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Abstract

Perhaps the most critical component in determining the ultimate performance potential of
a multicomputer 1s its interconnection network, the hardware fabric supporting
communication among individual processors. The message latency and throughput of such
a network are affected by many factors of which topology, switching method, routing
algorithm and traffic load are the most significant. In this context, the present study
focuses on a performance analysis of k-ary n-cube networks employing wormhole
switching, virtual channels and adaptive routing, a scenario of especial interest to current

research.

This project aims to build upon earlier work in two main ways: constructing new
analytical models for k-ary n-cubes, and comparing the performance merits of cubes of
different dimensionality. To this end, some important topological properties of k-ary n-
cubes are explored initially; in particular, expressions are derived to calculate the number
of nodes at/within a given distance from a chosen centre. These results are important in
their own right but their primary significance here is to assist in the construction of new

and more realistic analytical models of wormhole-routed k-ary n-cubes.

An accurate analytical model for wormhole-routed k-ary n-cubes with adaptive routing

and uniform traffic is then developed, incorporating the use of virtual channels and the



effect of locality in the traffic pattern. New models are constructed for wormhole k-ary n-
cubes, with the ability to simulate behaviour under adaptive routing and non-uniform
communication workloads, such as hotspot traffic, matrix-transpose and digit-reversal
permutation patterns. The models are equally applicable to unidirectional and bidirectional
k-ary n-cubes and are significantly more realistic than any in use up to now. With this
level of accuracy, the effect of each important network parameter on the overall network

performance can be investigated in a more comprehensive manner than before.

Finally, k-ary n-cubes of different dimensionality are compared using the new models. The
comparison takes account of various traffic patterns and implementation costs, using both
pin-out and bisection bandwidth as metrics. Networks with both normal and pipelined
channels are considered. While previous similar studies have only taken account of
network channel costs, our model incorporates router costs as well thus generating more
realistic results. In fact the results of this work differ markedly from those yielded by
earlier studies which assumed deterministic routing and uniform traffic, illustrating the

importance of using accurate models to conduct such analyses.
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Chapter 1

Introduction

In the modern world, there is an apparently insatiable demand for ever-greater processing
power, particularly in science and engineering. Although designers have had considerable
success in increasing the performance of individual processors using advanced micro-
architectures, this has limitations and large-scale parallel processor systems have become
increasingly popular for high-end applications [90, 99]. Indeed, arguably, such machines
are possibly the only feasible way of achieving the enormous computational power [27]

required in these areas.

Parallel systems may be based on either a shared-memory or distributed-memory model.
In shared-memory architectures, known as multiprocessors, all processors may access a
shared memory while in those based on the distributed-memory model, known as
multicomputers, processors communicate by means of interchanging messages. The latter,
in particular, have experienced rapid development during the last decade [19] because of
their superior scalability. Such systems are organized as an ensemble of nodes, each

having its own processor, local memory and other supporting devices [129], comprising a
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processing element (PE) and a router or switching element (SE) which communicates with

other nodes via an interconnection network.

1.1 Interconnection networks

An interconnection network is a crucial component of a multicomputer because the overall
system performance is very sensitive to network latency and throughput [129, 137]. It may
employ a variety of topologies that can be classified into two broad categories: indirect
and direct [129]. In indirect networks, the nodes are connected to other nodes (or memory
banks in a shared-memory architecture) through multiple intermediate stages of switching
elements (SE). Many experimental and commercial parallel machines have employed
indirect interconnection networks [59], such as Hitachi SR2201 [75, 182], Cedar [105],
Cray X/Y-MP, DEC GIGA switch and Cenju-3, IBM RP3 [148] and SP2 [22], Thinking
Machine CM-5 [111] and Meiko CS-2. Examples of indirect networks include crossbar
[75], bus [68] and multistage interconnection networks (MINs) [105]. Figure 1(a)
illustrates a Butterfly MIN constructed from 2x2 switches. In direct networks (also called
point-to-point networks) each node has a point-to-point or direct connection to some of the
other nodes (known as its neighbours) allowing for direct communication between
processors. Direct interconnection networks have been widely employed by recent

machines [59]. Figure 1(b) shows a 4x4 mesh and associated node structure.

In a MIN multicomputer with N processing nodes, there are typically O(NlogN)
switching elements while in a direct network there are N such elements. From the
scalability point of view, direct networks are preferred. Moreover, direct networks can
exploit locality in traffic more effectively. Consequently, most recent multicomputers
employ these networks, including the Intel iPSC [16, 91. 140]. Intel Delta [93], Intel
Paragon [92], Cosmic Cube [170], nCUBE [131-133], MIT Alewife [7] and J-machine
[138, 139], iWarp [147]. Stanford DASH [112], Stanford FLASH [107], Cray T3D [93].
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Figure 1.1: Examples of indirect and direct networks, (a) A Butterfly MIN
constructed from 2x2 switches, (b) A 4x4 mesh.

Cray T3E [13, 45], and SGI Origin [108]. In this study we focus on direct interconnection
networks. From this point by "interconnection network" we mean "direct interconnection

network' unless otherwise mentioned.

In addition to the technology in which the hardware is implemented (considered in Section
1.2) several key factors influence network performance: topology, switching method,
routing algorithm and the traffic pattern generated by the application program being

executed. These are now considered in turn.

1.1.1 Network topology

Network topology defines the way nodes are connected and can be described using an
interconnection graph. The vertices of this graph are the nodes and the edges are the

physical channels that connect the nodes [110]. The network diameter is the maximum
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value (in hops) of the minimum distances between any two nodes in network. The number
of links adjacent to a node is called node degree and network degree is the maximum node
degree in all network. A network is regular if all nodes have the same degree. Finally, a
network is symmetric if it is isomorphic to itself with any node labelled as origin. The best

topology is one which is regular and symmetric with small diameter and node degree

[110].

Many topologies have been proposed for multicomputers [110] including the star [8. 9].
cube-connected cycles [154], generalised hypercube [26], pyramid. and k-ary n-cube.
Figure 1.2 illustrates some of the most commonly used direct networks, the ring

(employed by KSR Ist-level ring [59]). 2-dimensional torus (used in IWARP [147]), 3-
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n

dimensional torus (used by Cray T3D [98] and Cray T3E [13, 45]) and hypercube
(employed in iPSC [16, 91, 140] and nCUBE [131-133]). These all belong to a major
family of networks, called k-ary n-cubes, which have many desirable topological
properties including ease of implementation, modularity, symmetry, low diameter and
node degree, plus an ability to exploit locality exhibited by many parallel applications
[160]. K-ary n-cubes are suited to a variety of applications including matrix computation,
image processing and problems whose task graphs can be embedded naturally into the

topology [130].

In a k-ary n-cube N=k" nodes are arranged in n dimensions, with k nodes per dimension. A
node belongs to all n dimensions and is connected to two neighbours in each. Nodes
located at physical boundaries of a dimension are wrapped around with a link in each (see
Figure 1.2 for some examples). Links can be bidirectional or unidirectional; if
bidirectional the wrap-around links may be omitted. Examples of k-ary n-cubes include,
the ring (n=1), the 2-D and 3-D torus (n=2, 3), the hypercube or binary n-cube (k=2). The
2-D and 3-D meshes are examples of k-ary n-cubes with bidirectional links but without
wrap-around connections, used in several real machines including the Intel Paragon [92]
and MIT J-machine [138, 139] and M-machine [69]. In this study, the term k-ary n-cube

will be used to mean k-ary n-cubes with wrap-around unless otherwise indicated.

1.1.2 Switching method

Switching method determines the way messages visit intermediate nodes. Several methods
have been described in the literature, of which the two most important in multicomputers
are store-and-forward [176] and wormhole switching [47]. In store-and-forward switching
a node will not forward an incoming message till it has the entire message stored in its
channel buffer. While most first generation multicomputers employed store-and-forward

switching (of which the commonest form is packet switching), wormhole switching (also
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Figure 1.3: Transmission of an 8-flit message from the source node to the
destination node destined 5 hops away in a 4x4 mesh (left) using store-and-
forward (right up) and wormhole switching methods (right down) via intermediate
nodes A, B, C and D.

called wormhole routing) has been widely used in recent multicomputers [59] due to its
low buffering requirement and good performance. Here, a message is divided into flirs
(flow control unit) for transmission and flow control and each channel buffer need be only
one flit in length'. The first flit of a message, the header flit, includes the routing
information and is followed by the data flits in pipelined fashion. If the header cannot be
routed in the network due to contention for resources (buffers and channels), the data flits
are also blocked in situ, keeping all the allocated buffers occupied. Since wormhole
routing uses pipelining, it can perform well even in a high diameter network. Figure 1.3
illustrates the transmission of an 8-flit message from a source node to a destination node
destined 5 hops away in a 4x4 mesh using store-and-forward and wormhole switching
methods. Many experimental machines, such as iWarp [147]. J-Machine [139], and
Caltech Mosaic [172], and commercial ones including Intel Paragon [92]. Cray T3D [98].

Cray T3E [13,45], CM-5 [111], and nCUBE 2/3 [132, 133] use wormhole routing.

"'Wormhole switching has been derived from virtual cut-through [93] switching where each channel butter

is enough big to keep an entire message.
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Because wormhole flits can be blocked in the network and then occupy switching
resources, the method requires careful deadlock control [51]. One solution to this problem
1s the use of virtual channel flow control [49]. Flow control concerns techniques for
dealing with contention by multiple messages for the same channels and buffers [158]. A
good flow control policy should reduce congestion, be fair and retain low latency. Flow
control techniques are very dependent on the switching scheme employed [74]; in

wormbhole routing, the commonest flow control strategy is the use of virtual channels.

Virtual Channel

The preceding switching techniques assume that messages or parts of messages are
buffered at the input and output of each buffer channel. Buffers are commonly operated as
first-in-first-out (FIFO) queues. Therefore, once a message occupies a buffer for a channel,
no other message can access the physical channel even if the message is blocked [59]. Due
to the chained blocking property of wormhole switching, the bandwidth of interconnection
networks is then limited to a fraction (20%-50%) of the total available physical bandwidth
[6, 48]. However, it is also possible to multiplex several communications on a flit-by-flit
basis by decoupling the allocation of buffers and physical channels [64], thus dividing a
physical channel into several logical or virtual sub-channels. A virtual channel consists of
a buffer—together with associated state information—capable of holding one or more flits
of a message [49]. Virtual channels were first introduced in [49] to prevent deadlocks in
wormhole networks based on the torus routing chip [50]. In [49, 59], it has been shown
that virtual channels can also be used to improve network performance and latency by
relieving contention. It is often observed that increasing the number of virtual channels
will increase the network performance [59]. The advantages and disadvantages of using

virtual channels have been thoroughly investigated (e.g. see [15, 46, 67, 74, 106, 158,

166]).



Chapter 1. Introduction 8

(I m/mm] I !
7 00 g» e
mny 0 f iy

e O 0> ]

IR HE o

AT Ny

L [ -]

) 0 D> [

s/ NG ¥

I 1% S [ ]
physical channel virtiial channél

Figure 1.4: Organizing a 12-flit buffer dedicated to a physical channel; (a)
Conventional routers organize it into one FIFO queue, while a network using
virtual channels may organize it into several independent lanes resulting in
different number of virtual channel each with different queue length, namely (b)
2 x6 flits, (c) 3x4 flits, (d) 4x3 flits, (e) 6x2 flits, and (f) 12x1 flit.

Virtual channels dedicated to a physical channel may be organised in different ways.
Figure 1.4 shows several organisations of virtual channels for a physical channel with a
12-flit buffer. The architectures differ in terms of performance, hardware requirements,
and particularly arbiter complexity. Performance is dependent on network parameters and

there is an optimal number of virtual channels where the network performance is

maximised [49, 59].

The flit-level flow control discussed in [49] utilizes virtual channels efficiently as it
permits the messages to cross the network channels in a time-multiplexed fashion. The
header flit of a message directly determines the physical route (channel) required to reach
its destination but a channel allocation algorithm selects the virtual route. When a header
flit arrives at an input port, an available virtual channel is assigned to it. A header flit

advances through a switch if: 1) it gains access through the crossbar: and 2) an available
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Message 1

Figure 1.5: A deadlock situation in A?@E

wormhole routing where no message can
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nodes D, B, A, and C. Patterned paths are = [C D
occupied by messages and whole arrows et f ol
show the desired directions to be passed by

messages. Message 3

virtual channel exists at the receiving end. The virtual channels acquired by the header flit
at each routing step are used by the remaining flits to advance in the network. Once a
message 1s allocated a virtual channel, the channel i1s not relinquished until blocking
conditions arise. When the blocking conditions are removed, the message competes with
other virtual channels to access the physical channel. When the last flit of a message

leaves a router, the virtual channel that is hosting that message 1s de-allocated.

When virtual channel flow control is employed, a transmission policy is needed to mediate
access to each physical channel. One simple policy is work conserving round robin in
which unblocked messages occupying virtual channels on the same physical channel are
alternately selected for transmission of a single flit [74]. As another example, a policy that
could potentially reduce variance in message latencies is oldest flit first where flits

belonging to the oldest unblocked message are given transmission priority [74].

1.1.3 Routing algorithm

Most interconnection networks, including k-ary n-cubes. provide multiple physical paths
for routing a message between two given nodes. This introduces the problem of choosing a

best route between many possible alternatives. Routing is a means used to achieve this.
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Figure 1.6: Routing messages in an
6x6 mesh from node (0,/) to node
(45) (for =0,1,...,5); (a) Using
dimension  order routing, five
messages must traverse the
channel from (0,4) to (0,5), (b) Using
adaptive routing, all messages
proceed simultaneously.

An important requirement for any routing algorithm is to ensure deadlock freedom:
deadlock situations occur when no message can advance towards its destination because of
occupied channels and buffers [59]. Many studies [61, 62, 78, 80, 118, 119, 128, 178]
have addressed this issue in multicomputer networks. Figure 1.5 illustrates a deadlock
situation where four messages are blocked and each one wants to acquire a channel being

used by another.

Many practical multicomputers have used deterministic routing [65] with virtual channels
to ensure deadlock avoidance. This is achieved by forcing messages to visit the virtual
channels in a strict order [59]. Consequently, messages always take the same path between
a given pair of nodes. This form of routing has the advantage of being simple, but is
unable to adapt to conditions such as congestion or failures. Dimension-ordered routing
[59] is a typical example of deterministic routing where messages visit network
dimensions in a pre-defined order. However, if any channel along the message path is
heavily loaded, the message experiences large delays and if any channel along the path is

faulty the message cannot be delivered at all.

Adaptive routing improves both the performance and fault tolerance of an interconnection
network and, more importantly, it has the ability to provide performance which is less

sensitive to the communication pattern [51]. In this case, the paths can be chosen
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Figure 1.7: A 6x6 mesh with a
faulty link from node (3,2) to
node (3,3). (a) With dimension
order routing messages from
dark nodes to the shaded area
cannot be delivered. (b) With
adaptive routing, messages can
be delivered between all pairs of
nodes.

according to the degree of congestion of the node where the routing decision is taken.
Figure 1.6 shows a 6x6 mesh in which the node (0, i) sends a message to the node (7, 5) for
i=0,1,...,5. With dimension order deterministic routing five of the six messages must
traverse the channel from (0, 4) to (0, 5), as shown in Figure 1.6(a). Thus only one of these
five messages can proceed at a time. With adaptive routing (Figure 1.6(b)) all of the
messages can proceed simultaneously using alternate paths. Figure 1.7 shows the same
network with a faulty channel from (3, 2) to (3, 3). With dimension-ordered routing
messages from node (3, i) to node (k, j) where 0<i<2< <5, 0<k<5, cannot be
delivered. With adaptive routing all messages can be delivered by routing around the
faulty channel. In this example, it is necessary for the messages initially to be routed away

from the destination node, resulting in a non-optimal distance route [51].

With a non-minimal routing algorithm, the selected path may not always be a shortest path
while a minimal adaptive routing algorithm limits the path selection to the shortest paths
between any given pair [S1]. Many adaptive routing algorithms (minimal and non-
minimal) have been developed for k-ary n-cubes [59]. These algorithms display interesting
tradeoffs between their degree of adaptivity and the number of virtual channels needed.
Introducing more adaptivity usually requires an increase in the number of virtual channels
[145]. For example, Linder and Harden [116] have described fully adaptive minimal

algorithms for k-ary n-cubes with unidirectional and bidirectional links. For the
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unidirectional case, n+1 virtual channels are needed for each physical channel. For k-ary
n-cubes with bidirectional links, 2”7 virtual channels are needed per physical link in each
direction, if the network has no wrap around links. With toroidal cubes the number

increases to (n+1)2"71.

Boppana and Chalasani [30] have proposed another approach to design deadlock-free
adaptive routing algorithms, based on the idea of the structured buffer pool method,
traditionally used in store-and-forward networks [176]. Each physical channel is split into
D virtual channels, where D is the diameter of the network. To guarantee deadlock-
freedom, messages cross virtual channels according to the number of hops they have made
in the network. Upon reaching an intermediate node, a message uses the A" virtual
channel to complete its 2" hop. Again, the high number of virtual channels required in

this routing algorithm makes it impractical in large diameter networks, e.g. k-ary n-cubes.

Partially adaptive routing as an approach to trade off adaptivity against the number of
virtual channels has gained much attention [35, 40, 51, 77]. Chien and Kim [40] have
presented an algorithm, called planar adaptive routing, which is minimal and partially
adaptive. This approach involves examining the routing dimensions in pairs, and
constraining the routing choices at any time to one or two dimensions. This, in general, is
less flexible than the fully adaptive routing algorithm of Linder and Harden, but requires
only a constant number of virtual channels, regardless of the network dimension. For
example, in a k-ary n-cube without wrap around connections, only three virtual channels
for each physical link are required. The turn model [77] prevents some of the transitions
between dimensions, and generalizes to multidimensional meshes and binary n-cubes.
This scheme requires only a virtual channel per physical channel. is non-minimal, and
partially adaptive. The approach for two-dimensional meshes works by disallowing two of
the cight possible turns a packet may take. The turn model can be used in conjunction with

virtual channels to increase adaptivity and to generalize to k-ary n-cubes. Thus. instead of
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prohibiting some turns, the packet can be switched to a different virtual channel upon
taking such a turn. Dally and Aoki [51] used this idea to design partially adaptive non-
minimal routing algorithms for the class of k-ary n-cubes. In their algorithms, each packet
carries with it a dimension reversal number which keeps track of the number of times the
packet has been routed from a channel in one dimension to a channel in a lower

dimension.

Most of the proposed adaptive routing algorithms require a high number of virtual
channels. This high number of virtual channels results in increased hardware complexity,
which can reduce router speed, causing significant degradation in network performance
[39]. The high cost of adaptivity has motivated researchers to develop adaptive routing
algorithms that require a smaller number of virtual channels. Several authors like Duato
[63], Lin et al [115], and Su and Shin [174] have proposed fully adaptive routing
algorithms, which can achieve deadlock-freedom with a minimal requirement for virtual
channels, allowing for an efficient router implementation. Duato’s fully adaptive routing
algorithm is the best known of these and has been widely studied, having sufficient and

necessary conditions for deadlock freedom with a minimum number of virtual channels.

1.1.4 Traffic pattern

One of the most important factors influencing network performance is the traffic pattern
generated by the applications being executed on a machine. Different algorithms can
generate very different traffic patterns. One way of optimising performance is to develop
efficient algorithms that generate traffic compatible with the network's other properties.
For example, we have described the design of efficient algorithms for a parallel numerical
interpolation method on the k-ary n-cube [163], the star [164], and the cube-connected

cycles [165] interconnection networks, by studying the nature of the Lagrange
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interpolation method itself as well as the topological properties and communication

capabilities of the target networks.

Interconnection network research must incorporate good models of message traffic. The
traffic model is basically defined by three parameters: message injection time, message
length and message destination address distribution [88]. The most frequently used,
simplest and most elegant model is the classical uniform traffic model where processors
target each other (or memory modules) with equal probability, at some rate per cycle.
Successive requests are independent and processors also make requests independently [87,
104]. This simple model has widely been used [3, 4, 5, 6, 12, 32-34, 42, 43, 48, 49, 58, 81,
84-86, 99, 120, 142, 143] to drive most queuing-theory-based studies of interconnection

network.

Based on observations of locality in message traffic, researchers have proposed extensions
to the uniform traffic model. Some prefer a sphere of locality model [6, 160], in which a
processor is more likely to send messages to a small number of destinations within a so-
called “sphere of locality”. Destinations outside the sphere are requested less frequently.
Several ways to define the sphere exist; it can be based on physical network distances [1],

network partitions [54, 89], or combinations of the two.

A message traffic model that has attracted much attention is the hotspot model studied in
[149] where all (or a large number of) processors attempt to send messages to a single
destination with relatively high probability. This may lead to extreme network congestion
resulting in serious performance degradation due to the tree saturation phenomenon first
observed in multi-stage networks. Hotspot traffic behaviour may be exhibited in many
applications such as cache coherency protocols, synchronisation and many operating
system functions [88]. It can be produced directly by certain collective communication

operations including gathering and barrier synchronisation [127].
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Permutation traffic is exhibited in many parallel applications such as computing
multidimensional FFT (Fast Fourier Transform), matrix problems, finite elements and
fault-tolerant routing [90]. In a permutation traffic pattern the destination address is solely
determined by the source address using a permutation function [79]. Examples of
permutation functions are bit reversal, matrix transposition, shuffle, unshuffle, butterfly,
and exchange (see [59, 79, 90] for more examples of permutation routing and applications
employing them). A permutation function, f, maps any address X =X|Xp--X, to a
destination address f(X)=x"| x’5---x’, where x’;, 1<i<n, can be any of the x; or their
complements. Although most of permutation routing functions have been defined for
binary input addresses (where x;= 0 or 1), they may also be defined for radix-k addresses
(0<x; <k), e.g. the digit reversal permutation which deals with addresses (of radix-k

digits) in several applications like radix-k FFT and related transforms [59].

1.2 Implementation constraints

In comparative evaluation of interconnection networks one must take account of
implementation constraints to give a meaningful evaluation. Two such implementation
constraints have been chosen to enable a fair comparison between networks of constant

cost: pin-out constraints [4, 6] and wiring density constraints {48, 52].

The wiring complexity of the system is an important issue since the silicon area is limited
and in general networks are wiring intensive [21, 73, 159]. In [48] Dally tried to quantify
the implementation costs of different multidimensional networks in order to compare their
performance under a constant cost constraint. He chose network bisection width [177] as
cost measure and concluded that at fixed bisection width lower dimensional structures are
best. A constant bisection width constraint is a measure of wiring complexity and is
particularly relevant when the network wiring is implemented on a single chip or board.

Dally’s results have influenced the migration of commercial multicomputer networks from
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hypercubes to 2D meshes and tori over several years. The J-machine [139], iWarp [147],
and Stanford DASH [112] are examples of low-dimensional torus and mesh

multicomputers.

Abraham and Padmanabhan [4], however, applied a constant pin-out constraint, which
may be a more relevant cost constraint for today’s pin-limited chips or where connector
costs for cabling between cabinets is a consideration. With such a constraint, higher
dimensional networks look attractive again although the analysis of [4] does not consider

the longer wiring delays that might provide an additional penalty to such networks.

Agarwal [6] has examined the cut-through switching method in k-ary n-cubes under both
constant pin-out and bisection width constraints and obtained results similar to Dally’s,
although favouring networks of somewhat higher dimensionality than Dally. Other authors
have compared the performance of multidimensional tori using both of the above cost
constraints, and also considered different wire delay models to account for the longer

lengths required to implement higher dimensional topologies [23, 60, 167].

For instance Basak and Panda [23] have introduced another constraint for studying
interconnection networks which they term a packaging constraint. As large systems
require several levels of packaging, they have used the bisection width and pin-out
constraints at each level. A typical hierarchy used in packaging a large system consists of
multiple chips on a board and multiple such boards in a card-cage. A large system may
require multiple card-cages, multiple cabinets and so on. The modules at each level of this
packaging hierarchy: chips, boards, card-cage etc. have their own characteristics in terms
of maximum capacity, bisection width, available pin-out and channel width. Considering a
wide range of parameters, they have concluded that the best configurations are achieved
with cluster-based systems with up to 8 processors per cluster with a 3- to 5-dimensional

inter-cluster interconnection networks [23].
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Scott and Goodman [167] have considered line pipelining which reduces the effect of long
wire delays. The majority of their analysis is for a non-contention model, although they
also provide extensive network simulations for contention situations. They conclude that
the optimal radix in unconstrained situations is 2 (hypercube), and that for a constant pin-
out constraint the optimal radix is 4 to 10, and that under constant bisection width the

optimal radix 1s 16 to 32.

It can be concluded that the topology that looks best is clearly highly dependent on the
constraint chosen and the wire delay model used [2, 117]. However, other network
parameters (routing algorithm, switching method, router hardware cost, ...) and the traffic
pattern used are of great importance. All of above studies assume deterministic routing,

uniform message traffic and networks without virtual channels.

1.3 Performance modelling

The popularity of multicomputers is exemplified by the proliferation of a variety of
parallel machines with diverse design philosophies. This range of architectural design has
created a need for developing performance models for multicomputers not only to analyse

the effectiveness of their design but also to reduce the design space [99].

Analytical models are cost-effective and versatile tools for evaluating system performance
under different design alternatives. Since simplifications are often made to reduce the
complexity of models, there is a need to validate the models through simulation.
Validation is typically carried out for test cases, which require reasonable computation
time and resources. The significant advantage of analytical models over simulation is that
they can be used to obtain performance results for large systems and behaviour under
network configurations and working conditions which may not be feasible to study using

simulation on conventional computers due to the excessive computation demands [141].
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Using analytical models, one can see the effect of each parameter on the system
performance including those parameters related to the network configuration,
implementation choices and traffic load. Realising such detailed investigations through
simulation may take months or years, depending on the machine employed, and an
efficient analytical model often provides a great reduction in the time required for such
investigations. Most analytical models proposed for the performance evaluation of
interconnection networks use results from queuing theory, providing a relatively

straightforward derivation of performance expressions.

1.4 Related work

Within the literature on networks, the work on analytical performance modelling and
constraint-based performance comparison of interconnection networks is most related to

this thesis.

The first direct network stochastic performance study considered only the hypercube [3],
assuming store-and-forward switching method with uniform message traffic and

deterministic routing.

In [48], Dally introduced a mathematical model for predicting the average message latency
in a unidirectional k-ary n-cube. This study assumes wormhole switching without virtual
channels, deterministic routing and uniform message traffic. Since the model does not take
account of blocking behaviour in the network, it is most applicable for light to moderate

traffic and loses its accuracy when applied to a network with higher loads.

