping responsibilities like flushing the shared 

memory buffers and semaphores. 

The cop_barrier function blocks the calling process until count members of the 

group have called cop_barrier. Therefore, the logical function of cop_barrier is to 

provide an efficient low-latency group synchronization. The overhead involved m 

retrieving the tids of all member tasks in a group can be avoided, if the groups are made 

static using pvm_staticgroup. Any unsolicited messages (like broadcasts) received from 

the channel while the task accessing the cop interface is blocked on the barrier is 
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buffered in the shared memory block attached to the cop interface. 

Global Reduction Implementation 

PVM function pvm_reduce performs a reduce operation over members of the 

specified group. The function prototype is 

int info= pvm_reduce (void (*func) (),void *data, 

int count, int datatype, int msgtag, 

char *group, int root) 

where the argument 'func' defines the operation on the global data. Predefined 

operations include Max, Min, Sum and Product. Users do have the flexibility to define 

their own reduction functions. The argument 'data' points to the starting address of an 

array of local values. On return, the data array on the root task will be overwritten with 

the result of the reduce operation over the group. The 'count' argument specifies the 

number of elements in the data array, 'datatype' specifies the type of entries in the data 

array, 'msgtag' indicates the message tag supplied by the user, 'group' is the name of an 

existing group and 'root' is the integer instance number of the group member that gets 

the result. A return value of less than zero indicates error. 

All group members call pvm_reduce() with their local data, and the result of the 

reduction operation appears on the user specified root task identified by its instance 

number in the group. If more than one member of the group requires the reduced result, 

the root task has to broadcast/multicast it to the group. 

In a COP system, the equivalent function for all global operations is cop_reduce. 

The function prototype is 

int info = cop_reduce (int func, void *data, int datatype, 
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int count, int msgtag, char *group, int *roots, 

int rootcount) 

where argument 'func' specifies one of the predefined global operations and 'data' 

points to the starting address of an array of local values. On return, the data array on all 

the root tasks will be overwritten with the result of the reduce operation over the group. 

The 'count' argument specifies the number of elements in the data array, 'datatype' 

specifies the type of entries in the data array, 'msgtag' indicates the message tag supplied 

by the user, 'group' is the name of an existing group, 'roots' point to an array of integer 

instance numbers of group members that receives the reduced result and 'rootcount' 

specify the size of the 'roots' array. A return value of less than zero indicates error. 

cop_reduce makes use of the low-overhead broadcasting mechanism of the COP system 

to accommodate more than one root task for a global reduction. This takes away the 

overhead involved in broadcasting or multicasting the reduced result if more than one 

member of the group requires the reduced result. As the cop channels are not shared 

between compute nodes, the reduced data will be broadcast simultaneously over all the 

participating channels. 

Similar to other group functions, cop_reduce retrieves the tids of all member tasks 

of the specified group from the pvm group database. It also retrieves the instance 

numbers assigned to these tasks. The instance numbers specified in the 'roots' array are 

mapped to their corresponding tids to form an array of tids of all root tasks. If there are 

multiple local tasks participating in the reduction operation on a compute node, a partial 

reduction of their contributions is done before accessing the cop channel. The last local 

task to call the reduce function, accesses the cop channel to submit the partial reduced 

data from the channel. This is done as follows. The tids of all member tasks in the group 
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are analyzed to determine to which channels they belong. The terminal count mask 

vector is generated using this information. Similarly the tids of all root tasks are 

analyzed to generate the broadcast mask vector. The cop channel is first locked using the 

LOCK operation, and a SETTC message is issued to initialize the tc-mask entry at offset 

specified by 'msgtag' in the TC Mask RAM. The 'count' field is specified in the 

message, so that the cop controller can initialize mask entries at offsets ranging from 

'msgtag' to 'msgatg+count' in the Mask RAMs. If the cop controller reports that the 

mask entry is already initialized, the SETBM operation to initialize the broadcast mask 

is skipped as we know a peer channel has already performed the mask initialization 

If the SETBM operation is done by a channel (which is true for only the first 

channel that contributes for the reduction), it should also initialize the data buffer to be 

used in the global address space with its own partially reduced contribution. This is 

needed to make sure that stale data in these data buffers will not be used for global 

reductions. The data initialization is done using WSRAM operations. The channel is 

unlocked after data initialization. All the other participating channels will contribute one 

element at a time whenever the attached channel is serviced by the controller. The 

contribution is issued using reduction messages, with opcodes depending on the function 

and datatype arguments specified (listed in Table I in Chapter IV), but the message tag 

field in the message is incremented each time. This allows overlapping the data fetch 

time and buffer management time in one compute node with the communication times of 

other channels. The controller updates the corresponding TC mask entry upon 

performing a reduction of each data element with the contribution from a channel. When 

all bits in a TC mask entry are reset, the controller broadcasts the reduced data element 

to all channels specified in the respective broadcast mask entry. Between each data 
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element contribution sent to the controller, a check for a possible reduced element in the 

receive buffer is done in all root compute nodes. This is done because, each element in 

the data buffer in the global address space is broadcast whenever the contributions for 

that element are accumulated from all participating channels, irrespective of other 

elements in data array. The sending task in each root node waits until it receives all the 

reduced elements of the data array. If there are multiple local root tasks, the reduced 

information is distributed using shared memory. All the non-root tasks do not wait for 

the reduction result, but will continue after they have made their contribution for the 

reduction operation. If all the tasks participating in the global reduction are local tasks, 

the cop channel is never accessed. The partial reduction result in this case is same as the 

global reduction result. 

Some of the limiting factors of the libcop function include the size of the data 

array that can be used depending on the memory available on the controller, and 

possibility of using only predefined reduction functions as reduction is performed by the 

controller hardware. But these limitations are inconspicuous as we can recursively do 

fast reductions on small data arrays efficiently, and as most applications use only 

common logical/arithmetic reduction functions like SUM, MAX, MIN etc. 

Some of the other group functions that can be efficiently performed using the cop 

channels include scatter and gather functions. In the scatter operation an application data 

buffer can be scattered across different task address spaces in the cop controller. 

Similarly data buffer fragments across multiple task address spaces can be gathered and 

presented to any participating task(s) in a gather operation. The COP architecture is best 

suited for parallel programming constructs that involve collective communications. The 

independent channels, custom designed controllers and the efficient software interface 
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account for the low latency implementation of these global operations. Table II 

summarizes various libcop library features/functions currently implemented and their 

equivalent libpvm library functions. 

TABLE II 

SUMMARY OF LIBCOP & LIBPVM LIBRARY FEATURES 

Feature 
Libcop Libpvm 

Function Function 

Group Operations 

Broadcast cop_bcast pvm_bcast 

Multicast cop_mcast pvm_mcast 

Barrier cop_barrier pvm_barrier 

Global Reduce cop_reduce pvm_reduce 

Gather cop_gather pvm_gather 

Scatter cop _scatter pvm_scatter 

Point-to-Point 

Send Message pvm_send 

Receive Message pvm_recv 

Shared Memory 

Write to shared memory cop_ write 

Read from shared memory cop_read 

Read Modify Write cop_rmw 

Task Initialization 

Get Options cop_getopt pvm_getopt 

Set Options cop_setopt pvm_setopt 

Enroll in COP/PVM system cop_mytid pvm_mytid 



CHAPTER VI 

COP PERFORMANCE ANALYSIS AND COMPARISONS 

In the last chapter I showed how the cop software libraries are designed to 

efficiently provide various common parallel group operations and protected shared 

variable access. In this chapter, I extend the analysis of the COP system, derive 

equations for their global operation timings, compare them with the performance of 

equivalent pvm constructs, and project the actual improvement in execution times for 

real applications. 

Reducing the COP Software Overhead 

One of the primary performance limitations of the popular message passing 

systems is the software overhead involved in traversing the protocol stacks [Sten94a]. A 

major portion of this overhead is incurred due to copying of application data buffers 

between various software layers in the stack. A primary objective in the cop software 

design was to provide the application program the entire hardware bandwidth of the 

channels with adequate protection schemes. Also as the COP system channels are not 

general purpose, and as they are not time shared, no complex message formatting is 

needed to communicate between compute nodes and the cop controller. 

