
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

10-27-1995

Performance Evaluation of Specialized Hardware for Performance Evaluation of Specialized Hardware for

Fast Global Operations on Distributed Memory Fast Global Operations on Distributed Memory

Multicomputers Multicomputers

Rajesh Madukkarumukumana Sankaran
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Sankaran, Rajesh Madukkarumukumana, "Performance Evaluation of Specialized Hardware for Fast
Global Operations on Distributed Memory Multicomputers" (1995). Dissertations and Theses. Paper 4919.

10.15760/etd.6795

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/212633430?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds/4919?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15760/etd.6795
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Rajesh Madukkarumukumana Sankaran for the Master of

Science in Electrical and Computer Engineering were presented October 27, 1995, and

accepted by the thesis committee and the Master's program.

COMMITTEE APPROVALS:

Michael A. Driscoll

Jingke Li
Representative of the Office of Graduate Studies

MASTERSPROGRAMAPPROVAL:
Rolf Schaumann, Chair
Department of Electrical Engineering

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

on /-f Lfz«n-1.-~ /9~S:

ABSTRACT

An abstract of the thesis of Rajesh Madukkarumukumana Sankaran for the Master of

Science in Electrical and Computer Engineering presented October 27, 1995.

Title: Performance Evaluation of Specialized Hardware for Fast Global Operations on

Distributed Memory Multicomputers

Workstation cluster multicomputers are increasingly being applied for solving

scientific problems that require massive computing power. Parallel Virtual Machine

(PVM) is a popular message-passing model used to program these clusters. One of the

major performance limiting factors for cluster multicomputers is their inefficiency in

performing parallel program operations involving collective communications. These

operations include synchronization, global reduction, broadcast/multicast operations and

orderly access to shared global variables. Hall has demonstrated that a .secondary

network with wide tree topology and centralized coordination processors (COP) could

improve the performance of global operations on a variety of distributed architectures

[Hall94a].

My hypothesis was that the efficiency of many PVM applications on workstation

clusters could be significantly improved by utilizing a COP system for collective

communication operations. To test my hypothesis, I interfaced COP system with PVM.

The interface software includes a virtual memory-mapped secondary network interface

driver, and a function library which allows to use COP system in place of PVM function

calls in application programs. My implementation makes it possible to easily port any

ii

existing PVM applications to perform fast global operations using the COP system. To

evaluate the performance improvements of using a COP system, I measured cost of

various PVM global functions, derived the cost of equivalent COP library global

functions, and compared the results. To analyze the cost of global operations on overall

execution time of applications, I instrumented a complex molecular dynamics PVM

application and performed measurements. The measurements were performed for a

sample cluster size of 5 and for message sizes up to 16 kilobytes.

The comparison of PVM and COP system global operation performance clearly

demonstrates that the COP system can speed up a variety of global operations involving

small-to-medium sized messages by factors of 5-25. Analysis of the example application

for a sample cluster size of 5 show that speedup provided by my global function libraries

and the COP system reduces overall execution time for this and similar applications by

above 1.5 times. Additionally, the performance improvement seen by applications

increases as the cluster size increases, thus providing a scalable solution for performing

global operations.

PERFORMANCE EVALUATION OF SPECIALIZED HARDWARE FOR FAST
GLOBAL OPERATIONS ON DISTRIBUTED MEMORY MULTICOMPUTERS

by

RAJESH MADUKKARUMUKUMANA SANKARAN

The thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

In

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1995

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisors, Dr. Douglas V. Hall and Dr. Michael

A. Driscoll who guided me all through this project, and taught me much about computer

architecture. I thank Dr. Jingke Li and all the above people collectively for serving on

my thesis committee and for carefully reviewing my work. Thanks to Mr. Jim Binkley

for his very helpful suggestions in the areas of networking protocols and tips for

advanced network programming.

On a personal note, I wish to thank my family back home, for providing me the

opportunity to pursue my graduate studies at Portland State University. Also thanks to

Pyramid Technology Corporation for allowing me to use their resources for my

academic purposes.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

I INTRODUCTION ... 1

The Distributed Computing Scene . 1

II PROGRAMMING MODELS FOR CLUSTER MULTICOMPUTERS 5

Introduction to Cluster Multicomputers ... 5

A Brief Survey of Multicomputer Programming Models 7

III CHOOSING A PROGRAMMING MODEL FOR THE COP SYSTEM 10

Why Choose PVM? ... 10

PVM Message Passing System .. 13

PVM Communication Facilities ... 20

PVM Collective Communication Primitives .. 22

Performance Limiting Factors in PVM .. 25

IV COP SYSTEM ARCHITECTURE AND OPERATIONS 27

Goals ... 27

Top Level View .. 28

The Compute Node to COP Network Interface ... 32

COP Architecture and Operations .. 35

v

V DESIGN AND IMPLEMENTATION OF THE COP SOFTWARE 43

COP Message Format ... 43

Layered Architecture of the COP-PVM System .. 49

COP Controller Address Spaces ... 52

Additional COP Hardware Features ... 57

The COP Software Implementation ... 60

Libcop Library .. 63

VI COP PERFORMANCE ANALYSIS AND COMPARISONS 79

Performance Analysis of Libcop Functions ... 81

Performance Evaluation of Libpvm Functions .. 94

PVM Collective Communication Performance ... 98

Effect of Global Operation Speedup on Overall Execution Time 105

Performance Comparisons ... 108

VII RELATED WORK .. 112

Cluster Computing Over High Speed Networks ... 112

vm CONCLUSIONS .. 119

LIST OF TABLES

TABLE PAGE

I COP COMMANDS AND OPCODES ... 42

II SUMMARY OF LIBCOP & LIBPVM LIBRARY FEATURES 78

III LIB COP FUNCTION TIMES AND EXPRESSIONS ... 93

IV LIBCOP AND LIBPVM PERFORMANCE COMPARISONS 104

V TIMING ANALYSIS OF MOLECULAR DYNAMICS APPLICATION 110

LIST OF FIGURES

FIGURE PAGE

1 PVM Generic Task Identifier . 15

2 PVM Multiprocessor Task Identifier 16

3 PVM TID Sub-Space Allocations ... 17

4 Single Level COP System Topology .. 28

5 Two Level COP System Topology .. 29

6 COP Channel Interface ... 33

a) Compute Node to COP network interface circuitry 33

b) Format for COP instruction word showing sub-fields 33

7 Block Diagram of a Co-ordination Processor ... 36

8 Protocol Stacks for PVM and COP ... 41

a) Protocol Stacks for PVM (Normal Route) ... 41

b) Protocol Stacks for COP system 41

9 COP Message Format .. 44

a) Instruction Word ... 44

b) Address Word ... 44

c) Datal Word .. 44

d) Data2 Word 44

10 Combined COP-PVM Model Communication Resources 49

11 Control and Status Register .. 51

a) Control Bits 51

viii

a) Status Bits... 51

12 Address Space Partitions for Data SRAM on COP controller. 53

13 Task Address Space Partitions within a Channel Address Space 54

14 COP Message Format for SETTC operation .. 60

15 PYM Latency Measurements for small sized messages 97

16 PYM Barrier timing measurements .. 99

17 PYM Reduction timing measurements ... 100

a) PYM Reduction timings for varying number of participating tasks 100

b) PYM Reduction timings as a function of data array size 100

18 PYM Broadcast/Multicast timings .. 102

a) PYM Broadcast timings as a function of message size........................ 102

b) PYM Multicast timings as a function of message size 102

CHAPTER I

INTRODUCTION

The Distributed Computing Scene

One of the main motivations for developing powerful parallel computers has been

to solve very large scientific problems. The objectives and focus of these development

efforts is summarized in the report on "High Performance Computing and

Communications: Foundation for America's Information Future" [Ostc95a] by the U.S

Office of Science and Technology's Committee on Physical, Mathematical, and

Engineering Sciences. The HPCC report includes a "wish list" of important

computational problems that scientists and engineers would like to be able to solve in

the 90's.

The computational needs of these "Grand Challenge" problems are so great that a

large massively parallel array of the fastest currently available processors will be

required to meet them. In a distributed system, each compute node works in parallel with

other nodes in the system and communicates with other nodes primarily by passing

messages. The performance of many distributed applications depends on the efficiency

of the underlying communication system. Workstation cluster multicomputers are

increasingly being applied for solving scientific problems that require massive

computing power [Begu93a]. Workstation clusters offers several advantages over other

types of machines. These advantages include significant computing power, general

availability, large cumulative resources and low cost. Many programming models have

been developed for programming workstation clusters efficiently. Parallel Virtual

2

Machine (PVM) [Sund90a] is a popular message-passing model used to program these

clusters. Many state-of-the art applications have been ported to this environment with

encouraging results [Begu93a].

The major factors that limit the performance of these types of systems are the low

interconnection network performance and the software overhead imposed by the

"protocol stacks" which must be traversed in order to send a message to or receive a

message from another machine in the cluster [Matts93a]. These factors are more visible

in global program operations because these operations make very heavy use of network

resources. The operations most likely to benefit from hardware acceleration include

global operations such as barriers, broadcast/multicast, global reduction, scatter/gather,

parallel prefix etc., because they are found to be very expensive on these systems.

Careful analysis of previous attempts at hardware assist for global operations showed

that all of them had serious limitations. However, Hall [Hall94a] has demonstrated that a

secondary network with wide area topology and one or more centralized coordination

processors (COPs) optimized for these global operations can improve the performance

of global operations on a variety of multicomputer architectures. My hypothesis was that

the efficiency of many PVM applications on workstation clusters can be significantly

improved by utilizing the secondary network resources in a COP system for collective

communication operations. To test my hypothesis, I used the following standard

methodology.

First, I developed software to interface PVM with the COP system. The software

includes a virtual memory-mapped secondary network interface driver and an easy to

use function library. The function library makes it possible to use the COP system in

place of PVM function calls for various parallel program operations. Second, as the

COP hardware prototype does not exist, I deduced the timings for various global

3

operations in the COP function library based on the analysis of software overhead of the

COP interface pseudo device driver and the hardware timings reported originally by Hall

for various COP operations [Hall94a]. I measured timings for the same global operations

with PVM, and compared them with the timings deduced for the COP system. Third, I

obtained and instrumented a complex, real-life molecular dynamics simulation PVM

application (1 OOK lines) and made measurements to evaluate the cost of global

operations on overall execution time.

To show the various programming models available for cluster multicomputers,

Chapter II provides a brief overview of several popular programming models. Chapter

III provides justification for choosing the COP system to work with the PVM message

passing model, and provides an overview of PVM. The collective communication

primitives in pvm are discussed followed by a preliminary analysis of some of their

performance limiting factors. Chapter IV is a detailed description of the COP system

architecture and operations. Included are discussions on the cop network architecture,

compute node to cop interface, and the cop itself. A discussion of how the target global

operations are performed on the COP system is also provided in this chapter.

In Chapter V, I first describe the cop software design followed by a detailed

section on implementation of global operation primitives. This section also describes

how the system works with pvm and how easily existing pvm applications can be ported

to use the cop hardware features. In Chapter VI, I derive expressions for global operation

timings with the COP system, and provide detailed analysis of the measurements done

on pvm global operations. These measurements are then compared with the performance

data derived for a COP-PVM combined system. The analysis of a sample molecular

dynamics simulation application is provided to show the common communication

patterns that can benefit from COP system, and their overall predicted improvement in

4

performance by using a COP system.

Having thoroughly demonstrated the benefits of the COP hardware and software

design, I then in Chapter VII compare and contrast other attempts to improve the

efficiency of global operations on workstation clusters. Finally in Chapter VIII, I provide

some suggestions to further improve the performance of the COP software system based

on experience gained while working on this project and give my conclusions.

CHAPTER II

PROGRAMMING MODELS FOR CLUSTER MULTICOMPUTERS

Introduction to Cluster Multicomputers

The purpose of this chapter is to describe the advantages of workstation clusters

and to describe various programming models used to program them efficiently.

Considerable research effort in the recent past has been directed towards using

clusters of workstations, loosely coupled by high speed networks, for distributed

computing. Many state-of-the-art applications have been ported to this environment with

encouraging results. For example, execution speeds for some molecular dynamics

simulations, an application with a high volume of communication, using IBM RS/6000

workstations averaged only 30 percent slower than an iPSC/860 hypercube with a

comparable number of processors [Begu93a]. Applications like propagation of seismic

waves [Ewing93a], molecular dynamics simulations [Heller91a], logic simulations, etc.

have been successfully run on workstation clusters.

The advantages of using clusters of networked workstations as multicomputers

are:

1. The computing power offered by present day workstation class machines has

improved significantly such that they can easily deliver required performance for high

speed computing applications.

2. The workstation class machines are mostly general purpose machines which can

perform many different functions and because of that are advantageous from a cost

6

standpoint.

3. The cumulative resources like memory, disk space, compute power, 1/0

capability of the workstation cluster can be very large.

4. Above all, clustering these machines allow the harvesting of otherwise unused

clock cycles for productive use.

The major performance limiting factors for this class of machines are the low

performance of the interconnection network and the software overhead of traversing the

communication protocol stacks in order to send or receive messages [Matts93a]. The

Local area networks (LAN s) used for interconnecting these workstation clusters

commonly use Ethernet networks that have a maximum bandwidth of only 10 Mbits/sec.

In addition to this relatively low hardware bandwidth, a further limitation of ethernet is

its common bus topology which requires workstations to compete for network access.

As the number of nodes on the network and/or the amount of message traffic increases,

the effective bandwidth available to the application decreases. With newer generation

networking technologies like switched Ethernet and ATM, the performance of the

interconnection network is significantly improved, but they still impose the software

overhead of traversing the protocol stacks in order to send or receive messages.

The popularity of cluster based distributed computing can be easily understood

from the large number of research groups and prototype systems currently in this field.

Many programming models have been developed for programming workstation clusters

efficiently. As my work is focused on these cluster based machines, a brief survey of the

various programming models commonly used to program workstation cluster MIMD

multicomputers is given next.

7

A Brief Survey of Multicomputer Programming Models

Message Passing

Message Passing is a programming model, generated by distributed-memory

machines but applicable to others, for example multiprogrammed single-processors.

Almost all other programming models have message passing in their lowest level. A

program is divided into components or subprograms, which may run on different nodes

of the machine. Nodes may all run copies of the same program (SPMD) or they may run

completely different programs (MPMD). The nodes communicate with one another by

explicitly sending and receiving messages, which are arrays of data copied from one

node to another. Some of the popular models of this type includes p4 [Butl92a] from

Argonne National Laboratory, Express [Flow9la] developed by ParaSoft, Inc.,

TCGMSG [Harr91a] maintained at Pacific Northwest Laboratory, Parallel Virtual

Machine (PVM) [Manch94a] from Oak Ridge National Laboratory etc. There are

hundreds of models in this class. The Message Passing Interface (MPI) [For93a] forum

is an effort to collect the knowledge gained in the last ten years of building message­

passing systems into a single, standard programming interface.

Virtual Shared Memory

Virtual Shared Memory is a model that can be used to program either tightly­

coupled or distributed-memory multiprocessors. Messages can be implemented in terms

of shared memory or vice-versa, and which of these is the lower layer is a performance

issue. The Shrimp [Blum94a] system uses a virtual memory-mapped network interface

to give applications protected but direct access to network hardware, eliminating the

overhead of system calls. This allows high-bandwidth, low-latency data exchange and

can be used to support either message-passing or shared memory.

8

Distributed Objects

Distributed Objects is a programming system in which data structures or objects

are shared across a set of processors, without specifying exactly how the sharing is done.

These systems give the programmer the abstraction of distributed shared memory

(DSM). DoPVM [Sund93a] is an object oriented distributed environment implemented

on top of PVM (Version 3). It defines shared object classes, uses operator overloading to

move data transparently between processes, and also provides process scheduling tools.

There are a set of other systems currently under development that use shared objects for

better performance in synchronization, load balancing and fault tolerance.

Parallel Languages

Parallel Languages for distributed systems try to automate the tasks of

communication and synchronization in parallel applications. The challenge for parallel

languages is to provide the programmer the necessary expressiveness to get his work

done without specifying the inner details, and to build a compiler that can translate the

language into something that runs efficiently. Clark [Clark92a] provides a detailed

evaluation of some of the parallel languages in the context of molecular dynamics

computations.

Other models for parallel programming include systems like Linda (Scientific

Computing Associates) that uses tuple spaces for sharing data between processes,

process control etc. These models can be used easily on shared and distributed memory

machines and networks. Distributed operating systems provide another level of

primitives for parallel programming. They provide a more complete environment than

other models, like file system and memory management, control of peripheral devices

etc. But as they are custom made for the hardware of the target machine, they are less

9

portable than other systems. The Amoeba [Mull90a] distributed operating system treats

nodes on a network as a central pool of processors, and uses remote procedure calls

(RPC) both at the kernel and application level. Mattson [Matts93a] provides a thorough

evaluation of these various programming models and discuss the pit-falls and strengths

of each of them.

Message passing was used as the underlying model in this work. Message passing

works at a very low level compared to other programming models, and hence allows

more flexibility in experimenting with innovative ideas. Also the COP architecture is

easily adaptable to the message passing model.

The task of next chapter is to provide an overview of the PVM message passing

system. This chapter provides the justification for using the COP system with the

Parallel Virtual Machine (PVM) and provide a brief overview of PVM. Also, a

preliminary analysis of the collective communication primitives of PVM is provided in

the next chapter.

CHAPTER III

CHOOSING A PROGRAMMING MODEL FOR THE COP SYSTEM

The purpose of this chapter is to introduce the programming model followed for

the COP system to work with workstation clusters. As described earlier in chapter II,

there are a variety of programming models that have been developed for cluster based

distributed memory MIMD machines. In this chapter I provide the justification for using

the COP system with the Parallel Virtual Machine (PVM) programming model followed

by a brief overview of PVM. I also discuss in detail the various parallel programming

primitives offered by PVM and the reasons for low performance of some of the group

functions.

Why Choose PVM?

The need to follow a popular programming model for the COP system was

obvious even in the early stages of the cop software design. The primary motivation

behind this is that a vast number of applications already have been developed

successfully using this model. Also, as one of the design objectives of the COP system is

to coexist with any existing distributed system, applications already developed for the

original model would be easily portable to use the cop resources.

The Parallel Virtual Machine (PVM) message passing system fulfills many of the

requirements sought from a programming model. These include:

1. PVM has more users than any other portable parallel programming environment

11

and has become the de facto standard for message passing environments.

2. PVM further distinguishes itself from other message passing systems by being

specifically designed to handle heterogeneous networks of computers. Given the

architecture independent design of the COP system, this will help to apply the cop model

to a variety of architectures.

3. Many state-of-the-art applications which include molecular dynamics

simulations, seismic wave studies, logic simulations, etc. already run on top of PVM.

4. PVM ranks high in qualitative comparisons in areas like support groups, ease of

debugging etc [Matts93a].

5. PVM provides some superior features like efficient task management, dynamic

task groups, flexibility in using connection oriented communication protocols etc.

6. Availability of the software package and the programmer's prior experience

with using this system.

7. Support based on the experiences of a large and accessible user base. When a

problem is encountered - either with PVM or with expression of some algorithm in

PVM, the chances are good that you will be able to find someone who has already

encountered and solved a similar problem.

8. Simplicity in cop software design to interface with PVM message passing

system when compared to interfacing with any other model.

The overhead of PVM function calls affect the performance of the COP software

system if it is layered on top of PVM. As the cop software module has to extract

information on task management, virtual machine configuration, dynamic groups etc.

from the underlying PVM layer, the overhead involved in this can affect the

performance of cop functions. Due to these above mentioned advantages and

disadvantages the following design decisions were made for the COP system software

12

design:

1. The cop software system should coexist with PVM, so as to take full advantage

of the functionality provided by pvm which includes simple task management, central

console to control the whole virtual machine, asynchronous notification of events,

dynamic task groups etc.

2. The cop software utilities should depend on the information supplied by PVM

functions as little as possible to reduce the overhead involved. It use effective "Software

Caching" mechanisms to reuse the information provided by pvm functions in multiple

contexts, thereby reducing the effective number of pvm function calls.

3. The application programmer should be given enough freedom to choose

between a cop function, or an equivalent pvm function, or a hybrid of these two, to

express any given algorithm. The application developer can make his choice by

estimating the 1/0 requirements and the degree of communication/computation

overlapping possible in the application algorithms.

For these reasons the cop programming interface and libraries are designed in a

machine independent style. The compute node interface device driver can be easily

tuned to any target architecture and is designed as a loadable driver. i.e, the cop driver

can be added to or deleted from the running kernel dynamically, without rebooting the

system.

These features of the COP system software provide enough portability for any

existing or future pvm applications. Even though the task of choosing appropriate cop or

pvm functions for a given problem decreases the ease of programming for application

developers, this provides enough flexibility to investigate faster and efficient solutions

on an experimental architecture such as the COP system. With the requirements for a

message passing model for programming the COP system to work with workstation

13

clusters fresh in mind, I will provide a brief overview of the PVM message passing

system.

PVM Message Passing System

The PVM (Parallel Virtual Machine) software package provides the software

infrastructure for programming heterogeneous networks [Begu93a]. PVM provides

mechanisms for configuring a virtual machine on a network, initializing processes on

this network and communicating among these processes. It is a lightweight package

intended for user installation. Nearly any UNIX or UNIX like machine can be used as a

processor in a virtual machine as long as the user has an account on the machine and it is

accessible over a network. The most important goals for version 3 release of the PVM

package are fault tolerance, scalability, heterogeneity and portability.

PVM is able to withstand host and network failures. It doesn't automatically

recover an application after a crash, but it provides polling and notification primitives to

allow fault-tolerant applications to be built. The virtual machine is dynamically

reconfigurable. This goes hand-in-hand with fault tolerance, because an application may

need to acquire more resources in order to continue running, once a host has failed or

crashed. In pvm task management is made as decentralized and localized as possible, so

virtual machines should be able to scale to hundreds of tasks. To allow pvm to be highly

portable, the use of operating system and language features such as multi-threaded

processes and asynchronous 1/0 etc., that would be hard to retrofit if unavailable are not

used. To easily understand the theory of operation of the pvm system, I will provide the

overview of important concepts used in pvm, followed by a detailed section on parallel

programming primitives offered by pvm with emphasis on collective communication

operations.

14

Architecture Classes

PYM assigns an architecture name to each kind of machine I OS combination on

which it runs. The reason behind this is to distinguish between machines that run

different executables due to hardware or operating system differences. Many standard

names are defined and others can be easily added. Some machines with incompatible

executables use the same binary data representation. PYM takes advantage of this to

avoid data conversion. Architecture names are mapped to data encoding numbers, and

the encoding numbers are used to determine when it is necessary to do data conversion.

