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Abstract 

Perhaps the most critical component in determining the ultimate performance potential of 

a multicomputer is its interconnection network, the hardware fabric supporting 

communication among individual processors. The message latency and throughput of such 

a network are affected by many factors of which topology, switching method, routing 

algorithm and traffic load are the most significant. In this context, the present study 

focuses on a performance analysis of k-ary n-cube networks employing wormhole 

switching, virtual channels and adaptive routing, a scenario of especial interest to current 

research. 

This project alms to build upon earlier work in two main ways: constructing new 

analytical models for k-ary n-cubes, and comparing the performance merits of cubes of 

different dimensionality. To this end, some important topological properties of k-ary n­

cubes are explored initially~ in particular, expressions are derived to calculate the number 

of nodes at/within a given distance from a chosen centre. These results are important in 

their own right but their primary significance here is to assist in the construction of new 

and more realistic analytical models of wormhole-routed k-ary n-cubes. 

An accurate analytical model for wormhole-routed k-ary n-cubes with adaptive routing 

and uniform traffic is then developed, incorporating the use of virtual channels and the 



effect of locality in the traffic pattern. New models are constructed for wormhole k-ary n­

cubes, with the ability to simulate behaviour under adaptive routing and non-uniform 

communication workloads, such as hotspot traffic, matrix-transpose and digit-reversal 

permutation patterns. The models are equally applicable to unidirectional and bidirectional 

k-ary n-cubes and are significantly more realistic than any in use up to now. With this 

level of accuracy, the effect of each important network parameter on the overall network 

performance can be investigated in a more comprehensive manner than before. 

Finally, k-ary n-cubes of different dimensionality are compared using the new models. The 

comparison takes account of various traffic patterns and implementation costs, using both 

pin-out and bisection bandwidth as metrics. Networks with both normal and pipelined 

channels are considered. While previous similar studies have only taken account of 

network channel costs, our model incorporates router costs as well thus generating more 

realistic results. In fact the results of this work differ markedly from those yielded by 

earlier studies which assumed deterministic routing and uniform traffic, illustrating the 

importance of using accurate models to conduct such analyses. 
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Chapter 1 

Introduction 

In the modern world, there is an apparently insatiable demand for ever-greater processing 

power, particularly in science and engineering. Although designers have had considerable 

success in increasing the performance of individual processors using advanced micro­

architectures, this has limitations and large-scale parallel processor systems have become 

increasingly popular for high-end applications [90, 99]. Indeed, arguably, such machines 

are possibly the only feasible way of achieving the enormous computational power [27] 

required in these areas. 

Parallel systems may be based on either a shared-memory or distributed-memory model. 

In shared-memory architectures, known as multiprocessors, all processors may access a 

shared memory while in those based on the distributed-memory model, known as 

multicomputers, processors communicate by means of interchanging messages. The latter, 

in particular, have experienced rapid development during the last decade [19] because of 

their superior scalability. Such systems are organized as an ensemble of nodes, each 

having its own processor, local memory and other supporting devices [129], comprising a 
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processing element (PE) and a router or switching element (SE) which communicates with 

other nodes via an interconnection network. 

1.1 Interconnection networks 

An interconnection network is a crucial component of a multicomputer because the overall 

system performance is very sensitive to network latency and throughput [129, 137]. It may 

employ a variety of topologies that can be classified into two broad categories: indirect 

and direct [129]. In indirect networks, the nodes are connected to other nodes (or memory 

banks in a shared-memory architecture) through multiple intermediate stages of switching 

elements (SE). Many experimental and commercial parallel machines have employed 

indirect interconnection networks [59], such as Hitachi SR2201 [75, 182], Cedar [105], 

Cray x/Y-MP, DEC GIGA switch and Cenju-3, IBM RP3 [148] and SP2 [22], Thinking 

Machine CM-5 [111] and Meiko CS-2. Examples of indirect networks include crossbar 

[75], bus [68] and multistage interconnection networks (MINs) [105]. Figure 1 (a) 

illustrates a Butterfly MIN constructed from 2x2 switches. In direct networks (also called 

point-to-point networks) each node has a point-to-point or direct connection to some of the 

other nodes (known as its neighbours) allowing for direct communication between 

processors. Direct interconnection networks have been widely employed by recent 

machines [59]. Figure l(b) shows a 4x4 mesh and associated node structure. 

In a MIN multicomputer with N processIng nodes, there are typically O(N log N) 

switching elements while in a direct network there are N such elements. From the 

scalability point of view, direct networks are preferred. Moreover, direct networks can 

exploit locality in traffic more effectively. Consequently, most recent multicomputers 

employ these networks, including the Intel iPSC [16, 91. 140]. Intel Delta [93], Intel 

Paragon [92], Cosmic Cube [170], nCUBE [131-133], MIT Alewife [7] and l-machine 

[138, 139], iWarp [147]. Stanford DASH [112], Stanford FLASH [107], Cray T3D [981. 
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(a) (b) 

PE SE PE (Me mory module 
in multiprocessors) 

Figure 1.1: Examples of indirect and direct networks, (a) A Butterfly MIN 
constructed from 2x2 switches, (b) A 4x4 mesh. 

Cray T3E [13 , 45], and SGI Origin [108]. In thi s study we focu s on direct inte rconnec tio n 

networks. From this point by "interconnection ne twork" we mean "direct interconnection 

network" unless otherwi se menti oned. 

In addition to the technology in which the hardware is implemented (considered in Section 

1.2) several key factors influence network performance : topology, switching method, 

routing algorithm and the traffic pattern generated by the applicati on program being 

exec uted . These are now considered in tum. 

1.1.1 Network topology 

Network topology defines the way nodes are connected and can be described uSIn g an 

inte rconnection graph. The verti ces of thi s graph are the nodes and the edge are the 

phys ical channels th at connec t the nodes [I 10]. The network dialll efer is the max imum 
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(b) 

(d) 

Figure 1.2: Some popular topologies. (a) A ring (with 11 nodes) , (b) 2-D torus 
(9x9 nodes) , (c) 3-D torus (3x3x3 nodes), and (d) 4-0 hypercube or 4-cube. 

value (in hops) of the minimum dis tances be tween any two nodes in network. T he num ber 

of links adj acent to a node is called node degree and network degree is the maximum node 

degree in all ne twork. A network is regular if all nodes have the same degree. Finall y, a 

ne twork is symmetric if it is isom orphi c to itself with an y node labell ed a ori gin . The bes t 

topology is o ne which is regula r and sym metric with small diameter and node degree 

[1 10] . 

M any topolog ies have been proposed for m ul ti computers [110] in cludin g th e star [8. 91. 

cube-connected cycles [ 154], general ised hypercube [26], pyrami d, and k-ary /l -cube . 

F igure 1.2 illu strates so me of the most co mm onl y used direc t network ' , the ri ng 

(e mployed by KS R 1st-l evel ri ng [59 ]) , 2-dimens io nal torus (u ' ed in iWAR P [ 147]), 3-
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dimensional torus (used by Cray T3D [98] and Cray T3E [13, 45]) and hypercube 

(employed in iPSC [16, 91, 140] and nCUBE [131-133]). These all belong to a major 

family of networks, called k-ary n-cubes, which have many desirable topological 

properties including ease of implementation, modularity, symmetry, low diameter and 

node degree, plus an ability to exploit locality exhibited by many parallel applications 

[160]. K-ary n-cubes are suited to a variety of applications including matrix computation, 

image processing and problems whose task graphs can be embedded naturally into the 

topology [130]. 