The cop interface driver provides an efficient way to reduce the software overhead 

that otherwise would result while accessing the cop channels. As described originally in 

the previous chapter, in the normal mode of operation an application data buffer is 

presented to the device driver with a write() call. The application buffer is first copied 

into the system address space of the driver and later sent out by accessing the cop 
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channel. Similarly when a message arrives at the compute node interface it is first stored 

in the receive buffers of the driver and later presented to the application on a read() call. 

This normal mode of operation involves two copies of the application data on both 

transmit and receive operations before the data is available at the destination. Since the 

number of bytes copied increases with the size of the data buffer, this overhead increases 

rapidly with the data buffer size and the number of read and write calls issued. 

The protected direct access mode provided by the cop driver allows application 

tasks to directly access the cop interface ports. The application task can make an ioctl 

call to put the driver in this mode, before it maps the cop transmit and receive registers to 

the address space of application task. Also as the access to controVstatus registers are 

privileged, the channel interface is protected from applications that behave abnormally. 

As mentioned in the section on the COP interface driver in the previous chapter, the Pid 

register in the channel interface is used to provide adequate protection, so that 

application tasks cannot read in messages arriving for other local tasks. The direct 

mapping of interface ports, the protection schemes, and the underlying communication 

protocol are masked from application programmers in the libcop library functions. As a 

result, the application programs can simply call the proper libcop function to perform 

high speed 1/0 over the cop channels. When the cop driver is put in direct mapped mode, 

the libcop functions can talk directly to the cop channels without unnecessary copying of 

application data. Whenever out of context data appears at the interface from the cop 

controller, the interface/driver buffers it, so that the destination tasks for those messages 

can access them after proper authentication whenever cop channel access is obtained. 

As described in the previous chapters, partial reductions and synchronization of 

local tasks are performed at each compute node using shared memory mechanisms 

before the total contribution from the compute node is presented to the cop controller. 
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Even though the local synchronization is done in local memory, its efficiency depends on 

the efficiency of inter-process communication (IPC) implementations of the operating 

system, memory to memory copy speed of the processor, and the number of tasks 

awaiting execution in the scheduling mechanism of the kernel. For these reasons, a 

global operation using a cop controller between N tasks will work most efficiently, if the 

N participating tasks reside on N different compute nodes (channels) connected to the 

COP controller. Even though this seems to be counter-intuitive, there are similar 

examples on several existing systems. For example, on an Intel Paragon, the local 

memory to memory copying is surprisingly slow. The provided bcopy() routine in the C 

library peaks at about 65 to 70 MB/sec. For comparison, a transfer of a large message 

from one node to a different node can attain speeds of 130 Mb/sec for the most recent 

network interface component (NIC) [Para94a]. PvmDataDefault encoding performs 

extremely slowly compared to PvmDataRaw encoding for any pvm function on these 

MPP systems as packing and unpacking of data buffers involves bcopy on both sender 

and receiver. For these reasons the PVM psend() functions perform noticeably faster 

than their equivalent functions that involve data packing/unpacking. 

Performance Analysis of Libcop Functions 

In all the timing calculations presented here, only one task per channel is 

considered, so that the COP system performance results are not affected by external 

variables like the efficiency of the underlying operating system implementation, or the 

speed at which compute nodes can perform local memory copying. Therefore, the 

effective performance seen by any application depends on how the tasks are distributed 

across the virtual machine and the native speed of the original system. I will analyze the 

cost of various libcop functions in the following sections. In all the cases the libcop 
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functions use a direct mapped compute node interface to access the channels. 

Assuming only one task per host in the virtual machine, the overall time involved 

in a libcop library global function can be subdivided into the following. 

1. Given the name of a task group, the time involved in retrieving the tids of all 

member tasks in that group. 

2. The time involved in interpreting the PVM tids to identify their respective 

CHNO and TKNO values. 

3. The time involved in accessing the compute node channel interface. 

4. The total hardware time involved in performing the specified parallel operation. 

This includes time for actually sending messages to the controller, the time involved in 

setting up masks/variables in controller RAM, time to perform the global operation by 

the controller, and the time to send the result to all receiving tasks. 

The first three timings involve the software overhead in the libcop library 

functions. The PVM group server stores all the information about dynamic task groups, 

and can be queried to get the tids of all member tasks of a group at a given instant. This 

communication involves some overhead, but is only needed if the specified group is a 

dynamic group. As the majority of the 10 applications I surveyed did not make use of the 

dynamic nature of task groups in PVM, I consider groups declared as static. If a group is 

declared static, the libcop library will contact the PVM group server only in the first call. 

The tids of member tasks received from the group server, are stored in internal variables 

in the libcop library. For all the subsequent calls involving global operations on the same 

task group, these internally stored tids are used. Hence the overhead of retrieving tids 

from group names is assumed to be a negligible value over multiple function calls. 

As mentioned in the previous chapter, if the hosts are added to the virtual machine 

in the order of their channel numbers, the H field in the pvm tid of a task in any host is 
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equal to the channel number (CHNO) of the host where it resides. Also as the L field in a 

pvm tid is assigned locally to the host, it can be used directly as the TKNO field in the 

COP system. Thus, no additional time is involved in deducing TKNOs and CHNOs 

from a pvm tid, thereby zeroing out the time for interpreting the pvm tids. 

The time involved in actually accessing the secondary network interface and 

related buff er management can be significantly reduced by using the protected direct 

access mode of the COP device driver where the network interface registers and memory 

blocks are mapped directly mapped to the virtual memory space of the application task. 

The basic hardware timing values of the COP system involve the time spent to 

send a message to the cop controller, the time spent on servicing the request by the 

controller, and the time involved in sending the result back to the compute nodes from 

the controller. As described in last chapter, each libcop library global function uses a 

variety of COP system messages. Assuming the software overhead involved in 

accessing the secondary network to be a negligible minimum, the performance of libcop 

functions largely depends on the number of messages sent to the COP controller and the 

hardware time involved in processing them. 

For the hardware timings of various COP system operations, I refer to the 

simulation results reported by Hall [Hall94a]. The minor hardware modifications 

referred in the previous chapter to the controller for increasing the programmability of 

the system are not expected to make any major difference from the original timings 

reported. In the original simulation, a 10 ns clock period was used. The number of clock 

cycles required for a compute node to output a word and for the interface to transmit it to 

a cop controller will be represented as tcN-COP Assuming the compute node can write a 

64-bit word to its interface port in two clock cycles, tcN-COP is equal to 11 clocks for a 

command word, instruction word, and a 64-bit data word. The number of cycles 
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consumed by the COP controller to service a single COP message from a channel is 

referred as top. The value reported for top is 3 for integer and Data RAM operations, but 

increases to 7 for floating point operations. To implement broadcast functions, the 

controller uses a mask entry from the broadcast mask RAM to enable the transmit 

buffers at the same time. The interfaces transmit the data word to all or a desired subset 

of the compute nodes simultaneously. Again assuming a compute node can read a 64-bit 

value from its interface port in two cycles, 17 clock cycles are required for the network 

interfaces to transfer a broadcast data value and the receiving node to read the word. 

This time will be referred to as tcoP-CN 

The total number of clocks to cycle through all the requesting channels and get to 

the target channel requesting service is C x t 0 P . In this expression C represents the 

average number of channels requesting service at a time in a cop controller and t 0 P 

represents the average number of clock cycles that a cop controller requires to service 

each input channel. The value of "C for a single level COP is in the range of 0 (best case 

condition) to 63 (worst case condition, if all the channels are requesting service). 

When a channel is locked using the LOCK message, it will block the cop 

controller from servicing any other channels until the current channel releases the lock 

by sending an UNLOCK message. Thus the average time taken by the cop controller to 

service a channel ( t 0 P) will be drastically increased if tasks use the lock feature 

excessively. One of the easiest ways to restrict the time a channel is locked is to restrict 

the size of data buffers that can be used with the libcop functions. If the data buffer sizes 

are small, the time a channel is in the locked state is much less, and therefore every 

channel gets an almost equal share of the controller resources. The current 

implementation limits the size of data arrays used with a single libcop function call to 

1024 bytes (128 cop messages). Due to this implementation, in the worst case condition 
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(for broadcasts and shared memory read operations) the number of controller cycles to 

service a channel will be the time to send 128 messages, tMAX-OP , where 

tMAX-OP = 128 X (top+ tCOP-CN) · 

For large data arrays, application tasks can make multiple calls to the libcop 

functions, each time with a different portion of the data array, so that between each 

function call the controller is released for use by other channels. As the channel interface 

registers are directly mapped to the task's address space, multiple calls to libcop 

functions do not impose significant extra overhead (only the function call overhead) 

compared to performing the same operation in a single function call with a large data 

array. Therefore the value of t0 P for a single level COP is in the range of t0 p (best case 

with no locking) to tMAX-OP (worst case if broadcast/read performed after locking). This 

implies that excessive channel locking, can significantly degrade the performance of the 

libcop functions. The worst case scenario will be all channels requesting broadcast or 

shared memory read operations of data arrays repeatedly. 