A complete description of the various architecture classes supported by pvm is

documented in "PYM 3 Users Guide and Reference Manual" [Geist94a].

PYM Daemon

The pvm daemon (pvmd) is an important entity which runs on each host of a

virtual machine. Pvmd serves as a message router and controller. It provides a point of

contact and fault detection. An idle pvmd occasionally checks that its peers are still

running. Pvmds continue to run even if application programs crash, to aid in debugging.

Pvmds owned by (running as) one user do not interact with those owned by others, in

order to reduce security risk, and minimize the impact of one PYM user on another.

The first pvmd (started manually) is designated as the master, while the others that

are started by the master pvmd are designated as slaves. During normal operation, all the

pvmds are considered equal, but only the master can start new slaves and add them to the

virtual machine configuration. Re-configuration requests originating on a slave host are

forwarded to the master pvmd, and only the master pvmd can forcibly delete hosts from

the virtual machine.

15

Programming Library

The programming library "libpvm" allows a task to interface with the pvmd and

other peer tasks in the virtual system. It contains functions for packing/composing and

unpacking messages, and functions to perform pvm "syscalls" to send service requests

to the pvmd. It is made as small and simple as possible. Since it shares an address space

with unknown, possibly buggy, code, it can be broken or subverted. Minimal sanity

checking of parameters is performed, leaving further authentication to the pvmd. The

top-level of the libpvm library, including most of the programming interface functions,

is written in a machine-independent style. The bottom level is kept separate and can be

modified or replaced with a new machine-specific file while porting pvm to a new

environment.

Task Identifiers

PVM uses a "Task Identifier" (tid) to address pvmds, tasks, and groups of tasks

within a virtual machine. The tid contains four fields as shown in Figure 1. Since the tid

is used heavily, it is made to fit into the largest integer data type (32 bits) available on a

wide range of machines. Later I will show how the COP programming library redefines

the pvm tids to manage the cop channel resources.

31 18 0

11111 1111 11111111111111 1111111111
S G H L

Figure 1. PVM Generic Task Identifier (tid)

The fields S, G and H have global meaning. Each pvmd of a virtual machine

interprets them in the same way. The H field contains a host number relative to the

16

virtual machine. As it starts up, each pvmd is configured with a unique host number and

therefore owns a part of the tid address space. The maximum number of hosts in a virtual

machine is limited to 2H -1 (4095). This is the same number of hosts that can be

supported by a two-level COP system as described in later sections.

The mapping between host numbers and hosts is known to each pvmd,

synchronized by a global host table. Host number zero is used to refer to the local pvmd.

The S bit is used to address pvmds, with the H field set to the host number and the L field

cleared. The G bit is set to form multicast addresses (GIDs), which refer to groups of

tasks.

Each pvmd is allowed to assign its own format to the L field (with the H field set to

its own host number), except that all bits cleared is reserved to mean the pvmd itself.

The L field is 18 bits wide, there by allowing up to 218 - 1 tasks to coexist on each host.

In the generic UNIX port, L values are assigned by a counter, and the pvmd maintains a

map between L values and UNIX process ids. In multiprocessor ports the L field is

subdivided as shown in Figure 2. The P field specifies a machine partition, (physical

group of processors), sometimes called a process type or job. The node number (N)

determines a processor in a partition, and the W bit indicates whether a task runs on a

compute node or host processor (service node).

31 18 0

I 11 I I 111 I I 11 I 1111 11 I I 11 111 I I 11 11 I
SG H W P N

Figure 2. PVM Multiprocessor Task ID

The design of the tid enables the implementation to meet the design goals. Tasks

can be assigned tids by their local pvmds without off-host communication. Messages can

17

be routed from anywhere in a virtual machine to anywhere else, due to hierarchical

naming. Portability is enhanced because the L field can be redefined. When sending a

message, a task on a multiprocessor node can compare its own tid with destination tid to

determine whether to use native communication or send to the pvmd for routing. Finally,

space is reserved for error codes. When a function can return a vector of tids mixed with

error codes, it is useful if the error codes don't correspond to legal tids. The tid space is

divided as shown in Figure 3.

Tids are intended to be opaque to the application and the programmer should not

predict their values or modify them without using functions supplied in the

programming library. More symbolic naming can be obtained by using a name server

library layered on top of the raw PVM calls, if the convenience is deemed worth the cost

of name lookup.

Use s G H L

Task identifier 0 0 l ... Hmax l ... Lmax

Pvmd identifier 1 0 l ... Hmax 0

Local pvmd (from task) 1 0 0 0

Multicast address 0 1 l ... Hmax O ... Lmax

Error code 1 1 small neg. number

Figure 3. PVM tid Sub-Space Allocations

Message Model

PVM daemon and tasks can compose and send messages of arbitrary lengths

containing data. The data can be converted using Sun Microsystem's "External Data

18

Representation Standard" (XDR) when passing between hosts with incompatible data

formats. Messages are tagged at send time with a user defined integer code called

message-tags, and can be selected while receiving by source address or message-tag.

The sender of a message does not wait for an acknowledgment from the receiver,

but continues as soon as the message has been handed to the network and the message

buffer can be safely deleted or reused. Messages are buffered at the receiving end until

received. PVM reliably delivers messages, provided the destination exists. Message

order from each sender to each receiver in the system is preserved. If one entity sends

several messages to another, they will be received in the same order. Both blocking and

non-blocking receive primitives are provided, so task can wait for a message without

consuming processor time by polling for it. A receive with time-out is also provided,

which returns after a specified time if no message has arrived.

Asynchronous Notification

PVM provides notification messages as a means to implement fault recovery in an

application. A task can request that the system send a message on events like a task

exiting or crashing, a host getting deleted or crashing, or new hosts being added to the

virtual machine. Notify requests are stored in the pvmds attached to the objects they

monitor. Requests for remote events are kept on both hosts. The remote pvmd sends the

message if the event occurs, while the local daemon sends the message if the remote host

goes down.

Protocols

PVM communication is based on TCP and UDP. While other, more appropriate

protocols exist, they are not as generally available as TCP and UDP. One drawback of

TCP is that it cannot take full advantage of the performance of modern high speed

19

networks due to a window size limit of 64.kB. Experimental ports of pvm using other

networking technologies and protocols like the ATM adaptation layer (AAL5)

[Chang95a] are being developed to solve these problems.

PVM daemons communicate with one another through UDP sockets. UDP is an

unreliable delivery service which can lose, duplicate or reorder packets. So an

acknowledgment and retry mechanism is used. UDP also limits packet length, so pvm

fragments long messages. TCP is not used for pvmd-to-pvmd communications due to

several reasons. First is scalability. In a virtual machine of N hosts, each pvmd must

have connections to the other (N - 1) pvmds. If TCP is used each connection consumes a

file descriptor in the pvmd, and some operating systems limit the number of open files to

as few as 32. But a single UDP socket can communicate with any number of remote

UDP sockets. The second factor is overhead. N pvmds require a total of N(N-1)/2 TCP

connections, which would be expensive to set up. The PVM/UDP protocol can be

initialized with no communication as it is a connectionless protocol. Third factor to

choose UDP over TCP for pvmd-to-pvmd communications is fault tolerance. The

communication system detects when foreign pvmds have crashed or exited, or the

network has gone down. For these features time-outs need to be set in the protocol layer.

The TCP keep-alive option offer similar features, but not all operating systems provide

adequate control over the TCP parameters.

A task talks to its pvmd or to other tasks through TCP sockets. TCP is used

because it delivers data reliably. UDP can loose packets even within a host. Unreliable

delivery requires retry (using timers) at both ends, but tasks should not be interrupted

while computing to perform 1/0. This provides the reason for selecting TCP for task

communications.

20

PVM Communication Facilities

PVM provides two types of communication modes, Normal mode and Direct

mode. In the Normal mode, for a source task to communicate with a remote task, it must

first communicate through a UNIX domain socket to its local pvmd daemon. The local

pvmd daemon of the source task then communicates through a UDP socket to the remote

pvmd. The remote pvmd then communicates locally to the destination task again

through a UNIX domain socket. Thus two TCP connections and two UDP connections

are required for bidirectional communications between any two communicating

application processes.

In the direct mode, PVM sets up a direct TCP connection between the two

communicating processes or tasks via the indirect mode mechanism. The detailed

transmission facilities of the direct and normal modes are hidden from the end-users.

The advantage of the direct mode is that it provides a more efficient communication path

than the normal mode. The major reason for providing the normal mode, despite its

lower performance, is because of the limited number of file descriptors some UNIX

systems provide. Thus the drawback of the direct mode is its limited scalability and the

latency in setting up the connections.

Sending a message is composed of three steps in pvm. First, a send buff er must be

initialized by a call to pvm_ini ts end () or pvm_mkbuf (). Second, the message

must be packed into this buffer using any number and combination of pvm_pk * ()

routines. Third, the completed message is sent to another process by calling the

pvm_send () routine or multicast with pvm_mcast () routine. (pvm_bcast () can

be used for broadcasting). PVM also supplies the routine, pvm_psend () which

21

combines the three steps into a single call. This allows for the possibility of faster

internal implementations, particularly by MPP vendors. pvm_ps end only packs and

sends a contagious array of a single data type. A message is received by calling either a

blocking or non-blocking receive routine and then unpacking each of the packed items

from the receive buffer. The pvm_upk* () routines provide the unpacking features.

The receive routines can be set to accept any message, or any message from a specified

source, or any message with a specified message tag, or only messages with a given

message tag from a given source. PVM also supplies the routine, pvm_precv () ,

which combines a blocking receive and unpack call. Like pvm_psend, pvm_precv is

restricted to a contiguous array of a single data type.

The encoding options provided by PVM include PvmDataDefault, PvmDataRaw

and PvmDatalnPlace. For PvmDataDefault, XDR encoding is used because pvm cannot

know if the user is going to add a heterogeneous machine before this message is sent. If

the user knows that the next message will only be sent to a machine that understands the

native format, then he can use PvmDataRaw encoding and save on encoding costs. If the

PvmDataRaw encoding option is used, no encoding is done. Messages are sent in their

original format. If the receiving process cannot read this format, it will return an error

during unpacking. For the PvmDatalnPlace scheme, as the name specifies the data is left

in place. Buffers only contain sizes and pointers to the items to be sent. When

pvm_send() is called the items are copied directly out of the user's memory. This option

decreases the number of times the message is copied at the expense of requiring the user

to not modify the items between the time they are packed and the time they are sent.

Another use of this option would be to call pack once and modify and send certain items

(arrays) multiple times during an application. An example would be passing of boundary

regions in a discretized PDE implementation.

22

PVM Collective Communication Primitives

PVM provides facilities to do collective communications that operate over a entire

group of tasks. This includes primitives for common parallel program operations like

barriers, global reductions, multicast/broadcast, scatter/gather etc. Before describing the

actual pvm functions or routines to perform these operations, I will discuss the dynamic

process group features in pvm.

Dynamic process groups are implemented on top of PVM3. In this implementation

a process can belong to multiple groups, and groups can change dynamically at any time

during a computation. Pvmd does not perform the group operations. This is handled by a

special group server that is automatically started when the first group function is

invoked. There are trade-offs between using static and dynamic groups, and future

versions of pvm. may include efficient collective communications between static group

members. (Currently pvm_staticgroup () can be used to declare a group as static).

PVM group functions are designed to be very general and transparent to the user at

some cost in efficiency. Any pvm task can join or leave any dynamic group at any time

without having to inform any other task in the affected groups. Tasks can broadcast

messages to groups of which they are not a member, and in general any pvm task may

call any group functions at any time. The exceptions are pvm_lvgroup called by a task to

leave a group, pvm_barrier called by a task to participate in a barrier construct and

pvm_reduce called by a task to perform a global reduction. These functions by their

inherent nature require the calling task to be member of the specified group.

The functions pvm_j o ingroup () allows a task to join a user named group. The

first call to pvm_j o ingroup creates a group with the specified name, and puts the

calling task in this group. It returns the instance number (inum) of the process in this

23

group. Instance numbers run from 0 to number of group members minus 1. The routine

pvm_l vgroup () allows a task to leave a specified group. The task calling

pvm_l vgroup to leave a specified group will still be member of all other groups it had

joined. The routine pvm_get tid () returns the tid of the process with a given group

name and instance number. pvm_gettid allows two tasks with no knowledge of each

other to get each other's tid by simply joining a common group. pvm_getinst ()

returns the instance number of a specified tid in the specified group. pvm_gsize ()

returns the number of members in a specified group. As I show later, these pvm group

management functions are used appropriately by the cop software library to manage the

cop communication channels.

The barrier is a common parallel programming construct. In pvm a barrier is

implemented as a function pvm_barrier () that blocks the process until the specified

number of group members have called the barrier function. In general count should be

the total number of members of the group, but it is required as a function argument

because with dynamic process groups pvm cannot know how many group members are

in a group at a given instant. It is an error for processes to call pvm_barrier with a group

it is not a member of. It is also an error if the count argument across a given barrier call

does not match. pvm_bcas t () labels the current message with an integer identifier

(message tag), and broadcasts the message to all tasks in the specified group except itself

(if it is a member of the group). pvm_reduce () performs arithmetic operation across

the group, for example, global sum or global max. The result of the global operations is

returned only to the task that is specified as the root. If other members of the group

require the reduced result the root task should ship it to them using pvm_mcast () or

pvm_bcast () functions. The reduction operation is done element-wise on the input

24

data. PVM also supports using any user specified reduction function. Even though this

feature makes global reductions very flexible, most of the real applications seem to use

only the common predefined functions like global sum, product, max, min, logical

operations etc.

Multicast

Libpvm function pvm_mcast(), sends a message to multiple destinations

simultaneously. The current implementation only routes multicast messages through the

pvmds. It uses a 1 :N fanout to ensure that failure of a host doesn't cause the loss of any

message (other than ones to that host). The packet routing layer of the pvmd cooperates

with the libpvm to multicast a message.

To form a multicast address tid (GID), the G bit in the tid is set (Figure 2). The L

field is assigned by a counter that is incremented for each multicast, so a new multicast

address is used for each message, then recycled. To initiate a multicast, the task sends a

message containing a list of recipient tids to its pvmd. The pvmd creates a multicast

descriptor and gid. It sorts the addresses, removes bogus ones and duplicates and caches

them. It sends a message to each destination pvmd (ones with destination tasks), with gid

and destinations on that host. The gid is sent back to the task. Later the task sends the

multicast message to the pvmd, addressed to the gid. As each packet arrives, the routing

layer copies it to each local task and foreign pvmd. When a multicast packet arrives at a

destination pvmd, it is copied to each destination task. Packet order is preserved, so the

multicast address and data packets arrive in order at each destination. Due to this type of

implementation the pvm multicast is dependent on the UDP based pvmd-to-pvmd

communication schemes.

Finally, to use collective constructs in application programs, there is a separate

25

library libgpvm3 .a that must be linked with user programs. Later I show that in a much

similar way, the COP library (libcop.a) linked to application programs can use the cop

resources for efficiently performing global operations.

Performance Limiting Factors in PVM

PVM has several performance limiting factors. Some of these exist due to the

trade-offs made to provide enough generality to the application user, and due to the

inherent heterogeneous nature in the design. The networks used during the development

of the package are the ethernet based networks that has a maximum bandwidth of only

10 Mbits/sec. The primary communication protocol followed (TCP) cannot take full

advantage of the performance of modern high speed networks due to its window size

limits. Other major performance limiting factor is the overhead of traversing the

protocol stacks to send/receive messages to/from other tasks. A typical example is the

number of times an application data buff er is copied before it makes it to the application

layer of the peer task. Apparently, most of the on-host latency results from copying of

large numbers of data buffers [Sten94a]. The low performance of the networking

medium and communication protocols accounts for the low inter-host performance.

These performance limitations have more effect on the collective communication

primitives because of their heavy use of the network resources. For example, the generic

port of pvm assumes the underlying network cannot support multicast. As a result it

cannot directly make use of the inherent multicast capabilities of networking

technologies like ATM. Also the overhead due to additional communications needed

with the group-server, to perform broadcasts limits the usability of the broadcast

primitives in pvm. The scalability of the multicast feature is limited due to the 1 :N direct

fanout, because of the heavy contention caused by the acknowledgment messages. A

/

26

more detailed explanation of the performance limiting factors in pvm is given later when

I provide the performance measurements and analysis of stand alone PVM and

combined COP-PVM system for workstation clusters.

,l'

CHAPTER IV

COP SYSTEM ARCHITECTURE AND OPERATIONS

This Chapter describes the original COP system architecture, associated hardware

modules, and their theory of operation. For accuracy, this chapter follows the work of

Hall [Hall94a] closely.

Goals

The goals of the COP system are:

1. Be applicable to "Big Iron" multicomputers, workstation cluster

multicomputers, and distributed shared memory systems.

2. Improve the efficiency of a wide variety of common parallel programming

operations so as to better justify the cost of implementation.

3. Retrofit easily to the hardware of current generation machines so that it would

not be necessary to wait for the next generation of machines to gain the benefits.

4. Require minimum modification of existing programming paradigms so as to not

waste the massive efforts that have been invested in them.

5. Be compatible with MPI, PVM, and other current efforts to insulate

programmers from low level system details.

6. Be compatible with advances such as thread scheduling and object oriented

parallel programming that are likely to be included in future machines.

7. Have a high benefit-to-cost ratio.

28

As I discuss the COP architecture and the software in the following sections, I will

describe how the COP hardware and software was designed to meet these goals.

Top Level View

Figure 4 shows the network topology for a single level COP system. As shown,

each compute node in a group of 64 is connected to a coordination processor (COP) by

an independent high-speed, half-duplex serial data link.

Half Duplex
Serial Line

Workstation # 0 • •

Half Duplex
Serial Lines

COP

• •
Workstation # 63

Figure 4. Single Level COP System Topology

Since the communication links between compute nodes and a cop controller are

independent, all the compute nodes in a group can send data words or synchronization

signals to their controller simultaneously. With these dedicated direct links, the source

and destination are hardwired, so no complex message formatting is required. To send a

word to its controller, a compute node simply does a write to its cop channel interface

port. The dedicated signal lines also mean that no time is required to establish a

connection with the controller, and there is no network contention. The result of these

...

29

capabilities is that each compute node can transmit a synchronization signal or data to its

controller in a very short time. The independent communication links also mean that a

cop controller can broadcast a synchronization signal or data to all the compute nodes in

its group simultaneously.

Bit-serial data transmission was chosen to minimize the number of conductors in

each link and for compatibility with relative inexpensive, non-multiplexed fiber-optic

data transmission.

Half Duplex
Serial Line

Workstation
#0

Workstation
#63

Half Duplex
Serial Line

Workstation
#4032

Figure 5. Two Level COP system Topology

Workstation
#4095

The decision to assign 64 compute nodes to each controller was made partially so

masks, bit-vectors, etc. are compatible with the data path widths of the latest compute

node processors [Hall94a]. Assigning 64 compute nodes to each controller means that a

30

two level hierarchy of cop controllers can service up to 4096 compute nodes as shown in

Figure 5. Keeping the number of levels low reduces the number of controllers and the

number of connecting links for a given size machine. Keeping the number of levels low

also reduces the overhead involved in traversing the tree for global operations in which a

large number of compute nodes participate. To broadcast a value to all 4095 other nodes,

for example compute node 0 send to controller 0, controller 0 sends the value to the

Level 2 controller, the level 2 controller broadcasts the value to all the Level 1

controllers, and each of the level 1 controllers broadcasts the value to its 64 compute

nodes. The whole process requires only three passes through a cop level.

A very important point here is that the topology of the COP system is independent

of the topology of the underlying machine. This means that the COP system is equally

applicable to "Big Iron" multicomputers, cluster multicomputers, and distributed shared

memory multiprocessors. Note that the COP system will be most efficient if a particular

physical partition or "virtual machine" is created with all its compute nodes connected to

one cop, but this is not required. In this case only the level 1 cop is used for all

operations within the partition. For a two level system it is somewhat more efficient to

assign the compute nodes of a partition to level 1 cops that are connected to adjacent

input channels on the level 2 cop, but again, this is not required.

The software receive latency for a cop broadcast is usually very low because the

receiving node is waiting for the control data word and immediately reads it from the

cop network interface as soon as it arrives. In the case of a global sum operation, for

example, a compute node would most likely write its data value and the appropriate

opcode to its cop interface port, poll the cop interface port Data Ready strobe until the

global sum arrives, and then immediately read the sum from the port.

31

Each cop controller has one extra serial channel in addition to those used to

connect to 64 compute nodes or to lower level cops. One of the 64 channels is used to

connect to a higher level COP if present. The extra serial channel can optionally be used

to export performance or debugging data to external recording equipment.

A 64-bit integer ALU in each cop is used for performing global integer SUM,

MIN, MAX, bitwise AND, bitwise OR, and bitwise EXOR operations. A floating point

unit in cop controller is used for performing global floating point SUM, MIN and MAX.

Each cop controller also contains a bank of very fast RAM which is used to hold

intermediate results and shared write-able variables, to function as a global name space,

and to accumulate performance data. A second, smaller bank of RAM holds broadcast/

multicast masks. A third, small bank of RAM holds bit vectors which identify the

compute nodes participating in a barrier or other global operation. As a brief,

introductory example of how a COP system works, we will use a global sum operation.

To start, each compute node writes a command consisting of a data value and the

appropriate opcode to its cop network interface port. The cop network interface

controller then automatically transmits the command to the cop controller. Arrival of a

command at the network port of a controller sets a DATA_RDY flag for that input

channel. The controller cycles through the input channel service requests on a round­

robin basis. When the controller services a channel, it adds that channel's contribution to

the intermediate result and resets the appropriate bit in the bit vector which identifies the

compute nodes participating in the operation. When all the compute nodes have

contributed, the controller broadcasts the sum simultaneously to all the participating

compute nodes.

Operations that a COP system can directly perform include: synchronized read­

modify-write access to global variables, barriers, integer and floating point global sum,

32

MIN, MAX, bitwise AND, OR, EXOR, one-to-all broadcast or multicast, and all-to-all

broadcast or multicast.

The Compute Node to COP Network Interface

Figure 6a shows a block diagram of the compute node to cop network interface.

This interface is basically just a serial port with receive buffering, deadlock detection,

and virtual machine protection capabilities. The compute node can interact with the

interface on either a polled or an interrupt basis. To the compute node the interface

appears simply as a 64-bit read/write port.

Each communication between a compute node and a cop consists of one to four

32-bit words. The first word in a cop command is always an instruction word with the

format shown in figure 4b. Depending on the particular command, this instruction word

is inserted by a user instruction, an operating system command, or hardware. The U/S bit

in the instruction word indicates whether the command is a user level command or a

supervisor level command which can only be invoked within an operating system call.