Abraham and Padmanabhan’s [4] model for bidirectional k-ary n-cubes considers store-

and-forward and virtual cut-through switching methods, deterministic routing and uniform
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message traffic. They have used this model to compare the performance merits of multi-

dimensional k-ary n-cubes.

The analytical model described in [6] for both unidirectional and bidirectional k-ary n-
cubes uses virtual cut-through switching, deterministic routing, and uniform message
traffic and considers locality. However, this model again omits the effect of virtual
channels and the approximations used for incorporating message contention lead to under-

estimation or over-estimation of performance depending on the network configuration

[13].

Draper and Gosh [58] introduced an accurate model for unidirectional k-ary n-cubes using
wormhole switching, deterministic routing, and uniform traffic but their study does not

consider the effect of virtual channels.

Adve and Vernon [5] proposed a model for k-ary n-cubes employing virtual cut-through
and wormhole switching methods without virtual channels. The model considers

deterministic routing and uniform traffic and is approximately accurate.

Anderson and Abraham [13] proposed some models for unidirectional and bidirectional k-
ary n-cubes employing store-and-forward and virtual cut-through switching, deterministic

routing and uniform traffic. These models are fairly accurate in all traffic regions.

Cincinani, Colajanni and Paolucci [42] introduced a model for the 3D torus with
wormhole switching and deterministic routing. It does not consider virtual channels and

uses uniform message traffic to approximate mean message latency fairly accurately.

Greenberg and Guan [81, 83] proposed a model for the two-dimensional mesh and torus
employing wormhole switching. deterministic routing, and assuming a uniform message

traffic. The model loses its accuracy slightly when approaching heavy traffic loads.
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Kim and Das [99] introduced an analytical model for hypercubes using wormhole and
virtual cut-through switching without virtual channels using both deterministic and
random routing and uniform message traffic. Their model takes account of the blocking

effect and displays good accuracy.

Another model for hypercubes is proposed by Hady and Menezes [85, 86] using wormhole
switching, deterministic routing and uniform traffic. Results obtained through simulation

show close agreement to those produced by the analytical model.

Boura and Das [33, 36] have proposed an accurate analytical model for wormhole-routed
hypercubes employing virtual channels and adaptive routing with uniform traffic. The
model considers blocking behaviour and is fairly accurate for all traffic loads. A similar
model was developed in [120, 121] for wormhole-routed tori deriving necessary
expressions for computing the probability of message blocking. Computing this
probability becomes more complicated for a general k-ary n-cube. Ould-Khaoua [142] has
introduced a model for unidirectional k-ary n-cubes. His model considers wormhole
switching and virtual channels, adaptive routing, uniform message traffic and locality.
While the model exhibits a good degree of accuracy under light and moderate traffic loads,
it loses its accuracy as the network enters the heavy traffic region. The discrepancy
between the model and simulation is more noticeable as the number of alternative paths
increases in the network, for example when n is moderately big. This i1s due to

approximations when computing the probability of message blocking.

1.5 Motivations and outline of the thesis

In order to design high-performance multicomputers it is essential that the performance
capabilities of their interconnection networks be completely understood. As discussed

carlier. one approach to such performance studies is to build analytical models.
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Table 1.1: Proposed models for k-ary n-cubes.
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Most recent multicomputers use k-ary n-cubes as their underlying topology and employ
wormhole switching [59]. Several analytical models [4, 6, 13, 42. 48, 58] have been
proposed in the literature for deterministic routing in wormhole-routed k-ary n-cubes.
Although deterministic routing algorithms are simpler to implement and many machines
use deterministic routing [65], they cannot exploit network channels efficiently since
messages cannot use alternative paths to avoid congested channels and thus reduce
message communication latency. Fully adaptive routing overcomes this limitation by
enabling messages to explore all the available paths between source and destination nodes.
Several recent machines have used adaptive routing (e.g. Cray T3E [13, 45] and Reliable
router [53]), and it continues to be a favoured routing algorithm in multicomputers.
However, there have been few analytical models proposed for adaptive routing. Table 1.1
summarises the major analytical models of k-ary n-cubes so far introduced, addressing
their main characteristics. As can be seen in the table, most of models deal with
deterministic routing and do not consider the effect of virtual channels. The only model
that uses adaptive routing and deals with virtual channels is Ould-Khaoua’s; however, this
loses accuracy as the network is subjected to heavy traffic load, although it exhibits a good
degree of accuracy in light and moderate traffic. The discrepancy between the model and
simulation is more noticeable as the number of alternative paths increases in the network
and, therefore, it is more applicable to low-dimensional high-radix k-ary n-cubes (small n
and large k). All these models assume a uniform traffic pattern, which is generally not a

suitable choice for a typical load generated by a real application.

If adaptive routing is to be widely adopted in practical machines, 1t is necessary to assess
its behaviour and suitability for different workload characteristics. Although it is very
difficult to define a typical real-world traffic pattern, we may use some non-uniform traffic
patterns created by known communication algorithms and applications (e.g. permutation

traffics) or observed in practice (e.g. hotspot and locality). The most commonly
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encountered of these are hotspot traffic and the permutation traffic characteristic of digit-
reversal (known as bit-reversal for the hypercube) and matrix-transpose permutations.

These patterns have previously mostly been studied via simulation experiments [59, 74,

158].

In this study, we first construct an accurate and exhaustive model for general wormhole-
routed k-ary n-cubes, employing adaptive routing both with uniform traffic and including
an element of locality. No such general model, capable of coping with arbitrary network
size and traffic load, has yet been developed. Then, we introduce new models that deal
with three important non-uniform traffic patterns: hotspot, matrix-transpose and digit-
reversal. The performance merits of k-ary n-cubes will be analysed using these models and
the effect of different parameters on that performance will be assessed. Finally. we shall
apply our models to adaptive wormhole routing under uniform and non-uniform traffic,
taking into account the effect of virtual channels, to reassess the performance merits of

multi-dimensional k-ary n-cubes under constant pin-out and bisection-width constraints.

The rest of the thesis is organized as follows. Chapter 2 gives the preliminaries required
for understanding the next chapters and reports some important findings on topological
properties of k-ary n-cubes. It starts with defining the k-ary n-cube structure and deriving
some topological properties of k-ary n-cubes; in particular, it gives some expressions for
calculating the number of nodes which are at (and within) a given distance from a given
node in the unidirectional and bidirectional k-ary n-cubes. Theses expressions will then be
used in the next chapters for developing some analytical models. Finally, a methodology
for designing adaptive routing algorithms in multi-computer networks is described and the

methodology is applied to design some adaptive routing algorithm for wormhole-switched

k-ary n-cubes.
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Chapter 3 proposes an accurate analytical model of adaptive routing in wormhole-routed
k-ary n-cubes with uniform traffic and validates it through simulation experiments. It starts
with modelling a unidirectional network and then extends it for the bidirectional k-ary n-

cube. The model is also described with locality in the traffic pattern.

In Chapter 4, a model is introduced for adaptive wormhole routing for k-ary n-cubes in the
presence of hotspot traffic. The model uses the method employed by Pfister and Norton
[149] for producing hotspot traffic. The model for the unidirectional k-ary n-cube is firstly

described and then extended to consider bidirectional networks.

Analytical models of adaptive routing in wormhole-routed unidirectional k-ary n-cubes for
digit-reversal and matrix-transpose permutation traffics are introduced in Chapter 5. Like

previous models, these are then extended to bidirectional k-ary n-cubes.

The structure of Chapter 3, 4 and 5 for development, validation and extension of the
analytical models is as follows. We first develop the model for unidirectional k-ary n-
cubes. The required changes in the model equations are then discussed for the hypercube
as a special case of the unidirectional k-ary n-cubes. We then validate the model through
simulation experiments. The bidirectional extension of the model is then developed and,

finally, some analysis is realised using the proposed model.

In Chapter 6, using the analytical models constructed in Chapters 3, 4 and 5, performance
merits of hypercube and torus interconnection networks are compared under uniform,
hotspot, digit-reversal and matrix-permutation traffic patterns. The comparison considers

both pin-out and bisection bandwidth constraints with both normal and pipelined channels.

Finally, Chapter 7 concludes the thesis and outlines some directions for future work

considering areas which might be worthy of further research.



Chapter 2

The k-Ary n-Cube: Structure, Properties
and Routing

In this chapter, we derive some results on the topological properties of k-ary n-cubes
which will be used when constructing our models in the next chapters. We then examine
k-ary n-cubes, their node structure and Duatos adaptive routing algorithm which are

necessary for understanding the models developed in the following chapters.

2.1 The k-ary n-cube

The k-ary n-cube is probably the most widely deployed (7, 13, 16, 93, 98, 107, 108, 112.
131, 139, 147, 170] multicomputer network topology [59] with many desirable properties
including, symmetry, regularity, good node degree and diameter. It is well-suited to many
applications such as matrix computation, image processing, and many others that can
directly be mapped onto grid structures [130]. The three commonest instances of the k-ary
n-cube are the 2 and 3-dimensional tori (k-ary 2-cube and k-ary 3-cube), both widely

employed in recent machines, and the n-dimensional hypercube (2-ary n-cube). popular in

early multicomputers.
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k . .
A k-ary n-cube, Q,,, where n and k are referred to as dimension and radix respectively. has
K" identical nodes arranged in n dimensions with k nodes in each dimension. Node A in
Q, 1s labelled with a distinct n-digit radix k vector [dni, apa, ..., aol, where

a;, 0<i<n-1, indicates the position of the node in the i dimension.

The k-ary n-cube can be either bidirectional or unidirectional. In the unidirectional
network, Q,f , there is a unidirectional link from node A = [a,.i, an2, ..., ap] to node B =
[b4-1, bp-2, -, bo] iff there is an i, 0<i<n-—1, such that a; =(b; +1) modk and a; :bj,
0<j<n-1, j#i. Thus, in Q,]f each node is adjacent with one node in each dimension,

hence n nodes in total.
In the bidirectional k-ary n-cube, on the other hand, the concept of Lee distance is useful.

DEFINITION 2.1. Lee weight [31, 37]. Let A=[a,.1, @n-2, ..., a0l be an n-digit radix k vector.
The Lee weight of A is defined as

n—1 _
W (A) = Z”ai”, where ”ai“ = min(a;,k —a;).

=0
DEFINITION 2.2. Lee Distance [31, 37]. The Lee distance between two vectors A and B is
denoted by D; (A,B) and is defined to be W, (A —B). That is, the Lee distance between

two vectors is the Lee weight of their bit-wise difference (mod k).

For example, when k=4, W, (3.2,1]) = (4-3)+2+1=4, and D, ([1,2,3].[3.2.1]) =
WL([1,2,3]—[3,2,1]):WL([2,O,2])=4. Just as the Hamming distance may be used to
define the hypercube and generalised hypercube graphs, the Lee distance may be used to

define the bidirectional k-ary n-cube [31, 37] as follows.
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Figure 2.1: Examples of k-ary n-cubes; (a) A Q"Q and (b) A QS

A bidirectional k-ary n-cube, O}, has k" nodes where any two nodes A and B are
interconnected if and only if D; (A,B) =1. Each node in a Qf; is connected to 2n adjacent

nodes through 2n bidirectional channels, two at each dimension.

Alternatively, both unidirectional and bidirectional k-ary n-cubes can be defined as a cross
product of n cycles of length k [55]. The cross product of the graphs G, =(V|.E).
G, =(V5,E5),..., and G, =(V,,E,), denoted by G| ®G, ®---®G,,, is a new graph
G ={V. E), where V={(v{,vg,.sVpy) Vi €V}, (1<i<n)) and
E={[(v{.vy ey )y (up ttnesuy)] | Jio 1< <n, such that [via]e B and v =u;

for j=+i}.Hence, Q,/; can be defined as a product of cycles as [31, 37, 55]

ntumes

Q) =C; ®C; ®®Cy




Chapter 2. The k-ary n-cube: structure, properties and routing 28

with Cp being a cycle of k nodes which can be unidirectional or bidirectional resulting in

a product graph of Q,lj or Q,’f respectively. Figure 2.1 shows two examples of the

unidirectional and bidirectional k-ary n-cubes.

2.2 Some topological properties of k-ary n-cubes

Many aspects of the k-ary n-cube have been extensively studied in the past, including its
topological properties [17, 18, 25, 31, 37, 76], routing [18, 56, 61, 62, 76, 80, 145, 180],
load balancing [84], performance analysis [4-6, 12, 23, 24, 39, 42, 43, 48, 58, 60, 66, 81,
83, 100, 102, 120, 121, 141-143, 158, 167], resource placement [20. 156], etc. In this
section, we derive some fundamental properties of the k-ary n-cube. In particular, we
furnish exact expressions that compute the number of nodes located at/within distance i
from a given node in both the unidirectional and bidirectional k-ary n-cube. These results
are interesting in their own right and can help us better understand the k-ary n-cube and
explore properties that may be used in other problems. For instance, when a node is
viewed as a root of a spanning tree in the k-ary n-cube, such expressions determine the
number of nodes at level i in the tree. Therefore, the results of this study are useful in the
study of spanning tree structures, which have been widely employed in the design of
efficient multicast and broadcast operations, e.g. see [31, 70-72]. Furthermore, our results
can also be used in the study of the resource placement problem in the k-ary n-cube [17,

146]. We shall use them in the following chapters when developing our models.

2.2.1 Problem definition

In Q;lj node A = [an1, @nas ..., aol is at distance i from node B = [b,.1. by, ..., bo] if

n—1 -1 .
E(aj —bj) mod k =i. In the bidirectional case, Q,l;, node A = [a,.1. @y, ... ao] 1s at
J=0

distance i from node B = [b,.1, byay ... bol if D; (A.B)=1.
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Table 2.1: The surface area in a bidirectional 4-ary r+cube

n=2 n=3 n=4 n=5 n=6 n=7 n=8
i=1 4 6 8 10 12 14 16
=2 6 15 28 45 66 91 120
i=3 4 20 56 120 220 364 560
i= 1 15 70 210 495 1001 1820
i=5 6 56 232 792 2002 4368
i= 1 28 210 924 3003 8008
i=7 8 120 792 3432 11440
i=8 1 45 495 3003 12870
i=9 10 220 2002 11440
i=10 1 66 1001 8008
i=11 12 364 4368
i=12 1 91 1820
i=13 14 560
i=14 | 120
i=15 16
i=16 ]

DEFINITION 2.3. Surface Area (31, 37]: The surface area A,Ij (i) is the number of nodes in
Q,If whose distance from a given node is exactly i. That is, A,l; (i) is the surface area of a

sphere of radius 1.

For instance, Tables 2.1 and 2.2 give the number of nodes at distance i from a given node

-—

-~ - -5
in Q,‘,1 and Q,Sl, respectively, for 2<n <8, ie., An(i) and An(i).

DEFINITION 2.4. Volume (31, 37]: The volume V,{"(i) is the number of nodes in Q,l‘,'
whose distance from a given node is less than or equal to i. That 1s, V,f‘ (i) is the volume of
a sphere of radius i. The volume can be written in terms of surface area as
vk =1+ 34k,

Jj=1

2.2.2 Related work

o : . . . . k. ke
The objective of this study is to find expressions for computing A, (1) and V,; (i) in both

the unidirectional and bidirectional k-ary n-cube. Previous similar studies have considered
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Table 2.2: The surface area in a bidirectional 5-ary n-cube

n=2 n=3 n=4 n=5 n=6 n=7 n=8
i=1 4 6 8 10 12 14 16
=2 8 18 32 50 T2 98 128
i=3 8 32 80 160 280 448 672
i=4 4 36 136 360 780 1484 2576
i=S 24 160 592 1632 3752 7616
=6 8 128 720 2624 7448 17920
i=7 64 640 3264 11776 34176
1::8 16 400 3120 14896 53344
i= 160 2240 15008 68352
=10 32 1152 11872 71680
i=11 384 7168 60928
=12 64 3136 41216
i=13 896 21504
i=14 128 8192
i=15 2048

other networks. For instance, in [1], an expression for calculating surface area in a n-
dimensional hypercube was given. An expression for calculating surface area in the
generalised hypercube is derived by Bhuyan and Agrawal in [26]. Calculations have also
been carried out by Qiu and Akl [155] for the star graph, and by Corbett [44] for the
rotator graph. The authors in [31, 37] have described only partial results for the problem of
finding the surface area in the k-ary n-cube. They have provided an expression for the
surface area in the bidirectional k-ary n-cube, but have restricted their analysis only to the
simple case where the radius, 7, is smaller than k/2 as this is easier to deal with than the
general case where i may be any number from 1 to the network diameter. To the best of
our knowledge, the present study is the first to report comprehensive general results for

both the unidirectional and bidirectional k-ary n-cube.
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2.2.3 The surface area and volume in the unidirectional
k-ary n-cube

Let G define the set of all nodes in the unidirectional k-ary n-cube. To determine the
number of nodes at distance i from a given node, B, in Q:]; , we will make use of the

function uniCOUNT outlined below.

Function uniCOUNT (k, n, 1);
BEGIN
Counter « 0;

for all Ac G-{B} do

n-1
if z(aj —b;)mod k =i then Counter « Counter + 1;
j=0

return Counter:;

END:;

Note that the position of the given node B does not change the result. Using the above

function we can calculate the volume of the sphere of radius i as follows.

Function uniVOLUME (k, n, i);

BEGIN
Sum 1,
for j«<1to i do Sum ¢ Sum+uniCOUNT (k,n, j);
return Sum;

END;

THEOREM 2.1. The number of ways to make j hops over ny dimensions such that the
number of hops made in each dimension i, 1<i<npy. is at most the i-th element of an

ny -tuple H =(hy hayy gy ) s that is 4; . is given by
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1, j=0
y(H. =1 j<Oorny <t
’lH
Y w(H —hy,, j—m), otherwise
L m=0

where H —hy, = resultsin an (ngy —1)-tuple which is H without the last element My, -

PROOF. One way to distribute j hops over n y dimensions such that no dimension 7 is
assigned more than #; hops is as follows. Suppose that one hop is assigned to dimension

ny . The remaining (j-1) hops are distributed over the (ny -1) remaining dimensions

resulting in !//(H—hnH ,J—1) ways of distribution. The same approach may be taken
where dimension n, is assigned 2, 3,..., or hy,, hops resulting in, respectively,
l//(H—hnH ,J—2), l//(H—hnH ,j—3), ..., 0r l//(H—hnH ,j—hnH ) ways for distributing

the remaining j-2, j-3, ..., and j- hnH hops over the ngy -1 remaining dimensions.
Therefore, the total number of ways to distribute j hops over ny dimensions is the sum of
h

nH
all the cases, i.e. ZI/J(H —hnH ,Jj—m) . When the number of the remaining hops is zero

m=1
this means that all the hops have already been distributed over the dimensions in one

possible way. When the number of remaining hops, excluding the hops made in dimension

n, , 1s negative this means that the particular way of distributing hops is impossible to

achieve. Finally, considering all these combinations together with the case where no hop is

assigned to dimension ny yields the above equation. [

—k . . . .=k .
COROLLARY 2.1. The number of nodes, A, (i), at distance { from a given node in Q,l; is
n times

—k . c
given by A, (i) =w(Hq.i), where Hy=(k—1.k—1,---.k—1) is the initial tuple.

PROOF. It follows directly from Theorem 2.1, given that the maximum possible hops that

. . -4 _
a message may spend in each dimension in Q,, is k-1.
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Figure 2.2: Number of nodes at distance / from a given node in a 4096-node Q,’f

Now, a non-recursive expression is derived to count the number of nodes at distance i
from a given node in the unidirectional k-ary n-cube. Let us first refer to the following

result from combinatorial theory.

PROPOSITION 2.1. The number of ways to distribute r like objects (or indistinguishable
object) into m different cells, such that no cell contains less than p objects and not more
than p+q-1 objects is the coefficient of x"~#" in the expansion of the polynomial

A=xD"(=x)™ =(+x+x° .. x97HM[134].

Let the coefficient of x'~ 7™ be denoted as F[[,’“Lq_l(r,m). In [161, 179], the expression

for l“][,’“’_] (r,m) is given by
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+g-1 N, p(mY(r=mp—Ilg+m—1
ry (r,m)_zo( ) (1)( 1 )

THEOREM 2.2. The number of nodes at distance i from a given node in Q—,l; is given by
—k ) n . _
A= 3/,

=0

PROOF. The number of nodes located i hops away from a given node is equal to the
number of possible paths via which an i-hop journey can be realized, starting from a given
node, such that no channel and no node is traversed more than once and hops are always
made to go further from the starting node. Such a journey is taken by an /-hop message
routed across a unidirectional k-ary n-cube with a minimal routing algorithm, i.e. a routing
algorithm that enables a message to select a shortest path to cross from source to
destination [59]. The order at which the hops are made among dimensions is not important
in our present calculation since we are primarily interested in determining the number of

hops made at each dimension that leads to different ending nodes.

If the hops made by a message are treated as indistinguishable objects and the visited
dimensions as different cells, the above proposition can be used to compute the number of
nodes, Z,li (i), which are i hops away from a given node in Q,’f Taking into account the
fact that a message may spend at least zero and at most k-1 hops at each dimension, we

can write

Any =16 = T (7))
=0

= =k e
COROLLARY 2.2. In Q,]f, the volume, V5, of the sphere of radius 7 is given by
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tn

V(i) =14 zl: i(—l)’(’;)(j‘lkf”‘l).

i=11=0 n-l
PROOF. The claim follows directly from Theorem 2.2 and Definition 2.4. O

Figure 2.2 illustrates some results for Zﬁ(i) in éﬁ when the values of k and n are varied
while keeping the total number of nodes fixed at 4096. Note that the surface area
surrounded by each curve and the horizontal axis is equal to the total number of nodes in
the network, i.e. 4096. The diagram shows that the hypercube is the richest network in the
k-ary n-cube family from the connectivity point of view, and has the smallest diameter as
its spanning tree is thick and short, compared to other equivalent k-ary n-cubes like the 2-

dimensional torus.

2.2.4 The surface area and volume in the bidirectional

k-ary n-cube

As with the function uniCOUNT, outlined in Section 2.2.3, for computing the surface area
in the unidirectional k-ary n-cube, we can simply use function 5iCOUNT, shown below, to

calculate the surface area in a bidirectional k-ary n-cube.

Function biCOUNT (k, n, i),
BEGIN
Counter < 0,
for all Ac G-{B} do
if D; (A.B)=i then Counter < Counter +1;
return Counter,

END:;

Using the above function we calculate the volume of the sphere of radius i using
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Definition 2.4 as follows.

Function biVOLUME (k, n, [);
BEGIN

Sum «1;

for j«<1 to i do Sum(——Sum+biCOUNT(k,n,j);
return Sum:

END:;

—k
THEOREM 2.3. In Q,,, the number of ways to distribute j hops over ny (=nH+ =nH-)

dimensions such that the number of hops made in each dimension i, (1< < ny ), is at

most the i-th element of either H™ :(hf,h;,---,h: . ) or H =(hy ,hy,---,h, ), that
H H-

is either ;" or h; , is given by
1, j=0
0, j<00rnH+<1 ornH_<l

h

+

"H
Y oHT “hy HT—hy L j-m)t

OHT,H, j)=+

m=0
h

nH_
> ©H ~h, H —h, ,j-m), otherwise
Ht H™

m=0

PROOF. Suppose that one hop is assigned to dimension ny either in the positive direction

y- ). The remaining j-1 hops are distributed over

the ngy-1 remaining dimensions resulting in OH" —h,,H+ JH —h,,H_ J-D+

or in the negative direction (nH+ or n

OH-h, H™ —h,, ,j—1) ways where the first term counts the case where the hop
HY H™

1s made at dimension W+ in the tuple ot (in the positive direction) and the second term

counts for the case where the hop is made in the negative direction. The same approach
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may be taken where dimension n .+ (or n,-) 1s assigned 2, 3, ..., h"H+ (or h,,H_ ) hops

resulting in, respectively, G)(H+—hnH+,H ~hy L J-D+OHT —h, H —h
H H

n _

. + — . -
j—2), O©OH —hnH+,H —hnH_,]—3)+G)(H+—hnH+,H —h,lH_,j—3), .. . oOr
—+ — . - .
O(H —hnH+ JH _h”H‘ ,]—hnH+ )+ OH? —h”H+ H —hnH_ ,J—h,,H_ ) ways for
distributing  j-2, j-3, ..., and j-h, . ( j-h, _) or hops over the ny -1 remaining
H H™

dimensions. Therefore, the total number of ways to distribute j hops over ny; dimensions
h

H
is the sum of all cases, ie. > @(H+—hnH+,H_—h

m=0

no »Jj—m)+
-

hn -

H

D OHT -h, , " —h, _,j—m). When the number of the remaining hops is zero
H H

m=0
this means that all the hops have already been distributed over the dimensions in one

possible way. When the number of remaining hops, excluding the hops made in dimension

ny , is negative, this means that the current particular way taken for distributing hops is
impossible to achieve. Finally, considering all these combinations together yields the

recurrence equation claimed. O

In the above expression, the tuple H -—-(h1+,h2+,--~,h: ) with o+ elements and
H+
H =(h ,hy,--,h, ) with oy elements are the limit vectors (tuples) for the network
-

in the positive and negative directions, where h,-+, (1£i< o+ Y,and A; , (1<i< - ),

are the maximum possible distance from a given node at dimension i in the positive and

negative directions.

: o=k
COROLLARY 2.3. The number of nodes at distance i from a given node in Q, is given by

._.k _ .
An(i)=O(H{ Hy D),

2

where Ha_ :(LLE_—]—_LL%J, ,L/\—z_lJ) and H(_)- —_—d_l\'—llf%l ,[—]}E_l_]) are two

initial n-tuple vectors.
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PROOF. The claim follows directly from Theorem 2.3, having in mind that the maximum
possible hops made by a message in each dimension is L%J in one direction (say

positive) and r%1 in the other direction (negative).

Now, a non-recursive expression is derived to count the number of nodes at distance i
from a given node in the bidirectional k-ary n-cube. In order to use Proposition 2.1 which
deals with cells of equal capacity, we have to consider the problem separately for odd and

even k. Let us first consider the problem for the simpler case where the network radix  is

odd.

LEMMA 2.1. The number of nodes at distance i from a given node in éff when & is odd is

given by

- nom kL oy
Aﬁ(i):z 2(_1)12771(:1J(’7J1 5 21 1}‘

m=017=0 m—1 J

PROOF. We should count the number of ways that i like objects can be distributed over
two groups, each of n cells, say G ={C,C5,---,C,} and G'={C"{,C’5,---,C’, }, such
that each cell contains not more than (k-1)/2 objects and no two corresponding groups, C;
and C’; for i=0,1,....,n, can be assigned objects at the same time. The problem can be
thought of as that of finding the number of different destinations that an i-hop message can
choose from a given source node in Q",]f when k is odd, using a minimal routing
algorithm. It is apparent that a message can take at most (k-1)/2 hops in each dimension as

the network is bidirectional.