Broadcast Using cop_bcast () 

The cop_bcast libcop function allows an application task to perform a 

broadcast to all tasks in a specified group. Tasks can dynamically join and leave groups 

using the pvm_j o ingroup ( ) and pvm_l vgroup ( ) functions. As described in the 

previous chapter, the cop_bcas t function involves locking the channel using LOCK 

operation, setting up the broadcast masks using SETBM operation, broadcasting each 

data element using BCAST operation, and finally unlocking the channel using 

UNLOCK operation. In the worst case, the controller may cycle through servicing all 

the other channels requesting service before it gets to the channel desiring broadcast to 

service the first lock operation. The maximum number of clock cycles to service the lock 
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operation is therefore (tCN-COP + l t: x t0 P) + t0 P ). But once the channel is locked, 

successive broadcasts can proceed in a 'pipeline' fashion. The key here is that as soon as 

the cop controller reads a command, a one word ACK is returned to the sending node to 

indicate that it can send the next command. As the broadcast mask setup inside 

cop_bcast does not allow the controller to send the broadcast words back to the sending 

node, a new command can be coming into the controller from the sending node at the 

same time the broadcast word is being transmitted to the receiving nodes. Due to this 

pipelined servicing of channel commands a data element can be broadcast every (top+ 

tcoP-cN) cycles. The maximum size of data element that can be attached to a cop 

message is 8 bytes. As the mask initialization operation is performed only once in a 

function, I approximate them to take only top cycles to simplify the expressions. 

Therefore the total time to broadcast an application a data array of M bytes containing 

N-byte data elements is about 

tbcast = [( fcN- COP+(; x 'op+ 'op)+ fop+ ( ~) Uop + 'coP-CN) +'op ]P CLK 

For a case where all the channels are requesting service ( C = 63), and none of the 

channels use channel locking ( t 0 P = t 0 P) the expression reduces to 

tbcast = 4.8 + (M x 0.03) microseconds/byte for 64 node broadcasts after substituting 

the previously stated values for 64-bit (8 byte) floating point data elements. 

Broadcasting a 1 kbyte vector in this way requires about 35 microseconds. Performing a 

16 kbyte one-to-all broadcast for a cluster size of 64 (broadcast over all the 64 channels) 

requires around 560 microseconds. The broadcast function performance seen by 

application programs depend on the number of channels requesting service at a time ( C) 

and the rate of channel locking (t0 p) performed by these channels. As described in the 

last chapter, an additional start-up cost will be incurred to retrieve the task identification 
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numbers of member tasks in the specified group from the pvm group server, but this can 

be nullified over multiple broadcasts if the group is declared static using 

pvm_staticgroup. For comparison, later I show that the standard pvm_bcast 

function takes thousands of microseconds to perform a 16 kbyte broadcast between 

comparable number of compute nodes. Also I show that, the pvm broadcast timings 

increase drastically as the number of receiving nodes is increased. 

Multicast Using cop_mcas t 

The libcop multicast function implementation is very similar to the broadcast 

implementation. As the tids of all recipient tasks are specified in function argument, 

unlike cop_bcas t, cop_mcas t does not involve any communication with the pvm 

group server for retrieving tids. As a result the above timing derivation for broadcast 

function can be directly applied for cop multicast operations. Again for comparison, 

later I show that even though pvm multicast performs much efficiently than pvm 

broadcasts, its performance is far less than the libcop multicast function performance. 

Global Reduction Using cop_reduce 

The cop_reduce libcop function allows a group of application tasks to perform 

a global reduction of their individual contributions. As described in the previous chapter, 

the first channel serviced by the cop controller for the global reduction performs data 

initialization involving operations like locking the channel using the LOCK operation, 

setting up the broadcast masks using SETBM operation, setting up the terminal-count 

masks using SETTC operation, initializing the controller Data RAM buffer using 

WSRAM operations and unlocking the channel using the UNLOCK operation. For an M 

byte data array containing N-byte data elements, the initialization time can be derived as 
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tinit = [( tCN-COP + c x fop+ fop)+ fop+ top+ ( ~ x top)+ top ]P CLK 

All the other participating channels sends out their contribution, one data element 

at a time whenever the cop controller services that channel. Assuming that all the 

participating compute nodes send a contribution to the cop controller at the same time, 

the approximate time needed to broadcast the reduction results to all the root tasks after 

the above initialization is 

tcontrib = [( (C- l) x top+ top+ fcoP-CN) x ~ p CLK 

Each channel has to wait for all the other participating channels to contribute the 

appropriate data element, before the reduced data element can be broadcast to all root 

channels. Therefore, the total time involved in a global reduction of a M byte data array 

can be derived as tinit + tcontrib and for 64-bit data elements the equation reduces to 

t reduce = 4.8 + ( 0.58 x M) microseconds/byte for 64 node reductions. As all channels 

participate in global reduction, the average time to service request each channel t0 P is 

only top Using this expression, to produce a sum vector for 1024 element double 

precision floating point vectors over 64 compute nodes (all channels participating in 

reduction) requires about 4800 microseconds. Using the equivalent expression for 

integer vectors, to produce a sum vector for 1024 integer vectors over 64 compute nodes 

requires about 2200 microseconds. These performance numbers will vary if a subset of 

the cop channels is performing a broadcast (using channel locks) at the time of global 

reduction. Note that this time also includes the time required to broadcast or multicast 

the reduction result to all task members in the group. I will show later in this chapter that 

by comparison, the equivalent pvm_reduce function is very poor in performance, and 

the additional broadcast/multicast function overhead is incurred at the root task while 
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sending the reduction result to other group members. 

Barrier Using cop_barrier 

Even though barrier operation is a simple case of global reduction, it is considered 

separately due to the inherent difference in their implementation. The cop controller uses 

the BENTRY operation for implementing barriers. As described in the previous chapter, 

the first channel entering the barrier issues operations like locking the channel using 

LOCK, setting up the terminal-count mask using SETTC, setting up the broadcast mask 

using SETBM, registering its own barrier contribution using BENTRY, and finally 

unlocking the channel using UNLOCK. Therefore the total initialization time for barrier 

operation can be expressed mathematically as 

tinit = [( 1cN-COP + C x top+ top)+ 1oP +top+ top+ top JP CLK 

As all channels participate in the barrier, assuming all the other cop channels 

entered the barrier at the same time, the t0 P in above expression is equal to top Each of 

the other participating channels issues operations like locking the channel using LOCK, 

checking whether the transmit mask entry is already initialized using SETTC (for spmd 

programming models), participating in barrier using BENTRY, and finally unlocking the 

channel using UNLOCK. Therefore the number of cycles required for each participating 

channel to contribute for the barrier operation is ( 4 x t0 p) . After all the channels have 

participated in the barrier, the controller takes tcoP _CN cycles to broadcast the barrier 

exit status to the participating compute nodes. Therefore, the total time involved for a 

barrier operation can be expressed as 

t barrier = tinit + ( [' X 4tOP + tCOP- CN] p CLK 

Using the hardware values reported for integer data elements (a mask entry is a 64 
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bit integer), a barrier operation between 64 compute nodes in a single level COP system 

takes about 9.8 microseconds. If a master-slave programming model is followed, the 

slave tasks do not have to check for mask initialization, as it is guaranteed that the 

master task has already done the mask initialization. In this case, the lock, settc and 

unlock operations is not needed for cop_barrier called from slave tasks. As a result 

the number of cycles required for each participating channel to contribute for the barrier 

operation reduces to t 0 P, reducing the barrier time for 64 nodes to about 4.21 

microseconds. As I show later, the timings measured for the equivalent pvm barrier 

function takes thousands of microseconds, and increases enormously as the virtual 

machine size increases. Note that the mask mechanism in the COP system allows any 

subset of the compute nodes to participate in a barrier. Also, it permits multiple barriers 

to be in force with different task groups at the same time and thus provides for fine 

grained synchronization which can greatly improve the performance of certain class of 

problems like pre-conditioned conjugate gradients [Gupta94a]. 