In a k-ary n-cube N=e nodes are arranged in n dimensions, with k nodes per dimension. A 

node belongs to all n dimensions and is connected to two neighbours in each. Nodes 

located at physical boundaries of a dimension are wrapped around with a link in each (see 

Figure 1.2 for some examples). Links can be bidirectional or unidirectional; if 

bidirectional the wrap-around links may be omitted. Examples of k-ary n-cubes include, 

the ring (n=l), the 2-D and 3-D torus (n=2, 3), the hypercube or binary n-cube (k=2). The 

2-D and 3-D meshes are examples of k-ary n-cubes with bidirectional links but without 

wrap-around connections, used in several real machines including the Intel Paragon [92] 

and MIT l-machine [138,139] and M-machine [69]. In this study, the term k-ary n-cube 

will be used to mean k-ary n-cubes with wrap-around unless otherwise indicated. 

1.1.2 Switching method 

Switching method determines the way messages visit intermediate nodes. Several methods 

have been described in the literature, of which the two most important in multicomputers 

are store-and-forward [176] and wormhole switching [47]. In store-and-forward switching 

a node will not forward an incoming message till it has the entire message stored in its 

channel buffer. While most first generation multicomputers employed store-and-forward 

switching (of which the commonest form is packet switching), wormhole switching (also 
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Node .. D'DOD DO 0 ~~~ 
Source 
A 

11111111 

B 
C 
D 

' A ' c1: J t Sill 17 

~ O"~ o~ { ~ ] ';" ;",rr,, (foe 
Source . ~~ f£ wormhole switchin~) 
node or message buffer (on 

'--------' S&F switching) 

T .mrmho/(· = [MessageLenglh+Distance ] X Chann elCycle 

T "lo"&Jonrard = MessageLenglh X Distance X Chanl1elCycie 

111111111 
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11111111 1 . 

Node 

Source 
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D 

. T " 'unnho/r ... . 

t SIIIr/ rend 

111111111 

rend Tim e 

o Header flit 
o Data flit 

Tim e 

6 

Figure 1.3: Transmission of an 8-flit message from the source node to the 
destination node destined 5 hops away in a 4x4 mesh (left) using store-and­
forward (right up) and wormhole switching methods (right down) via intermediate 
nodes A, 8, C and D. 

called wormhole routing) has been widely used in recent multicomputers [59] due to its 

low buffering requirement and good performance. Here, a message is divided into flits 

(flow control unit) for transmission and flow control and each channel buffer need be on ly 

one flit in length' . The first flit of a message, the header flit, includes the routing 

information and is followed by the data flits in pipelined fashi on. If the header cannot be 

routed in the network due to contenti on for resources (b uffers and channels), the data flits 

are also blocked in situ , keeping all the allocated buffers occ upi ed . Since wormhole 

routing uses pipelining, it can perform well even in a high di ameter network. Figure 1. 3 

illustrates the transmission of an 8-flit message from a source node to a des tination node 

destined 5 hops away in a 4x4 mesh using store-and-forward and wormhole sw itchin g 

meth ods. Many experimental machines, such as iWarp [147], l-Mac hine r 139], a nd 

Caltech Mosaic [1721, and commercial ones including Intel Paragon [92], Cray T3D 198 ], 

C ray T3E [13 ,45], CM-5 [III], and nCUBE 2/3 [132 , 133] use wormh ole ro utin g. 

I Wo rmhole switching has been deri ved from \ ' irfl({l! Cllt-rli rollgll [93] s\\ 'itching ,,\ here eac h channel buller 
is enough big to keep an entire message. 
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Because wormhole flits can be blocked in the network and then occupy switching 

resources, the method requires careful deadlock control [51]. One solution to this problem 

is the use of virtual channel flow control [49]. Flow control concerns techniques for 

dealing with contention by multiple messages for the same channels and buffers [158]. A 

good flow control policy should reduce congestion, be fair and retain low latency. Flow 

control techniques are very dependent on the switching scheme employed [74]; In 

wormhole routing, the commonest flow control strategy is the use of virtual channels. 

Virtual Channel 

The preceding switching techniques assume that messages or parts of messages are 

buffered at the input and output of each buffer channel. Buffers are commonly operated as 

first-in-first-out (FIFO) queues. Therefore, once a message occupies a buffer for a channel, 

no other message can access the physical channel even if the message is blocked [59]. Due 

to the chained blocking property of wormhole switching, the bandwidth of interconnection 

networks is then limited to a fraction (20%-50%) of the total available physical bandwidth 

[6, 48]. However, it is also possible to multiplex several communications on a flit-by-flit 

basis by decoupling the allocation of buffers and physical channels [64], thus dividing a 

physical channel into several logical or virtual sub-channels. A virtual channel consists of 

a buffer-together with associated state information-capable of holding one or more flits 

of a message [49]. Virtual channels were first introduced in [49] to prevent deadlocks in 

wormhole networks based on the torus routing chip [50]. In [49, 59], it has been shown 

that virtual channels can also be used to improve network performance and latency by 

relieving contention. It is often observed that increasing the number of virtual channels 

will increase the network performance [59]. The advantages and disadvantages of using 

virtual channels have been thoroughly investigated (e.g. see [15, 46, 67, 74, 106, 158, 

166]). 
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(0) 

1111111111111 ~IIIIIIIIIIIII 

(b) 
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(c) 
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Figure 1.4: Organizing a 12-flit buffer dedicated to a physical channel ; (a) 
Conventional routers organize it into one FIFO queue, while a network using 
virtual channels may organize it into several independent lanes resulting in 
different number of virtual channel each with different queue length , namely (b) 
2 x 6 flits, (c) 3 x 4 flits, (d) 4 x 3 flits, (e) 6 x 2 flits, and (~12 x 1 flit. 

Virtual channels dedicated to a physical channel may be organised in different ways. 

Figure 1.4 shows several organisations of virtual channels for a physical channel with a 

12-flit buffer. The architectures differ in terms of performance, hardware requirements, 

and particularly arbiter complexity. Performance is dependent on network parameters and 

there is an optimal number of virtual channels where the network performance is 

maximised [49,59]. 

The flit-level flow control di scussed in [49] utilizes virtual channels efficiently as it 

permits the messages to cross the network channels in a time-multiplexed fashion. The 

header flit of a message directly determines the physical route (chan nel) required to reach 

its destination but a channel allocation algorithm selects the virtual route. When a header 

flit arrives at an input port, an available virtual channel is assigned to it. A header flit 

advances through a sw itch if: I) it gains access through th e crossbar; and 2) an available 
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Figure 1.5: A deadlock situation In 
wormhole routing where no message can 
advance towards its destination. Messages 
1, 2, 3 and 4 are destined respectively to 
nodes D, B, A, and C. Patterned paths are 
occupied by messages and whole arrows 
show the desired directions to be passed by 
messages. 

Message 2 
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virtual channel ex ists at the receiving end . The virtual channels acquired by the header fl it 

at each routing step are used by the remaining flit s to advance in the network. O nce a 

message is allocated a virtual channel, the channel is not relinqui shed un til block in g 

co nditi ons ari se . When the blocking conditions are removed , the message co mpetes wi th 

o ther virtual channels to access the phys ical channel. W hen the las t fl it of a message 

leaves a router, the virtual channel that is hos ting that message is de-allocated. 