Let us consider the case that an i-hop message makes some hops over m, (m=0.1.2,...n).

fixed dimensions (each in one direction) so that the message has made at least one hop in
k
cach dimension. This can be realized in T (i,m) ways. Each of n dimensions could be in
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k
. . . . n 5. . . .
these m dimensions resulting in (m )I‘{ (i,m) possible combinations that 7 dimensions

are passed (each in one direction). Recalling that each of two directions in one dimension
can be chosen yields the total number of ways to pass m dimension with at least one hop in

k
. . mi{ n EWE .
each dimension as 2 (m )1"12 (i,m) . Summing up all the combinations for m=01.2.....n

gives the total number of nodes at distance i from a given node in fo as

- n k n m .
o-Erapten- R 4]

m=0 m=0 1=0 m—1
n m c_kl Ay
=y 2(—1)’2”1(:1)(’}1) =y A
m=01=0 m—1
Now, we consider the problem when the radix k is even.

LEMMA 2.2. The number of nodes at distance i from a given node in a Q~,§ (with even k) is

given by

- n n—t m . k(l+1)
Fo- S8 Sore) 1)

t=0m=0[=0 m—1 J

PROOF. We should count the number of ways that i like objects can be distributed over

two groups, each of n cells, say G ={C;,C5,---,C,} and G’={C"{,C’5,---,C", }, such

that each cell in G contains not more than k/2-1 and each cell in G’ contains not more than

k/2 and no two correspondent cells, C; and C’;, for all i=0,1,...,n, can be assigned

objects at the same time. Suppose that #, +=0,1,2,...,n, cells in G’ have received k/2

objects, in (’ﬂ ways. The remaining objects may be distributed over the remaining n-t
J

dimensions using the equation given in Lemma 2.1, since each dimension in G and G now
. . . ‘“’k . L n ‘_’l\—l .
receives at most k/2-1 objects. Therefore, we can write Ay (i) = Z ; An—r(i—1tk/2).
t=0
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Figure 2.3: The surface area in some unidirectional and bidirectional k-ary n-
cubes versus radius .

—~k—1 . .
Substituting Ap—; (i —tk/2) from Lemma 2.1 derives the equation claimed by the Lemma,

1.€.

- n on-=t m G Y
Fa=$S z(_l)zzn,(?)(nn;f)w) K0 o) 1).[]

t=0m=01=0 m—1 J

: : : -V
THEOREM 2.4. The number of nodes at distance i from a given node in Q,, is given by

(i Y -plomf )™ -5 -2l k is odd
0/=0 m\! m-1 |
—k m=01=
An(i):4
'Y S L L R i_k(l:[)_zl_l otherwise
Lz‘b Z0 120( cjum ! m—1
t=uUm= =

PROOF. The theorem follows directly from Lemmas 2.1 and 2.2. U
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Figure 2.3 illustrates the surface area in some unidirectional and bidirectional k-ary n-

cubes versus radius i.

—k -
COROLLARY 2.4. The volume, V ,, of the sphere of radius i in Q,]f Is given by

[ i n m -kl A~y
1+, Z(—l)’2’"(§1)(’?)] 241 k is odd
" J=lm=01=0 m—1

Vi) =

I nntm . k(l+1) '
IEIDY Z(-l)lZm(’;)(nn_lt)(T)[J_ _2—1] otherwise

2
J==0m=01=0 m—1

PROOF. It follows directly from Theorem 2.4 and Definition 2.4. O

As an illustration of the application of these results, let us calculate the mean distance, d ,
traveled by a message in both Q,’f and Q,],f, assuming that destinations are uniformly
distributed; the mean distance is the mean number of hops that a message makes when the
destination address is chosen randomly. Using Theorems 2.2 and 2.4, we can calculate the

mean message distance in Q,’i and Q,li , respectively, as

1 n(k=1_

) n(k=1) n . _
i=—1 Yidyi=—— ¥ Zi(—l)l(';)(l tn 1),
=1

N-1 2 N-1 2 /=0

and

- 1 "[-k_;q«—k
d=—— Yi-An()
=1

N -1
( 1 ”lr%‘l

>y i(—l)lzm(’r}l)(l}l)[i“%_zl ‘1} k is odd

JN"“I i=l m=0i=0 m=1

nfﬂ] - ) .
1 7 ln n—t m Pom( (=t X m\i— —2/—1 ,
N1 > 22 (D2 (,)( " J(l )( 2 ] otherwise

=l 1=0n=0{=0 m—1

- . . Ak Ak . R
Note that the terms n(k —1) and nr¥1 are the diameters in Q,, and Q, . respectively.
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2.3 Adaptive routing in k-ary n-cubes

This section first describes the node structure in a k-ary n-cube. It then introduces Duato’s

methodology for designing adaptive routing algorithms. The application of this

methodology for designing adaptive routing algorithm for k-ary n-cubes is described.

2.3.1 Node structure

A k-ary n-cube has N=k" identical nodes each consisting of a processing element (PE) and
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router, as shown in Figure 2.4. The PE contains a processor and some local memory. The
router has 2n+1 input channels and 2n+1 output channels (n+1 input and n+1 output
channels in a unidirectional cube). A node is connected to its neighbours through 2n inputs
and 2n output channels (n input and n output channels in unidirectional cube): there are
two channels (only one in a unidirectional cube) in each dimension corresponding to the
positive and negative direction respectively. The remaining channels are used by the PE to
inject messages into or absorb messages from the network. Messages generated by the PE
are injected into the network through the injection channel. Messages at the destination
node are transferred to the PE through the ejection channel. The router contains flit buffers
for each input virtual channel. The input and output channels are connected by a crossbar
switch that can simultaneously connect multiple input to multiple output channels given

that there is no contention over the output channels.

2.3.2 Duato’s adaptive routing algorithm

Many adaptive routing algorithms have been discussed in literature, each with their own
special requirements [59]. Amongst these, Duato’s algorithm [63] is attractive since it
requires a limited number of virtual channels to ensure deadlock freedom. It has therefore
been widely studied and is accepted as a practical approach to adaptive routing with
minimal resource requirements. The Cray T3E [13, 45] and the reliable router [53] are two

examples of recent practical systems that have adopted Duato’s routing algorithm.

2.3.2.1 The general methodology

The chain of channels a message may pass to reach its destination is called a route or path.
When a message reserves a channel, and later requests the use of another channel possibly
several hops further on, there is a dependency between those channels. Also. at a given

node, a message may request the use of several channels, then select one of them (adaptive
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routing). With deterministic routing, messages have a single routing option at each node.
In this situation, it is necessary to remove all the cyclic dependencies between channels to
prevent deadlocks [51] or messages may indefinitely hold some channels while waiting for
other channels that are held by competitors. When adaptive routing is considered, on the
other hand, messages typically have several choices at each node and it 1S not necessary to
eliminate all the cyclic dependencies, provided that every message can always find a path
towards its destination whose channels are not in such dependencies. The channels of
these paths can be considered as escape channels from the cycles [63]. A routing

subfunction is a restriction of a routing algorithm which supplies escape channels.

THEOREM 2.5. A connected and adaptive routing function for an interconnection network

is deadlock-free if there are no cycles in its channel dependency graph [63].

THEOREM 2.6. A connected and adaptive routing function for an interconnection network
is deadlock-free if there exists a subset of network channels that defines a deadlock-free

routing subfunction [63].

2.3.2.2 The algorithm for k-ary n-cubes

As discussed above, to design an adaptive routing algorithm for a k-ary n-cube, we need a
deadlock-free routing subfunction. However, such a routing subfunction can itself be
deterministic. In k-ary n-cubes, deadlock-free deterministic routing algorithms can be
designed using virtual channels [59]. The authors in [51] have shown that the wrap-around
connections in k-ary n-cubes can lead to deadlock situations due to the cyclic
dependencies that can occur within a dimension but propose the use of an additional
virtual channel to transform dependency cycles into spirals. On this basis, two virtual

channels are needed to implement a deadlock-free deterministic routing algorithm in a k-

ary n-cube network.
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Applying Duato’s methodology for k-ary n-cubes (k >2) requires V, (V >2). virtual

channels per physical channel. The V virtual channels (vy,v5.---,vy,) associated with a

given physical channel are split into two sets: VCy={v|,v5} and VCy ={v3,vy.--- 1y }.

The two virtual channels in VC; (also called deterministic virtual channels) are used to
implement a deadlock-free routing subfunction (escape paths), e.g. dimension order
deterministic routing. The other virtual channels in VC> (called adaptive virtual channels),
can be visited by a message in any order that brings it closer to its destination (as required
by any minimal routing scheme). A message firstly checks all adaptive virtual channels of
the remaining dimensions to be negotiated. If some adaptive virtual channels are free, one
of them is chosen randomly to route through. If all adaptive virtual channels of the
remaining dimensions are busy, the message is routed through the deterministic virtual
channels of the lowest dimension to be passed. If the deterministic virtual channels are

also busy the message is blocked and waits for a proper virtual channel becoming free.

Figure 2.5 illustrates Duato's minimal adaptive routing algorithm for unidirectional k-ary
n-cubes in pseudo code. For a bidirectional k-ary n-cube, lines 2, 5 and 6 in the algorithm

should change as follows.

X
2. P={ jX [1<j<n.,c;#d;. x _{" if (cj=d ;ymodk<(d j—c pmodk  Jy € VCéj )and v isfree };

1 - otherwise

g+ if (Cq —dq)modk<(dq —Cq)modk :

5. else { g=max {l| 1<i<n, ¢;#d;}; pCZ{q_ otherwise

and
6. if(cq <dq)then ve=1 else ve=2;

As mentioned before. when k=2 the k-ary n-cube collapses to the familiar hypercube.

According to Duato’s methodology. when designing adaptive routing for hypercubes with
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ALGORITHM adaptive routing in the unidirectional k-ary n-cube;
INPUT:  Destination node address vector D =d ndy_1---dy and

current node address vector C =c,,c,,_;-+-¢y.

OuTPUT: The virtual channel vc, of the physical channel pe, to be taken by the
message in the next hop. A returned value of zero in pc means that there is
not any available virtual channel to take and the message is blocked.

BEGIN

1. if (C = D) then return ejection channel,

// message has arrived at destination.
2. P={ jllSan,cj ;tdj, HveVCéj) and v isfree };

3. pc =random P, /I random gives an element of set P at random
/l it returns O if P={}.

4. if (pc#0)then vc=random {v|ve VCSPC) and v isfree };

else pc=max {i|1<i<n, ¢; #d;};
/! max A returns the maximum element in set A
6. if (¢; <d;) then ve=1 else ve=2;
7. if (virtual channel ve of physical channel pc is not free) then pc=0;
endif;

return vc, pc;

END;

Figure 2.5: Adaptive routing algorithm in the unidirectional k-ary n-cube.

V, (V>1), virtual channels per physical channel, the virtual channels are split into two sets:
VC;={v;} and VC, ={v,,v3,---,vy }. This is because only one virtual channel (here v, in
V() is needed to implement a deadlock-free deterministic sub-routing algorithm, ¢.g. e-
cube routing algorithm [59], since with two nodes per dimension and minimal routing
there is no cyclic dependency between channels of each dimension. As described earlier.
the remaining virtual channels, those in VC>. associated to all usable physical channels

are adaptively used by message to get closer to their destinations. If all adaptive virtual
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channels of usable physical channels are busy, the message 1s routed through the
deterministic virtual channel of the physical channel associated to the highest dimension
remaining to be traversed. The routing algorithm for the hypercube would be the same as

unidirectional k-ary n-cube except for line 6 which should change to
6. ve=l,

as there are no wraparound connections in hypercubes and the deterministic routing
subfunction for such networks requires only one virtual channel, according to e-cube

routing (a dimension order routing algorithm) [59].

2.4 Summary

We have drawn a careful distinction between the unidirectional and bidirectional k-ary n-
cube interconnection networks and then derived expressions for calculating the number of
nodes at some distance from a given centre in each. These results are used in the models
developed in the next chapters, but they are also interesting in their own right. For
example they are very useful in the study of the spanning trees widely used in the design
of collective communication (multicast and broadcast) and resource placement algorithms

[20, 31, 70-72, 156].

We have described the basic router structure which supports wormhole switching in k-ary
n-cubes and selected Duato’s routing methodology for its ability to provide full adaptivity
with a minimum requirement of virtual channels. We have applied this methodology to
define a minimal adaptive routing algorithm for k-ary n-cubes. In the next chapters, we
shall construct analytical models of k-ary n-cubes using this algorithm for routing with the

aim of studying behavior under different traffic patterns and loads.



Chapter 3

Performance Modelling of Adaptive
Wormbhole Routing in k-Ary n-Cubes with
Uniform Traffic

Several researchers have recently proposed analytical models of fully adaptive routing [33,
43, 120, 142]. For instance, Boura et al [33] have proposed a model of fully adaptive
routing in the hypercube. More recently, the authors in [43, 120] have extended the model
for the 2-dimensional torus while the author in [142] has generalised it for high-radix k-ary

n-cubes.

The most difficult part in developing any analytical model of adaptive routing is the
computation of the probability of message blocking at a given router due to the number of
combinations that have to be considered when enumerating the paths that a message may
have used to reach its current position in the network. The problem is further exacerbated
when the network dimensionality increases since the number of alternative paths then also
increases. While the model in [142] exhibits a good degree of accuracy under light and
moderate traffic loads, it loses accuracy as the network enters the heavy traffic regions.

The discrepancy between the model and simulation is more noticeable as the number of
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alternative paths increases because the model resorts to approximations when computing

the probability of message blocking.

This chapter describes a new analytical model for wormhole-switched k-ary n-cubes. The
proposed model exhibits a good degree of accuracy in light, moderate and heavy traffic
conditions. It achieves this because it computes the exact expressions for the probability of
message blocking at a given router by considering all the possible paths that enable a
message to cross from its source to its current position in the network. The model
determines the value of different components that make up the average message latency.
including the message transfer time and the blocking delay for messages, in the network. It
also considers the use of virtual channels with the adaptive routing algorithm described in

Chapter 2.

The analytical model is described first for unidirectional k-ary n-cubes. It is then extended
for bidirectional k-ary n-cubes and for traffic patterns that exhibit communication locality.
The remainder of this chapter is organised as follows. Section 3.1 outlines the assumptions
used in the analysis. Section 3.2 presents the model for the unidirectional k-ary n-cube
while Section 3.3 validates it through simulation experiments. Extensions of the model for
the bidirectional k-ary n-cube and for capturing the effects of communication locality are
described in Section 3.4. Section 3.5 uses the proposed model to analyse the performance
of k-ary n-cubes for different network parameters. Finally, Section 3.6 concludes this

chapter.

3.1 Assumptions

The model uses the following assumptions that are widely accepted in the literature [3-6.

12, 32-34, 42, 43, 48, 49, 58, 81, 84-86, 99, 120, 142, 143].

a) Nodes generate traffic independently of each other, following a Poisson process
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b)

with a mean rate of ﬂg messages per cycle.

The arrival process at a given channel is approximated by an independent Poisson
process. This approximation has often been invoked to determine the arrival
process at channels in store-and-forward networks [103, 104]. Although
wormhole routing differs from store-and-forward in various aspects (e.g. flit
buffering and advancing as opposed to message buffering and forwarding),
simulation experiments from previous studies have revealed that this is still a
reasonable approach to determine the arrival process [36, 83, 85, 121, 141].

Therefore, the rate of the process arrival at a channel can be calculated using

formulae borrowed from Jackson’s queueing nerworks [104].
Message destinations are uniformly distributed across network nodes.

Message length is fixed and equal to M flits, each of which is transmitted in one

cycle from one router to the next using wormhole switching.

The local queue at the injection channel in the source node has infinite capacity.
Moreover, messages are transferred to the local processor as soon as they arrive

at their destinations through the ejection channel.

V virtual channels are used per physical channel, as shown in the router structure
illustrated in Figure 2.2(a). These are divided into two classes: VC; and VC-.
According to the adaptive routing algorithm, described in Section 2.2.2, Class VC»
contains (V —2) virtual channels that are crossed adaptively. On the other hand,
class VC, contains two virtual channels that are crossed deterministically. Let the
virtual channels belonging to class VC, and VC,; be called the adaptive and
deterministic virtual channels, respectively. When there 1s more than one adaptive
virtual channel available a message chooses one at random. To simplify the model
derivation no distinction is made between the deterministic and adaptive virtual

channels when computing virtual channel occupancy probabilities [142].
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3.2 The analytical model

The notation used to describe the model is briefly listed in Table 3.1. The model computes

the mean message latency as follows.

3.2.1 Outline of the model

The mean network latency, S, that is the time to cross the network, is first determined.
Then, the mean waiting time seen by a message in the source node, WS is evaluated.
Finally, to consider the effects of virtual channels multiplexing, the mean message latency
is scaled by a factor, V , representing the average degree of virtual channels multiplexing
that takes place at a given physical channel. Thus the mean message latency can be written

as
Latency =(S+ W)V . (3.1)

The average number of hops that a message makes across one dimension and across the

network, k and Erespectively, are given by [6]

p=k-l (3.2)

d =nk . (3.3)

Fully adaptive routing allows a message to use any available channel that brings it closer
to its destination resulting in an evenly distributed traffic rate on all network channels. A
router in the k-ary n-cube has n output channels and the PE generates, on average. Ag
messages in a cycle. Since each message travels, on average, d hops to cross the network

the rate of messages received by each channel, 4., can be written as (6]
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Table 3.1: Notation used in the model for uniform traffic

Symbol Description
Bj blocking time seen by a message at the j-th hop during in its journey
D destination node
d average hops that a message takes in the network
H set denoting the distance between S and D in each dimension  for 1< <
| H | distance between the source node S and the destination node D
k network radix
k average hops that a message takes in one dimension
Latency | average latency seen by a message
ﬂg message generation rate at a node
Ac messages arrival rate on a channel
M message length
g g
n network dimension
ny number of elements in set H
N network size
w(h, ) number of ways to distribute j hops over ny dimensions with at most A, hops in
’ dimension i for 1<i<n
P, probability that all adaptive virtual channels at a physical channel are busy
p probability that all adaptive and deterministic virtual channels at a physical
ad&d channel are busy
Pblockj probability that a message is blocked at the j-th hop channel
P, probability that v virtual channels at a physical channel are busy
Pass} probability of passing z dimensions after j-th hop in a journey towards D
7, state that v virtual channels of a physical channels are occupied
0, temporary variable used for calculating P,
Sy message latency to cross the network from source node S to destination node D
S mean message latency
% number of virtual channels per physical channel
v average multiplexing degree of the virtual channels at a physical channel
W mean waiting time seen by a message at a given physical channel
mean waiting time seen by a message at the source node before entering the
Ws network
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A d
A= : (3.4)

n

Since the k-ary n-cube is symmetric, averaging the network latencies seen by the messages
generated by a given node for all other nodes, gives the mean message latency in the
network. Let S =s;s5---5, be the source node and D =d d,---d, denotes a destination
node such that De G—{S§} where G is the set of all nodes in the network. Let us define
the set H ={h;}, (1<i<n), where each element A; denotes the number of hops that the
message makes along dimension i when it traverses the network from the source node to
the destination node, that is (s; +h;)modk =d;. The network latency. Sy, seen by the
message crossing from node S to node D consists of two parts: one is the delay due to the
actual message transmission time, and the other is due to the blocking time in the network.

Therefore, Sy can be written as

A
Sy =|H|+M + B, (3.5)
j=1

where M is the message length, | H | is the distance (in terms of the number of hops made
by the message) between the source and the destination node, and B is the blocking time

seen by a message on its j-th hop. The terms | H | and B are given by

n
|H = Y ki (3.6)

i=l1
_ 3.7
Bj = Pyiock ;W 3.7
with Py, being the probability that a message is blocked on its j-th hop during its
J
network journey and w is the mean waiting time to acquire a channel in the event of

blocking. Let us now calculate the blocking probability PblOij . To do so, let ny denote

the number of elements in the set H ={hj.h>.---.h,}. calculated for source and
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destination nodes S and D as shown earlier. Recall that yw(H, j), defined by Theorem 2.1,
can give the number of ways that j hops can be distributed over ny dimensions such that
the number of hops made in each dimension i, (1<i<ny), can be at most the i-th

element of the set H, thatis 4;.

The probability that a message has entirely crossed one dimension on its j-th hop is

therefore given by

DSWH (D), j—hy)

Passt ==L , (3.8)

/ w(H, j)

where H’()={h; —1,hy —1,--+,hj_y —1,0,hy 4y —1,---,h, —1}. Similarly, the probability that

a message has entirely crossed two dimensions on its j-th hop can be expressed as

n n
S S wH k), —hy)

Pass2~ — 11:112211+1 , (39)

/ w(H, j)

where H’(ll ,12) = {hl — 1,h2 - 1,"',]’1[1 -1~ 1,O,h11 +1 - 1,"‘,]’112 N 1,0,h12 +1— 1,"',hn — 1} .
More generally, the probability that a message has entirely crossed z dimensions can be

written as

n n <
Yoo Y wH bl = 2k
=/ i=1

Pass] = - . , (3.10)
w(H,j)

H(jlre L) = (0 0y ey ) 3.11)
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= 0 i=l ori=1l or-ori=l, |
Lok -1 otherwise ' (3.12)

A message is blocked at a given channel when all the adaptive virtual channels of the
remaining dimensions to be visited and also the deterministic virtual channels of the
lowest dimension still to be visited are busy. The probability of blocking depends on the
number of output channels, and thus on the virtual channels that a message can use at its
next hop. When a message has entirely crossed z dimensions it can select any of the
available (n-z)(V-2) adaptive virtual channels and one deterministic virtual channel to

make its next hop. The probability of blocking, Pblockj , can therefore be written as

n—1
—z-1
Pojock j = 2, Pass§(Pa )" Poga » (3.13)
z=0

with P, being the probability that all adaptive virtual channels of a physical channel are
busy and P,g, being the probability that all adaptive and deterministic virtual channels
of a physical channel are busy. To compute F, three cases should be considered, and are

as follows [142].

a) V virtual channels are busy which means all adaptive virtual channels are busy as

well.

b) (V-1) virtual channels are busy. The number of combinations where (V-1) out of
V virtual channels are busy is (Vv—l) of which only two combinations result in all

adaptive virtual channels being busy.

¢) (V-2) virtual channels are busy. The number of combinations where (V-2) out of
V virtual channels are busy is (vv—z) of which only one combination results in all

adaptive virtual channels being busy.

Similarly, to compute P, g 4. two cases should be considered, as follows [142].
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a) V virtual channels are busy, that is all adaptive and deterministic virtual channels

are busy.

b) (V-1) virtual channels are busy. In this case only two combinations out of (V\;l)

result in all adaptive and deterministic virtual channels being busy.

Let P,, (0<v<V), represent the probability that v virtual channels at a physical channel
are busy. Taking into account the different cases mentioned above, P, and P, g g4 are

given in terms of P, by

28 o
P,=hK + + ,
w = By (V (V (3.14)
V—I) V—2)
2B, _
Paga =Fv +—%—l—‘ (3.15)
(V—l/

To determine the mean waiting time, w, to acquire a virtual channel a physical channel is

treated as an M/G/1 queue with a mean waiting time of [104]

pS(1+C2)
_ S (3.16)
2(1-p)
p=2.8, (3.17)
o2
C2 :_g_, (3.18)
S J—
S

< 2. .
where A, is the traffic rate on the channel, S is its service time, and O'g is the variance
of the service time distribution. While A, is given by Equation 3.4 above, the quantities S

’) . . . . . X
and O are computed as follows. Since adaptive routing distributes traffic evenly among
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all channels, the mean service time at each channel is the same regardless of its position
and is equal to the mean network latency, S . Equation 3.5 gives the network latency. Sy .
seen by a message in crossing from the source node S to the destination node D.

Averaging over the (N-1) possible destination nodes in the network yields the mean

network latency as

S=—— Y5y4. (3.19)
N -1 DeG—-{S}

Since the minimum service time at a channel is equal to the message length, M. following
a suggestion proposed in [58], the variance of the service time distribution can be

approximated as O-é =(S-M )2. Hence, the mean waiting time becomes

_ T _ 2
7,520+ 821,
S
W= ° (3.20)
2(1-A.5)

A message originating from a given source node sees a network latency of S (given by
Equation 3.19). Modelling the local queue in the source node as an M/G/1 queue, with the
mean arrival rate /Ig /V (recalling that a message in the source node can enter the network
through any of the V virtual channels) and service time S with an approximated variance

G -M )2 yields the mean waiting time seen by a message at source node as

A _ _

_g_Sz ]+_G__12‘4—)2_
W= S _ 3.21)
2(1—i"—§)

Vv

The probability, P.. that v virtual channels are busy at a physical channel can be

determined using a Markovian model as shown in Figure 3.1. State 7. (0<v<V),
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ﬂ C ﬂc ﬂc /1(; /?'C
— /1(:

Figure 3.1: The Markov chain used for computing the probability of virtual
channel occupancy of a physical channel.

L |—
i~
L ||
» ]~
Ly |—

corresponds to v virtual channels being busy. The transition rate out of state 7z, to state
7,41 1s the traffic rate A.(given by Equation 3.4) while the rate out of state 7, to state
| 1S % (S is given by Equation 3.19). The transition rate out of state 7y is reduced
by 4. to account for the arrival of messages while a channel is in this state. The steady-

state solutions of the Markovian model yield the probability P,, (1<v <V), as [49]

Vl , v=0
>0
P, ={P,_A.S, O<v<V, (3.22)
A
Py v=V
5%
where
1, v=0
0, =1 Q1A S, O<y <V, (3.23)
A,
Q\'—l 1 ‘ ’ V:V
-4

When multiple virtual channels are used per physical channel they share the bandwidth in
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a time-multiplexed manner. The average degree of multiplexing of virtual channels. that
takes place at a given physical channel, can be estimated by [49]

1% 2
— zv:lv P,
V=""r—. (3.24)

z‘v/:1 vP,

3.2.2 The hypercube case

When the network is a hypercube (a k-ary n-cube with k=2), some of equations derived
above are modified as follows. The average distance, d , traversed by a message crossing

the network is given by [1]

d = zl' = (3.25)

Since in the hypercube, when a message makes one hop it has consequently passed one

dimension, the probability that the message is blocked at its j-th hop is simply given by

Hle i
Pblockj :(Paj | jPa&d- (3.26)

Since only one deterministic virtual channel per physical channel is sufficient to ensure
deadlock-free fully adaptive routing in the hypercube, as described in Section 2.3, the

probability that all adaptive virtual channels associated to a physical channel are busy, P, .

and the probability that all adaptive and deterministic virtual channels associated with a

physical channel are busy, P, 4 , are expressed as [36]

Po=Ry 40 (3.27)

(3.28)
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3.2.3 Implementation issues

The above equations reveal that there are several inter-dependencies between the different
variables of the model. For instance, Equations 3.5, 3.7 and 3.19 reveal that S is a
function of w while Equation 3.20 shows that w is a function of S . Given that closed-form
solutions to such inter-dependencies are very difficult to determine the different variables
of the model are computed using iterative techniques for solving equations [104]. The

procedure for computing the mean message latency using the above model is as follows.