Shared Variable Access Using cop_wri te (), cop_read () and cop_rmw () 

As described originally, shared variables in a COP system can be stored in the 

various task address spaces in the cop controller's Data RAM. The task generating the 

variables can write them to its task address space in controller Data RAM by calling 

cop_wri te, and any task that needs to read the shared variables can access them by 

calling cop_read. Only the read-modify-write operation issued through the cop_rmw 

function can update shared variables in task address spaces owned by other tasks. A 

cop_wri te function call invoked in urgent mode for a data array of M bytes 

containing N-byte data elements involves a lock operation, ( Z) wsram operations, and 

an unlock operation. 
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Equivalent cop_read and cop_rmw functions involves additional 

( ~) x tcoP- CN cycles as the value read from Data RAM needs to be sent out to the 

receiving compute node. Assuming simultaneous requests from all channels of a single 

level COP system for same or different shared variables, the maximum time for all of the 

requesting nodes to receive the individual values is 

tread = [( tCN-COP + c x top+ fop)+ ( ~ x (top+ tCOP-CN)) + top]P CLK 

Assuming no other channels is in locked state and substituting the previously 

stated timing values in the above expression, a single level cop controller can supply 

different or the same variables (of type double) to 64 compute nodes in the rate of 

4. 7 + ( 0.03 x M) microseconds/byte. So for accessing a shared variable array of size 

64K, the maximum time incurred by a channel will be about 2000 microseconds. 

Surprisingly, this is the same time involved in broadcasting an equivalent array to 

all the 64 compute nodes. The efficiency of the cop architecture for global operations is 

apparent from this comparison itself. As the time incurred in read-modify-write 

operation is same as the read operation, the maximum time needed to update a shared 

integer variable (such as a lock implemented using cop memory) by a cop channel is 

about 2.2 microseconds. Note that the cop shared memory provides sequential 

consistency in that the value read by a compute node will be the last value written. 

Sequential consistency over large data arrays is provided using the lock and unlock 

operations when the libcop functions are called in urgent mode. 

COP Performance Summary 

Table III summarizes the performance data calculated for various libcop functions 

using the expressions shown and hardware timing values reported for 64 bit integer and 

floating point data elements for a 1 Ons clock period. The performance numbers shown in 
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Table III (for a single data element of type integer or double) assume only one 

participating task per channel, and a static group of tasks. The best case timing values in 

the table consider the case where all the channels perform integer operations without 

channel locking and use the average time to service a channel, t0 p as (t0 p = t0 p)· 

The upper bound (max) timing values in the table consider the case where all the other 

channels perform floating point operations with channel locking and use the average 

time to service a channel, t 0 p as (t0 P = t MAX -OP). The wide variation in the best 

case and maximum values shows the performance degradation that can happen due to 

excessive channel locking. Exact timings seen by applications will vary as the average 

time a channel is locked depends on the communication patterns in the application 

(repeated broadcasts and/or shared memory reads of data arrays being the worst). 
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TABLE III 

LIBCOP FUNCTION TIMES AND EXPRESSIONS 

Function 
µS µS 

Timing Expressions 
Best Max 

cop_write 2.09 1936 [( tCN-COP + c x top+ top)+ ( % x top)+ top J p CLK 

for integer 

cop_write 4.73 1936 [( tCN-COP + c x top+ top)+(% x top)+ top ]P CLK 

for double 

cop_read 2.26 1936 [(tcN-COP+Cxtop+top)+(%x (top+tcOP-CN) )+top]PcLK 

for integer 

cop_read 4.90 1936 [(tcN-COP+Cxtop+top)+(%x (top+tcOP-CN) )+top]PcLK 

for double 

cop_rmw 2.26 1936 [(tcN-COP+Cxtop+top)+(%x (top+tcOP-CN) )+top]PcLK 

for integer 

cop_rmw 4.90 1936 [( tCN-COP + 'C x top+ top)+ ( % x (top+ tCOP-CN)) +top ]P CLK 

for double 

cop_bcast 2.29 1936 
[(tcN-cop+L'xtop+top)+top+(%x Ctop+tcoP-CN) )+top]PcLK 

cop_mcast 
for integer 

cop_bcast 4.97 1936 
[(tcN-COP+Cxtop+top)+top+(%x Ctop+tcOP-CN) )+top]PcLK cop_mcast 

for double 

treduce = tinit + tcontrib 

cop_reduce 4.21 3840 tinit = [( tCN-COP + c x top+ top)+ top+ top+ ( % x top)+ top J p CLK 

for integer 

tcontrib = [( (L'-l) Xtop+top+tcoP-cN)x%]PcLK 

cop_reduce 9.45 3840 "same as cop _reduce() for integer" 
for double 

cop _barrier tinit = Cl tcN-COP + Cx top+ top)+ top+ top+ top+ top]P CLK 

(master 4.21 1943 
slave tbarrier = tinit+ [Cx 4top+tcOP-CN]PCLK 

model) 
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Performance Evaluation of Libpvm Functions 

In this section, I will describe the basic procedures followed to measure the 

performance of the PVM message passing functions, the environment in which the 

measurements were made, and the detailed analysis of the measurements. The 

performance of PVM point-to-point communication functions, collective 

communication functions (broadcast and multicast) and aggregate functions (barrier, 

global sum) are described in this section. 

Measurement Methodology 

Message passing performance is usually measured in units of time or bandwidth 

(bytes per second). In this report, I choose time as the measure of performance for 

sending a small message. The time for a small message is usually bounded by the speed 

of the signal through the media and any software overhead in sending/receiving the 

message. Small message times are important in synchronization and determining 

optimal granularity of parallelism. For large messages, bandwidth is the bounded metric, 

asymptotically approaching the maximum bandwidth of the media. Choosing two 

numbers to represent the performance of a network can be misleading, so analyzing 

communication time as a function of message length is the approach used to compare the 

performance. 

Message passing time is usually a linear function of message size for two 

processors that are directly connected. For more complicated networks, a per-hop delay 

may increase the message passing time. Message passing time, tN can be modeled as 

tN = a+ ~N + (h- 1) y where a is the start-up time, ~ is the per-byte cost, y is the 

per-hop delay, h is the number of hops the message should travel and N is the number of 

bytes per message. The setup for my measurements includes a collection of SUN 
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workstations running SunOS 4.0, interconnected using a ethernet based local area 

network. Measurements for cluster sizes up to 8 involves hosts only on the same subnet. 

All the machines are of comparable speed (Spare 10) and can directly communicate with 

each other (no store and forward nodes or routers). As a result the value of h in the 

previous equation is 1, and so there is no per-hop delay involved, reducing the equation 

to t N = a + PN. A linear least-squares fit can be used to calculate a and P from 

experimental data of message passing times versus message length. 

Point-to-Point Communication 

As the COP system is primarily targeted for small sized message passing 

operations, to provide acceptable comparisons, latency was considered as the primary 

metric. A simple echo test between adjacent nodes is used to measure the latency. A 

receiving node simply, echoes back whatever it is sent, and the sending node measures 

the round trip time. Times are collected for some number of repetitions over various 

message sizes due to the inadequate clock resolution for small message sizes. Also, 

individual time values for each send and receive may show clock jitter from time­

sharing interrupts in the underlying OS. The send-receive (round trip) time divided by 

two is what I report for latency. Figure 15 shows the latencies measured for varying 

messages sizes. The measurements were made with both sending and receiving tasks on 

same host, and on different hosts to analyze the effect of on-host latencies compared to 

network latency. Also measurements were done for both normal and direct routing 

policies. In all the cases PvmDataRaw encoding scheme is used to avoid any data 

packing/unpacking costs. Latencies were measured for message lengths up to 16 Kbytes 

as the effect of bandwidth overtakes the latency effects for large sized messages. 

On-host latency is highest when normal route is used, because the message is 
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routed through the pvm daemon (pvmd) instead of directly from task to task, thereby 

resulting in an extra copy of the data buffer and an extra context switch to wake up the 

pvmd. pvm_psend which combines packing and sending is not used for 

measurements, as the encoding mechanism used is PvmDataRaw. Enabling direct route 

improves the performance almost by 50%. The default pvm fragment size is 4K bytes, 

so on close analysis we see a bump in latency values at multiples of 4 kilobyte message 

lengths when an additional fragment becomes necessary. The buffer management takes 

more time than one might expect. Manchek [Manch94a] has reported a pvm buffer 

management overhead as approximately 900 microseconds. 