When virtual channel fl ow co ntro l is empl oyed, a transmi ssion policy is needed to mediate 

access to each physical channel. One simple poli cy is work conserving round robin in 

which unblocked messages occupying virtual channels on the same phys ical channel are 

alte rnately selected fo r transmission of a single flit [74]. As another example, a poli cy that 

could potenti all y reduce vari ance in message latencies is oldest flit first where flits 

belo nging to the oldes t unbl ocked message are given transmission priority [74]. 

1.1.3 Routing algorithm 

Mos t inte rconnec ti o n networks, in cluding k-ary n-cubes, provide mU ltiple ph ys ical path s 

fo r ro uting a message between two given nodes. Thi s in troduces the problem of choos in g a 

bes t ro ute be tween many poss ible alternatives. Routin g is a means used to achi eve thi s. 
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0 2 3 4 5 0 2 3 4 5 Figure 1.6: Routing messages in an 
0 0 6x6 mesh from node (0 ,/) to node 
I I (i,5) (for i=O, 1 , ... ,5) ; (a) Using 
2 2 dimension order routing , five 
3 3 messages must traverse the 
4 4 channel from (0,4) to (0 ,5) , (b) Using 

5 5 adaptive routing, all messages 
(a) (b) proceed simultaneously. 

An important requirement for any routing algorithm is to ensure deadlock freedom ; 

deadlock situations occur when no message can advance towards its destination because of 

occupied channels and buffers [59]. Many studies [61 , 62, 78, 80, 11 8, 1 19, 128, 178] 

have addressed thi s issue in multicomputer networks. Figure 1.5 illustrates a deadlock 

situation where four messages are blocked and each one wants to acq uire a channel being 

used by another. 

Many practical multicomputers have used determini st ic routing [65] with virtual channels 

to ensure deadlock avoidance. Thi s is achieved by forcing messages to visit the virtual 

channels in a strict order [59] . Consequently, messages always take the same path between 

a given pair of nodes. Thi s form of routing has the advantage of being simple, but is 

unable to adapt to conditions such as congestion or failures. Dimension-ordered routing 

[59] is a typical example of determini stic routing where messages visit network 

dimensions in a pre-defined order. However, if any chan nel along the message path is 

heavil y loaded, the message experiences large delays and if any channel along the path is 

faulty the message cannot be delivered a t all. 

Adaptive routin g improves both the performance and fau lt tole rance of an interco nnec ti on 

network and , more importantly , it has the ab ility to provide performance whi ch is less 

sensiti ve to the communication pattern [51] . In thi s case. the paths can be cho. en 
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° 1 2 3 4 5 ° 1 2 3 4 5 Figure 1.7: A 6x6 mesh with a 

° ° faulty link from node (3 ,2) to 
1 1 node (3,3). (a) With dimension 
2 2 order routing messages from 
3 3 dark nodes to the shaded area 
4 4 cannot be delivered. (b) With 
5 5 adaptive routing, messages can 

(a) (b) be delivered between all pairs of 
nodes. 

according to the degree of congestion of the node where the routing decision is taken. 

Figure 1.6 shows a 6x6 mesh in which the node (0, i) sends a message to the node (i , 5) for 

i=0,1, .. . ,5. With dimension order deterministic routing five of the six messages must 

traverse the channel from (0,4) to (0, 5) , as shown in Figure 1.6(a). Thus only one of these 

five messages can proceed at a time. With adaptive routing (Figure 1.6(b)) all of the 

messages can proceed simultaneously using alternate paths. Figure 1.7 shows the same 

network with a faulty channel from (3, 2) to (3, 3). With dimension-ordered routing 

messages from node (3 , i) to node (k, j) where 0::; i ::; 2 < j ::; 5, 0::; k ::; 5, cannot be 

delivered. With adaptive routing all messages can be delivered by routing around the 

faulty channel. In this example, it is necessary for the messages initially to be routed away 

from the destination node, resulting in a non-optimal di stance route [51]. 

With a non-minimal routing algorithm, the selected path may not always be a shortes t path 

while a mininwl adaptive routing algorithm limits the path selection to the shortest paths 

between any given pair [51] . Many adaptive routing algorithms (m inimal a nd non­

minimal) have been developed for k-ary n-cubes [59]. These algorithms di splay inte res tin g 

tradeoffs between their degree of adaptivity and the number of virtual channels needed . 

Introducing more adaptivity usually requires an increase in the number of virtual channels 

[145]. For exampl e, Linder and Harden [I 16] have desc ribed fully adap ti ve mi ni mal 

a lgor ithms for k-ary n-cubes with unidirect ional and bidirec ti onal links. For the 
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unidirectional case, n+ 1 virtual channels are needed for each physical channel. For k-ary 

n-cubes with bidirectional links, 2
n

-
1 virtual channels are needed per physical link in each 

direction, if the network has no wrap around links. With toroidal cubes the number 

increases to (n + 1)2n
-

1 
• 

Boppana and Chalasani [30] have proposed another approach to design deadlock-free 

adaptive routing algorithms, based on the idea of the structured buffer pool method, 

traditionally used in store-and-forward networks [176]. Each physical channel is split into 

D virtual channels, where D is the diameter of the network. To guarantee deadlock­

freedom, messages cross virtual channels according to the number of hops they have made 

in the network. Upon reaching an intermediate node, a message uses the hth virtual 

channel to complete its hth hop. Again, the high number of virtual channels required in 

this routing algorithm makes it impractical in large diameter networks, e.g. k-ary n-cubes. 

Partially adaptive routing as an approach to trade off adaptivity against the number of 

virtual channels has gained much attention [35, 40, 51, 77]. Chien and Kim [40] have 

presented an algorithm, called planar adaptive routing, which is minimal and partially 

adaptive. This approach involves examining the routing dimensions in pairs, and 

constraining the routing choices at any time to one or two dimensions. This, in general, is 

less flexible than the fully adaptive routing algorithm of Linder and Harden, but requires 

only a constant number of virtual channels, regardless of the network dimension. For 

example, in a k-ary n-cube without wrap around connections, only three virtual channels 

for each physical link are required. The turn model [77] prevents some of the transitions 

between dimensions, and generalizes to multidimensional meshes and binary n-cubes. 

This scheme requires only a virtual channel per physical channeL is non-minimal, and 

partially adaptive. The approach for two-dimensional meshes works by disallowing two of 

the eight possible turns a packet may take. The turn model can be used in conjunction with 

virtual channels to increase adaptivity and to generalize to k-ary II-cubes. Thus. instead of 
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prohibiting some turns, the packet can be switched to a different virtual channel upon 

taking such a turn. Dally and Aoki [51] used this idea to design partially adaptive non­

minimal routing algorithms for the class of k-ary n-cubes. In their algorithms, each packet 

carries with it a dimension reversal number which keeps track of the number of times the 

packet has been routed from a channel in one dimension to a channel in a lower 

dimension. 

Most of the proposed adaptive routing algorithms reqUire a high number of virtual 

channels. This high number of virtual channels results in increased hardware complexity, 

which can reduce router speed, causing significant degradation in network performance 

[39]. The high cost of adaptivity has motivated researchers to develop adaptive routing 

algorithms that require a smaller number of virtual channels. Several authors like Duato 

[63], Lin et al [115], and Su and Shin [174] have proposed fully adaptive routing 

algorithms, which can achieve deadlock-freedom with a minimal requirement for virtual 

channels, allowing for an efficient router implementation. Duato's fully adaptive routing 

algorithm is the best known of these and has been widely studied, having sufficient and 

necessary conditions for deadlock freedom with a minimum number of virtual channels. 