Step 1) Let S be initialized to M.
Step 2) Compute P,, P,, P, g4 and w, using Equations 3.14, 3.15, 3.22, and 3.20.
Step 3) Compute Sy, for all He N —{S}, using Equation 3.5.

Step 4) Compute new S using Equation 3.19. If it is different from the old value by

greater than ¢ (a predefined error limit) then go to Step 2.

Step 5) Compute W, V and Latency using Equations 3.21, 3.24 and 3.1.

To ease the implementation of the above procedure we can assume that node 0 (with
address pattern 0, 0, O, ..., 0) is the source node (S) and nodes 1, ..., k"-1 are destination

nodes (De N —{S}). This will simply result in H=D.

Note that we may avoid computing Sy for some H vectors recalling that, due to adaptive
routing and network symmetry, the latency Sy is the same for all permutations of /s,
1<i<n, in H=(h,hy,---,h,). Using this property the run time of the model will be
lower. For example, for a 3-ary 3-cube, and assuming a source node at (000), we have
H =De {001, 002, 010, 011, 012, 020, 021, 022, 100, 101, 102, 110. 111, 112, 120. 121,

122, 200. 201, 202. 210, 211, 212. 220. 221, 222} for which we have
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S0 =5(010) = S(100)- 5(002) = S(020) = S(200) Sco1ny =Sa10) =Sao1y.
S022) =5220) =S202), Sy = Sti2ny =Sea11ys Sa22) = S(221) =S(212y.  and
S012) =S(120) = 5(201) = 5(102) = S(021) =S(210). Therefore, S can be computed about
26/9=2.88 times faster since we may consider calculating the 9 different latency factors
(listed above), instead of computing all 3°-1 message latencies corresponding to the 26
different  destination  nodes, as S= [Sciny + 8222y +3S001) +3S(002) +
38011 +35022) + 38112y +3S122) + 6S(012)1726. Such equivalent latency factors would

appear even more when the network size increases.

3.3 Model validation

The analytical model has been validated through a discrete-event simulator that mimics
the behaviour of Duato’s fully adaptive routing at the flit level in k-ary n-cubes. In each
simulation experiment, a total number of 100000 messages is delivered. Statistics
gathering was inhibited for the first 10000 messages to avoid distortions due to the initial
startup conditions. The simulator uses the same assumptions as the analysis, and some of
these assumptions are detailed here with a view to making the network operation clearer.
The network cycle time is defined as the transmission time of a single flit from one router
to the next. Messages are generated at each node according to a Poisson process with a
mean inter-arrival rate of Ag messages/cycle. Message length is fixed at M flits.
Destination nodes are determined using a uniform random number generator. The mean
message latency is defined as the mean amount of time from the generation of a message
until the last data flit reaches the local PE at the destination node. The other measures
include the mean network latency, the time taken to cross the network, and the mean

queueing time at the source node, the time spent at the local queue before entering the first

network channel.
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Numerous validation experiments have been performed for several combinations of
network sizes, message lengths, and number of virtual channels to validate the model.
However, for the sake of specific illustration, Figures 3.2, 3.3 and 3.4 depict latency
results predicted by the above models plotted against those provided by the simulator for a
8-ary 2-cube (N = 82), 8-ary 3-cube (N = 83), and 8-dimensional hypercube (N = 28,
respectively, and for different message lengths, M=32, 64 and 100 flits. Moreover. the

number of virtual channels per physical channel was set to V=3 and 5.

The horizontal axis in the figures shows the traffic generation rate at each node (/lg ) while
the vertical axis shows the mean message latency. The figures reveal that in all cases, the
analytical model predicts the mean message latency with a good degree of accuracy in the
steady state regions. Moreover, the model predictions are still good even when the
network operates in the heavy traffic region and when it starts to approach the saturation
region. However, some discrepancies around the saturation point are apparent. These can
be accounted for by the approximation made to estimate the variance of the service time
distribution at a channel. This approximation greatly simplifies the model as it allows us to
avoid computing the exact distribution of the message service time at a given channel,
which is not a straightforward task due to the interdependencies between service times at
successive channels (since wormhole routing relies on a blocking mechanism for flow
control). However, the main advantage of the proposed model is its simplicity which
makes it a practical evaluation tool for assessing the performance behaviour of fully

adaptive routing in k-ary n-cubes.

3.4 Extension of the model

This section outlines briefly the modifications that have to be made in order to extend the
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Figure 3.2: The average message latency predicted by the model against
simulation results for an 8-ary 2-cube with message length M=32, 64 and 100

flits and (a) V=3 and (b) V=5 virtual channels per physical channel.
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Figure 3.3: The average message Latency predicted by the model against
simulation results for an 8-ary 3-cube with message length M=32, 64 and 100

flits and (a) V=3 and (b) V=5 virtual channels per physical channel.
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Figure 3.4: The average message Latency predicted by the model against
simulation results for an 8-dimensional hypercube with message length M=32,
64 and 100 flits and (a) V=3 and (b) V=5 virtual channels per physical channel.
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above model for bidirectional k-ary n-cubes and for capturing the effects of

communication locality.

3.4.1 The model for the bidirectional k-ary n-cubes

The average number of hops that a message makes across one dimension, &, given by

Equations 3.1, should be changed to [6]

k if nis

—, n iseven

_ 4

k =< . (329)
1 1 ) .

—(k——), if n isodd

[ 4 k

Since a router in the k-ary n-cube has 2n output channels, the rate of messages received by

each channel, A, is now given by [6]

LA

. 3.30

Let set H ={h;}, (1<i<n), denote the number of hops that the message makes along
each dimension when it traverses the network from the source node S =sys5---s, to the

destination node D =d;d, ---d,, as discussed above for the unidirectional case. We have

h, =min(h k), (3.31)

l

where h" and h; are distance between the source and destination nodes in i-th dimension
. . . . . . . . . . +
using channels in, respectively, increasing and decreasing directions. These numbers. #;

and h;, are the smallest integer numbers satisfying the following equations

(s; +h )mod k =d;. (3.32)
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(s; —h; )modk =d;. (3.33)

3.4.2 Capturing the effects of communication locality

Locality has an important impact on network performance [96]. Thus, deriving an
analytical model to study the effect of locality on the overall performance of a network
would be very beneficial. The above modelling approach can be easily extended to
account for the case when traffic contains communication locality. Using a simple locality
model proposed by Agarwal [6] allows the probability of blocking to be determined in a
similar way to that of the uniform traffic case. Let f denote the locality factor, which 1s the
fraction of nodes that are potential candidates to receive a message from a source node.
Moreover, for a given source node, destination node is chosen randomly among the nodes
in an n-dimensional sub-cube with fN nodes centred at the source. Note that f=1 refers to a

pure uniform traffic without locality. For a given fraction of locality, f, destination nodes

for messages originating at a source node with address x = (xyxp---x,), 0 x; < k-1, are

randomly chosen from the set of nodes y=(y;y2--¥,) where x; < yv; <x; +3 N —1

(modulo k). With such a locality model, k given by Equation 3.2 should be replaced in the
model by E given by

k. @;1 (3.34)

f 2

The destination node D =dd,---d, for a message generated at a given source node

S =585 -+-5, , can be any node in the set Gy - § where
Gy ={X =x1x0-%, | (5 + h)modk = %> O=hy <k;-1 for 1<i<n}. (3.35)

The vector H for each destination node D is now made up from new A (I<i<n).

derived to meet the condition used in Equations 3.32 and 3.33. Since the number of
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possible destination nodes D for the given source node is /N —1(the number of elements

in Gy excluding the source node), Equation 3.19 should change to

- 1
S =

>SSy - (3.36
fN—lDEGf—S )

3.5 Performance analysis

The proposed analytical model is used to study the performance merits of the k-ary n-cube
with adaptive routing and virtual channels. In this section, the 10-ary 3-cube is often used
for the sake of a concrete example, but the conclusions reached here have been found to be

similar when other network configurations are considered.

Figure 3.5 shows, for the case of a unidirectional 10-ary 3-cube with message length
M=50 flits and V=4 virtual channels, as a function of offered traffic by each node, the
main components of the message latency, Latency: average network latency, S; average
waiting time at a source node to inject a message into the network, W ; and average
degree of virtual channels multiplexing, V . As can be seen from the figure, the waiting
time at the source and average degree of virtual channels multiplexing grow almost
linearly when the offered traffic increases, whereas the average network latency remains
almost fixed when the network has not approached the heavy traffic region. The network

latency starts to increase rapidly when the traffic is around A, = 0.0015.

Figure 3.6 illustrates latency results against traffic generation rate when the message
length is M = 50 flits for different numbers of virtual channels. The results show that
increasing the number of virtual channels improves network performance especially when
the increase in the number of virtual channels is relatively considerable (compared to the

number of existing virtual channels). That is, the performance improvement from }=3 to
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Figure 3.5: Main components making the average message latency, (a) S, (b)
W, and (c) V, versus traffic generation rate in a unidirectional 10-ary 3-cube with
message length M=50 flits and V=4 virtual channels per physical channel.

V=4 (with a 4/3 increase ratio) is much more noticeable than that from V=6 to V=7 (with a
7/6 ratio). As we add more and more virtual channels, the achieved performance
improvement is reduced, since the network approaches the actual limits imposed by the
total physical bandwidth of its channels. This_is better shown in Figure 3.7, which reveals
the effects of the number of virtual channels on network performance by plotting the
offered traffic when the network is saturated (saturation traffic) against the number of
virtual channels. The network enters the saturation region when p 21 (given by Equation
3.17); the corresponding A, for which the condition p 21 is satisfied is the saturation
traffic rate. As can be seen from the figure, increasing the number of virtual channels

Increases the saturation traffic rate. However. the increase of the saturation traffic rate
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Figure 3.6: The average message latency versus traffic generation rate in a
unidirectional 10-ary 3-cube with message length M=50 flits and V=3, 4, 5, 6, and
7 virtual channels per physical channel.
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becomes smaller when the number of virtual channels becomes larger. This continues until
an increase in the number of virtual channels does not change the saturation traffic rate
noticeably. Such a limit saturation traffic rate is indeed the physical bandwidth limit of the
network. The convergence of the saturation traffic rate to such a limit, when the number of

virtual channels increases, can be easily observed in Figure 3.7.

Figure 3.8 shows the mean message latency curves for the unidirectional and bidirectional
10-ary 3-cube when the message length is M = 50 and 200 flits and V = 4 virtual channels
per physical channel. The bidirectional k-ary n-cube has double the bisection width and
node pin-out than its unidirectional equivalent. In order to have a fair and realistic
comparison, the bisection width or pin-out constraint was held constant in the two
networks. So, if we use the unidirectional network as a basis for the comparison (with a
channel width equals the flit size), the channel width in the bidirectional network will be
half of the flit size, i.e. two channel cycles are required for each flit transmission over a
channel in the bidirectional network. The figure reveals that the bidirectional k-ary n-cube
outperforms its unidirectional counterpart under the constant bisection width and pin-out
constraints. This is because the former network has a lower message distance and lower

message traffic rate on its channels which compensate for the lower channel bandwidth.

Figure 3.9 depicts the saturation rates in the unidirectional 10-ary 3-cube when the
message length is M=50 and 200 flits and V=4 virtual channels per physical channel as a
function of the locality factor f. The results show that the network saturates sooner as the
locality factor increases although the performance degradation is faster for longer
messages. This is because the larger locality factor f imposes higher traffic rates over
network channels. Longer messages increase their service times at a network channel.
resulting in longer blocking times. The influence of longer messages on network
performance is more noticeable when f increases, as the network suffers from both higher

traffic rates on its channels and longer channel service times imposed by longer messages.
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Figure 3.10: The saturation traffic rate versus message length M in (a) 10-ary 2-
cube and 20-ary 2-cube, and in (b) 7-dimensional and 9-dimensional hypercube,
with V=4 virtual channels per physical channel.

Finally, Figure 3.10 investigates the impact of message length on network performance
(saturation rate) in the two well-known instances of k-ary n-cubes. namely the 2-
dimensional torus and the hypercube. Figure 3.10(a) depicts the saturation traffic versus
message length M in the unidirectional 10-ary 2-cube and 20-ary 2-cube, respectively,
when V=4 virtual channels per physical channel. The results show that performance
degrades when the network size increases from 100 nodes to 400 nodes. Figure 3.10(b)

shows the same quantities for the 7- and 9-dimensional hypercubes where an increase
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factor of four in network size has not had a noticeable change in the network saturation
traffic. The results reveal an important characteristic of the torus and hypercube, and that
is the torus (low dimensional k-ary n-cube) is not truly scalable as its performance depends
strictly on its size, while the hypercube (high-dimensional k-ary n-cube) is much more
scalable as the total network bandwidth, as a function of the total number of channels.

increases with network size.

3.6 Conclusions

In this chapter an analytical model to compute the mean message latency in k-ary n-cubes
with fully adaptive wormhole routing was proposed. Simulation experiments have
revealed that the latency results predicted by the analytical model are in good agreement
with those obtained through simulation. The proposed model achieves a good degree of
accuracy under different operating conditions because it computes the exact expression for
the probability of message blocking at a given router. It uses M/G/1 queuing theory when
calculating the message blocking time at each channel. Furthermore, it achieves this high
degree of accuracy while maintaining simplicity, making it a practical evaluation tool that
can be used to gain insight into the performance behavior of fully adaptive routing in
wormhole-routed k-ary n-cubes. The model was also extended for bidirectional k-ary n-

cubes and for traffic patterns that exhibit communication locality.

The analysis using the proposed model shows that the number of virtual channels and the
traffic locality have a great impact on network performance. A preliminary comparison
between unidirectional and bidirectional k-ary n-cubes, under both constant bisection
bandwidth and pin-out constraints, reveals that bidirectional k-ary n-cube outperform their
unidirectional counterparts. It is also shown that higher-dimensional k-ary n-cube
networks such as hypercubes, are more scalable than their lower-dimensional counterparts

such as tori. because. in the former. total network bandwidth scales better with network
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size.

Future work in this area may extend the proposed analytical model for other common
multicomputer network topologies such as n-dimensional meshes, which are variations of
k-ary n-cubes without wrap-around connections. Developing a model for meshes is more
complicated than for k-ary n-cubes because traffic rates and service times have to be
computed at each network channel; these differ from one channel to the next due to the

inherent asymmetry of the topologies.

Existing studies [29, 67, 158, 162, 174] have so far relied on software simulation to
examine the performance of adaptive routing under other traffic patterns, such as those
generated by the presence of hotspots in the network and matrix transpose communication.
In the next chapters, we propose new analytical models that deal with important non-

uniform traffic patterns such as hotspots and permutation traffic patterns.



Chapter 4

An Analytical Model of Adaptive
Wormbhole Routing in the
Presence of Hotspot Traffic

Several analytical models of fully adaptive routing have recently been proposed for
wormhole-routed k-ary n-cubes under the uniform traffic pattern. Recent studies [59, 74,
158] have revealed that the performance advantages of adaptive routing over deterministic
routing are more noticeable when traffic is non-uniform due, for example, to the presence
of hotspots in the network [149]. Hotspots arise when a number of nodes direct a fraction
of their generated messages to a single destination node. For instance, global
synchronisation where each node in the system sends a synchronisation message to a
distinguished node is a typical situation that can produce hotspots [88, 149, 158}. The
reduction operation [59], where a node receives messages from all other nodes. is another
example that may generate hotspots. In distributed shared-memory (DSM)
multicomputers, the traffic generated by cache coherency protocol, mainly composed of

invalidation and acknowledgement messages, is also likely to create hotspots [88].
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To the best of our knowledge, no study has been reported in the literature for modelling
hotspots in wormhole-routed k-ary n-cubes, and consequently most studies have resorted
to simulation to evaluate the performance benefits of adaptive routing in these networks.
This chapter proposes the first analytical model for computing the mean message latency
in k-ary n-cubes with fully adaptive routing in the presence of hotspot traffic. The model is
developed for Duato’s fully adaptive routing algorithm [63], but the modelling approach

can equally use the other routing algorithms described in [115, 174].

4.1 The analytical model

This study assumes that there is only a single hotspot node in the network. The main
reason behind this restriction is to keep the notation used for describing the model at a
manageable level. Our modeling approach, however, can be extended to deal with the case

of multiple hotspots with some effort.

4.1.1 Notation and assumptions

The list of symbols used to describe the model is shown in Table 4.1. Moreover, the model
uses the following assumptions that are widely employed in the literature [3-6, 12, 32-34,

42,43, 48, 49, 58, 81, 84-86, 91, 120, 142, 143].

a) The traffic model proposed by Pfister and Norton [149] is used to generate
hotspot traffic. In this model, each generated message has a finite probability h
of being directed to the hotspot node, and probability (1—H) of being directed to

the other network nodes. Let us refer to these two types of messages as hotspot

and regular messages respectively.

b) Nodes generate traffic independently of each other, following a Poisson process

with a mean rate of /1g messages/cycle consisting of regular and hotspot portions
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Table 4.1: Notation used in the model for hotspot traffic.

Notation Description
B, mean blocking time seen by a regular message at a given channel
B P j mean blocking time seen by a j-hop hotspot message at its m-th hop channel
d average number of hops that a regular message makes across the network.
h fraction of hotspot messages generated by each node T
J set of channels that are j hops away from the hotspot node
“J ” number of elements in the set J
k network radix
% average number of hops that a regular message makes in a dimension
n network dimension
n; number of nodes located { hops away from a given node
N network size (N=k")
0, . intermediate variable used for calculating p_
J j
Phj probability that a message crosses a channel located j hop away from the hotspot
P, probability that all adaptive virtual channels at a physical channel located j hops away from
J hotspot node are busy
Pa&d probability that all adaptive and deterministic virtual channels at a channel located j hops
J away from hotspot are busy
probability that v virtual channels at a channel located j hops away from hotspot node are
Y busy
P,J probability of termination for a message that makes, on average, / in each dimension
S j network latency of a j-hop hotspot message
S latency seen by a hotspot message to cross from a channel located j hops away from the
hj hotspot node to its destination (i.e.. the hotspot node)
S mean network latency
A h j network latency of a j-hop hotspot message
AJWAY mean network latency of a regular/hotspot message
S j message latency for a source node located j hops away from hotspot.
\7 average multiplexing degree of the virtual channels at a given physical channel.
W mean waiting time seen by a message at a channel j hops away from the hotspot node
W j mean waiting time at a source node located j hops away from the hotspot node
Vl-/—s mean waiting time in a given source node
R state in the Markov chain denoting that v virtual channels are busy at a channel located j
" hops away from the hotspot .
ratio of the number of nodes which are j hops away from the hotspot node to the number of
éj nodes that are i. j<i<d ¢ - hops away from hotspot.
19 message generation rate at a node
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Table 4.1: (continued).

Notation Description |
ﬂh - traffic rate of hotspot messages on a channel that is j hops away from the hotspot node
j total traffic rate on a channel that is j hops away from the hotspot node
- traffic rate of regular messages on a channel
6 j probability of generating a j-hop message
goj’ I probability of blocking for a message that makes, on average, / hops per dimension
T p.robabi‘lity that [ dimensions have been crossed by a message that makes, on average. / per
B.l dimension
of hA, and (1-h)Ag respectively.

¢) Message length is fixed and equal to M flits, each of which is transmitted in one
cycle between two adjacent nodes.

d) The local queue at the injection channel in the source node has infinite capacity.
Moreover, messages are transferred to the local PE as soon as they arrive at their
destinations through the ejection channel.

e) V virtual channels are used per physical channel. as shown in the router structure

illustrated in Figure 2.2(a), which are divided into two classes VC; and V(..

VC, contains (V —2) virtual channels that are crossed adaptively. On the other
hand, class VC; contains two virtual channels that are crossed deterministically.
Let the virtual channels belonging to class VC> and VC be called the adaptive
and deterministic virtual channels, respectively. When there is more than one
adaptive virtual channel available a message chooses one at random. To simplif

the model derivation no distinction is made between the deterministic and
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adaptive virtual channels when computing virtual channel occupancy

probabilities [142].

4.1.2 The outline of the model

The mean message latency is composed of the mean network latency, S, that is the time
to cross the network, and the mean waiting time seen by a message in the source node.
WS. However, to capture the effects of virtual channel multiplexing, the mean message
latency has to be scaled by a factor, V , representing the average degree of virtual
channels multiplexing, that takes place at a given physical channel. Therefore, the mean

message latency can be written as
Latency = (§+VVS W 4.1)

The regular and hotspot messages see different network latencies as they cross different
numbers of channels to reach their destinations. If S_, and 5 denote the mean network
latency for regular and hotspot messages respectively, the mean network latency taking

into account both types of messages is given by

S=(1-h)S, +hS . (4.2)

Let us now determine the quantities $..8,,S, Wyand V.

4.1.2.1 Calculation of the mean network latencies S, and S

The average number of hops that a regular message makes across one dimension, &, and

across the network, d , are given by [6]

po kot (4.3)

19
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d =nk. 4.4

Fully adaptive routing allows a message to use any channel that brings it closer to its
destination, resulting in an evenly distributed traffic rate of regular messages on all
network channels. A router in the k-ary n-cube has n output channels and the PE generates,
on average, (1 —h)ﬂg regular messages in a cycle. Since each regular message travels, on
average, d hops to cross the network, the rate of regular messages received by each

channel, 4, , can be written as

_G—hMgE

n

. (4.5)

The network latency for a message consists of two parts: one is the delay due to the actual
message transmission time, and the other 1s due to the blocking time in the network. As we
shall see below, the mean blocking time experienced by a regular message at a given
channel is the same across all the channels along its path. Since a regular message makes,
on average, d hops to reach its destination the mean network latency, Sﬂr of a regular

message can therefore be written as

S, =M +d+dB,, (4.6)
where M is the message length and B, is the mean blocking time seen by a regular

message at a channel.

The hotspot traffic is not uniformly distributed across the network channels as channels
located nearer to the hotspot node receive higher traffic rates than those further away.
Consider a channel that is j hops away from the hotspot node. and let Ph,- be the
probability that a hotspot message uses this channel to reach its destination, which is the

hotspot node. Given that each of the N nodes generates. on average. lleg hotspot messages
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in a cycle, the rate of hotspot traffic received by the channel, Aj . s simply given by
j g
/1hj =hN/1gPhj. (4.7)

The number of nodes located j hops away from a given node (here the hotspot node) is

given by Theorem 2.2 as

ko —lk+n—1
ni:An(i)=2(—1)l(nIl o J (4.8)

To calculate Phj , we firstly have to derive an expression for the number of channels

located j hops away from a given node in the unidirectional k-ary n-cube.

THEOREM 4.1. The number of channels that are j hops away from a given node in the

unidirectional k-ary n-cube is
n—-ln—| .
nYn—=IlYJj—tk—-1)—1
Cjzlzz)zo(—l)t(n—l)(ll . I et (4.9)
=Ut=

PROOF. Let the given node be the one with address X = (xy,x5,---,x,). It is easy to see

that all the n output channels of the nodes Yj =(¥].¥2, ", Vv, ) located j hops away from

the given node X should be counted except those nodes whose addresses include at least

one digit v;, 1<i<n, which is equal to the corresponding digit in the given node address

pattern, i.e. x; =y;, 1<i<n.If x; =y; the output channel at dimension i of node Y,

should not be considered when counting. Node may have 0, 1. 2, ..., or n-1 such

uncountable channels depending to its address pattern. The number of nodes having no

) .. : k=1, . L
such a channel is simply Flk_l(j,n) (given by Proposition 2.1), since I " (j,n) gives the
number of nodes located j hops away from the given node. each at least at distance 1 from

the given node in every dimension. The number of nodes having one channel to be
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excluded for counting is (’11 )F{“l(j,n— I), which is the number of nodes located j hops

away from the given node whose distance from the given node in exactly one dimension is

zero. Generally, the number of nodes which have ! channels to be omitted when counting

the number of channels j hops away from the given node is ('; \l"lk—l(j.n —I). Summing
J

up all the channels to be counted results in the total number of channels which are j hops

away from the given node, C j»as

n—1 n—ln-I .
c;=3 (n—l)(’;)l‘{‘“u,n—l): y 2<—1)’<n—l>(’;I”;’If‘;(fl‘_‘{“‘). -

=0 [=0¢=0

The probability, P, , that a message has used, during its network journey, a particular
j

channel located j hops away from the hotspot node, can be derived as follows. Consider all
the channels located j hops away from the hotspot node. Theorem 4.1 gives the number of
such channels to be C;. Recalling that a k-ary n-cube has N nodes, the number of source
nodes for which any of these channels (channels located j hops away from the hotspot
j-1

node) can act as an intermediate channel to reach the hotspot node is N— Y n;.
=0

Therefore, P, can be written as
J

dmax

j-1
N-Yn 2m
p =20 = (4.10)
J C;N C;N
where d_,, is the maximum number of hops that a message may take to reach its

destination (also called network diameter) and is given by
dmax =n(k=1). 4.11)

Unlike its regular counterpart, a hotspot message encounters different blocking times at

different channels due to the non-uniform traffic rates on network channels caused by the
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hotspot traffic. A hotspot message may visit j=1, 2, ..., or d gy channels to reach the
hotspot node. All these cases have to be taken into account when computing the mean

network latency for hotspot messages. The network latency seen by a j-hop hotspot

message is given by

Sp, =M+ j+ > B, (+.12)

m=1

where B, 1< j<dnax- 15 the blocking time of a j-hop hotspot message at its m-th hop
channel. Let 6 j be the probability that a randomly chosen node is j-hops away from a
given node as destination (here the hotspot node). The number of nodes that are j hops
away from a given node can be obtained using Equation 4.8. Dividing this over the total

number of nodes (excluding the given node) yields 6 as

6. =—I 4.13)

Hence, the average network latency seen by a hotspot message, S, , can be expressed by

dmax

S, = Znghj , (4.14)
j=1

4.1.2.2 Calculation of the blocking times B, and B,

m.j

A regular or hotspot message is blocked at a given physical channel when all the adaptive
virtual channels of the remaining dimensions to be visited and also the deterministic
virtual channels of the lowest dimension still to be visited are busy. The mean blocking
time depends on the probability of blocking at a physical channel and on the mean waiting
time to access a virtual channel. The probability of blocking depends on the number of

output channels, and thus on the virtual channels that a message can use at its next hop.
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When blocking occurs, the mean waiting time depends on the location of the current

channel relative to the hotspot node as the traffic rate varies from one channel to the next.