The PPN in the instruction word is a number which identifies the physical partition to

which the processor has been assigned. The X bit is used to indicate whether the

physical partition extends beyond the local, level 1 cop. In other words, the X bit

specifies whether a COP command should be passed on to a level 2 cop and applied to

more than one level 1 cop. The PID in the command word includes context, group, and

rank numbers which identify the process sending or receiving the command. This

process identification mechanism was chosen for compatibility with the Message

Passing Interface Standard [tennea]. The cop software interface section described in

later chapters describes how this basic message format of the COP system was adapted

to be used on workstation clusters.

33

' I I

~
STATUS CURRENT 4RAMro~

REGISTER .. PROCESS ... -I REGISTER
REGISTER

I J~ -

~~
D ATABUS

A

c
B

.... ,, SER/SEB *
~

PORT - ~ - - -... -. - -- -- r+
~ l

MClOOSX • - ..
DDRESSBUS t

,, 1451

RAM~- ;UAL PORT SPANSCEIVER

u DEAD

-. LOCK ADDRESS RAM BUFFER
FUL
-

TIMER
INSTRUCTION

~ ~~STROBE*

L

1----1

CONTROLLE!1 I
- ADDRESS

I I

NTRL - DATA 31-0

us
~

RAM --
CONTROL I DATA 63-32

I
~ SYS_ERR

- DATA_R[-
I -;...... INTERRU PT

OUTPUTS

(a)

I U/S - 1 I x -1 I OPCODE - 7 I MASK - 1 I PPN - 7 PID-7 UNUSED-8

(b)

Figure 6a.b. COP Channel Interface
(a) Compute Node to COP network interface circuitry
(b) Format for COP instruction word showing sub-fields.

The opcode bits in the instruction word specify the operation to be performed.

The MASK bit in the instruction word is used to select one of two programmable masks

in the cop mask RAM. Additional bits in the instruction word are reserved for future use.

If required, the second word in a command contains an address which is used to

34

access a global shared variable or partial result in the cop Data RAM. The third and

fourth words in a command are used for 32-bit data values, 64-bit data values, or 64-bit

mask values. The basic message format offered by the cop hardware is carefully broken

down into software defined fields and is described in later sections on cop programming

libraries.

If a command consists of more than one word, the additional words are transferred

to the dual-port RAM buffer as they are written to the interface by the compute node.

However, as soon as an instruction word is written to the buffer, the interface controller

transfers it to the UART and the UART automatically sends the word on to the

controller. Additional words of a command are transferred to the UART and sent to the

cop controller in sequence. In the current design, the actual UART sections of both the

compute node to cop network interface and the network to cop interface use Motorola

MC100SX1451 Autobahn Spanceivers rather than custom modeled devices. These

devices not only fill a need in the COP system, but also demonstrate that 200-400

Mbyte/sec serial transmission is possible with currently available commercial

technology.

The spanceiver serializes each 32-bit word and transmits it over a positive emitter

coupled logic (PECL) differential transmission line. High quality triaxial cable can be

used to connect spanceivers that are within 10 feet of each other. For longer distance

connections between spanceivers, the PECL signals can be converted to non­

multiplexed optical signals and transmitted over relatively inexpensive multi-mode fiber

optic cables. The deadlock timer on the interface can be used to trap to the operating

system if a compute node sends a command to its controller and does not receive a reply

within some pre-programmed time interval.

In summary, the compute node to cop network interface provides fast data transfer

35

with the protection features required for virtual machine operation. The relative

simplicity and standard bus connections of this interface allow it to be implemented as a

small daughter board which can be added to an existing compute node for performance

enhancement or can be easily included in a new system design.

COP Architecture and Operations

The COP to COP Network Interface

Figure 7 shows block diagram of a cop controller. Each of the cop to network

interfaces has a Motorola MC 1OOSX1451 spanceiver, four 32 bit registers for buffering

words received from a compute node, four 32 bit registers for buffering words to be sent

to a compute node, and a mini-controller. The first register in each set is an instruction

register. The second register in each set is used for data RAM addresses which identify

global shared variables or partial results. The third and fourth registers in each set are

used for 32-bit or 64-bit words and 64-bit masks.

When the first word arrives at the cop, the interface controller transfers the word to

the first buffer register, and extracts two bits which specify the number of words in the

command. As additional words are received, they are transferred to the appropriate

buffer register.If the spanceiver detects an error while receiving a word, it will assert its

error signal. If this signal is asserted, the interface controller aborts the receive operation

and, as soon as the spanceiver is available, writes a "resend" command to the spanceiver

for transmission back to the compute node. In response to a resend command, the

compute node interface controller resends the entire command which is still in the RAM

buffer on the compute node interface. After some number of unsuccessful attempts to

receive a message from a compute node, the buffer controller sends an error word which

causes a trap to the operating system on the compute node. A major advantage of this

36

Channel 0 Interface
- -- ...

Spanceiver Registers Serl

- Mask RAM Instruction Rx -Ser* i-- L
1-----J t A •• Instruction Tx--

T ""1 ' - c
Interface Address Rx

H
,,

Controller Address Tx ~
.____

Mask Generator
D32-0 Rx

l. .. D31-0 Tx
Interface

D63-32 Rx Enables

D63-32 Tx Terminal Count
1t- RAM

•
• Jl .

Channel 65 Interface " ,,
Registers

Done Generator Ser/ Spanceiver

Ser* Instruction Rx ~~

Instruction Tx ~·
Done

Address Rx .
Interface .

DataRAM
Address Tx ~· Controller . ,,

" I D32-0 Rx
f LATCH

D31-0 Tx .
D63-32 Rx •
D63-32 Tx Integer ALU

I

1 ~ ,,
Controller ~ .

l Instruction Bus - I LATCH Address in Bus I
RAM Address Bus Floating Point

Opcode Bus ...
Unit ..

I
Figure 7. Block Diagram of a Coordination Processor

37

approach is that the compute node to controller link can cycle through multiple attempts

to deliver a message without involving the controller. This reduces the cop controller

overhead.

When all of the words of a command have been received without errors, the cop

interface controller asserts a DATA_RDY signal. The cop controller polls the
I

DATA_RDY signals of the 64 network interfaces on a round-robin basis and services

ready interfaces in sequence. As soon as the cop controller reads a command from a

ready interface, the interface controller writes an acknowledge word to the spanceiver

for transmission back to the compute node. Arrival of this acknowledge word at the

compute node indicates that the receive registers on the cop end of the link are available.

Requiring that the compute node interface waits for this acknowledge prevents

overwriting the receive buffers on the cop and assures that a command is still available

in the compute node interface RAM buffer for resending in case of an error.

To send a command to a compute node, the cop controller transfers the command,

address and data components of the command in parallel to the four transmit buffer

registers in the interface. The interface controller then transfers the buffered words to the

spanceiver in sequence for transmission. If the compute node interface detects an error

in received word, it will direct the cop interface controller to resend the command for a

pre-programmed number of times.

COP network communication links are asynchronous. This means that no global

clock is required and that cables do not have to be cut to specific lengths in order to

synchronize transmitters and receivers. This makes it easier to use the COP system with

cluster multicomputers.

38

Overview of COP Operations

As mentioned previously, a cop controller contains a 64-bit integer ALU, a double

precision floating point unit, three banks of 64-bit wide, very fast RAM, and a hardwired

controller. The data RAM can be used to hold shared write-able variables, hold

intermediate computational results, function as a global name space, and accumulate

performance data. The mask RAM holds programmable masks which are used to enable

the desired output channels during broadcast and multicast operations. The terminal

count RAM holds the bit vectors that are used to keep track of which compute nodes

have participated in a global operation. In this section I will give a brief overview of the

original cop hardware design. Detailed theory of operation of each major hardware

block is provided by Hall [Hall94a]. Later in the software design sections I will describe

how these cop hardware features are used in a workstation cluster environment.

As a first example of how a cop controller operates, suppose that one compute

node needs to broadcast a data value to all or a subset of the other nodes in its partition.

To do this the compute node sends the data word and the appropriate instruction word to

its cop controller. When the cop controller reads the command, it will use the PPN, PID,

and a couple of other bits in the instruction word as a pointer to the Mask RAM. The

mask read from this RAM will enable the transmit buffers of the channels that are to

receive the broadcast data word. After the transmit buffers are enabled, the controller

writes the data word to all of them simultaneously. The interface controllers then

transmit the data word to all the destination compute nodes at the same time.

If the partition is larger than can be serviced by a single cop, then the local, Level

1 cop forwards the command on to the Level 2 cop. The level 2 cop uses a mask in its

Mask RAM to broadcast the command to the appropriate level 1 cops and each of these

then uses a mask from its Mask RAM to broadcast the data value to the desired nodes.

39

To enable the compute node to efficiently broadcast vectors larger than the eight­

byte maximum for a single broadcast command, the cop controller has a channel lock

capability. When a cop controller receives a lock command, the round-robin servicing of

input channels is disabled so the controller continues servicing the locked channel until

it receives an unlock command. This feature allows the node associated with the locked

channel to pipeline back-to-back sequences of words through the cop. Using the PPN

and PID to access a mask assures that the mask belongs to the currently executing

process.

The COP system can also be used to implement a barrier very efficiently. As

mentioned earlier, the Terminal Count (TC) RAM in the COP is used to hold bit vectors

which identify the compute nodes participating in global operations such as barriers,

reductions etc. Each bit in one of these vectors corresponds to one of the attached

compute nodes. When each participating compute node reaches the barrier, it sends a

single 32-bit command word to the cop. In response to this word the cop controller resets

the corresponding bit in the barrier bit vector and determines if all the bits are reset. If all

the bits in the barrier vector are reset, the 'done' signal is asserted. In response to the

done signal, the cop controller writes a barrier exit command word to all the network

interfaces which are enabled by the corresponding mask from the Mask RAM. The

barrier exit command is thus broadcast to all the participating compute nodes

simultaneously rather than sequentially.

Global sum and other similar global operations can also be performed very

efficiently by a COP system. For this operation each compute nodes sends a contribution

to its cop. The cop adds each contribution to a partial result stored in a Data RAM

location. When all the values have been added, the controller uses a mask from the Mask

RAM to broadcast the result to the participating compute nodes. For protection, the PPN

40

and PID in the instruction word are used as part of the address for the temporary result in

the Data RAM and for the mask in the Mask RAM. Note that each intermediate result

could be broadcast to all or to a subset of the participating nodes at the same time as it is

written back to the Data RAM, if this were required by the particular algorithm.

Still another type of operation that a COP system can easily perform is global

shared variable access. For simple read access, a compute node sends the appropriate

command and a variable identifier (address) to its cop. The cop controller uses the

variable identifier, the PPN, and the PID received from the compute node to address the

desired location in its data RAM and sends the addressed data value back to the compute

node. In a case where it is important that a compute node should very quickly read a

series of values from the Data RAM or write a series of values, the channel lock feature

can be invoked.

Read-Modify-Write access to the COP Data RAM is essentially the same, except

that as the value read from the Data RAM is being copied to an interface transmit buffer,

it is passed through the ALU, modified as specified in the command, and then written

back to controller memory.

Table I shows the list of commands that the original version of the cop controller is

programmed to implement. Note that with the COP design there is no conflict if, for

example, one node sends a Data RAM read (RSRAM) command, while a global

reduction is in progress. Assuming the controller services the interface with the global

sum command first, the cop controller will simply add that interface's contribution to the

intermediate sum in the data memory. If the global sum is now complete, the controller

will broadcast it to all the nodes waiting for the sum. As mentioned earlier, an instruction

is broadcast along with the sum to identify the sum for the receiving nodes. (The cop

software design has more features like message tags to identify specific messages). If the

41

global sum was not complete, the cop controller will just go on servicing other channels

in a round robin basis and eventually the channel that issued RSRAM message will get

serviced.

The COP system provides reliable communication between the compute nodes

and the COP controller over the COP channels. As a result, the key issue is that, unlike

the PVM model, application tasks are not required to traverse the protocol stacks to

access the COP channels. Figure 8 below shows the protocol stacks in PVM (normal

route) and the COP. A final point here is that the COP system does not prevent use of the

standard features on a given system. It simply provides a more efficient mechanism for

global operations.

Machine 1

Machine 1

Unix
domain
socket

~·o·t 1rec
- - - - - -·- "Access

___ UDP sockets -

(a)

Unix
domain
socket

Direct._
Access

Machine 2

Machine 2

COP Channel COP Channel

(b)

Figure 8. (a) Protocol stacks for PVM (normal route)
(b) Protocol stacks for COP system

42

TABLE I

COP COMMANDS AND OPCODES

Command Opcode Description

RSRAM32 1011100 Read 32-bit data from Data RAM

WSRAM32 1011101 Write 32-bit data to Data RAM

RMW32 1011110 Read-Modify-Write 32-bit data

SUMI32 1010000 32-bit integer global sum

MAXl32 1010001 32-bit integer global Maximum

MINI32 1010010 32-bit integer global Minimum

OR32 1011000 32-bit global logical OR

AND32 1011001 32-bit global logical AND

EXOR32 1011010 32-bit global logical EXOR

RSRAM64 1111100 Read 64-bit data from Data RAM

WSRAM64 1111101 Write 64-bit data to Data RAM

RMW64 1111110 Read-Modify-Write 64-bit data

SUMI64 1110000 64-bit integer global sum

SUMF 1110100 64-bit floating point global sum

MAXI64 1110001 64-bit integer global Maximum

MAXF 1110101 64-bit floating point global Maximum

MINI64 1110010 64-bit integer global Minimum

MINF 1110110 64-bit floating point global Minimum

OR64 1111000 64-bit global logical OR

AND64 1111001 64-bit global logical AND

EXOR64 1111010 64-bit global logical EXOR

BENTRY 0000001 Barrier entry and broadcast
LOCK 0000010 Lock a channel

UNLOCK 0000011 Unlock a locked channel

XMIT 0000100 Retransmit a message

ACK 0001000 Acknowledgment for a message

BCAST32 0011100 Broadcast 32-bit word
SETBM 0111110 Set Broadcast Mask

SETTC 0111111 Set TC Bit vector

BCAST64 0111100 Broadcast 64-bit word

CHAPTERV

DESIGN AND IMPLEMENTATION OF THE COP SOFTWARE

In Chapter IV, we discussed the basic programming model followed for the COP

system, and a brief overview of the cop software design goals. As mentioned originally,

the cop software subsystem is designed to work with the PVM message passing system.

Chapter III showed that pvm provides the necessary software utilities to program

heterogeneous networks. With the cop hardware features and pvm model fresh in mind,

in this chapter I will provide the cop software subsystem design and implementation.

Since the size of most of the present day workstation cluster multiprocessor systems is

well below the capacity of a two level COP system (4096 compute nodes), the cop

software design discussed here concentrates on a single level COP system. A single

level COP system can support a maximum cluster size of 64. Features are provided

whereever possible to easily extend the software design for a multilevel COP system.

Also, even though the underlying pvm model allows multiple concurrent users, only one

user can access the cop resources on a compute node at a time. This restriction was made

to make the design simple, but it can be removed later and the software can be modified

to add concurrent simultaneous users.

COP Message Format

As mentioned originally, the basic message format between a compute node and a

cop controller consists of one to four 32-bit words. The first word is the instruction word

and specifies the basic operation requested by the compute node. The second word is

44

specified as the address word and is used to address variables in controller memory

owned by any task using the cop resources. The third and the fourth words are data

words, and are used to carry either application data or mask bit vectors. Figure 6b in

Chapter IV showed a basic partitioning of the instruction word as originally proposed.

For the work here, the entire message structure is re-partitioned to better use the cop

resources along with the pvm model. The cop hardware design can be easily modified to

support the current specifications. Figure 9 shows the message format supported by the

COP software. The number of words belonging to a single logical message varies from

one to four depending on the type of operation specified in the instruction word.

31 30 23 21 4 3 2

E0 OPCODE IM TKNO 0 RSRVD

(a)

31 30 29 18 17

RSRVD CHNO MSG TAG

(b)

31

DATA/MASK

--
(c)

31

DATA/MASK

(d)

Figure 9. COP Message Format (a) Instruction Word (b) Address Word
(c) Data 1 Word (d) Data2 Word

0

0

0

0

I

The U/S bit in the instruction word differentiates an application message from an

45

operating system generated message. The X bit specifies whether the message should be

restricted to the local controller or whether it should be forwarded to a higher level cop

controller. The X bit needs to be used only for a multi level COP system, which has more

than 64 compute nodes. The OPCODE specifies the operation requested by the compute

node sending this message. The opcodes supported by the COP system is illustrated in

Table I included in chapter IV. The M bit is used to select one of the two programmable

masks on the cop controller. The Z bit is set if the compute node sending this message

wishes to access the address space of other channels either on the same controller or on a

different controller. If the other channel belongs to a different controller the X bit

discussed before will be set along with the Z bit. If the Z bit is off in a instruction word,

the cop controller automatically use the current value of the channel poll counter as the

channel number (CHNO). This is appropriate as the poll counter always indicates the

channel currently serviced. The cop controller address spaces are described later in this

chapter.

The task number (TKNO) field represents a specific task using the controller

resources. The channel number (CHNO) field in the address field represents a specific

cop channel. As each channel is attached to a compute node, the 'CHNO' field indirectly

points to the host connected to the respective channel. As a result of this partitioning of

message space, a (CHNO, TKNO) tupule can easily identify any task that use the cop

controller resources in a cluster. In the next section I will show how the (CHNO,TKNO)

tupule replaces the task identifiers (tids) used in the pvm model to identify tasks. The

MSGTAG field in the address word serves the same function as message-tags for pvm

messages. They help to de-multiplex one received message from another. Additionally,

message-tags in a COP system provide the offsets from the base address of variables in

COP Data RAM. The datal and data2 words in the cop message are used to carry either

46

32164 bit data or the 64 bit masks. The 'RSRVD' fields are reserved for future use.

Channel Identifiers

PVM uses 32 bit Task Identifiers (tids) to address pvmds, tasks, and groups of

tasks within a virtual machine. Figure 1 in Chapter III showed a generic pvm task

identifier. Out of the 32 bits, 12 bits (H field) are used as host identifiers. The H field

identifies the location of a task in the virtual machine; i.e., the host on which a given task

resides. The L field in the tid has eighteen bits and is used to identify a given process

local to a host. The H and L fields together can identify any process in the workstation

cluster. This hierarchical naming allows pvm to assign tids to local tasks by their local

pvmds without costly off-host communication. This prevents a bottleneck at an ID

server.

The cop software uses Channel Identifiers (cids) to identify any task using the cop

controller resources. The cid consists of three fields: a controller number (CNTNO)

field, a channel number (CHNO) field and a task number (TKNO) field. The controller

number field addresses a particular cop controller. This is always zero for a single level

cop, but ranges from 0 to 63 in a 2 level COP system. The CNTNO and CHNO fields

together is analogous to the H field in pvm task identifiers. From the perspective of the

cop controller, CHNO is a way of addressing the cop channels. As each host in the

cluster has a single channel, channel number (CHNO) indirectly identifies a specific host

in the cluster. The TKNO in cid is analogous to the L field in pvm task identifiers. Task

numbers (TKNOs) are assigned local to a host and identifies a task within the host.

The cop software system creates a channel identifier (cid) for any given pvm task

identifier. Two approaches are considered for performing the H field in tid to CHNO in

cid mapping. First is a table lookup method to convert any given tid to a cid. The table

47

requires an initialization phase, and is updated whenever a task is spawned or completed.

Each compute node keeps a copy of this table. The cop function library is designed in

such a way that, if a new local task is spawned or completed it gets notified by the pvm

notify function, updates its local table, and broadcasts the changes to all other compute

nodes to provide consistency. As the cop channels cannot be used before the

initialization of this table, pvm collective communication primitives are used to initialize

the lookup table on all the compute nodes. But once the initialization is over, the cop

channels are used to broadcast the changes due to tasks entering or leaving the system.

For example, if there are N compute nodes, and one task per compute node, the table

contains N entries for all the N tasks. The initialization is done via all-to-all broadcasting

mechanisms, each compute node sending its contribution to all other N-1 compute

nodes.

As the table-lookup procedure discussed above proved to be inefficient due to the

use of slow pvm group functions for table initialization, a second method was devised to

overcome this overhead. This method is very simple and makes use of the mechanism

used to assign tids in pvm. PVM assigns host numbers using a simple counter policy.

The host numbers are provided in the same order as hosts are added. Even though pvm

provides features to add or delete a host dynamically, most applications use a static host

cluster. Each channel in a cop controller is linked to a host in the cluster. As described in

the previous chapters, the cop controller polls each channels using a poll counter on a

round robin basis. In the current cop hardware design, the channel numbers cannot be

configured automatically. Each channel has a channel number between 1 and 64, and is

the value of the poll counter used to poll them (Value of zero is not used as the H field in

pvm tids is used by pvm to identify the local pvmd). If hosts are added to the pvm

system in the order of their channel numbers, there will be a one-to-one correspondence

48

between the channel numbers and the host numbers assigned by pvm. For a single level

cop, as the maximum cluster size is only 64, the H field can be mapped directly to the

CHNO field in the cid. The controller number CNTNO is always zero for a single level

COP system. For a cluster size of 4096, we require 64 level 1 cop controllers and a level

two cop controller. As the H field in tid is 12 bits long, the maximum cluster size

supported by pvm is 4095 (A zero in H field identifies a local pvmd). In a 2 level COP

system, a cop controller with CNTNO of zero is attached to hosts with host numbers

ranging from 1 to 64, a controller with CNTNO of one will be attached to hosts with

their H fields ranging from 65 to 128, and so on.

The only restriction on the direct H-to-CHNO mapping mechanism is that, pvm

should add hosts to the system in the order of channel numbers. This is fair for almost all

applications as most of them do not care about the order in which hosts are added to the

cluster. As the L field in a tid is assigned locally to a host, it is used as the TKNO field in

cid. As a result of this mapping, any task in the cluster that owns part of the tid space

also owns a part of the cid space in the COP system. Similarly the L field in pvm tid is

assigned locally to a host using a simple counter when tasks are spawned. Due to this

simple local assignment of process numbers by pvm, the L field of the tid is used directly

as the task number (TKNO) field in cid.

Either of the mapping schemes can be selected, depending on requirements. The

first scheme is more general and does not impose any restrictions on the applications, but

is inefficient. The second method is simple and requires no overhead of initialization, but

restricts the order in which hosts can be added or deleted from the cluster. I will follow

the direct host number to channel number mapping in my further discussions for sake of

simplicity.