1.1.4 Traffic pattern 

One of the most important factors influencing network performance is the traffic pattern 

generated by the applications being executed on a machine. Different algorithms can 

generate very different traffic patterns. One way of optimising performance is to develop 

efficient algorithms that generate traffic compatible with the network's other properties. 

For example, we have described the design of efficient algorithms for a parallel numerical 

interpolation method on the k-ary n-cube [163], the star [164], and the cube-connected 

cycles [165] interconnection networks, by studying the nature of the Lagrange 
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interpolation method itself as well as the topological properties and communication 

capabilities of the target networks. 

Interconnection network research must incorporate good models of message traffic. The 

traffic model is basically defined by three parameters: message injection time, message 

length and message destination address distribution [88]. The most frequently used, 

simplest and most elegant model is the classical uniform traffic model where processors 

target each other (or memory modules) with equal probability, at some rate per cycle. 

Successive requests are independent and processors also make requests independently [87, 

104]. This simple model has widely been used [3,4,5,6,12,32-34,42,43,48,49,58,81, 

84-86, 99, 120, 142, 143] to drive most queuing-theory-based studies of interconnection 

network. 

Based on observations of locality in message traffic, researchers have proposed extensions 

to the uniform traffic model. Some prefer a sphere of locality model [6, 160], in which a 

processor is more likely to send messages to a small number of destinations within a so­

called "sphere of locality". Destinations outside the sphere are requested less frequently. 

Several ways to define the sphere exist; it can be based on physical network distances [1], 

network partitions [54, 89], or combinations of the two. 

A message traffic model that has attracted much attention is the hotspot model studied in 

[149] where all (or a large number of) processors attempt to send messages to a single 

destination with relatively high probability. This may lead to extreme network congestion 

resulting in serious performance degradation due to the tree saturation phenomenon first 

observed in multi-stage networks. Hotspot traffic behaviour may be exhibited in many 

applications such as cache coherency protocols, synchronisation and many operating 

system functions [88]. It can be produced directly by certain collective communication 

operations including gathering and barrier sYllchronisation [ I 27]. 



Chapter I. Introduction 
15 

Permutation traffic is exhibited in many parallel applications such as computing 

multidimensional FFf (Fast Fourier Transform), matrix problems, finite elements and 

fault-tolerant routing [90]. In a permutation traffic pattern the destination address is solely 

determined by the source address using a permutation function [79]. Examples of 

permutation functions are bit reversal, matrix transposition, shuffle, unshuffle, butterfly, 

and exchange (see [59, 79, 90] for more examples of permutation routing and applications 

employing them). A permutation function, f, maps any address X = Xl x2 ... xn to a 

destination address I(X) = x'l x'2 ... x'n where x'i' 1::::; i ::::; n, can be any of the Xi or their 

complements. Although most of permutation routing functions have been defined for 

binary input addresses (where X;= 0 or 1), they may also be defined for radix-k addresses 

(0::::; Xi < k), e.g. the digit reversal permutation which deals with addresses (of radix-k 

digits) in several applications like radix-k FFT and related transforms [59]. 

1.2 Implementation constraints 

In comparative evaluation of interconnection networks one must take account of 

implementation constraints to give a meaningful evaluation. Two such implementation 

constraints have been chosen to enable a fair comparison between networks of constant 

cost: pin-out constraints [4, 6] and wiring density constraints [48, 52]. 

The wiring complexity of the system is an important issue since the silicon area is limited 

and in general networks are wiring intensive [21, 73,159]. In [48] Dally tried to quantify 

the implementation costs of different multidimensional networks in order to compare their 

performance under a constant cost constraint. He chose network bisection width [177] as 

cost measure and concluded that at fixed bisection width lower dimensional structures are 

best. A constant bisection width constraint is a measure of wiring complexity and is 

particularly relevant when the network wiring is implemented on a single chip or board. 

Dally's results have influenced the migration of commercial multicomputer networks from 
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hypercubes to 2D meshes and tori over several years. The J -machine [139], iWarp [147], 

and Stanford DASH [112] are examples of low-dimensional torus and mesh 

multicomputers. 

Abraham and Padmanabhan [4], however, applied a constant pin-out constraint, which 

may be a more relevant cost constraint for today's pin-limited chips or where connector 

costs for cabling between cabinets is a consideration. With such a constraint, higher 

dimensional networks look attractive again although the analysis of [4] does not consider 

the longer wiring delays that might provide an additional penalty to such networks. 

Agarwal [6] has examined the cut-through switching method in k-ary n-cubes under both 

constant pin-out and bisection width constraints and obtained results similar to Dally's, 

although favouring networks of somewhat higher dimensionality than Dally. Other authors 

have compared the performance of multidimensional tori using both of the above cost 

constraints, and also considered different wire delay models to account for the longer 

lengths required to implement higher dimensional topologies [23, 60, 167]. 

For instance Basak and Panda [23] have introduced another constraint for studying 

interconnection networks which they term a packaging constraint. As large systems 

require several levels of packaging, they have used the bisection width and pin-out 

constraints at each level. A typical hierarchy used in packaging a large system consists of 

multiple chips on a board and multiple such boards in a card-cage. A large system may 

require multiple card-cages, multiple cabinets and so on. The modules at each level of this 

packaging hierarchy: chips, boards, card-cage etc. have their own characteristics in terms 

of maximum capacity, bisection width, available pin-out and channel width. Considering a 

wide range of parameters, they have concluded that the best configurations are achieved 

with cluster-based systems with up to 8 processors per cluster with a 3- to 5-dimensional 

inter-cluster interconnection networks [23]. 
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Scott and Goodman [167] have considered line pipelining which reduces the effect of long 

wire delays. The majority of their analysis is for a non-contention model, although they 

also provide extensive network simulations for contention situations. They conclude that 

the optimal radix in unconstrained situations is 2 (hypercube), and that for a constant pin­

out constraint the optimal radix is 4 to 10, and that under constant bisection width the 

optimal radix is 16 to 32. 

It can be concluded that the topology that looks best is clearly highly dependent on the 

constraint chosen and the wire delay model used [2, 117]. However, other network 

parameters (routing algorithm, switching method, router hardware cost, ... ) and the traffic 

pattern used are of great importance. All of above studies assume deterministic routing, 

uniform message traffic and networks without virtual channels. 

1.3 Performance modelling 

The popularity of multicomputers is exemplified by the proliferation of a variety of 

parallel machines with diverse design philosophies. This range of architectural design has 

created a need for developing performance models for multicomputers not only to analyse 

the effectiveness of their design but also to reduce the design space [99]. 

Analytical models are cost-effective and versatile tools for evaluating system performance 

under different design alternatives. Since simplifications are often made to reduce the 

complexity of models, there is a need to validate the models through simulation. 