A regular message makes, on average, d hops to cross the network. Suppose that the
message has reached the mth-hop 1<m< d ) channel along its path. This channel can be
between 1 and d,,, hops away from the hotspot node. Let 91 denote the probability of
blocking for a message which makes, on average, [/ hops per dimension—in case of a
regular message [ =k —when the current channel is j hops, 1< j<d,,,, . away from the
hotspot node. Moreover, let w j denote the mean waiting time when blocking occurs at the
channel. Since there are C; channels (given by Theorem 4.1) that are j hops away from
the hotspot node, out of the total number of channels in the network nN, the mean

blocking time, B, , for a regular message can be written as

dmax Cj

B,= Y Lo owj.

r

(4.15)

The probability of blocking ¢ z is computed as follows. Since a regular message makes,
Js

on average, k hops per dimension, the probability of termination, £ 7, which 1s the

probability that a message has crossed all the channels of a given dimension when 1t

reaches a given router, is therefore given by [48]

_ (4.16)

Pt

] —

&

Hence, the probability that a message still has to visit, say. A out of the n dimensions,

T -, can be written as
Bk

(n _ n-p 4.
”ﬂ‘i_(ﬂ}_P’»k)BPr.i 47
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With f dimensions still to be visited, a regular message can select any one of the (1-2)
adaptive virtual channels belonging to the ( 5 -1) dimensions still to be visited adaptively;
it can also use one of the two deterministic channels and any one of the (V-2) adaptive

virtual channels at the lowest dimension. Using Equation 4.17 we can write ¢ - as
J.k
n ,B—l
q)j’z = ﬂz‘_'lﬂﬂ,ﬁpaj Pa&dj s (418)

with P, being the probability that all adaptive virtual channels of a physical channel
J
located j hops away from the hotspot node are busy and P, g ; being the probability that
J

all adaptive and deterministic virtual channels of that channel are busy.

Let p, , (0<v<V), represent the probability that v virtual channels are busy at a
J
physical channel located j hops away from the hotspot node. Using the same scheme for

computing Equations 3.14 and 3.15 in Chapter 3, we can write

2Ry-ny; HRv-oy;
+

_ 4.19
Paj RQ*[V][V}’ (4.19)
v-1, (v-2!
2P
v-1);
FPaged; =B+ 1’ (4.20)
[V_l)

To determine the mean waiting time, w ;, to acquire a virtual channel, a physical channel
is treated as an M/G/1 queue with a mean waiting time of [104]
2
_ J

. ’ (4.21)
2(1-p;)

Pj=4jSj:



Chapter 4. An analytical model of adaptive wormhole routing in the presence of hotspot traffic

87

2 _ J
Cs = : (4.23)

where A j 1s the traffic rate on the channel located j hops away from the source node. S j

is its service time, and O 18 the variance of the service time distribution. The rate of

J
messages arriving at the channel is composed of regular messages and hotspot messages.

and is equal to
lj =4, +/1hj ) (4.24)

Let us assume for a moment that there is no hotspot traffic present in the network. Since
adaptive routing distributes regular traffic evenly across the network channels, the mean
service time for regular messages is the same across all channels and is equal to the mean
network latency, S_r [36, 142]. The presence of hotspot traffic, however, causes the
service time to vary from one channel to another due to the non-uniformity of traffic rates
on the channels. When a message reaches a channel that is j hops away from the hotspot
node, the mean service time considering both regular and hotspot messages can be written

as

&:J&ﬁ—%&, (4.25)

where S hj is the mean latency seen by a hotspot message to cross from a channel located j

hops away from the hotspot node to the hotspot node itself. The expression of q 1s

given by

—_ dmax j_l 4.6

Shj =M+ > | & 2Bhl+i—j.i ’ 0
[:j ]:1 )
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Figure 4.1: Number of nodes located j=1,2,..., d,_, hops away from the hotspot
node, n, in the k-ary n-cube.

with é,-‘j being the ratio of the number of nodes which are i/, j<i<d,,,. hops away

from the hotspot node to the number of nodes that are j hops or farther away from the
hotspot node as shown in Figure 4.1. The number of nodes located j hops away from the
hotspot (or number of nodes in band j as shown in Figure 4.1) is given by Equation 4.8.
Summing up the number of nodes in bands j, j+1, ..., and d,, will give the number of

nodes located j hops or further away from hotspot. Hence, we can write ¢; ; as

(4.27)

Since the minimum service time at a channel is equal to the message length. M. following

a suggestion proposed in [58], the variance of the service time distribution can be

approximated as
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2 o a2
gg, =5 =M)". (4.28)

As a result, the mean waiting time, given by Equation 4.21, becomes

2
2 (S;=M)
Ajsj(1+f%2)
_ S5

All the possible number of hops made by a hotspot message have to be considered when
computing its mean blocking time. A hotspot message may make between | and d hax
hops to reach its destination, the hotspot node. The possible number of hops made along a
given dimension is between O and k—1. Equation 4.8 can be used to determine the
number of ways to distribute the hops made by the hotspot message among the n
dimensions. However, instead of considering all the possible combinations when
distributing the hops among the n dimensions, we consider the average case where the
message makes an equal number of hops per dimension. This greatly simplifies the
computation of the mean blocking time especially when n and k are large due to the large
number of combinations that has to be considered. Section 4.3 will reveal that our
suggested approximation does not sacrifice the model’s accuracy. Using this
approximation, the above calculation of the mean blocking time for regular messages can
be easily adapted for hotspot messages. When the message reaches the m™ -hop channel,

it is (j-m+1) hops away from the hotspot node. Therefore, the mean blocking time can be

written as

(4.30)

ma,j = (pj—m+l,j/n wj_’”'H :

The new expressions for the probability of blocking, & ;41 j/n - and mean waiting time,

W i1 for hotspot messages can be obtained by simply substituting (j-m+1) for j and
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j/n'for k in Equations 4.15-4.18.

Examining the above equations reveals that there are several inter-dependencies between
the different variables of the model. For instance, Equation 4.25 and 4.26 reveal that S ;s

a function of Bh while equations 4.29 and 4.30 show that Bh

_ is a function of S ;.
m,j J

m,j
Given that closed-form solutions to such inter-dependencies are very difficult to

determine, the different variables of the model are computed using iterative techniques for

solving equations [104].

4.1.2.3 Calculation of the mean waiting time at the source w,

A regular message originating from a source node that is j hops away from the hotspot
node sees a network latency of S_,, whereas a hotspot message sees a latency of § h; to
reach the hotspot node. Therefore, the mean network latency for a message that originates
at a source node that is located j hops away from the hotspot node, § s; e taking into

account both regular and hotspot messages with their appropriate weights, is simply
Sy, = (1~ h)S, + hSp, - 4.31)

Modelling the local queue in the source node that is located j hops away from hotspot
node as an M/G/1 queue, with the mean arrival rate /18 /V (recall that a message in the

source node can enter the network through any of the V virtual channels) and service time

S, . with an approximated variance (Ssj - M)2 , yields a mean waiting time of
J
(S5, —M)’
igz |44 7
VoS 52
- i (4.32)
WS,- . 2(1 A S ) |
vV 5

' Min(1, j/n) should be used instead of /n when j<n .
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Figure 4.2: The Markov chain used for computing the probability of virtual
channel occupancy of a physical channel located j hops away from hotspot.
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1

Averaging over all possible values of j, 1< j<d,,s, gives the mean waiting time in a

source node as

dmax
Wy= Y O;W; . (4.33)
Jj=1

4.1.2.4 Calculation of average virtual channels multiplexing degree V'

The probability, ij . that v virtual channels are busy at a physical channel that is j hops
away from the hotspot node, can be determined using a Markovian model shown in Figure
4.2. In this figure, state EKVJ, corresponds to v virtual channels being busy. The transition
rate out of state 93\,1, to ‘Ji(vﬂ)j is 4;, while the rate out of ‘.K‘.j to %(‘,_l)j is 178 ;. The
transition rate out of the last state, EKVJ_, is reduced by A j to account for the arrival of

messages while a channel is in this state. In the steady state, the model yields the

following probabilities

1, v=0
0. =948 OsvsV 4.3
\'j A,j
Q‘_lj_l__,1.’ v=v
S; J
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and
[V
1/ ZQi-’ v=0
i=0 7
P‘,j :<Pv—lj/1ij’ O<v<V . (4.35)
A
P,_1. , v=V
i1 _ 4.
S,

In virtual channel flow control, multiple virtual channels share the bandwidth of a physical

channel in a time-multiplexed manner. After averaging over all the possible values of j.

1< j<n, the average degree of multiplexing of virtual channels, that takes place at a

given physical channel, is given by [49]

Vv
Z v2PVj

V= (4.36)
D VP»j
v=I

_ dmax —

V = HJ-VJ' . (4.37)
Jj=1

4.1.3 The hypercube case

When the network is a hypercube (k=2) some equations in the above model should change
as follows. The network diameter, the number of nodes located i hops away from a given

node, n;, in the n-dimensional hypercube, and the probability that a node is i hops away

from the given node, 6;, are given respectively by (3]

d — (4.38)

n; :(’.’\, (4.39)
y,
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o L)

The average latency for the regular messages, S, can be calculated as

(4.41)
where § " is the latency for an i-hop regular message which can itself be computed as

[
S, =M +i+ ZBm . (4.42)
=1

B

- is the mean blocking time seen by an i-hop regular message at its /-th hop channel,
I</<i. Let P, ;; denote the probability of blocking for an i-hop regular message when
at [-th hop is j hops away from the hotspot node. Then, the probability B, , is given by

n Cj
Bri,[ :JZ:‘ln_N[)l’j’lWJ (443)

The number of channels located j hops away from the hotspot node in an n-dimensional
hypercube is given by [1]

c; :(n—j+1>(j’jl). (4.44)

The probability £ ;; can be derived as follows. At the 1t -hop channel. an i-hop regular

message can use (i—/+D({V -1), I<i<n, 1</<i, adaptive virtual channels at the
remaining (i—/+1) dimensions to be visited adaptively. It can also use one deterministic

channel at the lowest dimension to be visited according to deterministic routing. A
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message is blocked when all the possible virtual channels it can use are busy. So. the
probability that blocking occurs can be written as

_ pi-l
Pi,j’l _Paj Pa&dj ) (+.45)
Recalling that the virtual channel requirement for Duato’s adaptive routing in hypercube is
slightly different from that in the general k-ary n-cube, the probability that all adaptive
virtual channels are busy, P, and the probability that all adaptive and also deterministic

J
virtual channels are busy, P d;’ are given by [36]

Fv-n,

P, =Py L (4.46)
[+~

Fasea, =1, - (4.47)

As with a regular message, a hotspot message is blocked at a given channel when all the
adaptive virtual channels of the remaining dimensions to be visited, and also the
deterministic virtual channels of the lowest dimension still to be visited. are busy.
Therefore, the above calculation of the mean blocking time for regular messages can be
easily adapted for hotspot messages. Consider a hotspot message that has to cross j
channels to reach its destination, the hotspot node. When the message reaches the m-th

hop channel, it is (j-m+1) hops away from the hotspot node. Therefore, the mean blocking

time can be written as

ma,j = Pj,nz,j—m+1 Wi-m+l- (4.48)

The new expressions for the probability of blocking, P; ,, j_m+1 - and mean waiting time,

W i_+1- can be obtained by simply substituting j by (j-m+1) in the above equations.
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4.2 Model validation

The above model has been validated through a discrete-event simulator that performs a
time-step simulation of the network operations at the flit level. In each simulation
experiment, a total number of 100000 messages is delivered. Statistics gathering was
inhibited for the first 10000 messages to avoid distortions due to the initial start up
conditions. Extensive validation experiments have been performed for several
combinations of network sizes, message lengths, and virtual channels, and the general
conclusions have been found to be consistent across all the cases considered. However, for

the sake of specific illustration we provide results for the following cases:
- Examined networks are 8-ary 2-cube, 8-ary 3-cube and 8-dimensional hypercube.
- Message length M=32 and 64 flits.

- Number of virtual channels V=3 and 5 for the 8-ary 2-cube and 8-ary 3-cube and

V=2 and 4 for the hypercube.

- Fraction of hotspot traffic # = 0.07, 0.21, 0.35 and 0.49. The hotspot node is
assumed to be the node (4,4) in 8-ary 2-cube, the node (4,4,4) in 8-ary 3-cube and
the node with linear address N-1=255, in the 8-dimensional hypercube. Due to the
symmetry of k-ary n-cube networks, any node can obviously be the hotspot node

without any change in simulation results.

Figures 4.3-4.6 show the mean latency curves predicted by the model against those
obtained through simulation experiments. In all the figures, the horizontal axis represents
the traffic rate (4,) while the vertical axis shows the mean message latency In crossing
from source to destination. The figures indicate that the analytical model predicts the mean

message latency with a reasonable degree of accuracy when the network is in the steady
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Figure 4.3: The average message latency predicted by the model agaipst
simulation results for an 8-ary 2-cube with message length M=32 and 64 flits,
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=3 virtual channels

per physical channel.

state region, that is when it has not reached saturation point. However, there are

discrepancies in the results provided by the model and simulation when the network is

under heavy traffic and approaches the saturation point. This is due to the approximations

that have been made in the analysis to ease the model development. For instance. Equation
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Figure 4.4: The average message latency predicted by the model against
simulation results for an 8-ary 2-cube with message length M=32 and 64 flits,
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=5 virtual channels

per phvsical channel.

4.28 is a crude approximation for computing the variance of the service time received by a

message at a given output channel. especially in heavy traffic regions. but it greatly

simplifies the calculation of the mean message waiting time. The minimum service time,

M. for a channel assumed in 4.28 is much less than the real minimum service time when
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Figure 4.5: The average message latency predicted by the model against
simulation results for an 8-ary 3-cube with message length M=32 and 64 flits,
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=3 virtual channels

per physical channel.

the traffic is dense, although it is an appropriate approximation for light traffic loads.
Nevertheless, we can conclude that the model produces latency results with a good degree
of accuracy in the steady state regions and its simplicity makes it a good practical
evaluation tool that can be used to gain insight into the performance behavior of fully

adaptive routing in the k-ary n-cube in the presence of hotspot traffic.
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Figure 4.6: The average message latency predicted by the model against
simulation results for an 8-ary 3-cube with message length M=32 and 64 flits,
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=5 virtual channels

per

physical channel.

As can be seen in the figures, changing the number of virtual channels from V=3 in Figure

4.3 to V=5 in Figure 4.4 has improved the mean message latency. However. the effect of

the number of virtual channels is more noticeable when the hotspot traffic portion is

relatively small. Thus, for a small percentage of hotspot traffic, the saturation point for the

8-ary 2-cube for V=3 and 5 are quite different. However. when the hotspot traffic rate 1
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high, more virtual channels cannot effectively improve the latency because most of
messages are targeted at the hotspot node and are waiting for many other messages which
are also being sent to the same node. When the network is an 8-ary 3-cube, even a hotspot
traffic factor as small as h=0.07 defines a sufficiently large hotspot traffic portion to place
the network in a condition where adding two virtual channels cannot help to improve
message latency (see Figures 4.5 and 4.6). In an 8-ary 3-cube network (512 nodes). this
corresponds to a total rate of 511*0.07=35.774, messages/cycle sent to the hotspot node.
This 1s higher than the same parameter in a 8-ary 2-cube (with 64 nodes) network with a

hotspot traffic factor h=0.49, corresponding to 63*0.49=30.87 A, hotspot messages/cycle.

In order to assess the accuracy of the model in predicting the latency for the different types
of messages in the network, Figures 4.7 and 4.8 provides detailed results for the overall
message latency (regular and hotspot messages combined together), hotspot message
latency (hotspot messages only), and regular message latency (uniform messages only)
predicted by the analytical model, plotted against those obtained by the simulator when
V=2. Figure 4.9 shows the results for the overall message latency only with V =4. (We

have opted to show results for the overall message latency only in Figures 4.9 for brevity).

The accuracy of the model against the hotspot fraction is illustrated in Figure 4.10, where

the overall message latency is plotted against the fraction of the hotspot traffic where V =

2 and ﬂg= 0.001.

4.3 Modelling bidirectional k-ary n-cubes

In this section, the above model is modified for bidirectional k-ary n-cubes. To this end.
the following changes should be made to the model’s equations. The average number of

hops that a regular messages makes at each dimension k . and the network diameter d ,y .

are given by [6]
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Figure 4.7: The average message latency predicted by t_he model against
simulation results in an 8-dimensional hypercube with V=2 virtual channels per

physical channel,

M=32 and 64 flits, and hotspot traffic portions h= 0.07, 0.21.

Bottom row shows the overall message latency while the top and middle rows
show the latency of uniform and hotspot messages respectively.
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Figure 4.8: The average message latency predicted by the model against
simulation results in an 8-dimensional hypercube with V=2 virtual channels per
physical channel, M=32 and 64 flits, and hotspot traffic portions h= 0.35, 0.49.
Bottorn row shows the overall message latency while the top and middle rows
show the latency of uniform and hotspot messages respectively.
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k e
-7 if kiseven
=11 . (4.49)
—(k——), otherwise
4 k
k
dmax = ”{EJ . (4.50)

The number of nodes which are i hops away from a given node, ;. in the bidirectional -

ary n-cube is the surface area of radius i (given by Theorem 2.6), i.e.

[ 7 m K
> Z(—1)12’”(")(’7) | k is odd
_ Jm=01=0 m m—1
B TN N PV GRy (LT PYR ' (30
> >.(-D 2m(t)( " )(l) : 2 B otherwise
[ t=0m=01=0 m—1

To calculate the number of channels located j hops away from a given node, in the
bidirectional k-ary n-cube, we need to know the number of nodes located j hops away

from a given node with at least one hop distance from the given node in each dimension.

THEOREM 4.2. The number of nodes located i/ hops away from a given node in the
bidirectional k-ary n-cube with at least one hop distance from the given node in each

dimension, is given by

. [(k—1)
m

—0]— -1
q)/;,ln (i) = J m=01=0 m

-1 . tk _ _i _ ‘
iﬂz: i(_])lznt(nln—rlmil—g-kt n—= +21 1} otherwise
t m /

| r=0m=0[/=0 m—1

r

(+.52)

PROOF. We should count the number of ways that i like objects can be distributed over

two groups, each of n cells, say G ={C|.C>.---.C,} and G'={C", ,Cy . C7y }osuch
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that each cell contains not less than one and not more than (k-1)/2 cells and no two
corresponding cells, C; and C’; for i=1,2...,n, can be assigned objects at the same time.
The problem can be thought of as that of finding the number of different destinations that
an i-hop message can chose from a given source node in Q“,]f , using a minimal routing

algorithm. We should consider two cases: odd k, and even k.

When k is odd, it is apparent that a message can take at most (k-1)/2 hops in each
dimension since the network is bidirectional. Let us consider the case that an i-hop
message makes some hops over m, (m=0,1,2,...,n), fixed dimensions (each in one
direction) so that the message has made at least two hops in each dimension. The message

k-1
makes one hop at any other n-m dimensions. This can be realized in I',2 (i—n+m,m)

ways. Each of n dimensions could be one of these m dimensions resulting in

n k=1
[ )1'22 (i—n+m,m) possible combinations that m dimensions are passed (each in one
m
Y,

direction). Recalling that each of two directions in one dimension can be chosen yields the
total number of ways to pass m dimension with at least two hop in any of /1 dimensions as

n k-1

2’"( 1]‘22 (i—n+m,m). The hops made at each of the other n-m dimensions (one per

m
J

. . . .o . . . . . ’1—"1 . .
dimension) can be made in positive or negative directions, with 2 combinations,

_ n\ kL ) ) )

making a total number of 2" mZm[ )1'23 (i —n+m,m) ways to pass m dimensions with

m
J

at least two hops at each dimension and one hop per each n-m remaining dimensions.
Summing up all the combinations for m=0,1,...,n gives the total number of nodes at

distance i from a given node in Q,’f (with odd k), such that the distance between these

nodes from the given node at each dimension be at least one, to be

k=1

n _ 1 .
(D/;‘i”d'”(i)= 3 o ~ 52 (i—n+m,m)
m=0 (4.53)

nom . I(k'l)+1_1

S5 S

m=0[=0 m m—1
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When the radix & is even, we should count the number of ways that i like objects can be

distributed over two groups, each of n cells, say G={C1,Ca.---.C,,} and

G'={C"{,C’5,---,C", }, such that each cell in G contains not less than one and not more

than k/2-1 objects and each cell in G’ contains not less than one and not more than /2
objects and no two correspondent cells, C; and C’;, for all i=0,1,....n, can be assigned
objects at the same time. Suppose that 7, 1 =0,1,...,n, cells in G’ have received £/2 objects.

n .o . .
n ( t) ways. The remaining objects may be distributed over the remaining n-r dimensions
/

using the equation given above for odd k, since each dimension in G and G’ now receives

at most k/2-1 and at least one objects. Therefore, we can write

”‘f” HOE 2 [IJCI)I;I Lodd - "(i—tk/2). Substituting (Dk Loga 1= "(i=tk/2) using the
t=0

above equation (derived for odd k) results in

; tk _ Ik _
=3 3 2”’ R T TR 65
1=0m=01=0 m—1

Hence, from Equation 4.53 and Equation 4.54, we have

— n( n ) n—l(k_l) [ -1 -
z Z( 1) 9) 2 , k 1s odd

@];,ln (l') — m Ol O

t ) Ik B
inz i( 1) 2” t(nIn I Il_—+t— 2+2l l), otherwise

| 1 =0m=01/=0 m—1

Let us now calculate the number of channels located j hops away from a given node, in the

bidirectional k-ary n-cube.

THEOREM 4.3. The number of channels that are j hops away from a given node in a

bidirectional k-ary n-cube is given by
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¢
1 n n_l | — 1 — _M - __
zz z( 1) 2’1 n_l)[ I I L n l 2 +&J 1 , kls Odd
1=0m=0 20 ¢ m—1
<
In—Iin—I
znznzrgl( b 2m = () nYn-IYn-I—-tYm i—%+t—n—l—%‘—'+2:—l
1=0t=0 m=0 7=0 N " ¢ m-] |
L otherwise
(4.53)

PROOF. A similar scheme used to prove Theorem 4.1 can be applied here. A channel
located j hops away from a given node, say A, is an output channel of a node also j hops

away from A. However, some of these channels might be ignored when counting. The

number of nodes having no such a channel is simply @é’ln(j) (given by Equation +.52),

since (I)];1 (j) gives the number of nodes located j hops away from A, each at least at

distance one from A in each dimension. The number of nodes having one channel to be

knl

excluded for counting is [1 (J) , which is the number of nodes located j hops away

Y

from A whose distance from A in exactly one dimension is zero. Generally, the number of

nodes which have [ channels to be omitted when counting the number of channels located j

hops away from A 1is (l k " l(]) Summing up all these cases results in the total
J

number of channels which are j hops away from A, C j»as
- el n \xk.n—!
CJ-:Z(n—l)(,}b (/)=
=0
Pnil nz_“l i lon- l oy nYn—I [—n ——l—k(l\ 1) -1 L is odd
0l s el S
[=0m=0:=0 m—l
0

n—-ln—Iin=Il-t m _Ix /- +27—1
n— lt nYn— n—I1—t I +l N '
350 FRUECRISTI () Ll K (4 LR )

[=0t=0 m=0 z=0 .
otherwise

<

The mean blocking time, B, , for a regular message can now be written as
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B, = P (4.56)

4.4 Performance analysis

In this section we use the model proposed above to conduct a performance analysis of k-
ary n-cubes under traffic workloads containing a hotspot. For the sake of an example, the
10-ary 3-cube is used, but the conclusions reached are found to be similar when other

network configurations are considered.

Figure 4.11 reveals the effect of the number of virtual channels on the performance by
plotting the offered traffic when the network is saturated (saturation traffic) versus the
number of virtual channels in the unidirectional 10-ary 3-cube with message length M=50
flits and number of virtual channels V=4 for hotspot fractions #=0.01 and 0.2. It is
assumed that the network enters the saturation region when p j 21 (given by Equation
4.22); the corresponding A, for which the condition p ;21 1s satisfied is the saturation
traffic. As can be seen in the figure, adding virtual channels when the hotspot fraction is
low (h=0.01) increases the performance noticeably. However, a performance improvement
is not noticeable at all when the hotspot fraction is relatively high (4=0.2). In this situation,
more virtual channels cannot effectively improve the latency because messages sent to the

hotspot node are forced to wait for other messages trying to reach the same destination.

Figure 4.12 shows the average network latency, S, as a function of offered traffic by each
node for a unidirectional 10-ary 3-cube with message length M=50 flits and number of
virtual channels V=4 for hotspot fractions #=0.01 and 0.2. The contributions of hotspot
and regular traffic to total mean message latency, S, are shown separately in dark and
light grey. respectively. The figure reveals that when the hotspot fraction is low, the

. . . . . “L‘l‘\‘.
component causing network saturation 1s the part contributed by regular messages
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). saturation

Figure 4.11:

0.0025 1
0.002 -
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0.001 :

0.0005 A

—6—h=0.01
—8—h=0.2

Number of virtual channels V

The saturate traffic rate versus number of virtual channels per

physical channel in a unidirectional 10-ary 3-cube with message length M=50 flits
and hotspot traffic portions h=0.01 and 0.2.

However, when hotspot fraction is high, the part due to hotspot messages dominates the

other part and causes saturation.

Figure 4.13 shows mean message latency curves for message length M = 50 flits in

unidirectional and bidirectional 10-ary 3-cubes with V = 4 virtual channels per physical

channel and hotspot fractions #=0.01 and 0.2. The bidirectional k-ary n-cube has double

the bisection width and node pin-out of its unidirectional equivalent. In order to have a fair

and realistic comparison, the bisection width or pin-out constraint was held constant in the

two networks. So, if we use the unidirectional network as a basis for the comparison

(with

a channel width of the flit size), the channel width in the bidirectional network will be half

of the flit size, i.e. for each flit communication

two channel cycles are required. T

over a channel in the bidirectional netw ork,

he figure reveals that the bidirectional k-ary n-cube
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hotspot traffic portion h=0.01, and (b) hotspot traffic portion h=0.2.
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Figure 4.13: The mean message latency versus traffic generation rate in the
unidirectional and bidirectional 10-ary 3-cube with message length M=50 flits and
V=4 virtual channels per physical channel for hotspot traffic portions h=0.01 and
0.2, under pin-out and bisection bandwidth constraints.

outperforms its unidirectional counterpart under constant bisection width and pin-out
constraints when the hotspot fraction is low. This is because the former network has a
lower message distance and lower message traffic rate on its channels, compensating for
its lower channel bandwidth. Note that when the hotspot fraction is low, the traffic is
almost equally distributed over network channels. However. when the hotspot fraction is
relatively high, the unidirectional network outperforms the bidirectional counterpart. This
is because the large fraction of hotspot traffic causes a large portion of traffic to be placed

on the channels around the hotspot. Even the lower diameter of a bidirectional network
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cannot compensate for the long service time of the channels around a hotspot whose

bandwidths are half of those in an equivalent unidirectional network.