49

Layered Architecture of the COP-PVM System

PVM runs as a user process and uses the protocols built into the operating system

of the compute nodes. A pvm daemon runs on each compute node and functions as a

message router and controller for pvm messages. They also assist in additional functions

like task management, host failure notification etc. Application programs that use pvm

functions are linked to the 'libpvm.a' and 'libgpvm3.a' libraries.

Application

I
COP Functions Library PVM Functions Library

TCP I PVMDaemon
UDP

COP Interface Driver IP

Network Interface Driver

COP Channel & Controller Network Hardware

Figure 10. Combined COP-PVM Model Communication Resources

Figure 10 shows the layered architecture of the combined COP-PVM model's

communication resources. The application programs can access the pvm resources

directly using the original libpvm functions. They can access the cop resources using the

functions in 'libcop.a' library. A detailed explanation of the libcop library is provided

later in this chapter. As the cop functions make use of the task management and dynamic

group features of pvm, part of the COP library is layered on top of pvm. This allows cop

functions to extract information about tasks, dynamic groups etc. from pvm as shown in

50

Figure 10. As this dependency on pvm adds additional overhead, the number of pvm

function calls is made as small as possible. Effective 'software caching' schemes allow

the task information to be used in multiple contexts.

The pvm asynchronous event reporting functions are used by the cop library

functions to determine events like host failure, task existence etc. As the latency of the

cop channels is very low for small messages, the cop channels are considered for

features for providing "heartbeat" messages between the compute nodes in future

software versions. This will provide reliable and fast notification of events like host

failures.

Compute Node to COP Channel Interface Registers

The compute node channel interface hardware provides a clean interface for

accessing the cop channels. There are registers available on the compute node channel

interface for control, status, data transmission and data reception functions. The control

and status features are provided by a Control & Status Register (CSR) on the compute

node interface. The control functions are valid on a write to this register and status

functions are valid while reading the register. Figure 11 shows the structure of the CSR

register.

The RST control bit is used to reset the cop channel interface by the compute

node. When the interface is powered up or a reset is applied using the RST control bit,

the interface hardware performs a self test and reports the status using the status bits in

the CSR register. If the self test has passed, the RDY status bit will be set by the

hardware. The cop device driver use this RDY signal to check whether the interface is

ready for use or not. The enable-interrupt (EIN) control bit is used to enable or disable

receiver interrupts. The interface issues an interrupt to the compute node whenever a

51

message arrives at the interface, if it is configured in the interrupt model.

7 0

I I I I I IErnlRSTI
(a)

7 3 0

ERROR-CODE I RCV I MO+RR I RDY I
(b)

Figure 11. Control and Status Register (a) Control Bits (b) Status Bits

The RDY status bit is used to verify the status of a message transmitted over the

channel. When the interface receives an acknowledgment from the cop controller for the

current message, the RDY bit is automatically set. The cop driver software can check

this bit to verify the status of the last transmission. If the acknowledgment (ACK) for the

message transmitted does not show up before the transmit timer goes off, the interface

posts the error through the ERR status bit. The ERR bit is set to notify time-outs during

transmission, checksum and parity errors while transmission/reception, or if the cop

controller responded with a negative acknowledgment (NACK) for the current message

transmitted. The ERR_ CODE bits specify a predefined error code to distinguish between

the various error conditions. The driver software checks the ERR and ERR_CODE bits

to check the status of a transmission.

The MOD status bit is used to read back the current mode of the compute node

interface to check whether interrupts are enabled or not. The RCV status bit is set

automatically by the interface hardware whenever there is an unread message in the

compute node interface. This bit is automatically reset by the interface controller when

52

all the messages are read in by the compute node. This feature allows the driver to read

in multiple messages upon single interrupt notification by the interface.

Other registers on the compute node interface include a DataTransmit register,

DataReceive register and a Pid register. The Pid register allows the compute node

interface to provide enough protection for messages arriving from the COP channel to

various local tasks. Due to this mechanism, a message arriving at the compute node

interface from the channel can be read only by the destination task. Provisions are

provided in the interface hardware to tune the channel parameters like transmit time-out

period, number of retransmissions etc.

COP Controller Address Spaces

As described in the cop hardware design in chapter IV, the COP controller has

three independent memory banks, namely Data RAM, Terminal Count Mask RAM and

Broadcast Mask RAM. As the name specifies the Data RAM is used to store user data,

the broadcast Mask RAMs are used to store the multicast and broadcast masks which

specify the channels that should receive the partial/final result of a collective parallel

operation. The terminal count mask specifies the channels that participate in a collective

operation.

Data RAM CDRAM)

The Data RAM of a cop controller is used to store the data portion of application

messages. The data space is divided primarily into three different address spaces based

on the type of cop operations possible on these address spaces. They are: (a) channel

address spaces(CAS), (b) a global address space (GAS) and (c) a system address space

(SAS). Figure 12 shows the sub-divisions of the Data RAM.

System Address Space (SAS)

Global Address Space (GAS)

Channel Address Space 64 (CAS64)

--------------------------------------! .. I I

CHN0=64
Channel Address Space 03 (CAS03)

CHN0=03
Channel Address Space 02 (CAS02)

CHN0=02
Channel Address Space 01 (CASOl)

CHNO=Ol

Figure 12. Address Space Partitions for Data RAM on COP Controller

Channel Address Space (CAS)

53

The Channel Address Space on the cop controller Data RAM is sub-divided

primarily into 64 channel spaces, so that each channel owns a part of the total channel

address space. They are identified as CAS 1 to CAS64 for the 64 channels attached to a

cop controller. Each CAS space is further divided into different task address spaces

(TAS). As a result each task spawned on a host attached to the cop controller gets a

chunk of memory on the controller. Figure 13 shows the task address space partitions

within a channel address space. Presently the CAS and TAS address space locations and

limits are statically allocated, with the maximum number of tasks per host using the cop

resources restricted by available cop memory. As the task numbers are always locally

54

assigned within a host by pvm, the base of each task address space within a channel

space can be easily derived from the TKNO in the instruction word. Better allocations of

CAS and TAS address spaces, such as dynamically allocating them whenever a task is

spawned and registered to use the cop resources can be designed, but is left out in the

current design to make it simpler. In the current design each CAS base is derived by the

controller from the corresponding channel number (CHNO) (either specified in message

or the value of channel poll counter) and each TAS address space base is derived from

the corresponding task number (TKNO) used in the cop message instruction word.

Task Address Space (x+n)
I . _____________ ;_. I I

~ - TKNO = x+~
Task Address Space (x+2)

Task Address Space (x+l)

Task Address Space (x+O)

-- I TKNO = x+21

~

-- I TKNO = x+ 1 I
......_ Offset = msgtag
l~

I TKNO =x+oj

Figure 13. Task Address Space Partitions within a Channel Address Space

Each memory location in a task's address space is derived by adding an offset to

the TKNO base. The message tags (MSGTAG) used by the application while calling the

cop functions is directly used as offset into the TAS space. This memory model of the

task address spaces is very much similar to the classical segmentation model. The limit

checking mechanisms of the cop controller provides graceful error reporting if the tasks

try to access unauthorized address spaces. It is the responsibility of the applications to

use sensible message tags for their messages depending on controller memory

55

configuration.

Task Address Space as Protected Shared Memory

The task address spaces are configured in such a way that only tasks that own a

TAS have write access to them. But all tasks that use the COP controller resources have

read access to all task address spaces. As a result, the task address spaces work as a one

directional way of passing information between tasks. This is much similar to the

classical PIPES used in UNIX systems for inter process communication.

The task address spaces allows participating tasks to use the COP controller

memory as some kind of protected shared memory mechanism. This is specially useful,

if a variable is occasionally modified by the owner task, but is very frequently read by

other participating tasks. Storing these shared variables in the COP controller allows

efficient and faster access to them by other tasks. Also this sharing does not use any

processing time of the task that actually owns the address space. Later I will show how

this feature is implemented by the cop software system using the read (RSRAM) and

write (WSRAM) RAM operations.

Global Address Space (GAS)

The global address space is primarily an address space to perform parallel

operations between participating tasks that involve collective communications. PVM

allows tasks to join groups, so as to easily perform group operations. The original idea

behind the global address space, was that it can be dynamically partitioned into group

address spaces. Only tasks belonging to the specific group can access its group address

space. To reduce the complexity of the software and hardware design, this was not

attempted in the current version of the COP system. If multiple global operations are

done simultaneously by one or more groups of tasks, the application should take care not

56

to use the same sub-sections in global address space. This can be easily achieved by

making sure that the message tags used along with the group operations do not overlap.

All the global operation data manipulations are performed in the global address

space. This implementation allows tasks participating in a group operation to read the

partial results of the operation, simply by reading the appropriate locations in the global

address space.

The system address space contains initialized variables like the controller number

(CNTNO) of the cop controller if it is multilevel COP system. Also this space was

allocated so as to implement any messaging protocols between level-1 and level-2 cop

controllers in a multi-level COP system in future versions.

Terminal Count Mask RAM <TCMASK RAM)

As described in chapter IV, this is a 64 bit wide memory and holds the terminal­

count mask. Each bit in the TC mask corresponds to a channel attached to the cop

controller. The terminal-count mask specifies which all channels will participate in

global operation. For each location in the global address space in the Data RAM, there is

a corresponding address in the TC RAM. For example, a TC entry with all bits set at

offset N in the TC RAM indicates that, all the 64 channels of the cop controller have to

participate in the global operation performed on the variable at address offset N in the

global address space of the Data RAM. As message tags are directly used as offsets in

the global address space, a global operation performed by the participating tasks with

message tag N requires the contribution from all the 64 cop channels. Later I will show

how tasks local to a channel/host performs a partial global operation and then one of

these tasks sends the partial result to the cop controller as the contribution from the

channel they represent. As mentioned in Table I in Chapter IV, the TC mask can be set

57

only using the SETTC operation. A transmit mask entry can be read from the TC Mask

RAM using a RSRAM64 message with the mask bit (M) set to indicate the mask type.

Thi°s allows any participating task to query the cop controller to find out which all

channels already contributed for a current global operation.

Broadcast Mask RAM <BCAST RAM)

The broadcast Mask RAM is 64 bit wide memory and holds the broadcast mask if

required for global operations. The broadcast mask specifies which all channels should

receive the result of a global operation. Similar to the TC Mask RAM, for each location

in global address space in Data RAM, there is a corresponding address in the BCAST

Mask RAM. For example a BCAST mask entry with all bits set at offset N in the

BCAST Mask RAM indicates that, all the 64 channels of the cop controller will receive

the result of the global operation performed on the variable at address offset N in the

global address space of Data RAM. In other words, this implies that all the 64 channels

will receive the result of the global operation with message tag N. The broadcast mask

can only be setup using the SETBM operation of the cop controller. Similar to the case

of TC masks, a broadcast mask entry in the BCAST Mask RAM can be read out by

issuing an appropriate RSRAM64 message to the cop controller.

Additional COP Hardware Features

During the cop software development, a set of additional hardware features were

devised for the COP system. All these features increase the programmability of the cop

controller and allow the cop software system to reduce the overhead when used along

with the pvm message passing system. These features are described in detail in the

following paragraphs.

58

1. A new command to probe the channel number (CHNO) of an attached channel

by the compute node interface is introduced. Any task can probe the cop controller to get

the channel number assigned to that host. The cop controller will simply send the current

value of the channel poll counter, upon receiving the probe command. This allows hosts

to automatically configure the virtual machine for effectively using the cop resources.

2. The Mask RAMs were modified so that each mask entry in the terminal count

and broadcast Mask RAMs has an 'accessed' bit associated with it. When a mask entry

is initialized by a task, its 'accessed' bit is automatically set by hardware. For the

terminal-count mask, this bit will be automatically reset when all the channels specified

by the corresponding mask entry have contributed for the global operation. For the

broadcast mask, the hardware resets the accessed bit when the global operation result is

broadcast to all the channels specified in the corresponding broadcast mask entry.

Therefore a mask entry with the 'accessed' bit 'on', implies that the global operation

corresponding to that mask entry is in process. During the SETTC and SETBM

operations to initialize a mask, the cop controller first verifies that the target mask entry

is not already initialized or in use by other tasks, by checking the 'accessed' bit. If the

'accessed' bit is already set, the cop controller reports the error condition to the channel

that initiated the SETBM/SETTC operation. The task that initiated the mask

initialization operation can read the error condition reported by the cop controller from

the 'ERROR-CODE' field in compute node interface status register.

Another reason for introducing this hardware feature is to support the 'spmd'

(single program multiple data) programming model followed by some applications. The

group operations in a classical master-slave model are initiated by the master task, and

the slave programs simply contribute to the group operation. In a COP system, the

59

master task can be responsible for all mask initialization, and the slave tasks simply

contribute to the global operation performed on the cop controller. But in 'spmd'

programming models, all the tasks run the same program. The tasks arbitrate between

themselves based on a well defined rule (for example, the task who joined the group first

becomes the master) to perform any initialization. Simple software techniques include

using spinlocks, mutex locks etc. This mechanism requires application programmers to

provide very fine load balancing between participating tasks, so that no tasks wait for the

master to perform the initialization. In the case of a COP system all the tasks probe the

cop controller to check whether the respective masks are already initialized. The task

that first access the cop controller succeeds in initializing the TC/BCAST masks, thereby

setting the 'accessed' bit on. All the other tasks participating in the global operation see

that the masks are already initialized and simply continues by making their contribution

to the global operation. In summary, the 'accessed' bit for mask entries in a cop

controller provides necessary protection from application bugs, and also allows efficient

'spmd' programming model used by many applications.

3. Another hardware feature considered for the cop controller was to provide ways

to initialize an array of consecutive mask entries using a single SETTC/SETBM

operation. Each entry in the terminal-count/broadcast mask corresponds to an address

location in the Data RAM global address space. Therefore, in-order to perform global

operations on application data arrays, the corresponding mask arrays need to be

initialized. It is grossly inefficient to initialize a TC/BCAST mask array of size N by

issuing N SETTC/SETBM operations. The revised hardware feature provides a count

parameter to be used along with SETTC and SETBM operations to initialize a mask

array. Figure 14 shows the cop message format for a SETTC operation.

60

31 30 23 21 4 3 2 0

I UIS I x I SETIC IM I MASK ARRAY SIZE I z I RSRVD I

31 30 29 18 17 0

I RSRVD I CHNO I MSG TAG

31 0

LOW ORDER MASK BYTES

31 0

HIGH ORDER MASK BYTES

Figure 14. COP Message Format for SETTC operation

The COP Software Implementation

A brief introduction to the layered architecture of the COP system was shown in

Figure 10 earlier in this chapter. One of the philosophical decisions made in the early

stages of the design was to provide the user enough flexibility to select a pvm function or

an equivalent cop function for any given operation. In the following sections of this

chapter, I will discuss the implementation of the COP software system with function

prototypes for various parallel operations.

The COP Interface Driver

The interface driver is the lowest layer in the cop software system. The interface

driver is implemented as a generic UNIX pseudo-device driver, as the hardware

prototype was not available. This can be easily ported to support the cop interface

61

hardware when it becomes available. The cop interface driver runs in kernel space and

needs to be integrated into the operating system by re-configuring the kernel running on

each compute node. In order to avoid rebuilding the kernel to attach the driver, the cop

driver is implemented as a 'loadable' driver. Loadable drivers can be easily attached to

or detached from a running kernel using the standard UNIX [Sunm90] 'modload' I

modunload' features. The prototype driver was designed, coded and tested for SUNOS

on SUN4 architectures.

One of the primary overheads incurred by pvm functions is time to traverse the

communication protocol stacks. The most important reason behind this overhead is the

number of times the application data buffer is copied before it reaches the destination.

Profiling results of many applications has shown function 'bcopy()' accounting for a

major percentage of the processing power and time [Manch94a]. The cop driver reduces

these overhead problems by providing direct, but protected network interface access to

the application tasks [Blum94a]. As a result of this direct network access, the application

data buffers are directly transferred to the network. The COP driver entry point to

application tasks is provided through the '/dev/cop' device file. The entry points

provided include open (), close (), read (), write (), ioctl () and rnrnap ()

system calls. The device can be set to a normal or direct mapped mode using a standard

ioctl function call. When in direct map mode, the mmap system call is used by the cop

library layer to provide memory mapped direct access to the network interface. The cop

driver maps the hardware registers into a given virtual memory location in user address

space in response to the rnrnap system call. Due to protection reasons, as there is no

buffering of service requests from application tasks in the COP interface driver, the

current implementation does not allow multiple concurrent users of the cop resources

when the hardware is mapped for direct access by any task. A simple semaphore lock

/
:'

62

mechanism is used to share the cop channel access between multiple tasks.

The COP interface driver makes use of the Pid register in the compute node

interface to provide necessary protection for application tasks. The application task

provides its TKNO (deduced from PVM tid) when it requests the COP driver for direct

access to the COP channel interface. The COP driver updates an internal table with the

requesting task's process-id (pid) and the TKNO provided in the system call. The driver

initializes the Pid register on the channel interface with the TKNO provided, and maps

the DataRead/DataWrite registers to the calling task's address space. From now on, the

channel interface will only allow those messages to be read out that has the TKNO field

identical to the value in its Pid register. All messages with different TKNO values (out of

context messages) will be buffered in the channel interface. Whenever the internal

buffers cross a pre-specified watermark the COP driver will read those messages out to a

shared memory block attached to the driver. This protection mechanism makes sure that

even in direct mapped mode, an application task cannot read in messages arriving for

other local tasks.

If a message which is not expected by the local task currently accessing the

interface arrives at the interface, the message will be saved in an attached shared

memory block. Later, when the task expecting this message accesses the interface, it can

read out the message from the shared memory provided its TKNO matches the value in

the TKNO field in the message. This simple shared buffer allows buffering of out of

context messages that may arrive at a compute node. A simple example for the need to

buffer out of context messages will be a broadcast over the cop channels. If the out of

context message buffering were not available at the channel interfaces, a task

performing broadcast would have to make sure that all the recipient tasks in various

hosts are currently accessing the channel before actually starting the broadcast. Access

/~

63

to the shared memory block is restricted to only the process that owns the cop channel

interface at any given time. These features allows the cop driver to perform data

transfers over the cop channels with the least overhead. Also as the channels are

dedicated links, there is no overhead incurred due to packet assembly/reassembly as in

general purpose networking protocols used by pvm. Also the driver makes use of the

dead-lock detection timer and automatic re-try mechanism of the cop channel interface.

Libcop Library

The libcop library functions provide the entry points for application tasks to use

the cop resources. Part of the libcop library is layered on top of the pvm library, so as to

make use of the various pvm features like task management, dynamic groups,

asynchronous notification of events etc. The libcop functions masks all the inner details

of the COP channel access and messaging protocols from the application developer.

Also effort is made to keep the cop function prototypes similar to the corresponding pvm

functions whenever possible, so as to allow easy porting of existing pvm applications.

Libcop is written in C and directly supports C and C++ applications. A Fortran library

can be easily written to wrap the current libcop library so that it conforms to the fortran

calling conventions.

The access to the compute node interface is protected by means of a semaphore

lock mechanism. Tasks belonging to a group can be distributed in different channels/

hosts. For global operations like barrier/reductions, a partial reduction is performed

between tasks local to a host/channel using shared memory and semaphore mechanisms.

The partial reductions helps to reduce the number of access to the cop channels

otherwise needed. The partial reduction results are sent to the cop controller by one of

the participating local tasks from each channel. The cop controller performs the

-

64

reduction on contributions from all channels, and broadcast the result to the appropriate

channels. All the local tasks on a host waiting for the global reduction result share the

result received from the channel, again using a shared memory/semaphore mechanism.

In summary, tasks local to a host perform partial synchronization/reduction using shared

memory constructs, and channels perform the global synchronization/reduction on the

cop controller. This approach allows to reduce the contention for the channels. Also

tasks who only contribute, but do not require the global operation result can continue as

soon as their contribution is passed for local reduction, instead of spinning for the

operation to be over.

The functions currently provided by libcop library includes initialization functions

like cop_mytid (), management function like cop_setopt (), cop_getopt (),

cop_notify (), point-to-point communication functions like cop_wri te (),

cop_read () and global operation function like cop_barrier (), cop_bcast (),

cop_mcas t () , cop_reduce () . Some of the other possible constructs include

cop_rmw () for read modify write operations, cop_sca t ter () for scatter

operations and cop_gather () for gather operations. With the basic software

architecture of the COP system fresh in mind, next I will discuss in detail the design,

implementation of each cop function and their resemblance to the parent pvm functions.

Task Initialization Functions

int tid = pvm_mytid();

This pvm routine enrolls a process into pvm on its first call and generates a unique

tid if this process was not spawned already. pvm_mytid returns the tid of the calling

process and can be called multiple times in an application.

int tid = cop_mytid();

65

The equivalent function provided by the libcop library is cop_mytid (). The

function prototype is identical to pvm_mytid and is essentially a wrapper around the

pvm_mytid () function. Similar to the original function, the new function returns the

pvm tid assigned by the pvm daemon. Additionally, the function verifies the presence of

a healthy channel to the cop controller, probes the attached controller for the channel

number (CHNO) assigned to the channel, and retrieves the controller number of the

attached controller (CNTNO) if it is a multi-level COP system. The channel/controller

numbers are stored in static variables internal to the libcop library. The function call

reports error if it encountered with a problem in channel initialization. Other

management functions in the libcop library are cop_setopt () and

cop_getopt (). Using cop_setopt we can specify a pvm group of tasks as static,

which indirectly calls the pvm function pvm_staticgroup. All the tids of member tasks in

the group will be stored in internal variables to libcop. Later, if a libcop function needs

to access the tids of member tasks of this group, the internally stored values will be used

instead of retrieving them from the pvm group server. cop_getopt simply allows a

program to probe the options set using cop_setopt.

Memm:y Write/Read Functions

As described before, the COP system Data RAM is divided into channel address

spaces, and later into task address spaces. A task address space can be accessed for

writing only by the owner task, but any task can read any task address spaces. Only read­

modify-write operations from a task can write to the task address spaces of other tasks.