Validation is typically carried out for test cases, which require reasonable computation 

time and resources. The significant advantage of analytical models over simulation is that 

they can be used to obtain performance results for large systems and behaviour under 

network configurations and working conditions which may not be feasible to study using 

simulation on conventional computers due to the excessive computation demands [141]. 
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Using analytical models, one can see the effect of each parameter on the system 

performance including those parameters related to the network configuration. 

implementation choices and traffic load. Realising such detailed investigations through 

simulation may take months or years, depending on the machine employed. and an 

efficient analytical model often provides a great reduction in the time required for such 

investigations. Most analytical models proposed for the performance evaluation of 

interconnection networks use results from queuing theory, providing a relatively 

straightforward derivation of performance expressions. 

1.4 Related work 

Within the literature on networks, the work on analytical performance modelling and 

constraint-based performance comparison of interconnection networks is most related to 

this thesis. 

The first direct network stochastic performance study considered only the hypercube [3]. 

assuming store-and-forward switching method with uniform message traffic and 

deterministic routing. 

In [48]. Dally introduced a mathematical model for predicting the average message latency 

in a unidirectional k-ary n-cube. This study assumes wormhole switching without virtual 

channels, deterministic routing and uniform message traffic. Since the model does not take 

account of blocking behaviour in the network, it is most applicable for light to moderate 

traffic and loses its accuracy when applied to a network with higher loads. 

Abraham and Padmanabhan' s [4] model for bidirectional k-ary n-cubes considers store­

and-forward and virtual cut-through switching methods, deterministic routing and uniform 
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message traffic. They have used this model to compare the performance merits of multi­

dimensional k-ary n-cubes. 

The analytical model described in [6] for both unidirectional and bidirectional k-ary n­

cubes uses virtual cut-through switching, deterministic routing, and uniform message 

traffic and considers locality. However, this model again omits the effect of virtual 

channels and the approximations used for incorporating message contention lead to under­

estimation or over-estimation of performance depending on the network configuration 

[ 13]. 

Draper and Gosh [58] introduced an accurate model for unidirectional k-ary n-cubes using 

wormhole switching, deterministic routing, and uniform traffic but their study does not 

consider the effect of virtual channels. 

Adve and Vernon [5] proposed a model for k-ary n-cubes employing virtual cut-through 

and wormhole switching methods without virtual channels. The model considers 

deterministic routing and uniform traffic and is approximately accurate. 

Anderson and Abraham [13] proposed some models for unidirectional and bidirectional k­

ary n-cubes employing store-and-forward and virtual cut-through switching, deterministic 

routing and uniform traffic. These models are fairly accurate in all traffic regions. 

Cincinani, Colajanni and Paolucci [42] introduced a model for the 3D torus with 

wormhole switching and deterministic routing. It does not consider virtual channels and 

uses uniform message traffic to approximate mean message latency fairly accurately. 

Greenberg and Guan [81, 83] proposed a model for the two-dimensional mesh and torus 

employing wormhole switching. deterministic routing, and assuming a uniform message 

traffic. The model loses its accuracy slightly when approaching hea\'y traffic loads. 
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Kim and Das [99] introduced an analytical model for hypercubes using wormhole and 

virtual cut-through switching without virtual channels using both deterministic and 

random routing and uniform message traffic. Their model takes account of the blocking 

effect and displays good accuracy. 

Another model for hypercubes is proposed by Hady and Menezes [85, 86] using wormhole 

switching, deterministic routing and uniform traffic. Results obtained through simulation 

show close agreement to those produced by the analytical model. 

Boura and Das [33, 36] have proposed an accurate analytical model for wormhole-routed 

hypercubes employing virtual channels and adaptive routing with uniform traffic. The 

model considers blocking behaviour and is fairly accurate for all traffic loads. A similar 

model was developed in [120, 121] for wormhole-routed tori deriving necessary 

expressIOns for computing the probability of message blocking. Computing this 

probability becomes more complicated for a general k-ary n-cube. Ould-Khaoua [ 142] has 

introduced a model for unidirectional k-ary n-cubes. His model considers wormhole 

switching and virtual channels, adaptive routing, uniform message traffic and locality. 

While the model exhibits a good degree of accuracy under light and moderate traffic loads, 

it loses its accuracy as the network enters the heavy traffic region. The discrepancy 

between the model and simulation is more noticeable as the number of altemati ve paths 

increases in the network, for example when n is moderately big. This is due to 

approximations when computing the probability of message blocking. 

1.5 Motivations and outline of the thesis 

In order to design high-performance multicomputers it is essential that the performance 

capabilities of their interconnection networks be completely understood. As discussed 

earlier, one approach to such performance studies is to build analytical models. 
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Table 1.1: Proposed models for k-ary n-cubes . 

Dally [48] 

Abraham and 
Padmanabhan 

[4] 

Agarwal [6] 

Draper and 
Ghosh [5 8] 

Adve and 
Vernon [5] 

Anderson and 
Abraham [1 3] 

Cinciani , 
Colajanni and 
Pao lucci [42] 

Ould-Khaoua 
[ 142'1 

Unidirec ti onal 
k-ary n-cubes 

Bidirectional k-
ary n-cubes 

Unidirectional 
and 

Bidirecti onal k-
ary n-cubes 

Unidirectional 
k-ary n-cubes 

Unidirectional 
and 

Bidirectional k-
ary n-cubes 

Unidirectional 
and 

Bidirectional k-
ary l1-cubes 

Unidirectional 
and 

Bidirectional k-
ary l1 -cubes 

Un idi recti ona I 
k-a ry II-cubes 

Wormhole No Determini sti c 

Store&Forward 
and 

No Determini stic 
Virtual 

Cut-through 

Virtu al 
No Determini stic 

Cut-through 

Wormhole No Determini sti c 

Virtual 
Cut -thro ugh 

and No Determini sti c 
Wormhole 

Store&Forward 
and 

Virtual 
No Determini sti c 

Cut-th ro ugh 

Wormhole No Determini sti c 

Wormhole Yes AJ arti ve 
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Uniform 

Uniform 

Un iform 
and 

Loca lit y 

Uniform 

Uniform 

Uniform 

Uniform 

n i form 
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Most recent multicomputers use k-ary n-cubes as their underlying topology and employ 

wormhole switching [59]. Several analytical models [4, 6, 13, 42. 48, 58] have been 

proposed in the literature for deterministic routing in wormhole-routed k-ary n-cubes. 

Although deterministic routing algorithms are simpler to implement and many machines 

use deterministic routing [65], they cannot exploit network channels efficiently since 

messages cannot use alternative paths to avoid congested channels and thus reduce 

message communication latency. Fully adaptive routing overcomes this limitation by 

enabling messages to explore all the available paths between source and destination nodes. 

Several recent machines have used adaptive routing (e.g. Cray T3E [13, 45] and Reliable 

router [53]), and it continues to be a favoured routing algorithm in multicomputers. 

However, there have been few analytical models proposed for adaptive routing. Table 1.1 

summarises the major analytical models of k-ary n-cubes so far introduced, addressing 

their main characteristics. As can be seen in the table, most of models deal with 

deterministic routing and do not consider the effect of virtual channels. The only model 

that uses adaptive routing and deals with virtual channels is Ould-Khaoua's; however, this 

loses accuracy as the network is subjected to heavy traffic load, although it exhibits a good 

degree of accuracy in light and moderate traffic. The discrepancy between the model and 

simulation is more noticeable as the number of alternative paths increases in the network 

and, therefore, it is more applicable to low-dimensional high-radix k-ary n-cubes (small n 

and large k). All these models assume a uniform traffic pattern, which is generally not a 

suitable choice for a typical load generated by a real application. 