4.5 Conclusions

Several analytical models of fully adaptive routing have recently been proposed for
wormhole-routed k-ary n-cubes under the uniform traffic pattern. However, the "uniform
traffic" assumption is not always justifiable in practice as there are many parallel
applications that exhibit non-uniform traffic flows, which can produce, for example.
hotspots in the network [88]. This chapter presented the first analytical model to compute
the mean message latency in the presence of hotspot traffic in wormhole-routed k-ary n-
cubes with fully adaptive routing. The model is based on assumptions widely used in
similar studies. Simulation experiments have revealed that the proposed model produces
latency results that are in a good agreement with those produced through simulation

experiments.

A preliminary performance analysis has revealed that increasing the number of virtual
channels can improve network performance when the hotspot traffic portion. /, is low.
However, when # is relatively large (defining a high percentage of hotspot traffic), adding
virtual channels cannot improve performance noticeably. It was also shown that when 4 1s
small, the dominating factor causing network saturation is the uniform message
component while for large #, the dominating factor is the average latency for hotspot
messages. Comparing unidirectional k-ary n-cubes against their bidirectional counterparts,
under both constant bisection bandwidth and pin-out constraints, shows that bidirectional
k-ary n-cubes provide better performance when the hotspot traffic rate is low. However,

the opposite is true when hotspot traffic is relatively high.

In the next chapter. we will develop models to deal with two important non-uniform trattic
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patterns, namely matrix-transpose and digit-reversal. These patterns are exhibited in many

applications including signal processing and matrix-computation.



Chapter 5

Modelling of k-Ary n-Cubes for Other
Important Non-Uniform Traffic Patterns

Many real-world parallel applications in science and engineering exhibit non-uniformity in
the traffic patterns [41, 57, 90, 168] they create. For instance, the computation of multi-
dimensional FFTs, finite element algorithms, matrix problems, and divide and conquer
strategies all generate regular communication patterns [79], which may be non-uniform
and put uneven bandwidth requirement on network channels. Permutations such as matrix-
transpose, digit-reversal, shuffle, exchange, butterfly and vector-reversal are examples of
regular communication patterns that generate typical non-uniform traffic in the network

(see [59, 79] for more details on these permutations).

In this chapter, analytical models of fully adaptive routing in k-ary n-cubes in the presence
of non-uniform traffic generated by two important permutation patterns, namely matrix-
transpose and digit-reversal, are proposed. Results obtained through simulation
experiments confirm that the proposed models predict message latency with an acceptable

degree of accuracy under different working conditions.

The rest of the chapter is organised as follows. Section 5.1 describes the analytical model



Chapter 5. Modelling of k-ary n-cubes for other important non-uniform traffic patterns

115

for matrix-transpose permutations. In Section 5.2 the model is described for digit-reversal
traffic. Both models are validated in Section 5.3 through simulation experiments, while
Section 5.4 discusses the changes required for bidirectional k-ary n-cubes. Section 5.5 uses
the proposed models for performance analysis of k-ary n-cubes in the presence of

permutation traffic patterns. Section 5.6 concludes the chapter.

5.1 The analytical model for matrix-transpose traffic

The notation used in the model is shown in Table 5.1. Moreover, the model uses
assumptions which are commonly employed in the literature [3-6, 12, 32-34, 42, 43, 48,

49, 58, 81, 84-86, 99, 120, 142, 143] as follows.

a) To cover a wider traffic range and to allow for a more generally applicable model
we assume that there are two types of traffic in the network: "matrix-transpose”

and "uniform". In the traffic pattern generated according to the matrix-transpose

permutation [79], a message originating from source node X =xjx;---x, is sent

to the node

M(X):{x1+1xl+2"‘x21X1X2"'X1 ifn=20 5.1)
X4 X4 X1 XXXy i n=20+1

In the uniform traffic pattern, a message is destined to any other nodes in the
network with equal probability. Let us refer to these two types of messages as
matrix-transpose and uniform messages, respectively. When a message is
generated it has a probability m of being a matrix-transpose message and
probability 1—m of being uniform. When m=0 the traffic pattern is purely uniform
and when m=1 only matrix-transpose traffic is defined. A similar traffic model has

already been used by the authors in [149] to generate other non-uniform traffic
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Table 5.1: Notation used in the model for matrix-transpose permutation traffic

Notation Description
d m average number of hops made by a matrix-transpose message across the network
d u average number of hops made by a uniform message across the network
d average number of hops made by a message across the network
k network radix
k, average number of hops made by a uniform message in each dimension
kp, average number of hops made by a matrix-transpose message in each dimension
L message length
m probability that a source generates a matrix-transpose message
MX) matrix-transpose permutation function
n network dimension
R, even num.ber'of different source and destination pairs whose addresses differ in i digits and the
P destination address is the matrix-transpose permutation of the source address when n is
even
R odd number of different source and destination pairs whose addresses differ in i digits and the
v destination address is the matrix-transpose permutation of the source address when n is odd
Ny number of different source and destination pairs whose addresses differ in 7 digits and the
! destination address is the matrix-transpose permutation of the source address
N network size (N=k")
P, probability that all adaptive virtual channels at a physical channel are busy
P probability that all adaptive and deterministic virtual channels at a physical channel are
a&d busy
Pylock probability of blocking when a matrix-transpose message, whose source and destination
mi,j | addresses differ in i digits, is at its j-th hop channel
probability of blocking when a matrix-transpose message, whose source and destination
bl""kml,- . C g . : . ts i-th h h )
o4 addresses differ in i digits, has already passed [ dimensions and is at its j-th hop channe
Pblockuj probability of blocking when a d,-hop uniform message is at its j-th hop channel
Pblock probability of blocking when a d,-hop uniform message has already passed ! dimensions at
“1,j | its j-th hop channel
J p : :
P probability that the source and destination addresses for a matrix-transpose message differ
M in exactly i digits
s probability that / dimensions are passed by a matrix-transpose message, whose source and
P%my i j | destination addresses differ in i digits, when it is at its j-th hop channel
P ass probability that / dimensions are passed when a d,-hop uniform message is at its j-th hop
PasSy, channel
P“i probability that a uniform message makes i hops to reach its destination
P, probability that v virtual channels at a physical channel are busy
QV an intermediate variable for calculating P.
§ mean network latency for a message
S m mean network latency for a matrix-transpose message
S network latency for a matrix-transpose message whose source and destination addresses
m; differ in i digits
Sy mean network latency for a uniform message -
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Table 5.1: continued

Notation Description
1% number of virtual channels used per physical channel
1 average degree of multiplexing of virtual channels at a physical channel
W mean waiting time to acquire a virtual channel when a message is blocked
W_/S mean waiting time at a source node
T X address of a source node x = XX Xp

é m

fraction of the matrix-transpose traffic in the network

Su

fraction of the uniform traffic in the network

)lm generation rate of matrix-transpose messages at a source node

/10 message rate on a channel

/1g generation rate of messages at a source node

Zu generation rate of uniform messages at a source node

o % variance of the service time distribution at a channel
patterns containing hotspots.

b) Nodes generate traffic independently of each other which follows a Poisson
process with a mean rate of /1g messages/cycle. Hence, the mean generation rate
of the uniform traffic is (I — m)/ig and that of the matrix-transpose traffic 1s mﬂg )

c) Message length is fixed and equal to M flits, each of which is transmitted in one
cycle between two adjacent nodes.

d) The local queue in the source node has infinite capacity. Moreover, messages are
transferred to the local PE through the ejection channel as soon as they arrive at
their destinations.

e) V virtual channels are used per physical channel, divided in two groups V(' and

VCs as discussed in Chapter 2. Group VC) contains 2 virtual channels, crossed

deterministically (e.g. in an increasing order of dimensions) and group V(%

contains (V —2) virtual channels crossed adaptively. When there 1s more than one
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adaptive virtual channel available a message chooses one at random. To simplify
the model derivation, no distinction is made between the deterministic and

adaptive virtual channels when computing the different virtual channel occupancy

probabilities [142].

5.1.1 The outline of the model

The mean message latency 1s composed of the mean network latency, §, that is the time
to cross the network, and the mean waiting time seen by a message in the source node,
Ws. However, to capture the effects of virtual channel multiplexing, the mean message
latency has to be scaled by a factor, V , representing the average degree of virtual channel
multiplexing, that takes place at a physical channel. Therefore, the mean message latency

can be written as
Latency = (S + W)V . (5.2)

Given that a uniform message can make between 1 and du,=n(k-1) hops (i.e., the network
diameter), the average number of hops that a uniform message makes across the network,

d, ,is given by
d, = zzP (5.3)

where P, is the probability that a uniform message makes i hops to reach its destination.
i

The average number of hops that a uniform message makes in each dimension can

therefore be expressed as

5.4

The probability £, can be calculated using Theorem 2.4 as
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/_‘ik (1) 1 —lk+n—1
_An 1 _ i nyit:— n—
Pu,- - - 2(~1) . (S S)
N —1 N_ll=O i n—1 .0

Before computing the average number of hops that a matrix-transpose message makes
across the network, let us first calculate the probability, Py, - that the source and
destination addresses for a newly-generated matrix-transpose message differ in exactly i
digits. Examining the address patterns generated by matrix-transpose permutations reveals
that this probability has to be calculated in different ways for odd and even values of n.
Let X =xjxp---x,, and M(X)=x’; x’»---x’, be, respectively, the source and destination
addresses for a matrix-transpose message. When #n is even, every digit difference between
the first n/2 digits of the source and destination addresses, xjx,---x,;>» and
x| x’5-+x’, o, results in a same digit difference in the remaining n/2 address digits,
Xp12Xn/2+1 Xpand X' o X' o4y x, . Therefore, By, is zero when i is odd. Let us
determine the number of possible cases where the source and destination address patterns
of a matrix-transpose message differ in i (i= 0, 2, 4, ..., n) digits. This can be done by
simply considering only the first n/2 digits in the source and destination addresses, and
thus enumerating the number of combinations where xjx;+-x, /2 and x’j x5 ---x'y /o are
different in exactly j; (j= 0, 1, 2, ..., n/2) digits. Digits in the address pattern xjxp --x, />
with a corresponding digit in the pattern x’; x’p ---x’, /o make up k* combinations in k
combinations of which those two digits are equal while in the other k*-k combinations they
are different. Therefore, the number of possible combinations that result in the patterns
X{Xy Xy o and x| X’y X" o differ in exactly j digits is ('Jl-/z) K2k k) (=

0, 1,2, ..., n/2). The number of possible combinations where xjx Xy and x'[ X7y x,

are different in exactly i digits (i= 0, 2, 4, ..., n) is given by

(kz—k 5

19|~

= = (5.6)
nmi,even - s (l—— O, 2, 4, cees 11).

12 |~ N|3
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Consider the case where n is odd. Examining the address patterns of the source XXy -oe X,
and destination x’; x’» ---x’, address patterns for a matrix-transpose permutation shows
that finding the number of combinations where these address patterns are different in
exactly i digits (i= 0, 1, 2, ..., n) is equivalent to the problem of finding the number of -
digit radix-k address patterns where no two adjacent digits are equal and the first and last

digits are also different. To compute such a number consider the following result from

graph theory.

DEFINITION 5.1. Chromatic polynomial [175]: The chromatic polynomial of a graph is a
function giving the number of ways that the graph nodes may be colored using a given

number of colors such that no two neighboring nodes get the same color.
PROPOSITION 5.1. If G is a ring of length /, then the chromatic polynomial of G is
Q(i,C)=(C—1) + (=D (C-1), (5.7)
where C is the number of available colors [175].

Assume that each node in a ring of i nodes corresponds to a digit of an i-digit address
pattern where each can be colored with color O,1...., or k-1 such that no two adjacent
nodes have the same color. Equation 5.7 can be applied to find the number of address
patterns meeting the conditions given above, by replacing C with k. Since these i digits can
be chosen from #, the number of combinations in which the address patterns of the source

and destination nodes of a matrix-transpose message differ in exactly / digits can be

expressed as

Mo odd = (:?)Q(i,k) = (:7)(k ~1Y +(1f1)(_1)i(k _). (5.8)
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Combining Equations 5.6 and 5.8 gives a general expression for the number of possible
combinations where address patterns xj.x x, and X' X'y -+ x" differ in exactly i digits

(i=0,1,...,n), as

0, if i is odd

9]~ Mol
N~

)(kz—k)?ki— , if nis even and i is even
(5.9)

?)(k—l)i+(?)(—1)i(k—l), if nis odd and i is even

Thus, the probability that the source and destination addresses for a matrix-transpose

message differ in i digits, P, , can be written as

0, if 1 is odd

( .

P~ 19
N —
x0T

[\

!

™
T

Fan
[SSTh)

|
to|~

if nis even and i 1s even

LY n
m-:—m“l_:< k" —k?2 . (5.10)
! N—nmO
(7)@—1)( +(f’)(—1)”(k—1)
: : , if nis odd and i i1s even
k" —k
Let us assume that the i-th digit (i= 0, 1,..., n) in the source address, x;, is different from

that of the destination address, i.e. x ;. Considering all possible values that x; and x; may
take (i.e. 0<x;,x;<k) the average difference between . and x}, which is the average

number of hops that a matrix-transpose message makes in the i-th dimension, is given by

(6]
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The average number of hops that a matrix-transpose message makes across the network is

n
dy = Zlikmpmi : (5.12)
l:

Examining the traffic generated by the matrix transpose permutation shows that a fraction
g / N of the network nodes send uniform messages only and the remaining fraction
(1= 1y, / N) send a combination of uniform (with probability 1-m) and matrix-transpose

messages (with probability m). Using Equations 5.3-5.12, the average number of hops, d.

that a message makes in the network is derived as

i

— hy n,y,
d N° du+[1— NO :|(mdm+(l—m)du)

(5.13)

nm nm nm
—mlil—Toj|dm+ NO +(1-m)| 1- N“ dy

where the uniform and matrix-transpose messages contribute with the following weights

Cm =m[1—n'"°}, (5.14)
N
n n
{u:%+(l—m)|:l— ;‘)} (5.15)

As adaptive routing uses any available channel to bring messages closer to their

destinations, it distributes the rate of message traffic almost evenly among all network

channels. Since a message makes, on average, d hops in the network. the total traffic

existing in the network at a given time is NdA,. Given that a router in the k-ary n-cube

has n output channels the rate of messages arriving at each channel, 4. can be written as

[6]
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NdA  dA
A = L -
‘ nN n (5.16)

The uniform and matrix-transpose messages see different network latencies as they cross
different channels to reach their destinations. If S, and S, denote the mean network
latency for uniform and for matrix-transpose messages, respectively, the mean network

latency taking into account both types of messages can be written as
S=¢Sn+8,S,. (5.17)

Averaging over all possible cases for a matrix-transpose message, gives the mean network

latency for matrix-transpose messages, S,,, as
S = me,- Sm,- ) (5.18)

where § m; 18 the network latency for a matrix-transpose message whose source and
destination address patterns differ in i digits. As a uniform message takes, on average, d,,

hops to cross the network, the mean network latency for uniform messages, S, , 1s given

by
dll

Sy=M+d, + Z Pblockuj Weos (5.19)
j=1

where Pblockuj is the probability of blocking when a uniform message arrives at the J-th
hop channel and w, is the mean waiting time to acquire a virtual channel given that a
message is blocked. The term M +d, in the above equation accounts for the message
transmission time, while Pblockuj w,. accounts for the delay due to blocking at the j-th hop
channel (1< j<d,) along the message path. Similarly. the network latency for a matrix-

transpose message, S,,,,_ _ whose source and destination address patterns are different in s

digits, is given by
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i

S, =M Hiky + Zl Poiock,,, We (5.20)
j:

where Pb[OCkm,-J is the probability of blocking when the matrix-transpose message arrives
at the j-th hop channel. A message (uniform or matrix-transpose) is blocked at the j-th hop
channel when all the adaptive virtual channels of the remaining dimensions to be visited
and, in addition, the deterministic virtual channel of the lowest dimension to be visited are
busy. To compute the probability of blocking, Pblockuj , for a uniform message let us
consider such a message that makes d,, hops across the network (k, hops in each of n
dimensions) and has arrived at the j-th hop channel along its path. The message may
already have passed up to (j—1)/k, dimensions. If /, 0<[<(j-1)/k,, dimensions are

passed then there are still (n-/) dimensions to pass. Therefore, the probability of blocking

can be expressed as

n—I-1 -
Pblockul’j = Ppassul’j F Pr&d - (5.21)
In the above equation, Pp,g ~ is the probability that / dimensions are passed at the j-th
uj j

hop channel, P, is the probability that all adaptive virtual channels of a physical channel
are busy and P, g 4 is the probability that all adaptive and deterministic virtual channels at
a physical channel are busy. Since / may be O, 1, ..., or (j-1)/k,, the probability of

blocking at the j-th hop channel is given by

(J"'l)/ku

M
szlockulj : (5.22)

Pblocku =
/ =0

The probability that [ dimensions are passed at the j-th hop channel, P/’““uz,j . can be

computed as follows. The number of combinations that [ particular dimensions are passcd
. . - n e
s F(l;“ -l (j—Ik,,n—1). These [ dimensions can be chosen from n dimensions in (/ ) Ways

_ . k-1, . e icidine thic by )
resulting in a total of (}’)FO“ (j—lk,.,n—1) combinations. Dividing this by the total
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[
[
tnh

number of combinations that j hops can be made over n dimensions will give the

probability that a uniform message has passed / dimensions at its j-th hop as

k,—1,.
_(7)r0u (j—lky,n=1)
Wi k —1,. :
b I_‘Ou (]’n)

P pass

Let us consider a matrix-transpose message passing i dimensions to reach its destination.
i.e. a matrix-transpose massage whose source and destination addresses differ in 7 digits.
Such a message makes ik, hops over i dimensions. Adopting the same approach taken

above for calculating Fpoc - for uniform messages we can derive Ppjper, a8
J L

_ (;)ﬂ(l)(m_l(j_lkm’i_l)

assyy : (5.24)
14 myj i Fé(m (],1)

J-1
kﬂl

Potock,,, . = 2 Polock,, L (5.25)

' [=0 ”
— i—1-1 . 59
Pblockm“j _Ppassml’i’j Py Pogd- (0! S(J=Dlkp). (5.26)

Let P, 0<v <V, denote the probability that v virtual channels are busy at a physical
channel. As in equations 3.14 and 3.15, the probabilities P, and F,g 4 can be expressed

in terms of R,j as

2R, B (5.27)
P =p, += V-l V=2
a 1% v v \
v-1; V-2,
25 (5.28)
Foga =B 7 1
(V_l/

) X et . : ‘ SSAZC 1S
To determine the mean waiting time to acquire a virtual channel when a messag
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blocked, w,., an M/G/1 queue with an arrival rate of A., and service time of S . is used.

The waiting time for such a queue can be expressed as [104]

p§(1+C§)
We :ﬂ (5.29)
p=2.5, (5.30)
2
o=
2__S
C2 = = (5.31)

where G% is the variance of the service time distribution. Since the minimum service time
is equal to the message length M, following a suggestion proposed in [58], the variance of

the service time distribution can be approximated as
o2 =(S-M)°. (5.32)

As a result, the mean waiting time, w,, to acquire a virtual channel when a message is

blocked, given by Equation 5.29, becomes

2.5 1+—G—__—2Ni
_ S 1 (5.33)
‘ 2(1- 1. 8)

The probability, P, , that v adaptive virtual channels are busy at a physical channel, can be
determined using a Markov chain as shown in Figure 3.1 with V+1 states: 7. ... Ty .
State n,,, (0<v<V), corresponds to v virtual channels being busy. The transition rate out

of state 7, to state 7,, is the traffic rate A, while the rate out of state 71, to state 7,._

L .. : ) . areival of
is 5 . The transition rate out of state 7y is reduced by A. to account tor the arrival ot
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messages while a channel is in this state. The probability P, can be computed using the
b =

steady-state equations as [49]

1, if v=0
0, =10y 4SS, ifO<v<V (5.34)
A .
0,1 0 , 1fv=V
?_ c
[ v
l/zQ,-, if v=0
i=0
P,=3P,_|A.S, if O<v<V . (5.35)
A
V_IT—‘Q——, lfV:V
§_ (&

In virtual channel flow control, multiple virtual channels share the bandwidth of a physical
channel in a time-multiplexed manner. The average degree of multiplexing of virtual

channels at a physical channel in the network is given by [49]

2

[14<

IDI_
V =i=0 5.36
1% v ) (5.36)
Sip
i=0

The calculation of the mean waiting time, W, , at the local queue in the source node is
realized in the same manner as that used for calculating the mean waiting time at a given
network channel. The local queue is treated as an M/G/1 queue with an arrival rate of
ﬂg /V (recall that a message in the source node can enter the network through any of the V'

virtual channels), a service time of S . and thus a mean waiting time of [104]
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'V q
W, = 0 Py 5) - (5.37)
V

5.1.2 The hypercube case

For an n-dimensional hypercube network (2-ary n-cube) the above model changes slightly
as follows. Equation 5.5 giving the probability that a new-generated uniform message is an

i-hop message, is now given by [3]

(1)
-\ (5.38)

P, .
i N =1

As a digit in the hypercube is a bit, each digit difference between two nodes’ address
patterns also means a distance of one hop between the two nodes. Hence. the average
distance traversed by a matrix-transpose message in the network (given by equation 5.12)

is now given by

dy = YiB, . (5.39)

The network latency for a message consists of the message transmission time and the

delay due to blocking in the network. Therefore, we can write S, (given by equation

5.20) as

]
: < 5.40)
Sm,- =M+i+ Z Pb[ock S . (

4 mj i
J=1 !

The probability of blocking when an i-hop matrix-transpose message arrives at the j-th hop

channel is now given by
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Bblockml.,j =P, Piga, (5.41)

where F, is the probability that all adaptive virtual channels of a physical channel are
busy and P, g 4 is the probability that all adaptive and deterministic virtual channels of a

physical channel are busy.

Similarly the probability of blocking when a typical uniform message (which is a d, -hop

message) arrives at the j-th hop channel is now given by

d,—j
Bblockuj =F, JPa&d : 5.42)

The probabilities P, and P, g ; can now be computed by [36]

P o

P, =P, + K/—l ) (5.43)
(V_l)

Fagd =B (5.44)

3.2 The analytic model for digit-reversal traffic

The model for digit-reversal traffic pattern uses almost the same notation and assumptions
used for the matrix-transpose traffic pattern. However, to define the digit-reversal traffic

assumptions a and b should change as follows.

a) There are two types of traffic in the network: "uniform" and "digit-reversal”. In the
uniform traffic pattern, a message is sent to any other node in the network with
equal probability. In the traffic pattern generated according to the digit-reversal
permutation [59, 79]. a message generated in the source node X =.xx>---x, 1

sent to the node 1D(X)=x,,x,,_; -+~ x| . Let us refer to these two types of messages as
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uniform and digit-reversal messages, respectively. When a message is generated it
has a finite probability a of being a digit-reversal message and probability
(I-a) of being uniform. When & =0, the traffic pattern is purely uniform while

o =1 defines a pure digit-reversal traffic.

b) Nodes generate traffic independently of each other, and which follows a Poisson
process with a mean rate of A, messages/cycle. Therefore, the message

generation rate of the uniform and digit-reversal traffics are respectively

(l—a);tg and aﬂg.

The mean message latency is the sum of the mean network latency, S, the time to cross
the network, and the mean waiting time seen by a message in the source node, WS both

scaled by V , the average degree of virtual channel multiplexing that takes place at a

physical channel, i.e.
Latency = (S + WV . (5.45)

Examining the address patterns generated by digit-reversal permutations reveals that we
need to consider even and odd values of n separately when computing the different
quantities, S, W, and V . This is because when n is even all network channels receive
both uniform and digit-reversal traffic. However, when »n is odd not all channels receive
both types of messages. While the channels associated with the centre dimension
(dimension (n+1)/2) receive uniform messages only, channels at the other dimensions (1,

2, ..., (n-1)/2, (n+1)/2+1, ..., n) receive the uniform as well as digit-reversal messages.

5.2.1 Outline of the model when n is even

As mentioned above in assumptions we use the digit-re ersal permutation function LX)

(instead of M (X) in the model described above for the matrix-transpose traffic) and thus
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use digit-reversal traffic portion parameter o (instead of parameter n used for generating a
traffic pattern including matrix-transpose and uniform traffic patterns). When the number
of dimensions, 7, is even, the analysis is similar to that of matrix-transpose traffic pattern
with even n. The model in this case can be obtained by simply changing all indices m in

the matrix-transpose model to d.

5.2.2 Outline of the model when r is odd

As explained above, when n is odd, channels belonging to dimension (n+1)/2 receive
uniform messages only. The traffic due to digit-reversal messages falls only on the
channels belonging to dimensions 1, 2, ..., (n-1)/2, (n+1)/2+1, .... n. Let us refer to
dimension (n+1)/2 as the "centre-dimension" and the channels belonging to this
dimension as the "centre-channels". Similarly, let us refer to other dimensions as "other-
dimensions" and their associated channels as the "other-channels”. In subsections 5.2.2.1

to 5.2.2.6, required changes in the model are discussed.

5.2.2.1 Calculation of the number of ways that two addresses are

different in i digits

When n is odd the digit x(,41y/2 in the address X is equal to the digit xX’(,41)/2 in D(X).