Inter-host latency for normal route is much worse than that of direct route because 

of two reasons. First, another pvmd is in the message path. Second, even though the 

pvmd-to-pvmd protocol allows multiple outstanding (unacknowledged) packets to be 

present, it only sends one packet at a time. So the bump at multiples of 4 K message sizes 

is more noticeable with normal routes. 

Point to point messages are used to pass pre-processed variables or data arrays 

from one task to other. From the above figure, pvm takes about 7000 microseconds to 

send a 8K data buffer between two hosts and for the receiving side to receive it even 

with direct route. The same operation can be performed using a cop_write() and a 

cop_read() for this 8K data buffer using the task address spaces in cop controller 

memory. Applying the equations from the previous section, the libcop implementation 

takes a total time of only about 350 microseconds (80 for cop_ write and 270 for 

cop_read) for the same operation. Additionally any number of tasks can simultaneously 

read out the data buffer from the cop controller memory, once the cop_write is 

completed. 
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In summary, UNIX machines perform poorly for small message sizes due to the 

latency in the kernel. Performance drops off sharply for very large messages, because the 

kernel is probably paging fragments of the message buffers. Performance is limited by 

the memory-to-memory copy speed of the processor, efficiency of the networking 

protocol implementation and the network hardware and media. The effects of process 

scheduling on communication times is not seen as dramatically when sending messages 

between hosts as with on-host communication. This is because the network moves data 

in the background and is somewhat slower than the processor, so the tasks have time to 
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catch up when they are scheduled back in. 

PVM Collective Communication Performance 

Some of the collective/aggregate communication primitives in the libpvm library 

considered for analysis are pvm_barrier for barrier operations, pvm_reduce for reduction 

operations, pvm_bcast for broadcast operations, and pvm_mcast for multicast 

operations. Even though barrier is a special case of reduction, it is considered separately 

to evaluate any implementation specific performance differences in their respective pvm 

functions. Similarly multicast is analyzed along with broadcast to understand any 

performance improvements. A set of tests were developed to exercise these collective 

operation functions for small-to-medium sized messages. Also the start-up latencies 

were considered dominant over bandwidth costs for the performance of these small sized 

messages. For non-blocking pvm functions (i.e. those functions that return as soon as the 

data is on its way to the destination), explicit short-sized acknowledgment messages 

were used to measure the effective time involved in these functions between the sender 

sending the data and the receiver receiving the same. The latency of these short ( 1 byte) 

acknowledgment message has been deducted from all data points presented. Also to 

make sure that all member tasks in a group call the global functions almost at the same 

time, a barrier was performed between the member tasks immediately before calling the 

global function to be measured. 

Barrier Using pvm_barrier 

Figure. 16 shows the pvm_barrier timing measurements as a function of the 

number of participating tasks. Measurements were made with all tasks on one host, with 

one task per host, and also, measurements were made for both normal and direct routing 
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policies. 
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Figure 16. PVM Barrier timing measurements 

Direct routing performs better than normal routing, and the performance 

difference is more visible for inter-host barriers when the number of processes (nodes) 

participating in the barrier is increased. The cop_barrier function analysis in previous 

section showed that we require less than 10 microseconds to perform a barrier between 

64 compute nodes. As we can see, the equivalent pvm barrier is very slow consuming 

thousands of microseconds for performing a barrier even with 10 compute nodes. 

Global Reduction Using pvm_reduce 

Figure 17 a. shows the timing measurements for a global summation using 
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pvm_reduce function. The data array size has only one element and is of type double, so 

as to compare the performance with the cop_reduce function in Table III. From the 

figure it is obvious that the reduction timings rise drastically almost by an order of 2, as 

the number of participating tasks is increased. Surprisingly, the on-host reduction for 

both normal and direct route took more time than inter-host reduction times with the 

same number of tasks. This is probably because of some synchronization mechanism 

used for managing the contributions from multiple tasks on the same host, and the 

overhead due to process scheduling and wakeups. 
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Figure 17 a. b. (a) PVM Reduction timings for varying number of participating tasks 

(b) PVM Reduction timings as a function of data array size 

The average time for a single data element reduction between tasks on different 
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hosts (one task per host) is in the millisecond range for both direct and normal route 

when the number of participating processes were increased from 2 to 10. The 

corresponding time for the cop_reduce function for a reduction operation between 2 to 

64 nodes is only around 10 microseconds. Figure 17b. shows the reduction timings as a 

function of data array size for different task group sizes. For larger number of 

participating processes, the reduction times increased faster for measurements using 

direct route compared to the same with normal route. This is probably because, with 

normal routing pvm daemons act as buffers. This might allow a sending task to finish 

sending before the receiver becomes ready, and go on to send another message. 

Broadcast/Multicast Using pvm_bcas t /pvm_mcas t 

Figure 18a shows the timing measurements for pvm broadcast primitive and 

Figure 18b shows the pvm multicast timings. PVM multicast first determines the 

location of all pvm daemons (pvmds) that contain the specified recipient tasks, then 

passes the message to these pvmds which in tum distribute the message to their local 

receiving tasks. So the original multicast message from the sending process is replicated 

for each pvmd containing one or more local destination tasks, and later each receiving 

pvmd replicates the message for each local destination task. The pvm_bcast function 

broadcasts to all member tasks in a group. The broadcast function first gets the tids of all 

task members in the specified group from the pvm group server, and then calls 

pvm_mcast() to multicast the message to all destination tasks. From the performance 

difference between broadcast and multicast functions, it is obvious that the 

communication to the pvm group server is costly. As mentioned before, the libcop 

library functions allow a user to declare a group as static to overcome this overhead of 

communicating with the group server. The scalability of the pvm multicast feature is 

limited due to the 1 :N direct fanout which results in heavy contention of 
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acknowledgment messages. The performance measurements provided above for 

multicasts and broadcasts matches the same reported by other research groups 

[Chang95a]. From the expressions derived in the previous section for cop broadcast and 

multicast shows that the latency for them are less than 10 microseconds compared to the 

millisecond range performance of pvm functions. Chang [Chang95a] has reported that 

using their PVM-ATM (AAL5) re-implementation, when increasing the number of 

remote hosts of the receiving pool from 1 to 4 the largest multicast time difference 

observed is approximately 20 milliseconds. Even though the multicast performance over 

ATM (AAL5) is better than the original pvm multicast, it is still far below from the 

performance predicted for the cop multicast primitives as it still needs to traverse the 

protocol stacks. 
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PVM Performance Summary 

The communication performance of pvm leaves a little to be desired. The major 

reason for the performance limitation is the heterogeneous nature of the software itself. 

The performance is affected by three major factors. First, the pvm application protocol 

drivers run in user space (in the pvm daemons and tasks). The pvmd-to-pvmd protocol 

suffers most, because it manages timers and resend queues. It is expensive to read timers 

from user space because it must be done using system calls. Manchek [Manch94a] has 

reported that a sample profiling of pvmd showed 10% of its time spent in the function 

gettimeofday(). Performance might improve if UDP could be replaced with a protocol 

with reliable delivery, eliminating the need to resend packets. The time-of-day clock 

could be mapped to user memory (same way the cop channel interface registers are 

mapped) to eliminate system calls. The pvmd-to-task (also task-to-task) protocol is 

based on TCP and so does not require any timers. Also as both pvmd and tasks maintain 

a number of connections, a large fraction of time is spent on select() calls, multiplexing 

different inputs. The COP system gains significant performance in this regard, as the cop 

channels are independent and not general purpose. 

Secondly, even though the pvmd-to-pvmd protocol allows multiple outstanding 

packets, the pvmd sends them only one-by-one. On a high-bandwidth network, a single 

packet is not enough to keep the communication pipe (media) full. Therefore, the pvmd­

to-pvmd communication speed is limited by network latency and bandwidth, instead of 

just bandwidth. 

Thirdly, the message data is copied a number of times before it reaches the 

destination [Sten94a]. Normal message routing (through pvmds) incurs five copies: The 

data must be packed, routed through four processes (three copies), and finally unpacked. 