If adaptive routing is to be widely adopted in practical machines, it is necessary to assess 

its behaviour and suitability for different workload characteristics. Although it is very 

difficult to define a typical real-world traffic pattern, we may use some non-uniform traffic 

patterns created by known communication algorithms and applications (e.g. permutation 

traffics) or observed in practice (e.g. hotspot and locality). The most commonly 
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encountered of these are hotspot traffic and the permutation traffic characteristic of digit­

reversal (known as bit-reversal for the hypercube) and matrix-transpose permutations. 

These patterns have previously mostly been studied via simulation experiments [59. 74. 

158]. 

In this study, we first construct an accurate and exhaustive model for general wormhole­

routed k-ary n-cubes, employing adaptive routing both with uniform traffic and including 

an element of locality. No such general model, capable of coping with arbitrary network 

size and traffic load, has yet been developed. Then, we introduce new models that deal 

with three important non-uniform traffic patterns: hotspot, matrix-transpose and digit­

reversal. The performance merits of k-ary n-cubes will be analysed using these models and 

the effect of different parameters on that performance will be assessed. Finally. we shall 

apply our models to adaptive wormhole routing under uniform and non-uniform traffic, 

taking into account the effect of virtual channels, to reassess the performance merits of 

multi-dimensional k-ary n-cubes under constant pin-out and bisection-width constraints. 

The rest of the thesis is organized as follows. Chapter 2 gives the preliminaries required 

for understanding the next chapters and reports some important findings on topological 

properties of k-ary n-cubes. It starts with defining the k-ary n-cube structure and deriving 

some topological properties of k-ary n-cubes; in particular, it gives some expressions for 

calculating the number of nodes which are at (and within) a given distance from a gi\'en 

node in the unidirectional and bidirectional k-ary n-cubes. Theses expressions will then be 

used in the next chapters for developing some analytical models. Finally, a methodology 

for designing adaptive routing algorithms in multi-computer networks is described and the 

methodology is applied to design some adaptive routing algorithm for wormhole-s\\itched 

k-ary n-cubes. 
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Chapter 3 proposes an accurate analytical model of adaptive routing in wormhole-routed 

k-ary n-cubes with uniform traffic and validates it through simulation experiments. It starts 

with modelling a unidirectional network and then extends it for the bidirectional k-ary ll­

cube. The model is also described with locality in the traffic pattern. 

In Chapter 4, a model is introduced for adaptive wormhole routing for k-ary n-cubes in the 

presence of hotspot traffic. The model uses the method employed by Pfister and Norton 

[149] for producing hotspot traffic. The model for the unidirectional k-ary n-cube is firstly 

described and then extended to consider bidirectional networks. 

Analytical models of adaptive routing in wormhole-routed unidirectional k-ary n-cubes for 

digit-reversal and matrix-transpose permutation traffics are introduced in Chapter 5. Like 

previous models, these are then extended to bidirectional k-ary n-cubes. 

The structure of Chapter 3, 4 and 5 for development, validation and extension of the 

analytical models is as follows. We first develop the model for unidirectional k-ary n­

cubes. The required changes in the model equations are then discussed for the hypercube 

as a special case of the unidirectional k-ary n-cubes. We then validate the model through 

simulation experiments. The bidirectional extension of the model is then developed and, 

finally, some analysis is realised using the proposed model. 

In Chapter 6, using the analytical models constructed in Chapters 3, 4 and 5, performance 

merits of hypercube and torus interconnection networks are compared under uniform, 

hotspot, digit-reversal and matrix-permutation traffic patterns. The comparison considers 

both pin-out and bisection bandwidth constraints with both normal and pipelined channels. 

Finally, Chapter 7 concludes the thesis and outlines some directions for future work 

considering areas which might be worthy of further research. 



Chapter 2 

The k-Ary n-Cube: Structure, Properties 
and Routing 

In this chapter, we derive some results on the topological properties of k-ary /I-cubes 

which wiII be used when constructing our models in the next chapters. We then examine 

k-ary n-cubes, their node structure and Duato's adaptive routing algorithm which are 

necessary for understanding the models developed in the foIIowing chapters. 

2.1 The k-ary n-cube 

The k-ary n-cube is probably the most widely deployed [7, 13, 16, 93, 98, 107, 108, I 12. 

131, 139, 147, 170] multicomputer network topology [59] with many desirable properties 

including, symmetry, regularity, good node degree and diameter. It is weII-suited to many 

applications such as matrix computation, image processing, and many others that can 

directly be mapped onto grid structures [130]. The three commonest instances of the k-ary 

n-cube are the 2 and 3-dimensional tori (k-ary 2-cube and k-ary 3-cube), both widely 

employed in recent machines, and the n-dimensional hypercube (2-ary II-cube). popular in 

early multicomputers. 
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A k-ary n-cube, Q~ , where nand k are referred to as dimension and radix respectively. has 

kn identical nodes arranged in n dimensions with k nodes in each dimension. Node A in 

Q~ is labelled with a distinct n-digit radix k vector [an-I, an-2, ... , ao], where 

ai, 0 ~ i ~ n -1, indicates the position of the node in the th dimension. 

The k-ary n-cube can be either bidirectional or unidirectional. In the unidirectional 

network, Q~ , there is a unidirectional link from node A = [an-I, an-2, ... , ao] to node B = 

[bn-l , bn-2, ... , bo] iff there is an i, 0 ~ i ~ n -1, such that ai = (bi + 1) mod k and a j = b j' 

o ~ j ~ n -1, j i= i . Thus, in Q~ each node is adjacent with one node in each dimension, 

hence n nodes in total. 

In the bidirectional k-ary n-cube, on the other hand, the concept of Lee distance is useful. 

DEFINITION 2.1. Lee weight [31,37]. Let A=[an-I, an-2, ... , ao] be an n-digit radix k vector. 

The Lee weight of A is defined as 

n-1 
WL(A) = rllaill, where Ilaill=min(ai,k-ai)' 

i=O 

DEFINITION 2.2. Lee Distance [31, 37]. The Lee distance between two vectors A and B is 

denoted by DL(A,B) and is defined to be WL(A -B). That is, the Lee distance between 

two vectors is the Lee weight of their bit-wise difference (mod k). 

For example, when k=4, WL ([3,2,1])=(4-3)+2+1=4, and D L ([1,2,3],[3,2,1])= 

W
L

([1,2,3]-[3,2,1]) =WL ([2,O,2]) =4. Just as the Hamming distance may be used to 

define the hypercube and generalised hypercube graphs, the Lee distance may be used to 

define the bidirectional k-ary n-cube [31, 37] as follows. 
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(a) (b) 

Figure 2.1: Examples of k-ary n-cubes; (a) A QS and (b) A Qi. 

A bidirectional k-ary n-cube, QI~' has kl/ nodes where any two nodes A and B are 

interconnected if and onl y if D L (A , B ) = 1. Each node in a QI~ is connected to 2n adjacent 

nodes through 2n bidirecti onal channels, two at each dimension. 