Therefore the task address spaces are used for unidirectional communication between

tasks using the COP system. This remote shared memory operation is a by-product of

the COP system architecture and as I show later, it is a effective mechanism for low

66

latency communications. Even though these operations extends beyond a message

passing model, they are included in the COP functions library. The cop functions

cop_ write and cop_read allows an application program to write/read variables in task

address spaces on cop controller RAMs. The function prototype for write operation is:

int ret = cop_write (void *data, int count, int datatype,

int tid, int msgtag, int mode)

The function cop_ write allows an application task to write to its own task address

space on the cop controller. The first argument is a pointer to the data array that needs to

be written to the task address space. The 'count' argument specifies the number of

elements in the data array. The 'datatype' argument specifies the type of data present in

the data buffer. The supported types are integer, float and double. The 'tid' argument

specifies the tid of the task that owns the target task address space. Presently, the only

valid value of this argument is the calling task's tid, as the calling task can write only to

its own address space. This argument is present in the function prototype to support any

future changes in access restriction policies. The 'msgtag' argument specifies a tag for

the cop operation. It is used as an offset into the task address space to start storing the

data buffer. Two types of modes can be specified using the 'mode' argument: Urgent and

Normal. In the urgent mode, the software locks the cop channel, sends all the elements

of the data buffer to the cop controller one by one, and then unlocks the channel. This

mode allows programs to atomically initialize data buffers in task address space, but will

stall operations on other channels until the lock is released. In the normal mode, the lock/

unlock features are not used. As a result the controller may service requests from other

channels between sending two consecutive elements in the data array to the controller.

The data elements are sent to the cop controller as WSRAM messages.

The read operation on task address space is performed by application tasks using

the cop_read function. The function prototype is similar to the write operation.

int ret = cop_read (void *data, int count, int datatype,

int tid, int msgtag, int mode)

67

The 'data' argument points to the buffer to read in the data array from task address

space. The 'tid' argument specifies the task identifier of the task which owns the task

address space to be read. The CHNO and TKNO values that point to the base of the task

address space are derived from the Hand L fields in the 'tid' argument (direct mapping).

'count' number of data elements are read out one after the other, starting from offset

'msgtag' in the target task address space. The data elements are read out by issuing

RSRAM messages to the COP controller. The datatype, msgtag and mode arguments

work the same as for the cop_ write function.

The read modify write operation works exactly the same as cop_write and

cop_read. The function is called with the data to be used for modifying the variable in

the 'data' array. The cop controller modifies the specified variable by adding the new

data to the old variable value. The old value of the variable before modification is

returned to the compute node. On return the 'data' array will contain the variables before

it was modified. The RMW32/64 opcode is used in these cop messages. The function

prototype is similar to cop_ write as

int ret = cop_rmw (void *data, int count, int datatype,

int tid, int msgtag, int mode)

Collective Communication Functions

The richness of cop architecture is designed mostly for collective communication

functions. Some of the global operations implemented on the COP system include

broadcast, multicast, global reductions and barriers. In this section, I will explain in

68

detail how these operations are implemented.

Broadcast/ Multicast Implementation

PVM uses the pvm_bcast function to broadcast the data in the active message

buffer. The function prototype is:

int info = pvrn_bcast (char *group, int msgtag)

where the argument 'group' is an existing group name and 'msgtag' is an integer tag

supplied by the user to distinguish between different kinds of messages. A return value

of less than zero indicates an error.

In a COP system, the equivalent function for broadcasting is cop_bcast. The

function prototype is

int info = cop_bcast (void *data, int count, int datatype,

char *group, int msgtag, int mode, int srctid)

where argument 'data' points to the data array which needs to broadcast, 'count'

specifies the number of elements in data array, 'datatype' specifies the type of data in the

array, 'group' specifies an existing pvm group name and 'msgtag' is a user specified tag

which gets used as an offset in the global address space of cop controller. The 'mode'

argument specifies whether the function is called to send a broadcast or to receive a

broadcast from some other tasks. When in receive mode, the 'srctid' argument specifies

the process tid which originally performed the broadcast. A value of -1 for srctid will

receive broadcasts from any peer tasks.

As the cop software functions do not explicitly pack or unpack data buffers, there

are no active send/receive buffers as in pvm. The COP hardware follows a specific data

format and byte order and compute nodes are required to do the format translations for

any application data before sending to the COP controller. A separate function library

69

can be easily developed similar to the PVM pack/unpack functions to perform this

translation if needed.

From the group name provided, the cop_bcast function retrieves the tids of all

tasks who are members of the specified group from pvm's group database. The broadcast

to all local tasks (tasks in the same hosts) in this group is performed using a shared

memory mechanism. The data elements are broadcast to tasks in other compute nodes

using the cop channels.

The sender allocates a local shared memory and a lock with message tag as their

key, if there are any local recipient tasks for the broadcast. The sender copies the

broadcast data to the shared memory and leaves it unlocked. The broadcast to foreign

tasks in other compute nodes continues from the sending tasks's local buffer. The

receiving tasks call the cop_bcast function in the receive mode. The tid argument is used

to identify whether the sender is a local task or a foreign task. If the sender is a local task,

the broadcast data is read out of the local shared memory, co-operating with other local

recipient tasks. If the sender is a foreign task, the cop channel is accessed to read out the

broadcast data. If there are multiple recipient tasks at a remote compute node, a shared

memory mechanism is used to share the broadcast data received from the channel.

If there are foreign recipient tasks, the sender will use the cop channel to perform

the broadcast. This is done in the following way: The channel is first locked to assure

memory consistency in the cop controller global address space currently used. The tids

of all recipient tasks in the group are analyzed to generate a broadcast mask. i.e if there

is at least one recipient task on a compute node connected to cop channel 'X', the Xth bit

is set in the broadcast mask. The SETBM message is issued to the cop controller, which

in tum will initialize the mask entries at offsets 'msgtag' to 'msgatg+count' in the

BCAST RAM. A mask entry per data element in the array has the potential for

70

combining scatter operations after reduction operation on a data array. If any of these

mask entries are already in use, the controller will return an error using the negative

acknowledgment (NACK) message. When a data element is received for broadcast by

the cop channel, it is broadcast to all channels specified by the corresponding broadcast

mask. As a result broadcast data elements will start showing up in the receive buffers of

all receiving channels even before all the elements of data array is sent by the sending

channel. After all the data elements are sent, the function unlocks the channel using an

UNLOCK operation, and returns the status of the broadcast to the sending task.

A cop multicast is very similar to a cop broadcast, but instead of the group name,

the application provides the task identifiers of all recipient tasks. COP multicast is more

efficient than cop_bcast as there is no overhead due to pvm function calls to get the tids

of tasks belonging to the given group (The tids of member tasks in the group is assumed

to be retrieved in the initialization phase of applications to be used later for multicasts).

The function prototype for COP multicast is

int info = cop_mcast (void *data, int count, int datatype,

int *tids, int numtasks, int msgtag, int mode,

int srctid)

where argument 'tids' point to an array of recipient task identifiers, and 'numtasks'

specify the size of tids array. All the other arguments work exactly same as in cop_bcast

function.

COP broadcast does not send the message back to the sender in the current

implementation. A task can broadcast to a group, even if it is not a member of the group.

cop_bcast is asynchronous. Computation on the sending processor resumes as soon as

the message is safely on its way to the receiving tasks. Due to the simultaneous

broadcast on all specified cop channels by the cop controller, cop_bcast is highly

71

efficient.

Barrier Implementation

The PVM function pvm_barrier blocks all the calling processes until all

processes in a group have called the function. The function prototype is:

int info = pvm_barrier (char *group, int count)

where the argument 'group' is an existing group name and 'count' is an integer

specifying the number of group members that must call pvm_barrier before they are all

released.

Though not required, count is expected to be the total number of members of the

specified group. A count parameter is required, because with dynamic process groups

pvm cannot know how many members are in a group at a given instant. During any

given barrier call all participating group members must call barrier with the same count

value. Once a given barrier has been successfully passed, pvm_barrier can be called

again by the same group using the same group name. A return value of less than zero

indicates an error condition encountered.

In a COP system, the equivalent function for barrier synchronization 1s

cop_barrier. The function prototype is

int info = cop_barrier (char *group, int count, int msgtag)

where argument 'group' and 'count' arguments function exactly same as in pvm_barrier.

'msgtag' argument is used as an offset in the global address space where the barrier

operation is performed.

Similar to the cop_bcast function, the cop_barrier function retrieves the tids of all

member tasks of the specified group from the pvm group database. The function waits

until 'count' number of members have joined the group. If there are multiple local tasks

72

(tasks in same host) participating in the barrier, a partial barrier is performed between

them at the compute node. This is done using shared memory and semaphores. The first

local task entering the barrier, grabs the 'barrier_start' lock and initializes the barrier

variable (counter) in shared memory. Later, the lock is released and the task waits for the

'barrier_end' lock. All the other participating tasks wait for the 'barrier_start' lock,

update the barrier variable in shared memory when the lock is granted, and wait for the

'barrier_end' lock. The last local task entering the barrier will access the cop channel to

perform the barrier operation between compute nodes, if there are participating tasks in

other compute nodes. The channel access for barrier is done as follows:

First the terminal-count and broadcast mask bit vectors are generated from the tids

of all tasks in the group. As mentioned originally, the terminal-count mask indicates the

channels participating in a global operation, and the broadcast mask indicates the

channels to which the result of a global operation will be broadcast. For a barrier, as

tasks on each participating channel will be blocked until the barrier is completed, the

broadcast mask is same as the terminal count mask. So if there is at least one task in the

specified group residing in the host connected to channel 'X', the Xth bit will be set in

the terminal count and broadcast mask vectors. The channel is first locked by issuing a

LOCK message to the cop controller. Then a SETTC message is issued to the cop

controller to initialize the terminal count mask. The controller computes the address of

the mask entry in the Mask RAM from the message tag supplied in the SETTC message,

and initializes it with the mask bit vector specified in the data fields of the message. If

the mask is already initialized by a participating task from another channel, the cop

controller sends a negative acknowledgment indicating the mask already exists. The

'accessed' bit associated with each mask entry will be used by the cop controller to

determine whether it was already initialized or not. If the response for the SETTC

73

operation indicates that masks are already initialized, the SETBM operation to initialize

broadcast mask is skipped. This saves the overhead involved in trying to set the

broadcast mask, when we know that a peer channel has already initialized them. The

broadcast mask and terminal-count mask will be in sync for barriers, because we do

them atomically by locking the channel. If the SETTC operation was successful, the

broadcast mask is initialized using the SETBM operation. Next, the contribution from

the channel for the barrier operation is registered by issuing a BENTRY message. Upon

receiving this message, the cop controller resets the bit corresponding to the channel in

the terminal-count mask entry. The channel is unlocked for other channels to participate

in the barrier. Upon receiving the contributions from all channels, all the bits in tc-mask

vector will be reset and the controller broadcasts the barrier completion message to all

the channels specified in the corresponding broadcast mask entry.

The sending tasks at each channel block for the barrier completion response

broadcast from the controller. When the barrier completion response finally arrives, the

sending task in each channel updates (decrements) the barrier variable (counter) in

shared memory, and unlocks the 'barrier_end' lock. Local tasks waiting for this lock,

grab the lock one after another and update the barrier variable. The last local task leaving

the barrier performs additional book-keeping responsibilities like flushing the shared

memory buffers and semaphores.

The cop_barrier function blocks the calling process until count members of the

group have called cop_barrier. Therefore, the logical function of cop_barrier is to

provide an efficient low-latency group synchronization. The overhead involved m

retrieving the tids of all member tasks in a group can be avoided, if the groups are made

static using pvm_staticgroup. Any unsolicited messages (like broadcasts) received from

the channel while the task accessing the cop interface is blocked on the barrier is

74

buffered in the shared memory block attached to the cop interface.

Global Reduction Implementation

PVM function pvm_reduce performs a reduce operation over members of the

specified group. The function prototype is

int info= pvm_reduce (void (*func) (),void *data,

int count, int datatype, int msgtag,

char *group, int root)

where the argument 'func' defines the operation on the global data. Predefined

operations include Max, Min, Sum and Product. Users do have the flexibility to define

their own reduction functions. The argument 'data' points to the starting address of an

array of local values. On return, the data array on the root task will be overwritten with

the result of the reduce operation over the group. The 'count' argument specifies the

number of elements in the data array, 'datatype' specifies the type of entries in the data

array, 'msgtag' indicates the message tag supplied by the user, 'group' is the name of an

existing group and 'root' is the integer instance number of the group member that gets

the result. A return value of less than zero indicates error.

All group members call pvm_reduce() with their local data, and the result of the

reduction operation appears on the user specified root task identified by its instance

number in the group. If more than one member of the group requires the reduced result,

the root task has to broadcast/multicast it to the group.

In a COP system, the equivalent function for all global operations is cop_reduce.

The function prototype is

int info = cop_reduce (int func, void *data, int datatype,

75

int count, int msgtag, char *group, int *roots,

int rootcount)

where argument 'func' specifies one of the predefined global operations and 'data'

points to the starting address of an array of local values. On return, the data array on all

the root tasks will be overwritten with the result of the reduce operation over the group.

The 'count' argument specifies the number of elements in the data array, 'datatype'

specifies the type of entries in the data array, 'msgtag' indicates the message tag supplied

by the user, 'group' is the name of an existing group, 'roots' point to an array of integer

instance numbers of group members that receives the reduced result and 'rootcount'

specify the size of the 'roots' array. A return value of less than zero indicates error.

cop_reduce makes use of the low-overhead broadcasting mechanism of the COP system

to accommodate more than one root task for a global reduction. This takes away the

overhead involved in broadcasting or multicasting the reduced result if more than one

member of the group requires the reduced result. As the cop channels are not shared

between compute nodes, the reduced data will be broadcast simultaneously over all the

participating channels.

Similar to other group functions, cop_reduce retrieves the tids of all member tasks

of the specified group from the pvm group database. It also retrieves the instance

numbers assigned to these tasks. The instance numbers specified in the 'roots' array are

mapped to their corresponding tids to form an array of tids of all root tasks. If there are

multiple local tasks participating in the reduction operation on a compute node, a partial

reduction of their contributions is done before accessing the cop channel. The last local

task to call the reduce function, accesses the cop channel to submit the partial reduced

data from the channel. This is done as follows. The tids of all member tasks in the group

76

are analyzed to determine to which channels they belong. The terminal count mask

vector is generated using this information. Similarly the tids of all root tasks are

analyzed to generate the broadcast mask vector. The cop channel is first locked using the

LOCK operation, and a SETTC message is issued to initialize the tc-mask entry at offset

specified by 'msgtag' in the TC Mask RAM. The 'count' field is specified in the

message, so that the cop controller can initialize mask entries at offsets ranging from

'msgtag' to 'msgatg+count' in the Mask RAMs. If the cop controller reports that the

mask entry is already initialized, the SETBM operation to initialize the broadcast mask

is skipped as we know a peer channel has already performed the mask initialization

If the SETBM operation is done by a channel (which is true for only the first

channel that contributes for the reduction), it should also initialize the data buffer to be

used in the global address space with its own partially reduced contribution. This is

needed to make sure that stale data in these data buffers will not be used for global

reductions. The data initialization is done using WSRAM operations. The channel is

unlocked after data initialization. All the other participating channels will contribute one

element at a time whenever the attached channel is serviced by the controller. The

contribution is issued using reduction messages, with opcodes depending on the function

and datatype arguments specified (listed in Table I in Chapter IV), but the message tag

field in the message is incremented each time. This allows overlapping the data fetch

time and buffer management time in one compute node with the communication times of

other channels. The controller updates the corresponding TC mask entry upon

performing a reduction of each data element with the contribution from a channel. When

all bits in a TC mask entry are reset, the controller broadcasts the reduced data element

to all channels specified in the respective broadcast mask entry. Between each data

77

element contribution sent to the controller, a check for a possible reduced element in the

receive buffer is done in all root compute nodes. This is done because, each element in

the data buffer in the global address space is broadcast whenever the contributions for

that element are accumulated from all participating channels, irrespective of other

elements in data array. The sending task in each root node waits until it receives all the

reduced elements of the data array. If there are multiple local root tasks, the reduced

information is distributed using shared memory. All the non-root tasks do not wait for

the reduction result, but will continue after they have made their contribution for the

reduction operation. If all the tasks participating in the global reduction are local tasks,

the cop channel is never accessed. The partial reduction result in this case is same as the

global reduction result.

Some of the limiting factors of the libcop function include the size of the data

array that can be used depending on the memory available on the controller, and

possibility of using only predefined reduction functions as reduction is performed by the

controller hardware. But these limitations are inconspicuous as we can recursively do

fast reductions on small data arrays efficiently, and as most applications use only

common logical/arithmetic reduction functions like SUM, MAX, MIN etc.

Some of the other group functions that can be efficiently performed using the cop

channels include scatter and gather functions. In the scatter operation an application data

buffer can be scattered across different task address spaces in the cop controller.

Similarly data buffer fragments across multiple task address spaces can be gathered and

presented to any participating task(s) in a gather operation. The COP architecture is best

suited for parallel programming constructs that involve collective communications. The

independent channels, custom designed controllers and the efficient software interface

78

account for the low latency implementation of these global operations. Table II

summarizes various libcop library features/functions currently implemented and their

equivalent libpvm library functions.

TABLE II

SUMMARY OF LIBCOP & LIBPVM LIBRARY FEATURES

Feature
Libcop Libpvm

Function Function

Group Operations

Broadcast cop_bcast pvm_bcast

Multicast cop_mcast pvm_mcast

Barrier cop_barrier pvm_barrier

Global Reduce cop_reduce pvm_reduce

Gather cop_gather pvm_gather

Scatter cop _scatter pvm_scatter

Point-to-Point

Send Message pvm_send

Receive Message pvm_recv

Shared Memory

Write to shared memory cop_ write

Read from shared memory cop_read

Read Modify Write cop_rmw

Task Initialization

Get Options cop_getopt pvm_getopt

Set Options cop_setopt pvm_setopt

Enroll in COP/PVM system cop_mytid pvm_mytid

CHAPTER VI

COP PERFORMANCE ANALYSIS AND COMPARISONS

In the last chapter I showed how the cop software libraries are designed to

efficiently provide various common parallel group operations and protected shared

variable access. In this chapter, I extend the analysis of the COP system, derive

equations for their global operation timings, compare them with the performance of

equivalent pvm constructs, and project the actual improvement in execution times for

real applications.

Reducing the COP Software Overhead

One of the primary performance limitations of the popular message passing

systems is the software overhead involved in traversing the protocol stacks [Sten94a]. A

major portion of this overhead is incurred due to copying of application data buffers

between various software layers in the stack. A primary objective in the cop software

design was to provide the application program the entire hardware bandwidth of the

channels with adequate protection schemes. Also as the COP system channels are not

general purpose, and as they are not time shared, no complex message formatting is

needed to communicate between compute nodes and the cop controller.

The cop interface driver provides an efficient way to reduce the software overhead

that otherwise would result while accessing the cop channels. As described originally in

the previous chapter, in the normal mode of operation an application data buffer is

presented to the device driver with a write() call. The application buffer is first copied

into the system address space of the driver and later sent out by accessing the cop

80

channel. Similarly when a message arrives at the compute node interface it is first stored

in the receive buffers of the driver and later presented to the application on a read() call.

This normal mode of operation involves two copies of the application data on both

transmit and receive operations before the data is available at the destination. Since the

number of bytes copied increases with the size of the data buffer, this overhead increases

rapidly with the data buffer size and the number of read and write calls issued.

The protected direct access mode provided by the cop driver allows application

tasks to directly access the cop interface ports. The application task can make an ioctl

call to put the driver in this mode, before it maps the cop transmit and receive registers to

the address space of application task. Also as the access to controVstatus registers are

privileged, the channel interface is protected from applications that behave abnormally.

As mentioned in the section on the COP interface driver in the previous chapter, the Pid

register in the channel interface is used to provide adequate protection, so that

application tasks cannot read in messages arriving for other local tasks. The direct

mapping of interface ports, the protection schemes, and the underlying communication

protocol are masked from application programmers in the libcop library functions. As a

result, the application programs can simply call the proper libcop function to perform

high speed 1/0 over the cop channels. When the cop driver is put in direct mapped mode,

the libcop functions can talk directly to the cop channels without unnecessary copying of

application data. Whenever out of context data appears at the interface from the cop

controller, the interface/driver buffers it, so that the destination tasks for those messages

can access them after proper authentication whenever cop channel access is obtained.

As described in the previous chapters, partial reductions and synchronization of

local tasks are performed at each compute node using shared memory mechanisms

before the total contribution from the compute node is presented to the cop controller.

81

Even though the local synchronization is done in local memory, its efficiency depends on

the efficiency of inter-process communication (IPC) implementations of the operating

system, memory to memory copy speed of the processor, and the number of tasks

awaiting execution in the scheduling mechanism of the kernel. For these reasons, a

global operation using a cop controller between N tasks will work most efficiently, if the

N participating tasks reside on N different compute nodes (channels) connected to the

COP controller. Even though this seems to be counter-intuitive, there are similar

examples on several existing systems. For example, on an Intel Paragon, the local

memory to memory copying is surprisingly slow. The provided bcopy() routine in the C

library peaks at about 65 to 70 MB/sec. For comparison, a transfer of a large message

from one node to a different node can attain speeds of 130 Mb/sec for the most recent

network interface component (NIC) [Para94a]. PvmDataDefault encoding performs

extremely slowly compared to PvmDataRaw encoding for any pvm function on these

MPP systems as packing and unpacking of data buffers involves bcopy on both sender

and receiver. For these reasons the PVM psend() functions perform noticeably faster

than their equivalent functions that involve data packing/unpacking.

Performance Analysis of Libcop Functions

In all the timing calculations presented here, only one task per channel is

considered, so that the COP system performance results are not affected by external

variables like the efficiency of the underlying operating system implementation, or the

speed at which compute nodes can perform local memory copying. Therefore, the

effective performance seen by any application depends on how the tasks are distributed

across the virtual machine and the native speed of the original system. I will analyze the

cost of various libcop functions in the following sections. In all the cases the libcop

82

functions use a direct mapped compute node interface to access the channels.

Assuming only one task per host in the virtual machine, the overall time involved

in a libcop library global function can be subdivided into the following.

1. Given the name of a task group, the time involved in retrieving the tids of all

member tasks in that group.

2. The time involved in interpreting the PVM tids to identify their respective

CHNO and TKNO values.

3. The time involved in accessing the compute node channel interface.

4. The total hardware time involved in performing the specified parallel operation.

This includes time for actually sending messages to the controller, the time involved in

setting up masks/variables in controller RAM, time to perform the global operation by

the controller, and the time to send the result to all receiving tasks.

The first three timings involve the software overhead in the libcop library

functions. The PVM group server stores all the information about dynamic task groups,

and can be queried to get the tids of all member tasks of a group at a given instant. This

communication involves some overhead, but is only needed if the specified group is a

dynamic group. As the majority of the 10 applications I surveyed did not make use of the

dynamic nature of task groups in PVM, I consider groups declared as static. If a group is

declared static, the libcop library will contact the PVM group server only in the first call.

The tids of member tasks received from the group server, are stored in internal variables

in the libcop library. For all the subsequent calls involving global operations on the same

task group, these internally stored tids are used. Hence the overhead of retrieving tids

from group names is assumed to be a negligible value over multiple function calls.