As a result, the number of combinations, where the address patterns X and D(X) are

different in i digits, is multiplied by k to account for all possible values that digit x(,41y/>

may have. Therefore, the number of possible combinations where xjx5---x, and

Xpx’y--x, are different in exactly i digits (/= 0, 2. 4,.... n) is given by

N i on=l i n=1 Lo+l : :
[1 ](kz —k)fk—fl—iﬂ :( ‘ ](L _ 1)51< > The number of combinations, where the

address patterns X and D(X) are different in 7 digits for i=0, 1. ....n, is theretore given by

B2~ 1o
1o~ 1o
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n-l L n+l
L= z (k —1Fk 2, ifiiseven
d; = 5 . (3.40)
0, otherwise
5.2.2.2 Calculation of the probability of blocking
Let Paother and Pa &d, define the probability that all adaptive virtual channels at an

other-channel are busy and the probability that all adaptive and deterministic virtual

define the

centre

channels at an other-channel are busy. Similarly, let P and P
a

centre

&d
probability that all adaptive virtual channels at a centre-channel are busy and the
probability that all adaptive and deterministic virtual channels at a centre-channel are

busy. When [ dimensions are passed, the remaining n-/ dimensions may make several

combinations. The probability that the centre-channel is already passed is (;’__ll )/ (;’ )

Therefore, the  blocking  probability  after  passing [  dimensions is

[(7__11 (}1 )\Pn_l—lPa Sd, If the centre-channel has not been passed yet, with a

Qother

probability of 1— (7__11 )/ (7 ), two cases may arise. First, the centre-channel is passed as last

dimension with a probability of 1/(n-I) for which the blocking probability becomes
1/(n— l)ll — (7__11 )/(;1 )JP"_I—IP . Second, the centre-channel is not be passed as the

Aother a& dcentre
last dimension, with a probability of (n—[-1)/(n—=1); in this case the probability of

blocking becomes (n—1—-1)/(n —l)ll - (7_—11 )/(;1 )JP"—I—ZP Pa&dmher . Putting all

Aother A centre

these cases together will result in the probability of blocking, for the uniform message,

when it has already passed [ dimensions, as

n—1
[—1

n—I-1
= +
Pb[OCkH/,f Ppa”ul,i ( ) Paother a&dyper

n
n—1
[_ [—1 1 P,,_1_1P (n— [=1) Pn—[—ZP

[
+ a a
(II ) (n — [) Aother a&dc‘emer (n - ]) other center

a &dulhur

) (34

[
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5.2.2.3 Calculation of the probabilities of virtual channel occupancy for

other/centre-channels

Adapting the same method as for deriving Equations 3.14 and 3.15. we can express the
probability that all adaptive virtual channels of a centre-channel are busy. P, o o the
- cenlre
probability that all adaptive and deterministic virtual channels of a centre-channel are
busy, Pa&d. pre the probability that all adaptive virtual channels of an other-channel are

busy, Pawher , and the probability that all adaptive and deterministic virtual channels of an

other-channel are busy, F,gq . - all in terms of P and P, as

entre Vother

2Py 4 Py_»
_ centre centre -
Pacemre h PVL'entre + vV + % ’ (5.48)
(V -1 ) (V -2 )
2B 1y
Pa&dcentre - Pvcentre t 1% [ ’ (549)
(V -1,
P _ R/ + 2PV_10rher + R/_zother (550)
Aother ~ ~ Vother 1% \ 194 ’
(V -1 ) V-2 )
2PV_10her (S 51)
Pa&d()ther - onther t vV : ) -
(V -1,

5224 C(Calculation of the traffic rate on network channels

While all channels receive uniform traffic, only the channels belonging to other-

: : e rate arciving
dimensions receive digit-reversal traffic. Therefore. when 7 is odd the traftic rate arnving

- ., can be expressed as
at each centre-channel, Ac“, and each other-channel, 4. . p

ntre
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_ éudu ﬂg
Ccenter n ’ (3.52)
_ 4 gd dg /?'g

Cother Ccenter n—1 ) (5.53)
5.2.2.5 Calculation of the mean waiting times at a network channel
The mean waiting time for a centre-channel and an other-channel, w, and w, can

centre other ’
be expressed as
o (S, -M
Ceentre Su I+ 2 )2

w i

o = : , (5.54

[ 2(1 h lc(‘(’ll["(/ Su ) )
and
2 1+ (Stother _M)Z
Cother "t pther S2
Lother
W, _ ) (5.55)
other —
2(1 Cother Stother )

where S, (given by Equation 5.19) and Sty mer (calculated below) are approximated
values for service time of a centre-channel and an other-channel, respectively. Therefore,

the mean waiting time for a channel taking both types into account would be

1 1
Wy =—Wy; + 1—— Wy . (556)
n centre n other
The mean service time for an other-channel. §; ., can be approximated as
S Ccentre j'Ccemre Iy (5.57)
t = Su +ll-— d R

other
Cother Cother



Chapter 5. Modelling of k-ary n-cubes for other important non-uniform traffic patterns

5.2.2.6 Calculation of the average degree of virtual channels

multiplexing

Adapting the approach used to calculate P, when n is even. we can write the expression

of the probability of having v busy virtual channels at a centre-channel. P,
cent

other-channel, P, . as follows.

Oy

centre

vcentre

Q,

other

and

Vother

=1

v—1 otehr |

C -
other
lother

.and at an
re

1, if v=0
< Qv_lcemre Ccentre Sll ’ ifO<v<V ’ (5.58)
Ccentre .
Qv_lcemre 1 e ? ifv=V
S Ccentre
|%
1/ ZQicentre ’ if v=0
=0
V_lcentre Ceentre %’ ifO<v<V ? (559)
Ceentre E
Pv—lcemre 1 ’ ifv=V
| S, Ccentre
1, ifv=0
if O<v<
Q"'_lother Cother = Lother ’ if 0<v<V 4 (560)
Cother : _
Q"y_lother 1 _ ’ ifv=V
Cotehr
lother
|%
1/ ZQ[()MW ' if v= 0
= Vv (5.61)
ifO<v<V. 5.6
"_lorher Cotehr Lother’ !
Cother 1f y = V
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where S, s the mean service time for an other-channel (given by Equation 5.57). The

average degree of multiplexing of virtual channels belonging to a centre-channel and to an
other-channel in the network, and the total average multiplexing degree of virtual channels

in the network, are given by

Vv
Y.i’P,
A centre

% centre —

) (5.62)

<
G*

centre

Vother = ———, (5.63)

N 1 =
V ==V center +|:1 - —]Vother . (5.64)
n

3.2.3 The hypercube model

When the network is hypercube (k=2), if the dimensionality of the network n is even
similar changes to those made on the matrix-transpose model with even n must be applied.
For odd n, we may adopt the proposed model for odd n with similar changes made to the
model for hypercube with even n. Only Equation 5.47, giving the probability of blocking,

should now change to

—1
lpnll +

Py
b[OCI\ (n) aother a&d(;,]ur
")

1
( 1) p- i-lp +(’1_1_1)P'1—i‘2p P&d . 13.63)
( ) (’1 '_l) Aother a&d(’en!er (’1 — I') Qother Geemer 4 other

/
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5.3 Validation of the models

The above model has been validated through a discrete-event simulator that mimics the
behaviour of Duato’s fully adaptive routing at the flit level in k-ary n-cubes. In each
simulation experiment, a total number of 100K messages is delivered. Statistics gathering
was inhibited for the first 10K messages to avoid distortions due to the initial startup
conditions. The mean message latency is defined as the mean amount of time from the
generation of a message until the last data flit reaches the local PE at the destination node.
The other measures include the mean network latency, the time taken to cross the network,
and the mean queueing time at the source node, the time spent at the local queue before

entering the first network channel.

Numerous experiments have been performed for several combinations of network sizes.
message lengths, digit-reversal traffic fractions, and number of virtual channels to validate
the model. However, for the sake of specific illustration, Figures 5.1-5.5 depict latency
results predicted by the proposed models plotted against those provided by the simulator
for an 8-ary 2-cube, an 8-ary 3-cube, a 7-dimensional hypercube and an 8-dimensional
hypercube with M=32 and 64 flits. Moreover, the number of virtual channels per physical
channel was set to V=2, 3, 4, or 5 and the fraction of matrix-transpose and digit (bit)-
reversal messages was assumed to be m, a= 0.1, 0,2, 0.6, 0.7 or 0.8. We have tried to

include a wide range of parameters (for V, m, a) getting different values in different

scenarios.

The horizontal axis in each figure shows the traffic generation rate at each node (4,)

while the vertical axis shows the mean message latency. Figure 5.1 shows the average

latency versus message generation traffic in an 8-ary 2-cube for V=3 and 5 virtual

channels per physical channel, message length M=32 and 64 flits, and matrix-transpose
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Figure 5.1: The average message latency predicted by the model agai.nst
simulation results in an 8-ary 2-cube for V=3 and 5 virtual channels per physmgl
channel, and message length M=32 and 64 flits, with matrix-transpose traffic

portions m=0.1 and 0.7.

traffic portions m=0.1 and 0.7. Note that since n=2. we have M(X)=/XX) and therefore

this figure is also valid for digit-reversal traffic pattern.
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Figure 5.2 The average message latency predicted by the model agai_nst
simulation results in an 8-ary 3-cube for V=3 and 5 virtual cha_nnels per physncgl
channel, and message length M=32 and 64 flits, with matrix-transpose traffic

portions m=0.1 and 0.7.

Figure 5.2 illustrates the average latency versus message generation traffic in an 3-ary 3-

cube for V=3 with 5 virtual channels per physical channel, message length M=32 and 04

flits, and matrix-transpose traffic portions m=0.1 and 0.7. Figure

5.3 shows the average
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Figure 5.3: The average message latency predicted by the model agai.nst
simulation results in an 8-ary 3-cube for V=3 and 5 virtual channels per physpal
channel, and message length M=32 and 64 flits, with digit-reversal traffic portions

a=0.1 and 0.7.

latency versus message generation traffic for the same scenario but for digit-reversal

traffic pattern with ¢=0.1 and 0.7.
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Figure 5.4: The average message latency predicted by the model against
simulation results in an 8-dimensional hypercube with V=2 and 4 wrtqal channels
per physical channel, message length M = 32 and 64 flits and matrix-transpose

traffic potions m= 0.1 and 0.8.

Figure 5.4 shows mean message latency predicted by the analytical model against
simulation results in an 8-dimensional hypercube, for message length M = 32 and 04 tlits.

number of virtual channels V=2 and 4, and matrix transpose traffic portion m= 0.1 and 0.8.
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Figure 5.5: The average message latency predicted by the model against
simulation results in a 7-dimensional hypercube with V=3 and 5 virtual channels
per physical channel, message length M=32 and 64 flits, and bit-reversed traffic

portions a¢=0.2 and 0.6.

Finally, Figure 5.5 shows mean message latency predicted by the analyucal model against
simulation results in a 7-dimensional hypercube, for message length M = 32 and 64 flits.

number of virtual channels V=3 and 5. and bit-reversal traftic portion = 0.2 and 0.6.
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The figures reveal that in all cases, the analytical model predicts the mean message latency
with a good degree of accuracy in the steady state regions. However, some discrepancies
around the saturation point are apparent. This is due to the approximations made to ease
the derivation of the model such as in the estimation of the variance of service time
distribution at a channel. Such an approximation greatly simplifies the model as it allows
us to avoid computing the exact distribution of message service time at a given channel,
which is not a straightforward task due to the interdependencies between service times at
successive channels caused by the reliance of wormhole routing on a blocking mechanism
for flow control. However, the simplicity of the model makes it a practical evaluation tool
that gives insight into the performance behavior of fully adaptive routing in k-ary n-cube

interconnection networks.

It is worth noting that latency results for different values of m and a reveal that matrix-
transpose or digit-reversal traffic patterns has a little impact on the mean message latency
since adaptive routing is able to exploit alternative paths of the k-ary n-cube to route
blocked messages, and as a result it can distribute traffic load approximately evenly

among the network channels.

5.4 Considering bidirectional networks

When the network is bidirectional some equations in the models described above should

change as follows. The network diameter dyqx 18 nl_%J . The proEa]Pility that a uniform
An (1)

. Therefore,

message is an i-hop message is given, using Theorem 2.4, to be

- .kl
i ’2”:(—1)1271(”)['”] ,_52——21—1 , k is odd
m | !

P - m=0[=0 m=1

|
Wi N-=1{| n n=t m nY(n—t\m '—k(1+’)—21—1 :
[ ~Am I 3 otherwise
25 S ()0

_r:Om:OI:O n m—1

. (5.66)
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The average number of hops that a matrix-transpose or a digit-reversal message takes in

each dimension are now

k ok
-, i
2 iseven

ka =km = : (5.67)

1 1
Lz(k —;), if k isodd

Since a router in the k-ary n-cube has 2n output channels, the rate of messages received by
each channel, A., is now given by [6]
Agd

A = . 5.
¢ o (5.68)

Recall that, when developing the models for unidirectional k-ary n-cubes, we assumed an
almost equal traffic on network channels. Validation experiments confirmed that this was
an acceptable approximation with adaptive routing in unidirectional k-ary n-cubes.
However, with bidirectional networks such an assumption may result in inaccurate

predictions especially for high traffic generation rates.

5.5 Analysis

The proposed analytical models are now used to study the performance merits of the k-ary
n-cube with adaptive routing and virtual channels under the non-uniform traffic posed by
matrix-transpose and digit-reversal permutations. We have repeated the analysis of
Chapter 3 (for uniform traffic) and observed the same results in all cases. This was
predictable since, in the validation section (Section 5.3), we saw that the effect of matrix-
transpose and digit-reversal traffic patterns on network performance is small. However. let

us consider two networks, a 10-ary 4-cube and a 10-ary 5-cube, as examples with even and
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odd dimensionality (n) and examine the effect of a non-uniform traffic portion (m and @)
on network performance. We have used these networks for the sake of the present

discussion, but the conclusions reached here have been found to be universally valid.

Figure 5.6 shows the saturation traffic rate against matrix-transpose traffic portion (1) in a
unidirectional 10-ary 4-cube (network with even n), with V=4 virtual channels per physical
channel, and message length M=50 and 200 flits. The network enters the saturation region
when p>1 (Equation 5.30); the corresponding A, for whichp >1 is satisfied, is the
saturation traffic rate. As can be seen from the figure, the effect of the matrix-transpose
traffic portion is negligible especially for long messages (M=200 flits). The same curves

are obtained when considering digit-reversal traffic pattern, since n is even.
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Figure 5.6: The saturation traffic rate versus matrix-transpose traffic portion (m) in
a unidirectional 10-ary 4-cube, with V=4 virtual channels per physical C_h;mne| and
message length M=50 and 200 flits. Note that the curves for the digit-reversal

traffic pattern are the same since n is even.
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Figure 5.7: The saturation traffic rate versus permutation traffic portpns (mor o)
in a unidirectional 10-ary 5-cube, with V=5 virtual channels per physpal channel,
and message length M=50 and 200 flits; (a) in the presence of matrix-transpose
traffic, (b) in the presence of digit-reversal traffic.
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A similar trend can be seen in Figure 5.7 for a 10-ary 5-cube (network with odd n) with

V=5 virtual channels per physical channel and message lengths of M=50 and 200 flits in

the presence of matrix-transpose and digit-reversal traffic patterns.

These figures again confirm that the effect of non-uniformity posed by matrix-transpose
and digit-reversal traffic patterns on network performance is almost negligible since
adaptive routing enables the blocked messages to advance towards their destination usine

free alternative paths.

5.6 Conclusions

This chapter has presented analytical models for computing message latency in wormhole-
switched k-ary n-cubes with fully adaptive routing in the presence of traffic generated by
the matrix-transpose and digit-reversal permutations used in many parallel applications
(e.g., matrix problems and signal processing). Simulation experiments have confirmed that
the latency results predicted by the analytical models are in good agreement with those
obtained through simulation experiments. The results show that matrix-transpose and
digit-reversal traffic portions do not have a large impact on overall network performance

when fully adaptive routing algorithms are used in unidirectional k-ary n-cubes.

In the next chapter, we shall use the models proposed in Chapters 3, 4 and 5 to compare
the performance of k-ary n-cubes under two well-known technological constraints:
constant bisection bandwidth and pin-out. To do so, we need a new cost-performance

model, the first to consider the costs of both network channels and internal router

hardware.



Chapter 6

Performance Comparison of
Multi-dimensional k-Ary n-Cubes

An extensive examination of interconnection networks has been conducted over the last
decade, both with a view to studying fundamental graph-theoretic properties and
feasibility of implementation in various technologies [4, 6, 10, 20, 35, 44, 62, 85, 157].
The latter consideration is of crucial importance since in practice implementation
technology puts bandwidth constraints on network channels, and these are important
factors in determining how well the theoretical properties of a particular network topology
can be exploited. When systems are implemented on a single VLSI-chip, the wiring
densiry of the network determines the overall system cost and performance [48]. For
instance, Dally [44] has shown that under the constant wiring density constraint (with
constant bisection bandwidth), the 2D torus outperforms the hypercube. This is because

the former topology has wider channels, thus higher channel bandwidth, that compensate

for its higher diameter.

Other researchers, including Abraham [4] and Agrawal [6], have conducted similar studies
to Dally’s and arrived at the same conclusion. However. they have also argued that while

the wiring density constraint is certainly applicable where an entire network s
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implemented on a single VLSI-chip, this is not the case in the currently more realistic
situation where a network has to be partitioned over many chips. In such circumstances.
they have identified that the most critical bandwidth constraint is imposed by the chip’s
/O pins through which any data entering or leaving the chip must travel. Abraham [4] and
Agrawal [6] have concluded that it is the hypercube which exhibits better performance
under such a pin-out constraint. All these studies [4, 6, 10, 20, 44, 157] have used
deterministic routing. Moreover, they have all taken account of network channel costs

while ignoring those associated with the internal hardware of the routers.

This chapter examines the relative performance merits of the torus and hypercube with
fully adaptive wormhole routing in the presence of different traffic patterns, namely
uniform, hotspot, matrix-transpose and digit-reversal. To do so, we use the analytical
models proposed in Chapters 3, 4 and 5, of fully adaptive routing in wormhole-switched k-
ary n-cubes in the presence of uniform, hotspot, matrix-transpose and digit-reversal traffic
patterns. The comparison is conducted under constant bisection bandwidth and pin-out

constraints and for both pipelined and non-pipelined wire delay models' [157].

The rest of the chapter is organised as follows. Section 6.1 briefly gives the assumptions
made in comparison. Section 6.2 defines a new cost-performance model while section 6.3
uses the proposed cost-performance model and compares the performance merits of the
torus and hypercube under both the constant bisection bandwidth and pin-out constraints,
and considering pipelined and non-pipelined wire delay models, in the presence of

different traffic patterns. Finally, Section 6.4 concludes this chapter.

6.1 Assumptions

We make the following assumptions, widely used in the literature [3-6, 10, 29-31. 38, 39,

" We talk about these wire delay models in Section 6.2.2.
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44,45, 54,77, 80-82, 95, 114, 135, 136].

a) The uniform and non-uniform (hotspot, matrix-transpose and digit-reversal)

traffic patterns are considered.

b) Nodes generate traffic independently of each other, which follows a Poisson
process with a mean rate of ﬂg messages/cycle. In case of non-uniform traffic,
two non-uniform and uniform portions, x/'lg and (1 —x)/lg , are presented where x
may be replaced by & for hotspot, m for matrix-transpose and « for digit-reversal

traffic patterns.
c) Message length is fixed and equal to M flits.

d) The channel cycle time and switch internal delay are assumed to be respectively,

t. and ¢, clock cycles.

e) The local queue at the injection channel in the source node has infinite capacity.
Moreover, messages are transferred to the local PE as soon as they arrive at their

destinations through the ejection channel.

f)  V virtual channels are used per physical channel, divided in two groups VC; and
VC, as discussed in Chapter 2. In a general k-ary n-cube network, group VC,
contains 2 virtual channels which are crossed deterministically (e.g. in an
increasing order of dimensions) and group VC- contains (V — 2) virtual channels
which are crossed adaptively. For the special case, the hypercube (k=2), group

VC, contains | virtual channel and group VC:> contains V-1 virtual channels.

Note that switch internal delay was not considered when developing the models in
Chapters 3, 4 and 5 as the accuracy of the model does not depend on this parameter and is
mainly dependent on how well the model can predict the blocking delay in the network.

However. as we will see, the pipelined wire delay model depends on the switch internal
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delay. To take this into account, we have to rewrite some of the Equations in the proposed

' H
models. For example, Equation 3.5 should change to Sy =(H|+M)*(1. +1,) + |Z|Bj .
J=1

and the variance of the service time distribution, used to compute Equations 3.20 and 3.21.

can be approximated as 0% = (E— M *(t; +1, ))2.

6.2 The proposed cost-performance model

Most practical and experimental machines employ either the 2D torus or 3D torus as the
two most famous instances of lower-dimensional k-ary n-cubes, and the hypercube as the
best-known example of higher dimensional networks. In this section, we compare the
performance merits of these networks for different implementation constraints and
working conditions. To do so, we use the analytical models already introduced in Chapters
3, 4, and 5. We would rather use the unidirectional k-ary n-cube model since a hypercube
is topologically a unidirectional 2-ary n-cube whereas the bidirectional 2-ary n-cube 1s a
hypercube with redundant inter-node links. However, before discussing the relative
performance merits of the torus and the hypercube, this section examines the constraints

imposed by implementation technology on channel bandwidth and wiring delays.

6.2.1 Implementation constraints

Due to the limited channel bandwidth imposed by implementation technology. a flit is
broken into channel words (or phits [55]), each of which is transferred in one cycle. If the
channel width (i.e. number of wires) is C, bits, a message of B bits is divided into

M=B/C,. phits [6]. In practice, a flit in wormhole routing may be composed of one or

more phits.
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Dally [44] has used the bisection width, i.e. the number of wires that cross the middle of
the network, as a rough measure of the network wiring density in a pure VLSI
implementation. Let us define kyp_yy,5 . k3p_sorus and n to be, respectively. the radix of
the 2D torus, the radix of the 3D torus and the dimension of the hypercube network.
chosen such that the network size in the three topologies is equal to
N =D sorus ¥ = €3p—rorus P =2" - Let us assume that a network is implemented on the

two dimensional physical plane with VN nodes along each dimension. The bisection

width of the 2D torus, the 3D torus and the hypercube, B-p_,,rus- B3p—torus and

Bhypercube ’ with a channel width, CWZD—rorus ’ W3D—torus and th,\‘l’ercuhe . can be

expressed as [6, 44]

Byp_torus = 24N X szD_mmS ) 6.1)

B =2N? xC (6.2)
3D~torus W3D_torus .

B = ZN—X C =NxC (6.3)
hypercube 2 Whvpercube Whypercube ”

If the bisection width is held fixed, the relationship between channel widths in the 2D

torus, the 3D torus and the hypercube is given by

C =8N xC :ﬂc . (6.4)

W2 D—torus W3D—rtorus 2 W hypercube

Similarly. in multiple-chip implementations, where a complete node is fabricated on a
chip, pin-out, which is the number of VO pins (i.e. node degree X channel width), is a
more suitable metric [1, 3]. The node pin-out for the 2D torus, 3D torus and hypercube,
P>p_torus + P3aD-torus and Phypercube , can be written as

PlD—mrus =4C

WID—rorus
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P3D_t0rus - 6CW3D—torus ’ (66)
Phypercube = zncwhypercube . (6.7)

Assuming a constraint of constant node pin-out, the channel width relationship in the

considered networks will be

n

3
C =—C =—C ) (6.8)

W2 D—torus 2~ W3D-rtorus 2 Whypercube

Equations 6.4 and 6.8 reveal that the torus has wider channels than the hypercube under
both the constant bisection width and node pin-out constraints. For typical network sizes,
under the constant wiring density constraint the 2D torus has even wider channels than

under constant pin-out constraint, relative to the 3D torus and hypercube.

6.2.2 Wire delay model

We take the 2D torus as our base network for the comparison and calculate the desired
parameters in the 3D torus and the hypercube in terms of those in the 2D torus base
network. When mapped into the 2D plane, the 3D torus and the hypercube end up with
longer wires, and therefore with higher wire delays than their 2D torus equivalent because
of their larger number of dimensions, which have to be folded into the 2D plane. Note that
this has to be taken into account even when a constant pin-out constraint is in effect
because any network system has to be implemented ultimately either in a 2D (e.g PCBs)
or 3D (cabinets, etc) physical medium. We focus here on a 2D plane (i.e. normalising the
implementation parameters for a 2D torus) rather than a 3D space although we could
equally use a 3D space implementation constraint [157], simply changing Equations 6.9
and 6.10 below. However, as long as a relative performance assessment is the goal, a 2D

plane or 3D space implementation constraint result in similar conclusions.
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The wire delay, due to long wires, can be reduced by using wire transmission line
characteristics, as suggested by Scott and Goodman [157]; the wire has a storage capacity
and can simply be treated as sequence of stages in the pipeline transmission of phits. with
no need to wait for a phit to arrive before transmitting the next one. Such pipelined wire
delays can be easily modelled by scaling the channel cycle time by factor y pipelined -
given as [157]

- _2(N -1
ypipelined = —W’ (6.9)

where R is the ratio of the switch cycle time (¢;) to the channel cycle time, t,. in the 2D
torus. A detailed derivation of ;/pipelined can be found in [157]. When R=1. the wire delay
is equivalent to the switch delay in a 2D torus, but becomes higher in the 3D torus and the
hypercube, reflecting their longer wires. When normal channels are considered (non-

pipeline wire delay model) the channel cycle time is scaled by [157]

ﬂ, ifk>2
kR

7/non—pipelz’ruea’ = (6.10)

JN if k=2

| 4R’

6.2.3 Cost of routers

The constant bisection bandwidth and pin-out constraints have already been used (4. 6, 4]
to fix the network cost (without taking into account the router’s internal hardware cost)
when VLSI implementation and multiple-chip implementation are considered. However
these constraints do not consider the cost of the hardware used inside a router. and to make
a fair comparison we must also take this into account (due to the crossbar switch, address

decoder unit, virtual channel buffers and associated logic) fixing it for the hypercube. the
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2D torus and the 3D torus. This is also useful when calculating the channel cycle time in
the 3D torus and hypercube with respect to the channel cycle time in the 2D torus. To do
s0, each virtual channel in the 2D torus, the 3D torus and the hypercube is associated with
a flit-size buffer (we assume that the flit size is the channel width of the 2D torus). This
means that the phit size is equal to the flit size in the 2D torus while in the hypercube and
the 3D torus it is different as the channel width in the hypercube and the 3D torus is
smaller than that of the 2D torus. With C,,, ~, Cy .~ ‘and C Whypercube being the
phit size (also channel width) in the 2D torus, the 3D torus and the hypercube,

respectively, and ¢ ) being the channel cycle time in the 2D torus, the time required

C2D—toru
to send a flit across a physical channel (or flit transmission delay), in the 3D torus and the

hypercube, can be given by

tC3D—torus - 'U?’D_tor”StCZD—t()rus ’ (6.11)

(6.12)

= 14 R
tchypercuhe :uhypercube C2D~torus

where U3p_rorus @d Mpypercube A€ scaling factors of flit transmission delay in the 3D

torus and the hypercube (compared to that in the 2D torus), given by

C., _
_ WaDtorus 6.13
H3D—torus = C — Y3D—torus’ ( )
Wi3D—orus
_ C“‘2D—torus - (614)
Hhypercube = C Y hypercube *

Whypercube
This takes into account the effect of wire delay when mapping the 3D torus and the

hypercube into a 2D plane (given by Equations 6.9 and 6.10) and the effect of narrower

channel width in the 3D torus and hypercube.