Direct routing improves over that (three copies total) since the message is sent directly 
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between tasks, but the cost to establish a route is high because the request and 

acknowledgment message travels via default route. DatalnPlace encoding eliminates 

one more copy by leaving data in place until send time. Also, some scatter and gather 

operations such as spawning tasks and multicasting do not scale well because the 

communication uses a l:N fanout. Acknowledgments tend to come back all at once, 

swamping the central host and causing it to drop packets which then have to be 

retransmitted. 

Table IV provides an easy comparison of the libcop and libpvm library function 

costs. The libpvm times provided is for a sample group size of 5, with no packing or 

unpacking costs and using direct route when ever possible. The libcop timings provided 

represent a maximum cluster size of 64 without any channel locking. Performance 

improvements by using the libcop functions is limited if the channel locking is used 

excessively. Having demonstrated the performance improvement in implementing 

global operations using the COP system, I will now describe the projected effect of this 

performance difference on overall execution time of applications. 

TABLE IV 

LIBCOP AND LIBPVM PERFORMANCE COMPARISONS 

Operation libcop libpvm 
µS µS 

16KBroadcast using cop_bcast/pvm_bcast 500 17000 

16K Multicast using cop_mcast/pvm_mcast 500 12000 

Barrier using cop_barrier /pvm_barrier 10 10000 

Reduction of 1024 element array of type double 4800 19000 
using cop_reduce/pvm_reduce 
16K point-to-point message using cop_wri te & 500 15000 
cop_read/pvm_send & pvm_recv 
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Effect of Global Operation Speedup on Overall Execution Time 

In the preceding sections, I have shown that the COP system provides substantial 

speedup for common global operations on workstation cluster multicomputers. As 

discussed before, the COP system is most efficient for parallel operations that involve 

collective communications between a group of tasks. In this section, I will describe the 

effect of this performance improvement of global operations on an example real life 

application. I chose a complex molecular dynamics simulation PVM application as an 

example to analyze the performance difference brought by using a COP system. In the 

next section I will describe the sample application program and analyze the 

improvement in execution time by using a COP system. 

EGO - A Molecular Dynamics Simulation Program 

'EGO' is a parallel molecular dynamics simulation program that was originally 

developed at Beckman Institute, University of Illinois, Urbana. The program was 

originally written in the OCCAM language to run on transputers. For my work, I have 

used a port of the above program [Heller9la] that runs on top of the PVM message 

passing system on a network of workstations. 

The fact that most of the pvm global functions are inefficient was very clear in that 

they were little used in most of the complex applications that I considered. Some of the 

applications like the above mentioned molecular dynamics application, replaced the 

pvm global reductions with point-to-point messages in a logical ring topology formed 

between the tasks in the virtual machine. Using this method, each task has to send only 

one message to the task above it in the logical ring, and has to receive only one message 

from the task below in the ring, causing less contention. The global reduction advances 

slowly as the message leaves each task in the ring. But if any type of data encoding 
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needs to be used, the encoding/decoding cost at each task will take away some or all of 

the performance. Further, due to the broadcast nature of ethemet, each message in the 

logical ring is serialized on the network. Some applications may be able to overlap 

computation and communication times using this strategy, but it is very cumbersome to 

implement a global reduction in this way. 

The EGO source was instrumented to collect performance data for various parallel 

program operations. A debug library was developed to wrap the libpvm and libgpvm 

functions so as to collect the time spent in these pvm functions. Also the logical ring 

method for performing global reductions was replaced by the pvm reduction function 

pvm_reduce with the control task as the root, as most of the applications I surveyed 

used the standard pvm reduction function and not the logical ring method for global 

reductions. Due to the massive resource requirements of the program, I was able to run 

the program on only a limited range of data sets. Also as the COP timing expressions are 

derived assuming one task per host, to make comparisons fair only one task per host was 

spawned to run the program. 

The program uses a modified verlet algorithm [Heller90a] to evaluate the various 

Newtonian forces. The program repeatedly computes the total force on each atom and 

then use Newton's laws of motion to determine the new position and velocity for each 

atom. The different major parts of the program are non-bonded force calculation, pairlist 

generation, shake, bonded force calculation, global reduction (sum) of force 

contributions and finally load balancing. The program runs in a master-slave model, with 

one controlling task and N slave tasks. The controlling node is responsible for spawning 

the slave tasks, data initialization/distribution, analysis of globally reduced data, and 

controlling computational cycles of slave tasks. Next, I will provide a brief description 
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of the major operations performed by both the control and slave tasks. 

Control Task Operation 

The control task in the EGO application performs the following parallel program 

operations: 

1. After all the slave tasks are spawned, the control task multicasts the task 

management and initialization information to all the slave nodes using pvm_mcas t. 

This include the number of slave tasks spawned, slave task tids, data encoding 

mechanism to be followed and the routing policy. 

2. Next the control task sends the loading information to each slave task. As the 

atoms loaded to each slave task is different, the control task performs N pvm_s end 

calls to communicate with the N slave tasks. 

3. Later, the control task multicasts the global data needed to perform the 

computational cycle to all the slave tasks again using pvm_mcast. 

4. After the initialization phase the control task sits in a big loop, receiving 

travelling co-ordinates moving in the logical ring, and travelling forces multicast from 

each slave task. In each cycle the control task performs a global reduction of the energy 

contributions between all the slave tasks, and multicasts the result to all the slave tasks. 

5. The control node analyzes the updated atom positions and velocities for 

convergence to determine whether to proceed with another computation cycle or not. If 

the computation cycle needs to be continued the control task multicasts a 'running' flag 

to signal the slave tasks to continue. 

Slave Task Operation 

The slave tasks in the EGO program performs the following parallel program 

operations: 
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1. First, it receives the task management information, initial atom co-ordinates and 

other initialization variables multicast and/or unicast from the control node. 

2. After the initialization phase, each slave task starts the computation cycle. First 

it computes the interaction between its 'own' atoms and sends the new atom co­

ordinates computed to the node below in the logical ring, and receives the new set of co­

ordinates from the node above in the logical ring. 

3. Each slave communicates the force information between all slave tasks using 

barriers and all-to-all multicasts, so that the interactions between local and foreign atoms 

can be computed. 

4. All the slave tasks take part in the global reduction of energy contributions with 

the control task as the root. Later, it receives the reduced energy information multicast 

from the root (control) task. 

5. Finally, all the slave tasks wait for the 'running' flag from the control node to 

determine whether to continue with another computation cycle or not. 

Performance Comparisons 

The sample runs for the EGO program were performed for an 'alanin' molecule 

with 66 atoms, for 256 integration steps, with almost equal loads on all the virtual 

machine nodes. Virtual machine sizes ranging only from 2 to 5 was experimented due to 

the heavy use of system and network resources by the program. The average message­

size for these global operations was less than 16 kilobytes, which makes them applicable 

to be performed efficiently over the COP channels. For a virtual machine size of 5, on 

the average, 40% of the total execution time on both the slave and control tasks was 

spent on the pvm communication functions. Analysis of the timing information collected 

showed that multicasts accounted for 16% of total execution time, global reduction 
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accounted for 14% of the execution time, barrier operations accounted for 4% of 

execution time and point to point communication functions accounted for 6% of the total 

execution time, aggregating to the 40% total communication time. Note that, as the 

virtual machine size is increased the collective communication function costs rise 

drastically as shown in the early sections of this chapter. 

The PVM functions in this application can easily be replaced by equivalent libcop 

functions so as to use the secondary network for performing global operations. The 

multicast and shared memory read operations were serialized in the master and slave 

tasks by barrier constructs in this application. As a result, only one channel performed 

broadcast/multicast operation at a time. Due to this reason, the average time to service a 

channel request (t0 P) is assumed to be almost equal to t0 P. 

As shown in Table IV, for a virtual machine size of 5 the libcop multicast performs 

about 24 times more efficiently than the pvm multicast. Similarly, from Table IV one can 

see that the libcop reduction performs about 4 times faster than pvm reduction, libcop 

barrier performs about 1000 times more efficiently than pvm barrier and point-to-point 

communication implemented using COP controller memory shows a improvement of 30 

times. Applying these improvement factors to the above global operation execution 

times, the total time spent on collective communication operations can be reduced by a 

factor of about 9. This results in an improvement in the overall execution time of the 

application by more than 1.5 times. As the libcop global reduction function can send the 

reduced result to any number of participating tasks at no extra cost (using the broadcast 

masks), the number of multicast operations required while using the COP system will be 

reduced, further adding to performance improvement. Table V summarizes the timing 

analysis performed on the EGO application. 