As mentioned in the previous chapter, if the hosts are added to the virtual machine

in the order of their channel numbers, the H field in the pvm tid of a task in any host is

83

equal to the channel number (CHNO) of the host where it resides. Also as the L field in a

pvm tid is assigned locally to the host, it can be used directly as the TKNO field in the

COP system. Thus, no additional time is involved in deducing TKNOs and CHNOs

from a pvm tid, thereby zeroing out the time for interpreting the pvm tids.

The time involved in actually accessing the secondary network interface and

related buff er management can be significantly reduced by using the protected direct

access mode of the COP device driver where the network interface registers and memory

blocks are mapped directly mapped to the virtual memory space of the application task.

The basic hardware timing values of the COP system involve the time spent to

send a message to the cop controller, the time spent on servicing the request by the

controller, and the time involved in sending the result back to the compute nodes from

the controller. As described in last chapter, each libcop library global function uses a

variety of COP system messages. Assuming the software overhead involved in

accessing the secondary network to be a negligible minimum, the performance of libcop

functions largely depends on the number of messages sent to the COP controller and the

hardware time involved in processing them.

For the hardware timings of various COP system operations, I refer to the

simulation results reported by Hall [Hall94a]. The minor hardware modifications

referred in the previous chapter to the controller for increasing the programmability of

the system are not expected to make any major difference from the original timings

reported. In the original simulation, a 10 ns clock period was used. The number of clock

cycles required for a compute node to output a word and for the interface to transmit it to

a cop controller will be represented as tcN-COP Assuming the compute node can write a

64-bit word to its interface port in two clock cycles, tcN-COP is equal to 11 clocks for a

command word, instruction word, and a 64-bit data word. The number of cycles

84

consumed by the COP controller to service a single COP message from a channel is

referred as top. The value reported for top is 3 for integer and Data RAM operations, but

increases to 7 for floating point operations. To implement broadcast functions, the

controller uses a mask entry from the broadcast mask RAM to enable the transmit

buffers at the same time. The interfaces transmit the data word to all or a desired subset

of the compute nodes simultaneously. Again assuming a compute node can read a 64-bit

value from its interface port in two cycles, 17 clock cycles are required for the network

interfaces to transfer a broadcast data value and the receiving node to read the word.

This time will be referred to as tcoP-CN

The total number of clocks to cycle through all the requesting channels and get to

the target channel requesting service is C x t 0 P . In this expression C represents the

average number of channels requesting service at a time in a cop controller and t 0 P

represents the average number of clock cycles that a cop controller requires to service

each input channel. The value of "C for a single level COP is in the range of 0 (best case

condition) to 63 (worst case condition, if all the channels are requesting service).

When a channel is locked using the LOCK message, it will block the cop

controller from servicing any other channels until the current channel releases the lock

by sending an UNLOCK message. Thus the average time taken by the cop controller to

service a channel (t 0 P) will be drastically increased if tasks use the lock feature

excessively. One of the easiest ways to restrict the time a channel is locked is to restrict

the size of data buffers that can be used with the libcop functions. If the data buffer sizes

are small, the time a channel is in the locked state is much less, and therefore every

channel gets an almost equal share of the controller resources. The current

implementation limits the size of data arrays used with a single libcop function call to

1024 bytes (128 cop messages). Due to this implementation, in the worst case condition

85

(for broadcasts and shared memory read operations) the number of controller cycles to

service a channel will be the time to send 128 messages, tMAX-OP , where

tMAX-OP = 128 X (top+ tCOP-CN) ·

For large data arrays, application tasks can make multiple calls to the libcop

functions, each time with a different portion of the data array, so that between each

function call the controller is released for use by other channels. As the channel interface

registers are directly mapped to the task's address space, multiple calls to libcop

functions do not impose significant extra overhead (only the function call overhead)

compared to performing the same operation in a single function call with a large data

array. Therefore the value of t0 P for a single level COP is in the range of t0 p (best case

with no locking) to tMAX-OP (worst case if broadcast/read performed after locking). This

implies that excessive channel locking, can significantly degrade the performance of the

libcop functions. The worst case scenario will be all channels requesting broadcast or

shared memory read operations of data arrays repeatedly.

Broadcast Using cop_bcast ()

The cop_bcast libcop function allows an application task to perform a

broadcast to all tasks in a specified group. Tasks can dynamically join and leave groups

using the pvm_j o ingroup () and pvm_l vgroup () functions. As described in the

previous chapter, the cop_bcas t function involves locking the channel using LOCK

operation, setting up the broadcast masks using SETBM operation, broadcasting each

data element using BCAST operation, and finally unlocking the channel using

UNLOCK operation. In the worst case, the controller may cycle through servicing all

the other channels requesting service before it gets to the channel desiring broadcast to

service the first lock operation. The maximum number of clock cycles to service the lock

86

operation is therefore (tCN-COP + l t: x t0 P) + t0 P). But once the channel is locked,

successive broadcasts can proceed in a 'pipeline' fashion. The key here is that as soon as

the cop controller reads a command, a one word ACK is returned to the sending node to

indicate that it can send the next command. As the broadcast mask setup inside

cop_bcast does not allow the controller to send the broadcast words back to the sending

node, a new command can be coming into the controller from the sending node at the

same time the broadcast word is being transmitted to the receiving nodes. Due to this

pipelined servicing of channel commands a data element can be broadcast every (top+

tcoP-cN) cycles. The maximum size of data element that can be attached to a cop

message is 8 bytes. As the mask initialization operation is performed only once in a

function, I approximate them to take only top cycles to simplify the expressions.

Therefore the total time to broadcast an application a data array of M bytes containing

N-byte data elements is about

tbcast = [(fcN- COP+(; x 'op+ 'op)+ fop+ (~) Uop + 'coP-CN) +'op]P CLK

For a case where all the channels are requesting service (C = 63), and none of the

channels use channel locking (t 0 P = t 0 P) the expression reduces to

tbcast = 4.8 + (M x 0.03) microseconds/byte for 64 node broadcasts after substituting

the previously stated values for 64-bit (8 byte) floating point data elements.

Broadcasting a 1 kbyte vector in this way requires about 35 microseconds. Performing a

16 kbyte one-to-all broadcast for a cluster size of 64 (broadcast over all the 64 channels)

requires around 560 microseconds. The broadcast function performance seen by

application programs depend on the number of channels requesting service at a time (C)

and the rate of channel locking (t0 p) performed by these channels. As described in the

last chapter, an additional start-up cost will be incurred to retrieve the task identification

87

numbers of member tasks in the specified group from the pvm group server, but this can

be nullified over multiple broadcasts if the group is declared static using

pvm_staticgroup. For comparison, later I show that the standard pvm_bcast

function takes thousands of microseconds to perform a 16 kbyte broadcast between

comparable number of compute nodes. Also I show that, the pvm broadcast timings

increase drastically as the number of receiving nodes is increased.

Multicast Using cop_mcas t

The libcop multicast function implementation is very similar to the broadcast

implementation. As the tids of all recipient tasks are specified in function argument,

unlike cop_bcas t, cop_mcas t does not involve any communication with the pvm

group server for retrieving tids. As a result the above timing derivation for broadcast

function can be directly applied for cop multicast operations. Again for comparison,

later I show that even though pvm multicast performs much efficiently than pvm

broadcasts, its performance is far less than the libcop multicast function performance.

Global Reduction Using cop_reduce

The cop_reduce libcop function allows a group of application tasks to perform

a global reduction of their individual contributions. As described in the previous chapter,

the first channel serviced by the cop controller for the global reduction performs data

initialization involving operations like locking the channel using the LOCK operation,

setting up the broadcast masks using SETBM operation, setting up the terminal-count

masks using SETTC operation, initializing the controller Data RAM buffer using

WSRAM operations and unlocking the channel using the UNLOCK operation. For an M

byte data array containing N-byte data elements, the initialization time can be derived as

88

tinit = [(tCN-COP + c x fop+ fop)+ fop+ top+ (~ x top)+ top]P CLK

All the other participating channels sends out their contribution, one data element

at a time whenever the cop controller services that channel. Assuming that all the

participating compute nodes send a contribution to the cop controller at the same time,

the approximate time needed to broadcast the reduction results to all the root tasks after

the above initialization is

tcontrib = [((C- l) x top+ top+ fcoP-CN) x ~ p CLK

Each channel has to wait for all the other participating channels to contribute the

appropriate data element, before the reduced data element can be broadcast to all root

channels. Therefore, the total time involved in a global reduction of a M byte data array

can be derived as tinit + tcontrib and for 64-bit data elements the equation reduces to

t reduce = 4.8 + (0.58 x M) microseconds/byte for 64 node reductions. As all channels

participate in global reduction, the average time to service request each channel t0 P is

only top Using this expression, to produce a sum vector for 1024 element double

precision floating point vectors over 64 compute nodes (all channels participating in

reduction) requires about 4800 microseconds. Using the equivalent expression for

integer vectors, to produce a sum vector for 1024 integer vectors over 64 compute nodes

requires about 2200 microseconds. These performance numbers will vary if a subset of

the cop channels is performing a broadcast (using channel locks) at the time of global

reduction. Note that this time also includes the time required to broadcast or multicast

the reduction result to all task members in the group. I will show later in this chapter that

by comparison, the equivalent pvm_reduce function is very poor in performance, and

the additional broadcast/multicast function overhead is incurred at the root task while

89

sending the reduction result to other group members.

Barrier Using cop_barrier

Even though barrier operation is a simple case of global reduction, it is considered

separately due to the inherent difference in their implementation. The cop controller uses

the BENTRY operation for implementing barriers. As described in the previous chapter,

the first channel entering the barrier issues operations like locking the channel using

LOCK, setting up the terminal-count mask using SETTC, setting up the broadcast mask

using SETBM, registering its own barrier contribution using BENTRY, and finally

unlocking the channel using UNLOCK. Therefore the total initialization time for barrier

operation can be expressed mathematically as

tinit = [(1cN-COP + C x top+ top)+ 1oP +top+ top+ top JP CLK

As all channels participate in the barrier, assuming all the other cop channels

entered the barrier at the same time, the t0 P in above expression is equal to top Each of

the other participating channels issues operations like locking the channel using LOCK,

checking whether the transmit mask entry is already initialized using SETTC (for spmd

programming models), participating in barrier using BENTRY, and finally unlocking the

channel using UNLOCK. Therefore the number of cycles required for each participating

channel to contribute for the barrier operation is (4 x t0 p) . After all the channels have

participated in the barrier, the controller takes tcoP _CN cycles to broadcast the barrier

exit status to the participating compute nodes. Therefore, the total time involved for a

barrier operation can be expressed as

t barrier = tinit + ([' X 4tOP + tCOP- CN] p CLK

Using the hardware values reported for integer data elements (a mask entry is a 64

90

bit integer), a barrier operation between 64 compute nodes in a single level COP system

takes about 9.8 microseconds. If a master-slave programming model is followed, the

slave tasks do not have to check for mask initialization, as it is guaranteed that the

master task has already done the mask initialization. In this case, the lock, settc and

unlock operations is not needed for cop_barrier called from slave tasks. As a result

the number of cycles required for each participating channel to contribute for the barrier

operation reduces to t 0 P, reducing the barrier time for 64 nodes to about 4.21

microseconds. As I show later, the timings measured for the equivalent pvm barrier

function takes thousands of microseconds, and increases enormously as the virtual

machine size increases. Note that the mask mechanism in the COP system allows any

subset of the compute nodes to participate in a barrier. Also, it permits multiple barriers

to be in force with different task groups at the same time and thus provides for fine

grained synchronization which can greatly improve the performance of certain class of

problems like pre-conditioned conjugate gradients [Gupta94a].

Shared Variable Access Using cop_wri te (), cop_read () and cop_rmw ()

As described originally, shared variables in a COP system can be stored in the

various task address spaces in the cop controller's Data RAM. The task generating the

variables can write them to its task address space in controller Data RAM by calling

cop_wri te, and any task that needs to read the shared variables can access them by

calling cop_read. Only the read-modify-write operation issued through the cop_rmw

function can update shared variables in task address spaces owned by other tasks. A

cop_wri te function call invoked in urgent mode for a data array of M bytes

containing N-byte data elements involves a lock operation, (Z) wsram operations, and

an unlock operation.

91

Equivalent cop_read and cop_rmw functions involves additional

(~) x tcoP- CN cycles as the value read from Data RAM needs to be sent out to the

receiving compute node. Assuming simultaneous requests from all channels of a single

level COP system for same or different shared variables, the maximum time for all of the

requesting nodes to receive the individual values is

tread = [(tCN-COP + c x top+ fop)+ (~ x (top+ tCOP-CN)) + top]P CLK

Assuming no other channels is in locked state and substituting the previously

stated timing values in the above expression, a single level cop controller can supply

different or the same variables (of type double) to 64 compute nodes in the rate of

4. 7 + (0.03 x M) microseconds/byte. So for accessing a shared variable array of size

64K, the maximum time incurred by a channel will be about 2000 microseconds.

Surprisingly, this is the same time involved in broadcasting an equivalent array to

all the 64 compute nodes. The efficiency of the cop architecture for global operations is

apparent from this comparison itself. As the time incurred in read-modify-write

operation is same as the read operation, the maximum time needed to update a shared

integer variable (such as a lock implemented using cop memory) by a cop channel is

about 2.2 microseconds. Note that the cop shared memory provides sequential

consistency in that the value read by a compute node will be the last value written.

Sequential consistency over large data arrays is provided using the lock and unlock

operations when the libcop functions are called in urgent mode.

COP Performance Summary

Table III summarizes the performance data calculated for various libcop functions

using the expressions shown and hardware timing values reported for 64 bit integer and

floating point data elements for a 1 Ons clock period. The performance numbers shown in

92

Table III (for a single data element of type integer or double) assume only one

participating task per channel, and a static group of tasks. The best case timing values in

the table consider the case where all the channels perform integer operations without

channel locking and use the average time to service a channel, t0 p as (t0 p = t0 p)·

The upper bound (max) timing values in the table consider the case where all the other

channels perform floating point operations with channel locking and use the average

time to service a channel, t 0 p as (t0 P = t MAX -OP). The wide variation in the best

case and maximum values shows the performance degradation that can happen due to

excessive channel locking. Exact timings seen by applications will vary as the average

time a channel is locked depends on the communication patterns in the application

(repeated broadcasts and/or shared memory reads of data arrays being the worst).

93

TABLE III

LIBCOP FUNCTION TIMES AND EXPRESSIONS

Function
µS µS

Timing Expressions
Best Max

cop_write 2.09 1936 [(tCN-COP + c x top+ top)+ (% x top)+ top J p CLK

for integer

cop_write 4.73 1936 [(tCN-COP + c x top+ top)+(% x top)+ top]P CLK

for double

cop_read 2.26 1936 [(tcN-COP+Cxtop+top)+(%x (top+tcOP-CN))+top]PcLK

for integer

cop_read 4.90 1936 [(tcN-COP+Cxtop+top)+(%x (top+tcOP-CN))+top]PcLK

for double

cop_rmw 2.26 1936 [(tcN-COP+Cxtop+top)+(%x (top+tcOP-CN))+top]PcLK

for integer

cop_rmw 4.90 1936 [(tCN-COP + 'C x top+ top)+ (% x (top+ tCOP-CN)) +top]P CLK

for double

cop_bcast 2.29 1936
[(tcN-cop+L'xtop+top)+top+(%x Ctop+tcoP-CN))+top]PcLK

cop_mcast
for integer

cop_bcast 4.97 1936
[(tcN-COP+Cxtop+top)+top+(%x Ctop+tcOP-CN))+top]PcLK cop_mcast

for double

treduce = tinit + tcontrib

cop_reduce 4.21 3840 tinit = [(tCN-COP + c x top+ top)+ top+ top+ (% x top)+ top J p CLK

for integer

tcontrib = [((L'-l) Xtop+top+tcoP-cN)x%]PcLK

cop_reduce 9.45 3840 "same as cop _reduce() for integer"
for double

cop _barrier tinit = Cl tcN-COP + Cx top+ top)+ top+ top+ top+ top]P CLK

(master 4.21 1943
slave tbarrier = tinit+ [Cx 4top+tcOP-CN]PCLK

model)

94

Performance Evaluation of Libpvm Functions

In this section, I will describe the basic procedures followed to measure the

performance of the PVM message passing functions, the environment in which the

measurements were made, and the detailed analysis of the measurements. The

performance of PVM point-to-point communication functions, collective

communication functions (broadcast and multicast) and aggregate functions (barrier,

global sum) are described in this section.

Measurement Methodology

Message passing performance is usually measured in units of time or bandwidth

(bytes per second). In this report, I choose time as the measure of performance for

sending a small message. The time for a small message is usually bounded by the speed

of the signal through the media and any software overhead in sending/receiving the

message. Small message times are important in synchronization and determining

optimal granularity of parallelism. For large messages, bandwidth is the bounded metric,

asymptotically approaching the maximum bandwidth of the media. Choosing two

numbers to represent the performance of a network can be misleading, so analyzing

communication time as a function of message length is the approach used to compare the

performance.

Message passing time is usually a linear function of message size for two

processors that are directly connected. For more complicated networks, a per-hop delay

may increase the message passing time. Message passing time, tN can be modeled as

tN = a+ ~N + (h- 1) y where a is the start-up time, ~ is the per-byte cost, y is the

per-hop delay, h is the number of hops the message should travel and N is the number of

bytes per message. The setup for my measurements includes a collection of SUN

95

workstations running SunOS 4.0, interconnected using a ethernet based local area

network. Measurements for cluster sizes up to 8 involves hosts only on the same subnet.

All the machines are of comparable speed (Spare 10) and can directly communicate with

each other (no store and forward nodes or routers). As a result the value of h in the

previous equation is 1, and so there is no per-hop delay involved, reducing the equation

to t N = a + PN. A linear least-squares fit can be used to calculate a and P from

experimental data of message passing times versus message length.

Point-to-Point Communication

As the COP system is primarily targeted for small sized message passing

operations, to provide acceptable comparisons, latency was considered as the primary

metric. A simple echo test between adjacent nodes is used to measure the latency. A

receiving node simply, echoes back whatever it is sent, and the sending node measures

the round trip time. Times are collected for some number of repetitions over various

message sizes due to the inadequate clock resolution for small message sizes. Also,

individual time values for each send and receive may show clock jitter from time­

sharing interrupts in the underlying OS. The send-receive (round trip) time divided by

two is what I report for latency. Figure 15 shows the latencies measured for varying

messages sizes. The measurements were made with both sending and receiving tasks on

same host, and on different hosts to analyze the effect of on-host latencies compared to

network latency. Also measurements were done for both normal and direct routing

policies. In all the cases PvmDataRaw encoding scheme is used to avoid any data

packing/unpacking costs. Latencies were measured for message lengths up to 16 Kbytes

as the effect of bandwidth overtakes the latency effects for large sized messages.

On-host latency is highest when normal route is used, because the message is

96

routed through the pvm daemon (pvmd) instead of directly from task to task, thereby

resulting in an extra copy of the data buffer and an extra context switch to wake up the

pvmd. pvm_psend which combines packing and sending is not used for

measurements, as the encoding mechanism used is PvmDataRaw. Enabling direct route

improves the performance almost by 50%. The default pvm fragment size is 4K bytes,

so on close analysis we see a bump in latency values at multiples of 4 kilobyte message

lengths when an additional fragment becomes necessary. The buffer management takes

more time than one might expect. Manchek [Manch94a] has reported a pvm buffer

management overhead as approximately 900 microseconds.

Inter-host latency for normal route is much worse than that of direct route because

of two reasons. First, another pvmd is in the message path. Second, even though the

pvmd-to-pvmd protocol allows multiple outstanding (unacknowledged) packets to be

present, it only sends one packet at a time. So the bump at multiples of 4 K message sizes

is more noticeable with normal routes.

Point to point messages are used to pass pre-processed variables or data arrays

from one task to other. From the above figure, pvm takes about 7000 microseconds to

send a 8K data buffer between two hosts and for the receiving side to receive it even

with direct route. The same operation can be performed using a cop_write() and a

cop_read() for this 8K data buffer using the task address spaces in cop controller

memory. Applying the equations from the previous section, the libcop implementation

takes a total time of only about 350 microseconds (80 for cop_ write and 270 for

cop_read) for the same operation. Additionally any number of tasks can simultaneously

read out the data buffer from the cop controller memory, once the cop_write is

completed.

35000

30000

25000

'O'
~ 20000 ,,3.
r;-

M
-c
~

~
15000

10000

5000
.8

_13·

.B

[Route: Normal; Processes OD same host] ~
[Route: Direct; Processes OD same host] -+-­

[Route: Normal; Processes over local ethcrnct] -El- - -
[Route: Direct; Processes over local ethcrnct] --*·---

m

JZl

.-·--

...... ---········-··x···

... x--···--·--------·
_ -·-

____ x····

_.x··-·

__ ~------+--------+------------------+-------------
0 L-~~~'--~~~'--~~--''--~~--''--~~~'--~~--''--~~--''--~~--'-'

0 2000 4000 6000 8000 10000 12000 14000 16000

1\-lcssage size (Bytes)

Figure 15. PVM Latency Measurements for small sized messages

97

In summary, UNIX machines perform poorly for small message sizes due to the

latency in the kernel. Performance drops off sharply for very large messages, because the

kernel is probably paging fragments of the message buffers. Performance is limited by

the memory-to-memory copy speed of the processor, efficiency of the networking

protocol implementation and the network hardware and media. The effects of process

scheduling on communication times is not seen as dramatically when sending messages

between hosts as with on-host communication. This is because the network moves data

in the background and is somewhat slower than the processor, so the tasks have time to

98

catch up when they are scheduled back in.

PVM Collective Communication Performance

Some of the collective/aggregate communication primitives in the libpvm library

considered for analysis are pvm_barrier for barrier operations, pvm_reduce for reduction

operations, pvm_bcast for broadcast operations, and pvm_mcast for multicast

operations. Even though barrier is a special case of reduction, it is considered separately

to evaluate any implementation specific performance differences in their respective pvm

functions. Similarly multicast is analyzed along with broadcast to understand any

performance improvements. A set of tests were developed to exercise these collective

operation functions for small-to-medium sized messages. Also the start-up latencies

were considered dominant over bandwidth costs for the performance of these small sized

messages. For non-blocking pvm functions (i.e. those functions that return as soon as the

data is on its way to the destination), explicit short-sized acknowledgment messages

were used to measure the effective time involved in these functions between the sender

sending the data and the receiver receiving the same. The latency of these short (1 byte)

acknowledgment message has been deducted from all data points presented. Also to

make sure that all member tasks in a group call the global functions almost at the same

time, a barrier was performed between the member tasks immediately before calling the

global function to be measured.