Alte rnatively, both unidirec ti onal and bidirec ti onal k-ary n-cubes can be defined as a cross 

product of n cycles of le ngth k [55] . The cross product of the graphs G I = (VI , E I ) , 

G = (V,E), where ( l ::::;i::::;I/ )} 

E= {I (V I ,V2, ... ,vn ),(U \ ,U2,""Un ) ] 13i, l ::::; i ::::;l1, such that [ \ 'i,UdEEi and 

fo r j 1:- i } . He nce, QI~ can be defined as a prod uct of cyc les as [3 1,37,55] 

11 ti Illes k ,~ ____ ~A , 

Q
II 

= Ck ® Ck ®" ,®Ck 

and 

\' . = 11 . 
J J 
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with Ck being a cycle of k nodes which can be unidirectional or bidirectional resulting in 

-k -k 
a product graph of Qn or Qn' respectively. Figure 2.1 shows two examples of the 

unidirectional and bidirectional k-ary n-cubes. 

2.2 Some topological properties of k-ary n-cubes 

Many aspects of the k-ary n-cube have been extensively studied in the past, including its 

topological properties [17, 18, 25, 31, 37, 76], routing [18, 56, 61, 62, 76, 80, 145, 180], 

load balancing [84], performance analysis [4-6, 12,23,24,39,42,43,48,58,60,66,81, 

83, 100, 102, 120, 121, 141-143, 158, 167], resource placement [20. 156], etc. In this 

section, we derive some fundamental properties of the k-ary n-cube. In particular, we 

furnish exact expressions that compute the number of nodes located at/within distance i 

from a given node in both the unidirectional and bidirectional k-ary n-cube. These results 

are interesting in their own right and can help us better understand the k-ary n-cube and 

explore properties that may be used in other problems. For instance, when a node is 

viewed as a root of a spanning tree in the k-ary n-cube, such expressions determine the 

number of nodes at level i in the tree. Therefore, the results of this study are useful in the 

study of spanning tree structures, which have been widely employed in the design of 

efficient multicast and broadcast operations, e.g. see [31, 70-72]. Furthermore, our results 

can also be used in the study of the resource placement problem in the k-ary n-cube [17, 

146]. We shall use them in the following chapters when developing our models. 

2.2.1 Problem definition 

In Q/~, node A = [an-I, an.'!., ... , ao] is at distance i from node B = [b ll • l • bll . 2 • ... , bo] if 

n-\ ....-k 
I(a j -b j ) mod k = 1. In the bIdIrectIOnal case, Qn' node A = [all.l, all ·2, ... , ao] is at 

j=O 

distance i from node B = [bn. l , bn.2, ... , bo] if DL(A,B) = i. 
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Table 2.1: The surface area in a bidirectional 4-ary n-cube 

n=2 n=3 11=4 11 =5 11=6 1/-7 11-8 

i=1 4 6 8 10 12 14 16 
i=2 6 15 28 45 66 91 120 
i=3 4 20 56 120 220 364 560 
i=4 1 15 70 210 495 1001 1820 
i=5 6 56 252 792 2002 4368 
i=6 28 210 924 3003 8008 
i=7 8 120 792 3432 11440 
i=8 45 495 3003 12870 
i=9 10 220 2002 11440 
i=10 66 100 1 8008 
i=11 12 364 4368 
i=12 91 1820 
;=13 14 560 
i=14 120 

i=15 16 

i=16 

DEFINITION 2.3. Surface Area [3\ , 37]: The surface area A,~ (i) is the number of nodes in 

Q~ whose di stance from a given node is exactl y i. That is, A,~ (i) is the surface area of a 

sphere of radius i . 

For instance, T ables 2.\ and 2.2 give the numbe r of nodes at di sta nce i from a given node 

-4 -5 - 4 - 5 
in Qn and Qn' respectively, for 2 ~ n ~ 8, i.e., All (i) a nd An (i) . 

DEFINITION 2.4. Volume [3 \, 37] : The volume v,7 (i) is the number of nodes in Q,~ 
whose di s tance from a given node is less than or equal to i. That is, V,; (i) is the volu me of 

a sphere of radius i. The volume can be written in te rms of s urface area a 

I 

V,~ (i) = \ + I A,~ (j) . 
j = 1 

2.2.2 Related work 

The objecti ve of thi s s tud y is to fi nd ex press io ns for co mputing A ,~ (i ) and V, ~ (i) in bo th 

the unidirec tional a nd bidirec ti o na l k-ary II-cube . Previous simil ar studies have co nside red 
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Table 2.2: The surface area in a bidirectional 5-ary n-cube 

11=2 11 =3 11 =4 11=5 11=6 11 =7 11=8 

;=1 4 6 8 10 12 14 16 
;=2 8 18 32 50 72 98 128 
;=3 8 32 80 160 280 448 672 
i=4 4 36 136 360 780 1484 2576 
;=5 24 160 592 1632 3752 7616 
;=6 8 128 720 2624 7448 17920 
i=7 64 640 3264 11776 34176 
;=8 16 400 3120 14896 53344 
i=9 160 2240 15008 68352 
i=10 32 1152 11 872 71680 
i=l1 384 7168 60928 
;=12 64 3136 41216 
;=13 896 21504 
i=14 128 8192 
i=15 2048 
;=16 256 

other networks. For instance, in [1], an expression for calculating surface area in a 11-

dimensional hypercube was given. An expression for calculating surface area in the 

generalised hypercube is derived by Bhuyan and Agrawal in [26]. Calculations have also 

been carried out by Qiu and Akl [155] for the star graph, and by Corbett [44] for the 

rotator graph . The authors in [31, 37] have described only partial res ults for the problem of 

finding the surface area in the k-ary l1-cube. They have provided an expression for the 

surface area in the bidirectional k-ary l1-cube, but have restricted their analys is onl y to the 

simple case where the radius, i, is smaller than kl2 as thi s is eas ier to deal with than the 

general case where i may be any number from I to the ne twork diam ete r. To the bes t of 

our knowl edge, the present study is the first to report comprehensive general res ults for 

both the unidirec tional and bidirec tion al k-ary n-cube. 
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2.2.3 The surface area and volume in the unidirectional 

k-ary n-cube 

31 

Let G define the set of all nodes in the unidirectional k-ary n-cube. To determine the 

b 
-k 

num er of nodes at distance i from a given node, B, in Qn' we will make use of the 

function uniCOUNT outlined below. 

Function uniCOUNT (k, n, i); 

BEGIN 

Counter~O; 

for all AE G-{B} do 
n-t 

if L (a j - b j) mod k = i then Counter ~ Counter + 1; 
j=O 

return Counter; 

END; 

Note that the position of the given node B does not change the result. Using the above 

function we can calculate the volume of the sphere of radius i as follows. 

Function uniVOLUME (k, n, i); 

BEGIN 

Sum f-- 1; 

for j f-- 1 to I do Sum ~ Sum + uniCOUNT(k,n, j); 

return Sum; 

END; 

THEOREM 2.1. The number of ways to make j hops over n H dimensions such that the 

number of hops made in each dimension i, 1 ~ i ~ nH' is at most the i-th element of an 
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1, j=o 

IjJ (R , j) = 0, 
hflH 

j < ° or nH < 1 

LIf/(R - hnH ,j - m), otherwise 
m=O 

where R - hnH results in an (nH -1) -tuple which is R without the last element hllH . 