110 

TABLEV 

TIMING ANALYSIS OF MOLECULAR DYNAMICS APPLICATION 

libpvm libcop 
Operation normalized speedup normalized 

timings timings 

Multicast 0.16 24 0.00700 
Global Reduction 0.14 4 0.03500 

Barrier 0.04 1000 0.00004 

Point-to-Point 0.06 30 0.00200 

Total Corrununication Time 0.40 0.04404 
Total Computation Time 0.60 0.60000 
Total Execution Time 1. 00 0.64404 

As shown previously, as the virtual machine size increases the cost of the pvm 

collective communication functions rises sharply. But the overhead of libcop functions 

is almost the same for cluster sizes of up to 64 compute nodes if excessive channel 

locking is avoided. Thus the COP system provides better scalability for application 

programs. 

Summary 

A final note here is that, the COP system is intended for message passing 

operations with small-to-medium sized messages. The latency for various operations 

over the cop channels is very low due to several reasons including no overhead for 

packet assembly/re-assembly, direct protected access to the network interface, ability to 

broadcast simultaneously through all channels etc. But the performance decreases 

gradually for long messages. Some of the major reasons for the performance degradation 

at large message sizes are the half-duplex nature of the serial link, low utilization of the 

channels (out of the four words in a cop message, only two words contain data resulting 
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in 50% overhead), and the low payload in cop messages (need a cop message for each 

data element). Also, excessive use of channel locking by the compute nodes will disturb 

the fair sharing of COP controller resources by all the channels. Therefore, the benefit 

seen by applications will vary depending on the size and pattern of message-passing 

performed by the application. Application with small-to-medium message sizes and high 

percentages of collective operations will most likely see the highest performance 

improvement. The high performance difference and the low cost nature of the system 

makes it very attractive and promising for application to workstation cluster 

multicomputers. 



CHAPTER VII 

RELATED WORK 

The expressions in Table III shows that the COP system can significantly reduce 

the execution time for several common global operations on small-to-medium sized 

messages. In the last chapter I discussed and showed an example application that can 

benefit from using the COP system. Also I showed that message-passing systems can 

use the cop controller's task address spaces to minimize the latency on small 

synchronization messages. In this chapter I describe and compare other proposed or 

practiced methods for decreasing the global operation and/or latency times. As my work 

was primarily to investigate the performance aspects of using a COP system on 

workstation cluster multicomputers, I will concentrate on the related work for these class 

of machines. 

Cluster Computing Over High Speed Networks 

One of the factors which caused much skepticism on the feasibility of network­

based parallel computing was the limitation imposed by using traditional local area 

networks, such as an Ethernet, as the system interconnect. For many typical network 

applications which require only infrequent small amounts of data to be transmitted 

between workstations, an ethemet based cluster is adequate. However, for network 

based applications, such as communication intensive, course grain parallel applications 

it has been proved that the bus based networking technology cannot provide acceptable 

performance [Chang95a]. Some of the motivational factors for considering the 



113 

implementation of a parallel computing platform over a high speed local area network 

are: 

1. High speed switch-based network architectures, such as the High Performance 

Parallel Interface (HIPPI) and Asynchronous Transfer Mode (ATM) feature aggregate 

throughputs of several gigabits/sec. Moreover each host usually has a dedicated high­

speed connection to the switch, unlike shared medium architectures where the network 

capacity is shared among all the interconnected processors. 

2. High-speed switch-based networks may easily be scaled up, in terms of 

processing power by adding additional switches/links. 

3. Inherent features, such as dedicated connections, of switch-based high-speed 

networks allow them to support low latency data transfers. 

4. Switch based networks inherently support efficient multicasting, and thus may 

be attractive for supporting paradigms like distributed shared memory, where multicast 

operations are frequently used to update, lock and unlock multiple data copies. 

All these advantages of high-speed networks led researchers to develop and 

implement switch-based cluster interconnects. Objectives for most of the works 

discussed below are to reduce message latency or to support efficient collective 

communications, even though they may follow different programming models. 

The Princeton Shrimp 

One cluster multicomputer system that uses a unique network interface to reduce 

message latency is the Princeton Shrimp system described by Li [Blum94a]. Shrimp is 

actually an example of distributed shared memory system. The Shrimp system uses an 

Intel Paragon router backplane to implement its interconnection network. In Li's 

algorithm, known as Shared Virtual Memory (SVM), the shared address space is 
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partitioned into pages, and copies of these pages are distributed among the hosts, 

following a Multiple-Reader/Single- Writer (MRSW) protocol. Pages that are marked 

read-only can be replicated and may reside in the memory of several hosts, but a page 

being written to can reside only in the memory of one host. 

One advantage of Li's algorithm is that it can easily be integrated into the virtual 

memory of the host operating system. If a shared memory page is held locally to a host, 

it can be mapped into the application's virtual address space on that host and therefore be 

accessed using the normal machine instructions for accessing memory. An access to a 

page not held locally triggers a page fault, passing control to a fault handler. The fault 

handler then communicates with the remote hosts in order to obtain a valid copy of the 

page before mapping it into the application's address space. When a page fault occurs 

due to a write access, the fault handler has to invalidate all the other copies in the system 

before marking the local copy as writable and allowing the faulted process to continue. 

As a result the model achieves functional transparency, in the sense that a program 

written for a shared memory multiprocessor system can run without change. On the 

other hand performance transparency can only be achieved to a certain degree, as the 

physical locations of the data being accessed affect application performance which is not 

entirely true in a shared memory multiprocessor machine. 

But as reported by Li, the virtual shared memory model depends largely on the 

performance of the collective communication primitives like multicast operations as 

they are frequently used to update, lock and unlock multiple data copies. Since the 

backplane has a 2-D mesh topology, spanning trees are needed to implement broadcast 

and other global operations. Not only do message latencies cascade along the branches 

of these trees, but also multiple operating system calls are required to set up the mapping 

for the trees before the global operation and to restore the previous communication link 
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after the operation. The idea of providing protected direct access to the network 

hardware in Shrimp is similar to the direct mapped access to COP system channels. Both 

systems try to reduce the extra software overhead by offering direct access to the 

network, but as the COP channels are independent there is no overhead of traversing the 

spanning trees to do global operations. 

Similar distributed shared memory (DSM) models atop ATM networks also exist. 

Thekkath et al. [Theka93a] have reported very promising results for emulating 

distributed shared-memory across over ATM LAN, using a remote procedure call 

paradigm. Dwarakadas et al. [Dwark93a] have studied software implementations of 

distributed shared memory on ATM network which points out the need for fast 

synchronization and multicast in order to support release consistent software DSM 

protocols. 

Improving PVM performance using ATOMIC system 

Enhancing the performance of existing popular programming models by using 

emerging networking technologies is also a very common approach. This allows all the 

applications using the original programming model to increase performance without any 

significant re-design. The COP system is designed to work along with the PVM message 

passing model to take advantage of the above aspects. One similar work is reported by 

Fisher [Fishr95a] for improving the performance of PVM using the ATOMIC user-level 

protocol. The ATOMIC LAN is a high-speed network that offers 640-Mbps bandwidth 

at an inexpensive per-host cost. It is a switch-based local area network composed of host 

interface boards and network switches and uses a source-routed cut-through packet 

switching technique. The performance improvement is achieved by separating the pvm 

data-transmission path from the pvm control-message path, and transmitting pvm data 
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messages over a user-level application programming interface (API) provided by the 

Myrinet ATOMIC interface. The system uses the idea of interleaving memory copies 

with DMA operations on the sender to reduce memory copy overhead. Even though, the 

implementation has reported reducing the PVM latencies times by half, the performance 

for small-to-medium sized messages is still far below that offered by the COP system. 

Also, the Myrinet-API, although significantly faster than the TCP/IP kernel stack, does 

not provide reliable communication. Therefore, the application programmer has to 

provide a user-level protocol to offer reliable sequenced packet delivery. The channels in 

a COP system provide reliable data transfer, and hence application programmer do not 

have to deal with providing a reliable user level protocol. 