Barrier Using pvm_barrier

Figure. 16 shows the pvm_barrier timing measurements as a function of the

number of participating tasks. Measurements were made with all tasks on one host, with

one task per host, and also, measurements were made for both normal and direct routing

99

policies.

l
E,

i;"o

:§
ii
·~
....c

45000

40000

35000

30000

25000

20000

15000

10000

5000

0
0 2

[Route: Normal; Processes on same host] ---e.­
[Route: Dkect; Processes on same host] -+-­

[Rouic: Normal; Proces~s over local etberoct] -El-­
[Rouic: Dkect; Proce~,lies over local etberoct] --:w:----

.·

Jri

.rzi

)Zl.

.ILi·

~->I-

F
.. ·· ,,~,..A-'-
__ -+~

.. 0·

--··:.:>Y~

4 6 8 10 12 14

Number of processes participatmg m barrier

Figure 16. PVM Barrier timing measurements

Direct routing performs better than normal routing, and the performance

difference is more visible for inter-host barriers when the number of processes (nodes)

participating in the barrier is increased. The cop_barrier function analysis in previous

section showed that we require less than 10 microseconds to perform a barrier between

64 compute nodes. As we can see, the equivalent pvm barrier is very slow consuming

thousands of microseconds for performing a barrier even with 10 compute nodes.

Global Reduction Using pvm_reduce

Figure 17 a. shows the timing measurements for a global summation using

100

pvm_reduce function. The data array size has only one element and is of type double, so

as to compare the performance with the cop_reduce function in Table III. From the

figure it is obvious that the reduction timings rise drastically almost by an order of 2, as

the number of participating tasks is increased. Surprisingly, the on-host reduction for

both normal and direct route took more time than inter-host reduction times with the

same number of tasks. This is probably because of some synchronization mechanism

used for managing the contributions from multiple tasks on the same host, and the

overhead due to process scheduling and wakeups.

lCXXXXJ~-.-~~~~~~......-~~-.-~~~~~---.

~

l
;l

,...,, (i(XXXI

~
~
a
~
.a e
iii 4axx>
-8
6

200X>

[llouz: Nolillal; Proce~!e~ on~ ho!!) +­
[Kouz: Direct; Pr. oce!!t! SE'! ho!!) -+-

[Kouic: Normal; Proct!!e! ~li) -El--

ll"" ""'"~,i"l , ~

//
/,/

//

/// .a······
.El

• .C3"
_.a

·1" ,,_.,.,,.-/ ; _/"'' ,,..~/ ..

.a

.)('"

Numln of ixoce!!el pllrliclpllling in global !IUm

(a)

,El

,,'/(

10 12

{J(Xm-----.-----.----.-----.----.....----,

5.5<XXI

SOOXl

4.5<XXI

[Rouic: lbcl; lOholt!I] +­
[Kouic: Dba; 8 ho!!!) +­
[Roule: Dba; 4 ho!!! J 1:1-­
[Rouz: Dbcl; 2 halt!!] *--

/,,~"

/
/

,'

~ r:· _,-!''_,-'""'
8 ,+_..
~ /
g 35IXXl / ~ ,.,-"'/ --+------+-
] ----+---..+-----+-"'

1
~ 4IXXXl

iii 300Xl
-8 a

2500l ,..... . ..a·-_.a/"...a_...."-·~---·
....---ft'

Et-... ...a--·--a··--B 200XI
-a--a---·

l.5<XXI t.--.-)(---·-·*""'"--lr-·->t-·---·i(--·-·l<·-·-·-)t·-·---~·--"¥,·-----~-·-·-·-·-·---

l!XXXJ~~~~~--'~~--'~~--'~~--'~~--'

0 200 400 600 800 100! 1200

Data may me 10 lz red.iced (d11aiype: PVMDClJJIIB)

(b)

Figure 17 a. b. (a) PVM Reduction timings for varying number of participating tasks

(b) PVM Reduction timings as a function of data array size

The average time for a single data element reduction between tasks on different

101

hosts (one task per host) is in the millisecond range for both direct and normal route

when the number of participating processes were increased from 2 to 10. The

corresponding time for the cop_reduce function for a reduction operation between 2 to

64 nodes is only around 10 microseconds. Figure 17b. shows the reduction timings as a

function of data array size for different task group sizes. For larger number of

participating processes, the reduction times increased faster for measurements using

direct route compared to the same with normal route. This is probably because, with

normal routing pvm daemons act as buffers. This might allow a sending task to finish

sending before the receiver becomes ready, and go on to send another message.

Broadcast/Multicast Using pvm_bcas t /pvm_mcas t

Figure 18a shows the timing measurements for pvm broadcast primitive and

Figure 18b shows the pvm multicast timings. PVM multicast first determines the

location of all pvm daemons (pvmds) that contain the specified recipient tasks, then

passes the message to these pvmds which in tum distribute the message to their local

receiving tasks. So the original multicast message from the sending process is replicated

for each pvmd containing one or more local destination tasks, and later each receiving

pvmd replicates the message for each local destination task. The pvm_bcast function

broadcasts to all member tasks in a group. The broadcast function first gets the tids of all

task members in the specified group from the pvm group server, and then calls

pvm_mcast() to multicast the message to all destination tasks. From the performance

difference between broadcast and multicast functions, it is obvious that the

communication to the pvm group server is costly. As mentioned before, the libcop

library functions allow a user to declare a group as static to overcome this overhead of

communicating with the group server. The scalability of the pvm multicast feature is

limited due to the 1 :N direct fanout which results in heavy contention of

l
.i

j
~
~
~
~
t
~

2SCXXl

2IXXX)

IS<XXI

S<XXI

-+ .. -
------- . .El

___ ,.---· ·' .. /

.... /·:·~:·~·-_;::~_:_~:<:·~---
-H'/"'..-_ _.....a··:_ ,.­
~)("'

-. .l<

-0··-- _ -·
,j('

I
~
]
-g

e
-g

i
~
~

~.----~--.--~--,.----~--.--~--,~~--.--~----.~~--.-~----.----.

IS<XXI

llXXXI

S<XXI

[ROUie: Ncmml; 9Rece!wr.1] -
[Routc:Ncmml;7Rcc:elver.c] +­
[RDU!e:Ncmml; 5Recmv"11] -€!-·
[Route: Ncxmal; 3Recmv"11)

_,..

__ ,, ... ----

.......... ~ -·<. / :
,.,,." ,..-·

_./ l1r.

.......... <· .. / / /
-r~-~:----<.:- ,./

O'--~~~--'-~~~~~~~~~~~--'-~~~~
o~~~~~~~~~~~__..~~~~~~~~

0 2IXXl 4(XX) (lllX) ~ llXXXl 121XXl l«XXI)(lllX) 0 2IXXl 4(XX) (lllX) ~ llXXX>)21XX) l«XXI l(lllX)

Me!!lage'l!m(By!e!) Me!!i!F !dze (Byie!)

(a) (b)

Figure 18 a. b. (a) PVM Broadcast timings as a function of message size
(b) PVM Multicast timings as a function of message size

102

acknowledgment messages. The performance measurements provided above for

multicasts and broadcasts matches the same reported by other research groups

[Chang95a]. From the expressions derived in the previous section for cop broadcast and

multicast shows that the latency for them are less than 10 microseconds compared to the

millisecond range performance of pvm functions. Chang [Chang95a] has reported that

using their PVM-ATM (AAL5) re-implementation, when increasing the number of

remote hosts of the receiving pool from 1 to 4 the largest multicast time difference

observed is approximately 20 milliseconds. Even though the multicast performance over

ATM (AAL5) is better than the original pvm multicast, it is still far below from the

performance predicted for the cop multicast primitives as it still needs to traverse the

protocol stacks.

103

PVM Performance Summary

The communication performance of pvm leaves a little to be desired. The major

reason for the performance limitation is the heterogeneous nature of the software itself.

The performance is affected by three major factors. First, the pvm application protocol

drivers run in user space (in the pvm daemons and tasks). The pvmd-to-pvmd protocol

suffers most, because it manages timers and resend queues. It is expensive to read timers

from user space because it must be done using system calls. Manchek [Manch94a] has

reported that a sample profiling of pvmd showed 10% of its time spent in the function

gettimeofday(). Performance might improve if UDP could be replaced with a protocol

with reliable delivery, eliminating the need to resend packets. The time-of-day clock

could be mapped to user memory (same way the cop channel interface registers are

mapped) to eliminate system calls. The pvmd-to-task (also task-to-task) protocol is

based on TCP and so does not require any timers. Also as both pvmd and tasks maintain

a number of connections, a large fraction of time is spent on select() calls, multiplexing

different inputs. The COP system gains significant performance in this regard, as the cop

channels are independent and not general purpose.

Secondly, even though the pvmd-to-pvmd protocol allows multiple outstanding

packets, the pvmd sends them only one-by-one. On a high-bandwidth network, a single

packet is not enough to keep the communication pipe (media) full. Therefore, the pvmd­

to-pvmd communication speed is limited by network latency and bandwidth, instead of

just bandwidth.

Thirdly, the message data is copied a number of times before it reaches the

destination [Sten94a]. Normal message routing (through pvmds) incurs five copies: The

data must be packed, routed through four processes (three copies), and finally unpacked.

Direct routing improves over that (three copies total) since the message is sent directly

104

between tasks, but the cost to establish a route is high because the request and

acknowledgment message travels via default route. DatalnPlace encoding eliminates

one more copy by leaving data in place until send time. Also, some scatter and gather

operations such as spawning tasks and multicasting do not scale well because the

communication uses a l:N fanout. Acknowledgments tend to come back all at once,

swamping the central host and causing it to drop packets which then have to be

retransmitted.

Table IV provides an easy comparison of the libcop and libpvm library function

costs. The libpvm times provided is for a sample group size of 5, with no packing or

unpacking costs and using direct route when ever possible. The libcop timings provided

represent a maximum cluster size of 64 without any channel locking. Performance

improvements by using the libcop functions is limited if the channel locking is used

excessively. Having demonstrated the performance improvement in implementing

global operations using the COP system, I will now describe the projected effect of this

performance difference on overall execution time of applications.

TABLE IV

LIBCOP AND LIBPVM PERFORMANCE COMPARISONS

Operation libcop libpvm
µS µS

16KBroadcast using cop_bcast/pvm_bcast 500 17000

16K Multicast using cop_mcast/pvm_mcast 500 12000

Barrier using cop_barrier /pvm_barrier 10 10000

Reduction of 1024 element array of type double 4800 19000
using cop_reduce/pvm_reduce
16K point-to-point message using cop_wri te & 500 15000
cop_read/pvm_send & pvm_recv

105

Effect of Global Operation Speedup on Overall Execution Time

In the preceding sections, I have shown that the COP system provides substantial

speedup for common global operations on workstation cluster multicomputers. As

discussed before, the COP system is most efficient for parallel operations that involve

collective communications between a group of tasks. In this section, I will describe the

effect of this performance improvement of global operations on an example real life

application. I chose a complex molecular dynamics simulation PVM application as an

example to analyze the performance difference brought by using a COP system. In the

next section I will describe the sample application program and analyze the

improvement in execution time by using a COP system.

EGO - A Molecular Dynamics Simulation Program

'EGO' is a parallel molecular dynamics simulation program that was originally

developed at Beckman Institute, University of Illinois, Urbana. The program was

originally written in the OCCAM language to run on transputers. For my work, I have

used a port of the above program [Heller9la] that runs on top of the PVM message

passing system on a network of workstations.

The fact that most of the pvm global functions are inefficient was very clear in that

they were little used in most of the complex applications that I considered. Some of the

applications like the above mentioned molecular dynamics application, replaced the

pvm global reductions with point-to-point messages in a logical ring topology formed

between the tasks in the virtual machine. Using this method, each task has to send only

one message to the task above it in the logical ring, and has to receive only one message

from the task below in the ring, causing less contention. The global reduction advances

slowly as the message leaves each task in the ring. But if any type of data encoding

106

needs to be used, the encoding/decoding cost at each task will take away some or all of

the performance. Further, due to the broadcast nature of ethemet, each message in the

logical ring is serialized on the network. Some applications may be able to overlap

computation and communication times using this strategy, but it is very cumbersome to

implement a global reduction in this way.

The EGO source was instrumented to collect performance data for various parallel

program operations. A debug library was developed to wrap the libpvm and libgpvm

functions so as to collect the time spent in these pvm functions. Also the logical ring

method for performing global reductions was replaced by the pvm reduction function

pvm_reduce with the control task as the root, as most of the applications I surveyed

used the standard pvm reduction function and not the logical ring method for global

reductions. Due to the massive resource requirements of the program, I was able to run

the program on only a limited range of data sets. Also as the COP timing expressions are

derived assuming one task per host, to make comparisons fair only one task per host was

spawned to run the program.

The program uses a modified verlet algorithm [Heller90a] to evaluate the various

Newtonian forces. The program repeatedly computes the total force on each atom and

then use Newton's laws of motion to determine the new position and velocity for each

atom. The different major parts of the program are non-bonded force calculation, pairlist

generation, shake, bonded force calculation, global reduction (sum) of force

contributions and finally load balancing. The program runs in a master-slave model, with

one controlling task and N slave tasks. The controlling node is responsible for spawning

the slave tasks, data initialization/distribution, analysis of globally reduced data, and

controlling computational cycles of slave tasks. Next, I will provide a brief description

107

of the major operations performed by both the control and slave tasks.

Control Task Operation

The control task in the EGO application performs the following parallel program

operations:

1. After all the slave tasks are spawned, the control task multicasts the task

management and initialization information to all the slave nodes using pvm_mcas t.

This include the number of slave tasks spawned, slave task tids, data encoding

mechanism to be followed and the routing policy.

2. Next the control task sends the loading information to each slave task. As the

atoms loaded to each slave task is different, the control task performs N pvm_s end

calls to communicate with the N slave tasks.

3. Later, the control task multicasts the global data needed to perform the

computational cycle to all the slave tasks again using pvm_mcast.

4. After the initialization phase the control task sits in a big loop, receiving

travelling co-ordinates moving in the logical ring, and travelling forces multicast from

each slave task. In each cycle the control task performs a global reduction of the energy

contributions between all the slave tasks, and multicasts the result to all the slave tasks.

5. The control node analyzes the updated atom positions and velocities for

convergence to determine whether to proceed with another computation cycle or not. If

the computation cycle needs to be continued the control task multicasts a 'running' flag

to signal the slave tasks to continue.

Slave Task Operation

The slave tasks in the EGO program performs the following parallel program

operations:

108

1. First, it receives the task management information, initial atom co-ordinates and

other initialization variables multicast and/or unicast from the control node.

2. After the initialization phase, each slave task starts the computation cycle. First

it computes the interaction between its 'own' atoms and sends the new atom co­

ordinates computed to the node below in the logical ring, and receives the new set of co­

ordinates from the node above in the logical ring.

3. Each slave communicates the force information between all slave tasks using

barriers and all-to-all multicasts, so that the interactions between local and foreign atoms

can be computed.

4. All the slave tasks take part in the global reduction of energy contributions with

the control task as the root. Later, it receives the reduced energy information multicast

from the root (control) task.

5. Finally, all the slave tasks wait for the 'running' flag from the control node to

determine whether to continue with another computation cycle or not.

Performance Comparisons

The sample runs for the EGO program were performed for an 'alanin' molecule

with 66 atoms, for 256 integration steps, with almost equal loads on all the virtual

machine nodes. Virtual machine sizes ranging only from 2 to 5 was experimented due to

the heavy use of system and network resources by the program. The average message­

size for these global operations was less than 16 kilobytes, which makes them applicable

to be performed efficiently over the COP channels. For a virtual machine size of 5, on

the average, 40% of the total execution time on both the slave and control tasks was

spent on the pvm communication functions. Analysis of the timing information collected

showed that multicasts accounted for 16% of total execution time, global reduction

109

accounted for 14% of the execution time, barrier operations accounted for 4% of

execution time and point to point communication functions accounted for 6% of the total

execution time, aggregating to the 40% total communication time. Note that, as the

virtual machine size is increased the collective communication function costs rise

drastically as shown in the early sections of this chapter.

The PVM functions in this application can easily be replaced by equivalent libcop

functions so as to use the secondary network for performing global operations. The

multicast and shared memory read operations were serialized in the master and slave

tasks by barrier constructs in this application. As a result, only one channel performed

broadcast/multicast operation at a time. Due to this reason, the average time to service a

channel request (t0 P) is assumed to be almost equal to t0 P.

As shown in Table IV, for a virtual machine size of 5 the libcop multicast performs

about 24 times more efficiently than the pvm multicast. Similarly, from Table IV one can

see that the libcop reduction performs about 4 times faster than pvm reduction, libcop

barrier performs about 1000 times more efficiently than pvm barrier and point-to-point

communication implemented using COP controller memory shows a improvement of 30

times. Applying these improvement factors to the above global operation execution

times, the total time spent on collective communication operations can be reduced by a

factor of about 9. This results in an improvement in the overall execution time of the

application by more than 1.5 times. As the libcop global reduction function can send the

reduced result to any number of participating tasks at no extra cost (using the broadcast

masks), the number of multicast operations required while using the COP system will be

reduced, further adding to performance improvement. Table V summarizes the timing

analysis performed on the EGO application.

110

TABLEV

TIMING ANALYSIS OF MOLECULAR DYNAMICS APPLICATION

libpvm libcop
Operation normalized speedup normalized

timings timings

Multicast 0.16 24 0.00700
Global Reduction 0.14 4 0.03500

Barrier 0.04 1000 0.00004

Point-to-Point 0.06 30 0.00200

Total Corrununication Time 0.40 0.04404
Total Computation Time 0.60 0.60000
Total Execution Time 1. 00 0.64404

As shown previously, as the virtual machine size increases the cost of the pvm

collective communication functions rises sharply. But the overhead of libcop functions

is almost the same for cluster sizes of up to 64 compute nodes if excessive channel

locking is avoided. Thus the COP system provides better scalability for application

programs.

Summary

A final note here is that, the COP system is intended for message passing

operations with small-to-medium sized messages. The latency for various operations

over the cop channels is very low due to several reasons including no overhead for

packet assembly/re-assembly, direct protected access to the network interface, ability to

broadcast simultaneously through all channels etc. But the performance decreases

gradually for long messages. Some of the major reasons for the performance degradation

at large message sizes are the half-duplex nature of the serial link, low utilization of the

channels (out of the four words in a cop message, only two words contain data resulting

111

in 50% overhead), and the low payload in cop messages (need a cop message for each

data element). Also, excessive use of channel locking by the compute nodes will disturb

the fair sharing of COP controller resources by all the channels. Therefore, the benefit

seen by applications will vary depending on the size and pattern of message-passing

performed by the application. Application with small-to-medium message sizes and high

percentages of collective operations will most likely see the highest performance

improvement. The high performance difference and the low cost nature of the system

makes it very attractive and promising for application to workstation cluster

multicomputers.

CHAPTER VII

RELATED WORK

The expressions in Table III shows that the COP system can significantly reduce

the execution time for several common global operations on small-to-medium sized

messages. In the last chapter I discussed and showed an example application that can

benefit from using the COP system. Also I showed that message-passing systems can

use the cop controller's task address spaces to minimize the latency on small

synchronization messages. In this chapter I describe and compare other proposed or

practiced methods for decreasing the global operation and/or latency times. As my work

was primarily to investigate the performance aspects of using a COP system on

workstation cluster multicomputers, I will concentrate on the related work for these class

of machines.

Cluster Computing Over High Speed Networks

One of the factors which caused much skepticism on the feasibility of network­

based parallel computing was the limitation imposed by using traditional local area

networks, such as an Ethernet, as the system interconnect. For many typical network

applications which require only infrequent small amounts of data to be transmitted

between workstations, an ethemet based cluster is adequate. However, for network

based applications, such as communication intensive, course grain parallel applications

it has been proved that the bus based networking technology cannot provide acceptable

performance [Chang95a]. Some of the motivational factors for considering the

113

implementation of a parallel computing platform over a high speed local area network

are:

1. High speed switch-based network architectures, such as the High Performance

Parallel Interface (HIPPI) and Asynchronous Transfer Mode (ATM) feature aggregate

throughputs of several gigabits/sec. Moreover each host usually has a dedicated high­

speed connection to the switch, unlike shared medium architectures where the network

capacity is shared among all the interconnected processors.

2. High-speed switch-based networks may easily be scaled up, in terms of

processing power by adding additional switches/links.

3. Inherent features, such as dedicated connections, of switch-based high-speed

networks allow them to support low latency data transfers.

4. Switch based networks inherently support efficient multicasting, and thus may

be attractive for supporting paradigms like distributed shared memory, where multicast

operations are frequently used to update, lock and unlock multiple data copies.

All these advantages of high-speed networks led researchers to develop and

implement switch-based cluster interconnects. Objectives for most of the works

discussed below are to reduce message latency or to support efficient collective

communications, even though they may follow different programming models.

The Princeton Shrimp

One cluster multicomputer system that uses a unique network interface to reduce

message latency is the Princeton Shrimp system described by Li [Blum94a]. Shrimp is

actually an example of distributed shared memory system. The Shrimp system uses an

Intel Paragon router backplane to implement its interconnection network. In Li's

algorithm, known as Shared Virtual Memory (SVM), the shared address space is

114

partitioned into pages, and copies of these pages are distributed among the hosts,

following a Multiple-Reader/Single- Writer (MRSW) protocol. Pages that are marked

read-only can be replicated and may reside in the memory of several hosts, but a page

being written to can reside only in the memory of one host.

One advantage of Li's algorithm is that it can easily be integrated into the virtual

memory of the host operating system. If a shared memory page is held locally to a host,

it can be mapped into the application's virtual address space on that host and therefore be

accessed using the normal machine instructions for accessing memory. An access to a

page not held locally triggers a page fault, passing control to a fault handler. The fault

handler then communicates with the remote hosts in order to obtain a valid copy of the

page before mapping it into the application's address space. When a page fault occurs

due to a write access, the fault handler has to invalidate all the other copies in the system

before marking the local copy as writable and allowing the faulted process to continue.

As a result the model achieves functional transparency, in the sense that a program

written for a shared memory multiprocessor system can run without change. On the

other hand performance transparency can only be achieved to a certain degree, as the

physical locations of the data being accessed affect application performance which is not

entirely true in a shared memory multiprocessor machine.