Using pipelined channels, taking the 2D torus as the base network and assuming its

channel cycle period is equal to the unit of time (one clock cycle), we can derive the flit
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transmission delay factors for the 3D torus and the hypercube (using Equations 6.4 and

6.8), when the constant bisection width constraint is considered, as

. 2N -1) _2(N -1)

H3D— 6.15
torus — 3R \/— 3R \/— ( )
. _IN 20N-D)_N-JN .
hypercube ) 1R nR (6.16)
When the pin-out constraint is applied these equations are found to be
_ g 2N -1 N -1
:u3D—t0rus - 3R.\/_— R W ’ (617)
n_260/IN-1) _JN-1
Hhypercube = EX nR 2R (6.18)

Similarly, for normal (non-pipelined) channels when the constant bisection width

constraint is considered we can write

JN 3N
o =N x— =2 (6.19)
H3D—torus kR R
_YN N _N (6.20)
Hhypercube = 2 4R SR’ ’

and when the pin-out constraint is applied we have

3 \/— ®N 6.21)

2 kR 2R

n \/ﬁ N (6.22)

H3D—torus =

,uh)percube - 2 AR SR

The above equations help us to calculate the normalised channel cycle time in the 3D torus

and the hypercube with respect to that of the base network (the 2D torus) but it makes the
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total buffer used in the 3D torus and the hypercube larger than that in the base network.
For instance, with a 64-node network size, the 2D base network (8x8 torus) has 2 flit

buffers for the two input channels, the 3D network (4x4x4 torus) has 3 flit buffers for the

three input channels and the hypecube (6-dimensional) has 6 flit buffers for the 6 input

channels at each node.

To make the total buffer size equal for each router, for the three different networks, we
increase the number of virtual channels (associated to each physical channel) in the 2D
and 3D torus to make the total node buffer size equal to that in the equivalent hypercube.
The total buffer used in the router is simply (number of physical channel)x(number of
virtual channels per physical channel). Therefore, the total buffer space used inside the

router in the 2D torus, the 3D torus and the hypercube is respectively given by

Buﬁerhypercube = thypercube ’ (6.23)

B”ﬁerZD—torus = 2VZD—torus s (6.24)

Buﬂer3D—t0rus = 3V3D—t0rus > (6.25)

where Vhypercube’ VoD—torus» a4 V3p_sorus denote respectively the number of virtual
channels per physical channel in the hypercube, 2D torus and 3D torus. Recalling that the
minimum number of virtual channels (per physical channel) in the hypercube Viyhercube -
according to the Duato’s theory, is 2 and using Equations 6.23, 6.24 and 6.25, we have

6.2¢
Vigpercube =2 (6.26)

5
VZD—torus =n, ©.27)

2n (6.28)

!
Vip—torus = T ’
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assuming equal buffer requirements at different node types (for the three different
topologies). Note that V,p , . o and V3D—torus Must be at least 3 to be able to exploit
Duato’s adaptive routing. For the above 64-node example network, we have
Viypercube =2+ Vap_—torus =6, and V3,0 - =4 each imposing a total of 12 flit buffers

(corresponding to 12 virtual channels) at each node as illustrated in Figure 6.1.

Without the above normalisation, the crossbar switch and address decoder delay may be
different in each network for the following reasons. The router’s internal switch (bridging
the input channels to the output channels) in the hypercube would be larger than that in the
torus due to its larger number of input and output channels. As a consequence, the
switching delay in the hypercube would be higher due to the additional complexity.
according to Chien’s model [35]. However, comparable switch and address decoder delays
in the networks can be obtained if the routers have comparable switch sizes and equal
number of virtual channels. Using such a intra-node cost model for normalising the total
number of virtual channels at different node types, we firstly make the cost of hardware
used inside a router (both with buffer and crossbar switch size) in the 2D torus, the 3D
torus and the hypercube network equal; secondly, we make the crossbar switch and
address decoder delays in these networks comparable since these delays are some

functions of the number of virtual channels in the router [35].

6.3 Comparison results and discussion

In this section, the performance of the three networks in question is examined for both the
constant bisection width and the constant pin-out constraints. For illustration, the
following various network sizes are examined:

A small size of N=64 nodes; configured as an 8x8 torus, a 4x+4x4 torus. and a 6-

dimensional hypercube.
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Table 6.1: Calculated flit transmission delay factors’ ( i

_ ( #) and number of virtual
channels per physical channel (V) in the three topologic)es (2D torus, 3D \;lorﬂg
hypercube) for different network sizes and implementation constraints with R=1
and for both pipelined and non-pipelined channels.

Network N =064 N =512 V' = 4096
size :
; H H H
Topology Bi§ection Wid_[h : _Pm ' OUF V' Bisection width | Pin-out V IBisection width | Pin - out
pipelined [non - pipelined | pipelined | non-pipelined ipelincd| non - pipelined] pipelined [non - pipelined pipelined] non - pipelincdf pipelined [non - pipelined;

2D Torus 6 1 1 1 1 9 1 1 1 1 121 1 1 1 1

3D Torus | 4 3 4 2 3 6 6 8 3 5 81 11 16 4 6

Hypercube | 2 5 8 4 6 2 128 64 11 26 2 168 512 32 96

*All calculated values are rounded up to the nearest integer number.

- A medium size of N=512 nodes; configured as a 23x23 torus', an 8x8x8 torus, and a

9-dimensional hypercube.

- A moderately large size of N=4096 nodes; configured as a 64x64 torus, a 16x16x16

torus and a 12-dimensional hypercube.

The flit transmission dealys in the 3D torus and the hypercube are normalised to that of the
2D torus using Equations 6.11 and 6.12 under the constant wiring density and pin-out
constraints. Let us set R=1, implying that the switching time (fs) is equal to the channel
cycle time (f¢) in the 2D torus. Assuming that a physical channel in the hypercube has V=2
virtual channels. one deterministic and one adaptive, and using Equations 6.26 and 6.27
the number of virtual channels per physical channel in the 2D torus and the 3D torus are

calculated in order to have an equal router cost for the three considered networks. Table |

illustrates the flit transmission delay factor (4) and the number of virtual channels per

physical channel (V) calculated for three network sizes (N=64. 512 and 4096) under both

1 Approximate root is used for N=512.
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the constant bisection width and pin-out constraints using both pipelined and non-
pipelined wire delay models, for the three network topologies (2D torus, 3D torus and

hypercube). In what follows, all message lengths are quoted in terms of flits in the 2D

torus.

6.3.1 The results for uniform traffic load

Figure 6.2 (a) depicts latency results in the 2D torus, 3D torus and hypercube under the
constant bisection width constraint, using pipelined wire delay model, and for message
length M=64 flits in the 64, 512, and 4096- node systems. The figure reveals that the 2D
torus is able to exploit its wider channels to provide a lower latency than the 3D torus and

hypercube under light to moderate traffic.

For small network sizes, however, as traffic increases its performance degrades as
message blocking rises, soon offsetting any advantage of having wider channels compared
to the hypercube. This is mainly due to small diameter of the hypercube and its rich
connectivity providing more alternative routes and thus more adaptivity. Moreover for
small networks the relative flit transmission delay in the hypercube is not large compared

to the 2D torus base network.

With moderate and large networks, the relatively slower and thinner channels in the
hypercube and 3D torus plus the effect of blocking prevent the hypercube from exploiting
its main topological advantages (lower diameter and more alternate routes, giving more
adaptivity), resulting in performance degradation compared to the 2D torus. This is most
noticeable in large networks (e.g. 4096 node networks in the figure). In all cases, when the
traffic is low, since there are no message blocking effects, the lower flit transmission delay
in the 2D torus (compared to the 3D torus and the hypercube). results in a better

performance in the 2D torus. The same conclusion was obtained by Dally [44] and
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Agarwal [6] for deterministic routing and uniform traffic, i.e. lower dimensional k-ary n-

cubes outperform their higher dimensional counterparts under a bisection bandwidth

constraint.

Let us now consider the effect of constant pin-out constraint with pipelined wire delay
model. As can be seen in Figure 6.2(b), the pin-out constraint favours the higher
dimensional k-ary n-cubes (compared to the bisection width constraint) thus advantaging
the hypercube. This is the case for all network sizes. Abraham [4] and Agarwal [6] have
also compared the performance merits of the torus and the hypercube under a constant pin-
out constraint with deterministic routing and uniform traffic. They concluded that higher
dimensional k-ary n-cubes have superior performance over their lower dimensional

counterparts under this constraint.

Figure 6.3 shows the same quantities as Figure 6.2 but for a non-pipelined wire delay
model. When the constant bisection bandwidth constraint is considered, the conclusion
arrived at is almost the same as for the pipelined wire delay model (shown in Figure
6.3(a)), i.e. lower dimensional k-ary n-cubes exhibit superior performance compared to
their higher dimensional counterparts, especially for moderately large networks. However,
when a constant pin-out constraint is considered, the results are very interesting. For small
moderate, and large networks the topology exhibiting the best relative performance is
respectively the hypercube, 2D torus and 3D torus. This differs from Abraham’s [4] and

Agarwal’s [6] conclusions because we have considered the effects of virtual channels and

the cost of hardware used inside the routers.

6.3.2 The results for hotspot traffic

Figure 6.4 depicts latency results in the 2D torus, 3D torus and hypercube under the
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constant bisection width constraint, using a pipelined wire delay model, for message
length M=64 flits and hotspot traffic fraction £=0.05, 0.2 and 0.5 in the 64, 512, and 4096-
node systems. The figure reveals that the 2D torus is able to exploit its wider channels to
provide a lower latency than the 3D torus and hypercube under light to moderate traffic
when the hotspot portion is small. However, as traffic increases its performance degrades
as message blocking rises, soon offsetting any advantage of having wider channels, even
when 4 is small. This is mainly due to the fact that the small diameter of the hypercube
and its rich connectivity provide more alternative routes and thus more adaptivity.
Moreover for small networks the relative flit transmission delay in the hypercube is not
large (compared to the 2D torus base network). When hotspot traffic fraction increases. the
2D torus dominates the hypercube because, in such a scenario, the main component
contributing to the mean message latency is due to hotspot messages (see Chapter 4,
Section 4.2). These messages are often blocked in the network by other hotspot messages
that have already acquired the channels leading to the hotspot node. The effects of
blocking plus the relatively higher flit transmission delay of the hypercube, in this case, do
not enable the hypercube to exploit its main topological advantages (lower diameter and
more alternate routes giving more adaptivity), resulting in a performance degradation

compared to the 2D torus.

With moderate and relatively large networks even small hotspot fractions cause the same
conditions that occur in small networks with larger 4. In addition, relativey slower and
thinner channels in the hypercube and 3D torus favour the 2D torus further. This 1s most
noticeable in large networks (e.g. 4096 node networks in the figure). In all cases, when the
traffic is low, since there is no message blocking effect, the lower flit transmission delay in
the 2D torus (compared to the 3D torus and the hypercube), results in a better performance

in the 2D torus. The same conclusion was derived by Dally [+4] and Agarwal [6] for

deterministic routing and uniform traffic.
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Figure 6.5 shows latency results in the 2D torus, 3D torus and hypercube under the
constant pin-out constraint, using pipelined wire delay model, for message length /=64
flits in 64, 512, and 4096- node systems. As can be seen in the figure, the pin-out
constraint favours the higher dimensional k-ary n-cubes (compared to the bisection width
constraint) thus advantaging the hypercube slightly. However, similar to the results
obtained for the bisection bandwidth constraint, the same conclusion can be made for
small networks with a large hotspot fraction and for medium and large networks with a
relatively small hotspot fraction. Note that the saturation traffic rates in the three networks
are closer compared to those shown in Figure 6.4 under the constant bisection width
constraint. Abraham [4] and Agarwal [6] have compared the performance merits of the
torus and the hypercube under the constant pin-out constraint with deterministic routing,
uniform traffic and a non-pipelined wire delay model, showing that the hypercube has
superior performance over the torus. Their conclusion is different from ours because we
have considered the virtual channels effects and also the cost of hardware used inside the

routers in the presence of hotspot traffic.

Figures 6.6 and 6.7 show the same results shown in Figures 6.4 and 6.5 for a non-
pipelined wire delay model. Since the non-pipelined wire delay model favours the 2D
torus more than when the pipelined wire delay model is considered, a better performance

is achieved for the 2D torus. The conclusion in the case of the non-pipelined wire delay

model is similar.

Since it is clear that the 2D torus gives better performance than the other two for medium
and large network sizes, let us now focus on the smaller network (64-nodes). Figure 6.8
illustrates the mean message latency against message length in the 64-node 2D torus. 3D
torus and hypercube networks for both the constant bisection width and pin-out constraints
with a pipelined wire delay model. The traffic generation rate at each node. Ag. 1s fined at

0.0001 and the hotspot fraction is assumed (0 be /i =0.2. As can be seen in the figure,
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Figure 6.5: The average message latency for different network sizes (N=64, 512,
4096) and topologies (the 2D torus, the 3D torus and the hyp_ercube), with hotspot
traffic portions h=0.05, 0.2, and 0.5, when the constant pl_n-out con_stralnt and
pipelined wire delay model are applied. The message length is M=64 flits.
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Figure 6.6: The average message latency for different network sizes (N=64, 512,
4096) and topologies (the 2D torus, the 3D torus and the hypercube), with hotspot
traffic portions h=0.05, 0.2, and 0.5, when the constant bisection width constraint
and non-pipelined wire delay model are applied. The message length is M=64

flits.
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Figure 6.7: The average message latency for different network sizes (N=64, 512,
4096) and topologies (the 2D torus, the 3D torus and the hypercube), with hotspot
traffic portions h=0.05, 0.2, and 0.5, when the constant pin-out constrai_nt and
non-pipelined wire delay model are applied. The message length is M=64 flits.
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Figure 6.8: The effect of message length M on the average message latency in a
64-node 2D-torus, 3D-torus, and hypercube under constant (a) bisection width
and (b) pin-out constraints, with hotspot traffic portion h=0.2, and message

generation rate 4, =0.0001,when pipelined wire delay model is applied.

the 2D torus shows a lower latency for short messages. Note that under constant pin-out

constraint the latency in the three networks get closer for long messages.

Figure 6.9 shows the effects of the hotspot traffic fraction on the saturation traffic rate of
the 64-node 2D torus, 3D torus and hypercube, when M=64, for both the constant
bisection width and pin-out constraints, using pipelined wire delay model. The results
reveal that the 2D torus behaves better than the others when h increases. Under the pin-out
constraint the saturation rates in the three networks are closer although the hypercube

saturates later than the torus when A=0.1 and earlier when A=1. Under the constant

bisection width constraint, the relative performance merits of the three networks does not
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change as h increases, while the ranking is changed between the 3D torus and hypercube

from A=0.1 to A=1 under the pin-out constraint.

6.3.3 The results for matrix-transpose and digit-reversal

permutation traffic patterns

We have examined different scenarios for different network sizes and topologies with
different matrix-transpose and digit-reversal traffic portions and different number of
virtual channels and observed almost the same trends in the latency curves as for uniform
traffic. This is not so surprising as we have already seen in Chapter 5 that the effect of
matrix-transpose and digit-reversal traffic portions on the total mean message latency is
small. Therefore, for the sake of brevity, we do not report the analyses for matrix-
transpose and digit-reversal traffic patterns since the conclusion of these is similar to that

for the uniform traffic pattern.

6.4 Conclusions

Many studies have stressed the performance benefits of adaptive over deterministic
routing in the presence non-uniform traffic patterns [55, 148] such as hotspots [142]. This
chapter examined the relative performance merits of adaptively routed multi-dimensional

k-ary n-cubes under uniform, hotspot, matrix-transpose and digit-reversal traffic patterns.

Our analysis has considered virtual channels and taken into account the cost of both
network links and the internal hardware of routers. We believe previous analyses reported
in the literature [4, 6, 44] could not be entirely fair since they considered only the cost of

network links and ignored the cost of router hardware.
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We conducted our comparisons for three network sizes: small, medium and large networks
with respectively 64, 512 and 4096 nodes. With uniform traffic and a pipelined wire delay
model, both constant bisection bandwidth and pin-out constraints give results in agreement
with those achieved by Abraham [4] and Agarwal [6]. However, when a non-pipelined
wire delay model is considered, the constant pin-out constraint results in a different
conclusion from that reached by Abraham and Agarwal. While they concluded that higher
dimensional k-ary n-cubes should perform better than their lower dimensional counterparts
with a constant pin-out constraint, we have found that for relatively large networks
(thousands of nodes), it is, surprisingly, the 3D torus that is the network with the best
performance while for moderate size networks (hundreds of nodes) the 2D torus gives the
best results. Under the stated conditions, it is only in small networks (less than hundred)

that the hypercube dominates.

The results, in the presence of hotspot traffic, indicate that, under a constant bisection
bandwidth constraint, the torus has better performance than the hypercube, just as reported
in previous work with deterministic routing, €.g. Dally’s [44] and Agrawal’s [6]. However,
this present study has reached a different conclusion from previous ones (e.g. in [4, 6])
under the constant pin-out constraint. Our results have shown that for moderate and large
network sizes the 2D torus always shows better performance than the hypercube under

constant bisection bandwidth and pin-out constraints when hotspot traffic is present.

With matrix-transpose and digit-reversal traffic patterns the results obtained were almost

the same as for a uniform traffic pattern.



Chapter 7

Conclusions and Future Directions

The interconnection network is a crucial component in any parallel computer since any
interaction between the processing elements ultimately depends on its effectiveness [136].
Although many network architectures have been studied [110], and indeed deployed, none
has proved clearly superior in all roles, since the communication requirements of different
applications vary widely. Nevertheless, the k-ary n-cube has undoubtedly been the most
popular interconnection network used in practice [7, 13, 92, 93, 98, 131, 147, 170]
because, on balance, it has the most desirable properties [169, 173]. It has been studied

extensively in many aspects and but still merits further exploration of its properties.

This thesis has undertaken just such an exploration of the characteristics and performance
capabilities of k-ary n-cubes. The work has, in particular, focussed on combining adaptive
routing and wormhole switching with virtual channels, a scenario of especial interest to
current research, using mathematical models validated through simulation experiments.
The performance of adaptive routing in wormhole-routed k-ary n-cubes was evaluated

under different traffic conditions by developing analytical models for calculating average

message latency.
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Unlike other models, reported in the literature, those proposed in this study are more
realistic and take account of more details of a real system. Previous attempts to consider
equivalent levels of details have been based on measurement and simulation experiments.
However, to simulate a massively parallel machine, say a system with several thousand
nodes, these latter techniques can absorb enormous computational power in order to model
realistically the interaction between network parameters and their effect on
communications performance. Accurate and comprehensive analytical models are, in
principle, powerful alternatives to such compute-intensive tasks and can indeed save
considerable time and expense for network designers and researchers. This work has
shown that such cost-effective models can be built with sufficient detail and accuracy to
give a useful insight into performance merits of k-ary n-cubes. This should make it
possible for prospective manufacturers to inform critical technical decisions prior to the
actual construction of new machines that employ adaptive routing by reducing the
potentially enormous design-space and allowing detailed effort to focus on the most

promising scenarios.

The models developed were then used to compare performance merits of low-dimensional
k-ary n-cubes to their high-dimensional counterparts under two major implementation
constraints, constant bisection width and constant node pin-out. Several previous
comparative analyses of networks have also used wiring density and pin-out count to
quantify implementation cost in VLSI and multiple-chip technology. However, none has
taken account of the cost of the routers, which may be complex and expensive to
implement. We have extended cost constraints to include the internal architecture costs of
the switch. and therefore have developed a significantly more realistic cost model. We
have used this new and more realistic cost model in tandem with the more accurate and
realistic analytical models proposed earlier to undertake a more reliable comparison of the

systems in question. Incorporating these details has indeed resulted in notably different
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conclusions from those reported by previous studies illustrating that such comparisons are

very sensitive to the detail and realism of the assumptions made.
7.1 Summary of the results
This thesis has detailed several important achievements.

Firstly, expressions for calculating the number of nodes at and within a given distance
from a chosen centre in a k-ary n-cube, were derived. Such expressions are useful in the
study of spanning trees, widely used in collective communication algorithms and in the

problem of resource placement in networks [20, 31, 70-72, 156].

Secondly an accurate analytical model to compute the mean message latency in k-ary n-
cubes with fully adaptive wormhole routing was developed. This model achieves a high
degree of accuracy under different operating conditions because it computes the exact
expression for the probability of message blocking at any router. The model was extended
to include bidirectional k-ary n-cubes and traffic patterns that exhibit communication
locality. Using this model to draw a comparison between unidirectional and bidirectional
k-ary n-cubes under both constant bisection bandwidth and pin-out constraints, has shown
that bidirectional k-ary n-cubes outperform their unidirectional counterparts. The model
also showed that the higher-dimensional k-ary n-cube networks (with large n), e.g.
hypercubes, are more scalable than their low-dimensional counterparts (with large &), e.g.

tori, because their total network bandwidth scales better with network size.

Thirdly, the first analytical model to compute the mean message latency in the presence of
hotspot traffic in wormhole-routed k-ary n-cubes was then presented. Performance
analysis has revealed that increasing the number of virtual channels can improve network

performance when the hotspot traffic rate. A. is low. However, with the aid of the new
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model, it was shown that when & is relatively large (defining a high percentage of hotspot
traffic), adding virtual channels cannot improve performance noticeably. It was also
shown that when A is small, the dominating factor causing network saturation is the
uniform traffic component, while for large 4, the dominating factor is the average latency
for hotspot messages. Interestingly, comparing unidirectional and bidirectional k-ary n-
cubes under both constant bisection bandwidth and pin-out constraints, has shown that
bidirectional k-ary n-cubes perform better when the hotspot traffic rate is low, but that the

opposite conclusion is reached when hotspot traffic is relatively large.

Fourthly, analytical models with fully adaptive routing were used to study the performance
of cubes executing matrix-transpose and digit-reversal permutations. Simulation
experiments are in good agreement with the latency results predicted by the analytical
models. In fact these results show that matrix-transpose and digit-reversal traffic does not
have a large impact on the overall network performance when fully adaptive routing
algorithms are employed in unidirectional k-ary n-cubes. This is because adaptive routing
in such networks is able to exploit all network channels and distribute the traffic load over

network channels almost balanced.

Finally, the relative performance merits of k-ary n-cubes of differing dimensionality was
assessed in the context of adaptive routing under uniform, hotspot, matrix-transpose and
digit-reversal traffic patterns. A cost-model considering virtual channels and taking into
account both network links and router hardware was adopted. Three network sizes have
been considered: small, medium and large networks with respectively 64, 512. and 4096
nodes. The results obtained under uniform traffic and both constant bisection bandwidth
and pin-out constraints are in agreement with those achieved by Abraham [4] and Agarwal
[6] when a pipelined wire delay model ‘s used. Since many current systems as well as
those which will one day be constructed using system-on-chip technology use non-

pipelined channels, however, we have also conducted a comparison for this latter casc.
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When a non-pipelined wire delay model is considered, assuming a constant pin-out
constraint, our model leads to different conclusions from that of Abraham and Agarwal
except in the case of small networks. We found that the 3D torus has the best performance
in large networks, the 2D torus at moderate sizes and the hypercube proving superior only
in small systems. When hotspot traffic is introduced, the 2D torus shows always better
performance than the hypercube in moderate and large networks under both constant
bisection bandwidth and pin-out constraints, contrary to the conclusions of previous

studies [4, 6]. A similar result applies to matrix-transpose and digit-reversal traffic with

uniform traffic.

7.2 Directions for the future work

There are number of issues and open problems that require further investigation. These
can be grouped in two broad categories: (1) those which makes the proposed models more

realistic, and (2) those which tackle other important issues in interconnection networks.

7.2.1 Developing more realistic models

There are a number of suggestions as to how the proposed models might be modified to
capture other real-world situations. For example, in the proposed model for hotspot traffic,
we considered only one hotspot. However, in real environments this may be overly
restrictive and it would be useful to adapt the model to handle multiple hotspots. This does

not require new tools and only requires a small amount of additional complexity.

The proposed models consider networks with virtual channels each with only a one-flit
buffer, thus implementing a pure wormhole switching method. Some current
implementations however use deeper buffers to effect partial or full virtual cut-through

[97]. Again it would be useful to extend the models to include this scenario.
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Many studies have revealed that the Poisson model cannot properly emulate the tratfic
characteristics in some actual applications such as those incorporating multimedia streams.
Self-similar and pseudo self-similar traffic models have been suggested as a more faithful
alternative [82, 146] but most studies considering such traffic models are based on
simulation and measurement experiments. A more challenging extension of our work

would be to analytically model k-ary n-cubes under self-similar traffic load.

7.2.2 Future research in interconnection networks

Moving beyond the core of the present work, there remain many interesting problems in
the field which would benefit from the same analytical approach adopted in this thesis. A
selection of such problems is listed below as an illustration of the potential of this line of

attack.

In real systems increasing size will increase failure rates, and incorporation of fault-
tolerant techniques will be of great importance [59]. Many studies [10, 11, 38, 101, 109,
116, 181, 182] have investigated fault-tolerant routing in interconnection networks and
assessed performance via simulation [59]. There is currently no analytical model of fault-

tolerant routing in the kind of networks under discussion above.

Many studies [28, 113, 114, 122, 125, 126, 135, 144, 145] have been conducted on
designing, implementation, and simulation- and experimental-based ~ performance
evaluation of collective communication algorithms on different networks including k-ary
n-cubes. Such operations are used in many applications [127] and are basic operations in
DSM machines using cache coherency mechanisms [46, 106]. There is currently no

mathematical model, for collective communication in multicomputer 1nterconnection

networks.
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Several recent studies [14, 101, 124, 151-153] have revealed that deadlocks occur very
infrequently in the network, especially when enough routing freedom is provided [153].
Routing algorithms based on deadlock avoidance, including Duato’s algorithm. reserve
some virtual channels or routing options to specifically deal with deadlocks. and as a result
they are not utilized most of the time. Routing algorithms based on deadlock recovery [59]
allow messages to use all available virtual channels to cross the network. and efficiently
handle infrequently occurred deadlocks. These algorithms are attracting interest in the

research community and developing analytical model for them would be beneficial.

Given that integration limits are being achieved, the use of optical and optoelectronic
interconnection networks will be a big challenge in the next decade [150]. They have been
widely studied [123, 183] and have still many issues to be further explored. Developing
analytical tools to study the performance merits of these networks and comparing them

with their fully electronic counterparts is an open problem.
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