Faster Message Passing in PVM using ATM 

Several attempts have been made by researchers to enhance the communication 

facilities of PVM by using the Asynchronous Transfer Mode (ATM) technology. ATM 

networks are characterized by their switch-based architecture instead of the bus based 

architecture of the first and second generation networks. A switched network is capable 

of supporting multiple connections simultaneously and multiple messages can be 

transmitted across the network concurrently. One of the effort to enhance pvm 

communications reported by Geist [Geist95a] is by using ATM's lower layer API to 

implement a faster message passing route in pvm. The Fore Systems ATM API based 

library functions provides a connection-oriented client-server model. After a connection 

is set up, the network makes a 'best effort' to deliver ATM cells to the destination. But 

cells may be dropped during the transmission depending on the availability of the 

resources. So unlike the connection-oriented TCP socket, flow control and 

retransmission facilities have to be provided by the applications. Geist's work represents 
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only the performance of point to point communications. He has reported a bandwidth 

improvement of AAL5-based routes (PvmRouteAtm) by about 57% compared with the 

TCP/ATM based PvmRouteDirect route. But average latency times of about 3200 

microseconds was incurred by this route due to the inefficiency of the acknowledgment 

procedure required for reliable sequenced packet delivery. This makes them less 

applicable for short synchronization messages where latency is the performance limiting 

metric. 

Collective Communication on ATM Networks 

Collective operations are usually defined in terms of a process group, and include 

broadcast, scatter, gather, global operations across distributed data, and synchronization. 

Huang et al. [Huang95a] reports a software framework for implementing 

communication operations on ATM networks. The approach is based on reliable one-to­

many connections which are implemented atop unreliable ATM multicast virtual 

channels. The system uses a thread-based interface for collective communications. Their 

experimental setup includes a cluster of Sun SPARC stations interconnected by Fore 

Systems ASX 100 ATM switches. The switch fabric of these first generation ATM 

switches is a 1.2 Gbps time-division-multiplexed bus. The bus-based switch fabric 

provides cell-by-cell replication of messages to multiple output ports, thereby 

implementing multicast. The Fore system software includes an Application Program 

Interface (API) that allow user-level processes direct access to AAL5 software. The Fore 

API also provides functionality that cannot be efficiently implemented with TCP/IP 

messages, such as the above mentioned hardware multicast. Multiple threads manage 

ATM virtual channels for data and acknowledgments on behalf of the application 

process. Given a connection-oriented unreliable multicast service, the reliable collective 
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operations are realized with a "combining-tree" among the destinations, which performs 

a reduction operation on the acknowledgments as they proceed towards the source node. 

Data transmitted on the multicast channel arrives at the destinations nearly 

simultaneously, due to the pipelining of ATM cells. The acknowledgment channels are 

arranged as a spanning binomial tree. An interior node in the tree waits for 

acknowledgments from its children before forwarding an acknowledgment to its parent. 

In essence, a reduction operation is performed on the acknowledgments, with the 

reduction operation being minimum. Since this strategy introduces log (N + 1) - 1 

additional delays for N destinations, a sliding window protocol is used to improve the 

throughput. The average completion time for a 8-node multicast in the original PVM 

implementation executed over ATM is about 160,000 microseconds. Even though this 

implementation reported a multicast completion time 15 times less than the above 

mentioned time for PVM, it is still far behind the time for an equivalent COP multicast. 

Also in the COP system, the cost remains constant for multicasting to any number of 

channels (maximum of 64) on a single controller. Another point is that, in combining­

tree acknowledgment patterns, a failure at one node will cause the multicast reported as 

failed for all the nodes sending acknowledgments to the failed node. But in a COP 

system as the communication to each node is independent, the multicast fails only for 

the node that crashed, providing better fault tolerance. Also, unlike the COP system 

ATM based schemes do not support fast aggregate operations. 

Many similar research projects are currently investigating the use of high-speed 

switch based networking technologies to reduce latency and to provide efficient and 

reliable collective communications. Also similar interesting works are going on to come 

up with better performance metrics and benchmarks for collective communication 

operations. 



CHAPTER VIII 

CONCLUSIONS 

The analyses in Chapter VI conclusively demonstrate that the COP system can 

improve the performance of global operations on workstation clusters by factors of 5-25 

over PVM. Furthermore, the analysis of the sample application program in Chapter VI 

shows that speeding up these operations decreases overall execution time of this type of 

PVM applications by more than 1.5 times. 

The COP system software libraries are implemented to work along with the PVM 

message passing system. This was done to make use of some of the superior features of 

the PVM model like task management, asynchronous event notification, process groups, 

etc. and to make the COP system resources readily available for numerous existing PVM 

applications without significant rework. Also following an existing popular 

programming model allows future applications to be easily written to make use of the 

COP system. Porting application programs to use the COP resources is as simple as 

replacing any PVM functions with equivalent COP library functions and linking the 

program with the libcop library. The modular design of the COP system software allows 

easy porting to other message passing systems by replacing the libcop library functions. 

From a software perspective, the low overhead for accessing the channel is 

provided by allowing direct protected access to the COP network interfaces. The 

network interface is mapped to the application task's address space, allowing it to access 

the COP controller memory locations by regular read and write machine instructions. 

This implementation can also be used to provide a virtual shared memory model similar 
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to the Shrimp system, but using the shared memory on the COP controller. The timing 

expressions derived in Chapter VI shows that the COP system performance is far ahead 

as far as latency and collective operations are considered, compared to the native PVM 

functions. Also unlike the ATM based schemes described before, the transmission timers 

and retry mechanisms are implemented in compute node interface hardware, so 

application programs need not worry about implementing any reliable user-level 

protocol over this. Also as the communication channels are not shared, there is no time 

spent in framing the packets before transmission and extracting the application data from 

packets upon reception. This saves a considerable amount of time that otherwise would 

be spent on buffer management. 

Suggestions for Further Performance Improvements 

The COP system provides many benefits, but it also has some limitations. The 

primary limitation is that it is applicable to only small-to-medium sized messages. This 

is because the effective payload in each COP message is very low. In a COP message 

containing 4 words, only 2 words contain application data. Even though this is 

negligible in small messages, for large message sizes, the overhead involved takes away 

any performance improvements. Comparing the COP library timing values for various 

global operations with the equivalent functions in Interprocessor Collective 

Communication (InterCom) library and the NxLib library [Geijn95a], I found that the 

COP system is best suited for messages below 16 kilobytes and performs moderately for 

message sizes between 16 kilobytes and 64 kilobytes. 

The COP system libraries use shared memory and semaphore mechanisms to 

perform local reductions, synchronization and broadcast/multicast between the tasks 

residing on the same compute node, before sending the reduced contribution from the 
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compute node to the cop controller. Even though, this reduces the contention for the 

COP channel by different local tasks, the local reduction performance depends on the 

efficiency of the implementation of IPC mechanisms on the host's operating system. The 

shared memory approach for inter-process communication turned out to be very 

inefficient compared to other IPC mechanisms. The major reason for this is the overhead 

in semaphore operations and the extra context switching with these operations. Geist 

[Geist95a] reported similar problems when he tried a shared memory route to replace the 

TCP based PvmRouteDirect for local task to pvmd communications. He suggests the use 

of Unix domain sockets instead of internet domain TCP connection between local task­

to-task and task to pvm daemon communications. In PVM version 3.3, the internet 

domain TCP socket connection has been replaced by the Unix domain socket connection 

as default connection. One of the possible improvements to the COP software design is 

to replace the shared memory/semaphore mechanism with other IPC mechanisms. I 

expect significant performance improvement using a thread based management for the 

cop channels, but this is not possible in the current implementation as the generic port of 

PVM does not support threads. Excessive use of channel locking features to perform 

atomic operations on data arrays in the COP controller RAM disrupts the fair sharing of 

cop controller resources by the channels, limiting the performance improvements seen 

by applications. Also the current COP system software implementation does not support 

multiple concurrent users to access the COP controller resources. To implement this 

facility (which PVM supports) with less overhead, the COP controller hardware may 

need to be modified to increase its programmability. 

The COP system described here presents many potential research topics. Also as 

the system does not change the basic programming paradigm, it can support a variety of 

programming models and machine architectures. I feel the work described here for 
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applying the COP system to workstation clusters will provide the motivation and starting 

point to actually design and implement a prototype system, measure and compare the 

performance of real applications and open an active topic for interested researchers. 
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