But as reported by Li, the virtual shared memory model depends largely on the

performance of the collective communication primitives like multicast operations as

they are frequently used to update, lock and unlock multiple data copies. Since the

backplane has a 2-D mesh topology, spanning trees are needed to implement broadcast

and other global operations. Not only do message latencies cascade along the branches

of these trees, but also multiple operating system calls are required to set up the mapping

for the trees before the global operation and to restore the previous communication link

125

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, "PVM:
Parallel Virtual Machine - A Users Guide and Tutorial for Network Parallel
Computing, " MIT Press, 1994.

Gupta94a.
Anshul Gupta, George Karypis, Vipin Kumar and Ananth Grama, Introduction to
Parallel Computing, Design and Analysis of Algorithms, The Benjamin/
Cummings Publishing Company, Inc., Redwood City, CA, 1994.

Hall94a.
Douglas. V. Hall, "Hardware for Fast Global Operations on Distributed Memory
Multicomputers and Multiprocessors," Dissertation for the degree of Doctor Of
Philosophy, Portland State University, December 1994.

Hall95a.
Douglas V. Hall and Michael A. Driscoll, "Hardware for Fast Global Operations
on Multicomputers," Proceedings of the 9th International Parallel Processing
Symposium, pg. 673-680, IEE Computer Society Press, Los Alamitos, CA, April
25-28, 1995.

Harr9la.
R. J. Harisson, "Portable tools and applications for parallel computers,"
International Journal on Quantum Chemistry, 40:847-863, 1991.

Heller9la.
H. Heller, A. Windemuth, H. Grubmuller, and K. Schulten, "Generalized Verlet
Algorithm for Efficient Molecular Dynamics Simulations with Long-Range
Interactions," Molecular Simulation, 1991, Vol. 6, pg. 121-142.

Heller90a.
H. Heller, H. Grumbmuller, and K. Schulten, "Molecular Dynamics Simulation on
a Parallel Computer," Molecular Simulation, 1990, Vol. 5, pg. 133-165.

Huang95a.
C. Huang, Yih Huang, and Philip K. Mckinley, "A Thread-Based Interface for
Collective Communication on ATM Networks," 15th International COnference on
Distributed Computing Systems, Vancouver, Canada, May 30 - June 2, 1995.

Kung91a.
H.T. Kung et al., "Network-Based Multicomputers: An Emerging Parallel
Architecture," Proceedings Supercomputing 91 Conference, ACM/IEEE,
Alberquerque, NM, 1991.

126

Manch94a.
Robert J. Manchek, "Design and Implementation of PVM Version 3," MS Thesis,
University of Tennessee, Knoxville, TN, May 1994.

Manch95a.
Robert J. Manchek, 1995. Personal communication.

Matts93a.
T.G. Mattson, C.C. Douglas, and M.H. Schultz, "Parallel Programming Systems
for Workstations Clusters," Yale University Computer Science Department,
Technical Report, YALEU/DCSffR-975, 1993.

Mlin94a.
Menjou Lin, Jenwei Hseih, et al., "Distributed Network Computing over Local
ATM Networks," Proceedings Supercomputing '94, pg. 154-163, IEEE Computer
Society Press, Washington, D.C, November 14-18, 1994.

Mull90a.
S. Mullender, Guido van Rossum, Andrew Tanenbaum, et al., "Amoeba: A
distributed operating system for the 1990s," IEEE Computer, 23(5):44-53, May
1990.

Ostc95a.
U.S. Office of Science and Technology Committee on Physical, Mathematical, and
Engineering Sciences, "High Performance Computing and Communications:
Foundation for America's Information future," (FY 1996 Blue Book), 1995.

Para94a.
Paragon(TM) System C System Calls Reference Manual.

Saaved93a.
H. Saveedra, R. S. Gaines, and Micheal J. Carleton, "Micro Benchmark Analysis
of the KSRl," Proceedings Supercomputing '93 Conference, pg. 202-213, ACM/
IEEE, Portland, OR, November 1993.

Sgupt94a.
Satya Gupta, M. Barnett, D. Payne, L.Shuler, R. van de Geijn, and J. Watts,
"Interprocessor Collective Communication Library (Intercom)," Proceedings of
Scalable High Performance Computing Conference, pg. 357-364, IEEE Computer
Society Press, Knoxville, TN, May 23-24, 1994.

115

after the operation. The idea of providing protected direct access to the network

hardware in Shrimp is similar to the direct mapped access to COP system channels. Both

systems try to reduce the extra software overhead by offering direct access to the

network, but as the COP channels are independent there is no overhead of traversing the

spanning trees to do global operations.

Similar distributed shared memory (DSM) models atop ATM networks also exist.

Thekkath et al. [Theka93a] have reported very promising results for emulating

distributed shared-memory across over ATM LAN, using a remote procedure call

paradigm. Dwarakadas et al. [Dwark93a] have studied software implementations of

distributed shared memory on ATM network which points out the need for fast

synchronization and multicast in order to support release consistent software DSM

protocols.

Improving PVM performance using ATOMIC system

Enhancing the performance of existing popular programming models by using

emerging networking technologies is also a very common approach. This allows all the

applications using the original programming model to increase performance without any

significant re-design. The COP system is designed to work along with the PVM message

passing model to take advantage of the above aspects. One similar work is reported by

Fisher [Fishr95a] for improving the performance of PVM using the ATOMIC user-level

protocol. The ATOMIC LAN is a high-speed network that offers 640-Mbps bandwidth

at an inexpensive per-host cost. It is a switch-based local area network composed of host

interface boards and network switches and uses a source-routed cut-through packet

switching technique. The performance improvement is achieved by separating the pvm

data-transmission path from the pvm control-message path, and transmitting pvm data

116

messages over a user-level application programming interface (API) provided by the

Myrinet ATOMIC interface. The system uses the idea of interleaving memory copies

with DMA operations on the sender to reduce memory copy overhead. Even though, the

implementation has reported reducing the PVM latencies times by half, the performance

for small-to-medium sized messages is still far below that offered by the COP system.

Also, the Myrinet-API, although significantly faster than the TCP/IP kernel stack, does

not provide reliable communication. Therefore, the application programmer has to

provide a user-level protocol to offer reliable sequenced packet delivery. The channels in

a COP system provide reliable data transfer, and hence application programmer do not

have to deal with providing a reliable user level protocol.

Faster Message Passing in PVM using ATM

Several attempts have been made by researchers to enhance the communication

facilities of PVM by using the Asynchronous Transfer Mode (ATM) technology. ATM

networks are characterized by their switch-based architecture instead of the bus based

architecture of the first and second generation networks. A switched network is capable

of supporting multiple connections simultaneously and multiple messages can be

transmitted across the network concurrently. One of the effort to enhance pvm

communications reported by Geist [Geist95a] is by using ATM's lower layer API to

implement a faster message passing route in pvm. The Fore Systems ATM API based

library functions provides a connection-oriented client-server model. After a connection

is set up, the network makes a 'best effort' to deliver ATM cells to the destination. But

cells may be dropped during the transmission depending on the availability of the

resources. So unlike the connection-oriented TCP socket, flow control and

retransmission facilities have to be provided by the applications. Geist's work represents

117

only the performance of point to point communications. He has reported a bandwidth

improvement of AAL5-based routes (PvmRouteAtm) by about 57% compared with the

TCP/ATM based PvmRouteDirect route. But average latency times of about 3200

microseconds was incurred by this route due to the inefficiency of the acknowledgment

procedure required for reliable sequenced packet delivery. This makes them less

applicable for short synchronization messages where latency is the performance limiting

metric.

Collective Communication on ATM Networks

Collective operations are usually defined in terms of a process group, and include

broadcast, scatter, gather, global operations across distributed data, and synchronization.

Huang et al. [Huang95a] reports a software framework for implementing

communication operations on ATM networks. The approach is based on reliable one-to­

many connections which are implemented atop unreliable ATM multicast virtual

channels. The system uses a thread-based interface for collective communications. Their

experimental setup includes a cluster of Sun SPARC stations interconnected by Fore

Systems ASX 100 ATM switches. The switch fabric of these first generation ATM

switches is a 1.2 Gbps time-division-multiplexed bus. The bus-based switch fabric

provides cell-by-cell replication of messages to multiple output ports, thereby

implementing multicast. The Fore system software includes an Application Program

Interface (API) that allow user-level processes direct access to AAL5 software. The Fore

API also provides functionality that cannot be efficiently implemented with TCP/IP

messages, such as the above mentioned hardware multicast. Multiple threads manage

ATM virtual channels for data and acknowledgments on behalf of the application

process. Given a connection-oriented unreliable multicast service, the reliable collective

118

operations are realized with a "combining-tree" among the destinations, which performs

a reduction operation on the acknowledgments as they proceed towards the source node.

Data transmitted on the multicast channel arrives at the destinations nearly

simultaneously, due to the pipelining of ATM cells. The acknowledgment channels are

arranged as a spanning binomial tree. An interior node in the tree waits for

acknowledgments from its children before forwarding an acknowledgment to its parent.

In essence, a reduction operation is performed on the acknowledgments, with the

reduction operation being minimum. Since this strategy introduces log (N + 1) - 1

additional delays for N destinations, a sliding window protocol is used to improve the

throughput. The average completion time for a 8-node multicast in the original PVM

implementation executed over ATM is about 160,000 microseconds. Even though this

implementation reported a multicast completion time 15 times less than the above

mentioned time for PVM, it is still far behind the time for an equivalent COP multicast.

Also in the COP system, the cost remains constant for multicasting to any number of

channels (maximum of 64) on a single controller. Another point is that, in combining­

tree acknowledgment patterns, a failure at one node will cause the multicast reported as

failed for all the nodes sending acknowledgments to the failed node. But in a COP

system as the communication to each node is independent, the multicast fails only for

the node that crashed, providing better fault tolerance. Also, unlike the COP system

ATM based schemes do not support fast aggregate operations.

Many similar research projects are currently investigating the use of high-speed

switch based networking technologies to reduce latency and to provide efficient and

reliable collective communications. Also similar interesting works are going on to come

up with better performance metrics and benchmarks for collective communication

operations.

CHAPTER VIII

CONCLUSIONS

The analyses in Chapter VI conclusively demonstrate that the COP system can

improve the performance of global operations on workstation clusters by factors of 5-25

over PVM. Furthermore, the analysis of the sample application program in Chapter VI

shows that speeding up these operations decreases overall execution time of this type of

PVM applications by more than 1.5 times.

The COP system software libraries are implemented to work along with the PVM

message passing system. This was done to make use of some of the superior features of

the PVM model like task management, asynchronous event notification, process groups,

etc. and to make the COP system resources readily available for numerous existing PVM

applications without significant rework. Also following an existing popular

programming model allows future applications to be easily written to make use of the

COP system. Porting application programs to use the COP resources is as simple as

replacing any PVM functions with equivalent COP library functions and linking the

program with the libcop library. The modular design of the COP system software allows

easy porting to other message passing systems by replacing the libcop library functions.

From a software perspective, the low overhead for accessing the channel is

provided by allowing direct protected access to the COP network interfaces. The

network interface is mapped to the application task's address space, allowing it to access

the COP controller memory locations by regular read and write machine instructions.

This implementation can also be used to provide a virtual shared memory model similar

120

to the Shrimp system, but using the shared memory on the COP controller. The timing

expressions derived in Chapter VI shows that the COP system performance is far ahead

as far as latency and collective operations are considered, compared to the native PVM

functions. Also unlike the ATM based schemes described before, the transmission timers

and retry mechanisms are implemented in compute node interface hardware, so

application programs need not worry about implementing any reliable user-level

protocol over this. Also as the communication channels are not shared, there is no time

spent in framing the packets before transmission and extracting the application data from

packets upon reception. This saves a considerable amount of time that otherwise would

be spent on buffer management.

Suggestions for Further Performance Improvements

The COP system provides many benefits, but it also has some limitations. The

primary limitation is that it is applicable to only small-to-medium sized messages. This

is because the effective payload in each COP message is very low. In a COP message

containing 4 words, only 2 words contain application data. Even though this is

negligible in small messages, for large message sizes, the overhead involved takes away

any performance improvements. Comparing the COP library timing values for various

global operations with the equivalent functions in Interprocessor Collective

Communication (InterCom) library and the NxLib library [Geijn95a], I found that the

COP system is best suited for messages below 16 kilobytes and performs moderately for

message sizes between 16 kilobytes and 64 kilobytes.

The COP system libraries use shared memory and semaphore mechanisms to

perform local reductions, synchronization and broadcast/multicast between the tasks

residing on the same compute node, before sending the reduced contribution from the

121

compute node to the cop controller. Even though, this reduces the contention for the

COP channel by different local tasks, the local reduction performance depends on the

efficiency of the implementation of IPC mechanisms on the host's operating system. The

shared memory approach for inter-process communication turned out to be very

inefficient compared to other IPC mechanisms. The major reason for this is the overhead

in semaphore operations and the extra context switching with these operations. Geist

[Geist95a] reported similar problems when he tried a shared memory route to replace the

TCP based PvmRouteDirect for local task to pvmd communications. He suggests the use

of Unix domain sockets instead of internet domain TCP connection between local task­

to-task and task to pvm daemon communications. In PVM version 3.3, the internet

domain TCP socket connection has been replaced by the Unix domain socket connection

as default connection. One of the possible improvements to the COP software design is

to replace the shared memory/semaphore mechanism with other IPC mechanisms. I

expect significant performance improvement using a thread based management for the

cop channels, but this is not possible in the current implementation as the generic port of

PVM does not support threads. Excessive use of channel locking features to perform

atomic operations on data arrays in the COP controller RAM disrupts the fair sharing of

cop controller resources by the channels, limiting the performance improvements seen

by applications. Also the current COP system software implementation does not support

multiple concurrent users to access the COP controller resources. To implement this

facility (which PVM supports) with less overhead, the COP controller hardware may

need to be modified to increase its programmability.

The COP system described here presents many potential research topics. Also as

the system does not change the basic programming paradigm, it can support a variety of

programming models and machine architectures. I feel the work described here for

122

applying the COP system to workstation clusters will provide the motivation and starting

point to actually design and implement a prototype system, measure and compare the

performance of real applications and open an active topic for interested researchers.

REFERENCES

Begu93a.
A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, S. Otto and J. Walpole, "PVM:
Experiences, Current Status and Future Direction," Proceedings Supercomputing
'93, IEEE Computer Society Press, Portland, OR, November 1993.

Blum94a.
M. Blumrich, K.Li, R. Alpert, C. Dubnicki, et al., "A Virtual Memory Mapped
Network Interface for the Shrimp Multicomputer," Proceedings of the 21st Annual
Intl. Symposium on Computer Architecture, April 1994.

Butl92a.
R. Butler and E. Lusk, "User's guide to the p4 programming system," Technical
Report ANL-92117, Argonne National Laboratory, Argonne, IL, 1992

Case93a.
David A. Case, "Computer Simulations of Protein Dynamics and
Thermodynamics," Computer, pg. 47-57, October, 1993.

Chang95a.
Sheue-Ling Chang, David H. C. Du, et al., "Enhanced PVM Communications
Over a High-Speed LAN," IEEE Parallel & Distributed Technology, pg. 20-32,
IEEE Computer Society Press, vol. 3, Number 3, Fall 1995.

Clark92a.
Terry W. Clark, et al., "Evaluating Parallel Languages for Molecular Dynamics
Computations," Proceedings of Scalable High Performance Computing
Conference, Williamsburg, Virginia, April 26-29, 1992.

Cohen94a.
D. Cohen et al., "ATOMIC: A High-Speed Local Communication Architecture,"
Technical Report, USC/Information Sciences Institute, Marina del Rey, CA,
January 94.

Dwark93a.
S. Dwarkadas, P. Keleher, A. L. Cox, and W. Zwaenepoel, "Evaluation of release
consistent software distributed shared memory on emerging network technology,"
Proceedings of the 20th International Symposium on Computer Architecture, pg.

124

144-155, May 1993.

Ewing93a.
R. E. Ewing, et al., "Distributed Computation of Wave Propagation Models Using
PVM," Proceedings Supercomputing '93, pg. 22-31, IEEE Computer Society
Press, Portland, OR, November 1993.

Fatoo94a.
Rod Fatoohi, and Sisira Weeratunge, "Performance Evaluation of Three
Distributed Computing Environments for Scientific Applications," Proceedings
Supercomputing '94, pg. 400-409, IEEE Computer Society Press, Washington,
D.C, November 14-18, 1994.

Fishr95a.
Hong Xu and Tom W. Fisher, "Improving PVM Performance using ATOMIC
User-level Protocol," Proceedings of the first international workshop on high­
speed network computing, pg.108-117, IEEE Computer Society Press, Santa
Barbara, CA, April 25, 1995.

Flow91a.
J. Flower, A. Kolawa, and S. Bharadwaj, "The Express way to distributed
Processing," Supercomputing Review, pg. 54-55, May 1991.

For93a.
MPI Forum, "MPI: A message passing interface," Proceedings of Supercomputing
'93, pg. 878-885, Los Alamitos, CA, 1993, IEEE Computer Society Press.

Geijn9la.
R. A. van de Geijn, "Efficient Global Combine Operations," Sixth Distributed
Memory Computing Conference Proceedings, pg. 291-294, IEEE Computer
Society Press, 1991.

Geijn95a.
R. A. van de Geijn et al., "InterCom: Lean Mean Collective Communication
Machine," Intel On-Line March 1995.

Geist95a.
Al Geist, and Honbo Zhou, "Faster Message Passing in PVM," Proceedings of the
First International Conference on High-Speed Network Computing, April 25,
1995 Santa Barbara, CA, pg. 67-73, IEEE Computer Society Press.

Geist94a.

125

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, "PVM:
Parallel Virtual Machine - A Users Guide and Tutorial for Network Parallel
Computing, " MIT Press, 1994.

Gupta94a.
Anshul Gupta, George Karypis, Vipin Kumar and Ananth Orama, Introduction to
Parallel Computing, Design and Analysis of Algorithms, The Benjamin/
Cummings Publishing Company, Inc., Redwood City, CA, 1994.

Hall94a.
Douglas. V. Hall, "Hardware for Fast Global Operations on Distributed Memory
Multicomputers and Multiprocessors," Dissertation for the degree of Doctor Of
Philosophy, Portland State University, December 1994.

Hall95a.
Douglas V. Hall and Michael A. Driscoll, "Hardware for Fast Global Operations
on Multicomputers," Proceedings of the 9th International Parallel Processing
Symposium, pg. 673-680, IEE Computer Society Press, Los Alamitos, CA, April
25-28, 1995.

Harr91a.
R. J. Harisson, "Portable tools and applications for parallel computers,"
International Journal on Quantum Chemistry, 40:847-863, 1991.

Heller9la.
H. Heller, A. Windemuth, H. Grubmuller, and K. Schulten, "Generalized Verlet
Algorithm for Efficient Molecular Dynamics Simulations with Long-Range
Interactions," Molecular Simulation, 1991, Vol. 6, pg. 121-142.

Heller90a.
H. Heller, H. Grumbmuller, and K. Schulten, "Molecular Dynamics Simulation on
a Parallel Computer," Molecular Simulation, 1990, Vol. 5, pg. 133-165.

Huang95a.
C. Huang, Yih Huang, and Philip K. Mckinley, "A Thread-Based Interface for
Collective Communication on ATM Networks," 15th International COnference on
Distributed Computing Systems, Vancouver, Canada, May 30 - June 2, 1995.

Kung91a.
H.T. Kung et al., "Network-Based Multicomputers: An Emerging Parallel
Architecture," Proceedings Supercomputing 91 Conference, ACM/IEEE,
Alberquerque, NM, 1991.

126

Manch94a.
Robert J. Manchek, "Design and Implementation of PVM Version 3," MS Thesis,
University of Tennessee, Knoxville, TN, May 1994.

Manch95a.
Robert J. Manchek, 1995. Personal communication.

Matts93a.
T.G. Mattson, C.C. Douglas, and M.H. Schultz, "Parallel Programming Systems
for Workstations Clusters," Yale University Computer Science Department,
Technical Report, YALEU/DCSffR-975, 1993.

Mlin94a.
Menjou Lin, Jenwei Hseih, et al., "Distributed Network Computing over Local
ATM Networks," Proceedings Supercomputing '94, pg. 154-163, IEEE Computer
Society Press, Washington, D.C, November 14-18, 1994.

Mull90a.
S. Mullender, Guido van Rossum, Andrew Tanenbaum, et al., "Amoeba: A
distributed operating system for the 1990s," IEEE Computer, 23(5):44-53, May
1990.

Ostc95a.
U.S. Office of Science and Technology Committee on Physical, Mathematical, and
Engineering Sciences, "High Performance Computing and Communications:
Foundation for America's Information future," (FY 1996 Blue Book), 1995.

Para94a.
Paragon(TM) System C System Calls Reference Manual.

Saaved93a.
H. Saveedra, R. S. Gaines, and Micheal J. Carleton, "Micro Benchmark Analysis
of the KSRl," Proceedings Supercomputing '93 Conference, pg. 202-213, ACM/
IEEE, Portland, OR, November 1993.

Sgupt94a.
Satya Gupta, M. Barnett, D. Payne, L.Shuler, R. van de Geijn, and J. Watts,
"Interprocessor Collective Communication Library (Intercom)," Proceedings of
Scalable High Performance Computing Conference, pg. 357-364, IEEE Computer
Society Press, Knoxville, TN, May 23-24, 1994.

127

Sinha92a.
Amitab B. Sinha, Helmet Heller, and Klaus Schulten, "Performance Analysis of a
Parallel Molecular Dynamics Program," Technical Report UIUC-BI-TB-92-13,
The Beckman Institute, University of Illinois at Urbana-Champaign, IL., July
1992.

Sten94a.
Peter A. Steenkiste, "A Systematic Approach to Host Interface Design for High­
Speed Networks," Computer, pg. 47-57, March 1994.

Sund90a.
V. S. Sunderam, "PVM: A framework for parallel distributed computing,"
Concurrency: Practice and Experience, 2(4):315-339, December 1990.

Sund93a.
V. S. Sunderam, and C. Hartley, "Concurrent programming with shared objects in
networked environments," Proceedings of 7th Intl. Parallel Processing
Symposium, pg. 471-478, Los Angels, April 1993.

Sunm90
Joan Stigliani, "Writing SBus Device Drivers", Sun Microsystems, Inc, 1990.

Tenn ea.
University of Tennessee and NSF, Draft for a Standard Message-Passing Interface

Theka93a.
C. A. Thekkath, H. M. Levy, and E. D. Lazowska, "Efficient Support for
multicomputing on ATM networks," Tech. Rep 93-04-03, Department of
Computer Science and Engineering, University of Washington, Apr. 1993.

	Performance Evaluation of Specialized Hardware for Fast Global Operations on Distributed Memory Multicomputers
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1557520825.pdf.MZM1q