PROOF. One way to distribute j hops over n H dimensions such that no dimension i is 

assigned more than hi hops is as foIlows. Suppose that one hop is assigned to dimension 

n H' The remaining (i-I) hops are distributed over the (n H - I) remaining dimensions 

resulting in IjJ (R - hn H ,j -1) ways of distribution. The same approach may be taken 

where dimension nH is assigned 2, 3, ... , or hnH hops resulting in, respectively, 

IjJ(R -hnH ,j-2), IjJ(R -hnH ,j-3), ... , or IjJ(R -hnH ,j-hIlH ) ways for distributing 

the remaining j-2, j-3, ... , and j-hnH hops over the nH -1 remaining dimensions. 

Therefore, the total number of ways to distribute j hops over n H dimensions is the sum of 

hflH 

all the cases, i.e. LIf/(R - hnH ,j - m). When the number of the remaining hops is zero 
III =1 

this means that all the hops have already been distributed over the dimensions in one 

possible way. When the number of remaining hops, excluding the hops made in dimension 

nH ' is negative this means that the particular way of distributing hops is impossible to 

achieve. FinaIly, considering all these combinations together with the case where no hop is 

assigned to dimension n H yields the above equation. 0 

COROLLARY 2.1. The number of nodes, A~ (i), at distance i from a given node in Q~ IS 

n times 
given by A~ (i) = If/(R o,i), where R 0 = ('-k---l-.k--~l'-,-.. -.. -k--~i) is the initial tuple. 

PROOF. It foIlows directly from Theorem 2.1, given that the maximum possible hops that 

a message may spend in each dimension in Q,~ is k-l . . :::J 
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-k 
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Distance from a given node 

Figure 2.2: Number of nodes at distance i from a given node in a 40g6-node Q~ . 

Now, a non-recursive expression is derived to count the number of nodes at distance i 

from a given node in the unidirectional k-ary n-cube. Let us first refer to the following 

result from combinatorial theory. 

PROPOSITION 2.1. The number of ways to distribute r like objects (or indistinguishable 

object) into m different cells, such that no cell contains less than p objects and not more 

than p + q -1 objects is the coefficient of x
r
-

pm in the expansion of the polynomial 

(1 ·q)1n(l )-m -(1 2 q-l)m[1'J4] - .\ - X - + x + x + ..... + X _1 • 

Let the coefficient of x,.-pm be denoted as rg+q-l(r,m). In [161, 179], the expression 

for rt+q- l (r,m) is given by 
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THEOREM 2.2. The number of nodes at distance i from a given node in Q,~ is given by 

PROOF. The number of nodes located i hops away from a given node is equal to the 

number of possible paths via which an i-hop journey can be realized, starting from a given 

node, such that no channel and no node is traversed more than once and hops are always 

made to go further from the starting node. Such a journey is taken by an i-hop message 

routed across a unidirectional k-ary n-cube with a minimal routing algorithm, i.e. a routing 

algorithm that enables a message to select a shortest path to cross from source to 

destination [59]. The order at which the hops are made among dimensions is not important 

in our present calculation since we are primarily interested in determining the number of 

hops made at each dimension that leads to different ending nodes. 

If the hops made by a message are treated as indistinguishable objects and the visited 

dimensions as different cells, the above proposition can be used to compute the number of 

nodes, A~ (i), which are i hops away from a given node in Q~. Taking into account the 

fact that a message may spend at least zero and at most k-l hops at each dimension, we 

can write 

COROLLARY 2.2. In Q~ , the volume, V~, of the sphere of radius i is given by 
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V~(i)=l+ ± ±(_1)1(7)(j-Ik~n-I). 
)=1/=0 n I 

PROOF. The claim follows directly from Theorem 2.2 and Definition 2.4. 0 

-k -k 
Figure 2.2 illustrates some results for An (i) in Q n when the values of k and n are varied 

while keeping the total number of nodes fixed at 4096. Note that the surface area 

surrounded by each curve and the horizontal axis is equal to the total number of nodes in 

the network, i.e. 4096. The diagram shows that the hypercube is the richest network in the 

k-ary n-cube family from the connectivity point of view, and has the smallest diameter as 

its spanning tree is thick and short, compared to other equivalent k-ary n-cubes like the 2-

dimensional torus. 

2.2.4 The surface area and volume in the bidirectional 

k-ary n -cube 

As with the function uniCOUNT, outlined in Section 2.2.3, for computing the surface area 

in the unidirectional k-ary n-cube, we can simply use function biCOUNT, shown below, to 

calculate the surface area in a bidirectional k-ary n-cube. 

Function biCOUNT (k, n, 0; 

BEGIN 

Counter f-- 0; 

for all AE G-{ B} do 

if DL(A,B)=i then Counterf--Counter+l; 

return Counter; 

END; 

Using the above function we calculate the volume of the sphere of radius I usmg 
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Definition 2.4 as follows. 

Function biVOLUME (k, n, i); 

BEGIN 

Sum f-l; 

for jf-l to 1 do Sumf-Sum+biCOUNT(k,n,j); 

return Sum; 

END; 

.-.k 
THEOREM 2.3. In Qn' the number of ways to distribute j hops over nH (=n H+ =n H-) 

dimensions such that the number of hops made in each dimension i, (1 ~ i ~ Il H), is at 

most the i-th element of either H+ = (h( ,hi ," .,h; ) or H- = (hi ,hi.,.· ·,h,~ ), that 
H+ H 

is either ht or hi- , is given by 

I, j=o 

0, j < ° or n H + < I or n H - < I 

,j-m)+ 

,j-m), otherwise 
m=O 

PROOF. Suppose that one hop is assigned to dimension n H either in the positive direction 

or in the negative direction (n H+ or n H- ). The remaining j- I hops are distributed over 

the nH-l remaInIng dimensions resulting In 8(H+-hn ,H--hn ,j-1)+ 
H+ H-

8( H + - hn ,H - - hn ,j -1) ways where the first term counts the case where the hop 
H+ H 

is made at dimension 11 H+ in the tuple H + (in the positive direction) and the second term 

counts for the case where the hop is made in the negative direction. The same approach 
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may be taken where dimension nH + (or n
H

-) is assigned 2, 3, ... , hll (or h
n 

) hops 
H+ H-

resulting in, respectively, 8(H+-hn ,H--h j'-2)+8(H+-h H--h 
+ n _, n' II' 

H H H+ H-

]'-2), 8(H+ -hn ,H- -hn ,j'-3)+8(H+ -h , H- -h . 1) 
H+ H- n

H
+ n

H 
,j-- , .... or 

8(H+-hn ,H--hn _,j-hn )+ 8(H+-hn ,H--hn ,j-h ) ways for 
H+ H H+ H+ H- n H-

distributing j-2, j-3, ... , and j- hn ( j- hn ) or hops over the n H -I remammg 
H+ H-

dimensions. Therefore, the total number of ways to distribute j hops over n H dimensions 
hn H+ 

.L.. 8(H+ -hn ,H- -hn ,j -m) + 
H+ H-

m=O 

the sum of all cases, I.e. IS 

hn _ 
H 

.L.. 8(H+ -hn ,H- -hn _ ,j-m). When the number of the remaining hops is zero 
H+ H 

m=O 

this means that all the hops have already been distributed over the dimensions in one 

possible way. When the number of remaining hops, excluding the hops made in dimension 

n H ' is negative, this means that the current particular way taken for distributing hops is 

impossible to achieve. Finally, considering all these combinations together yields the 

recurrence equation claimed. 0 

In the above expression, the tuple H + = (ht ,hi,· ", h + ) with n H+ elements and 
n

H
+ 

H- = (hI ,h2,.· ·,h;; _) with n H+ elements are the limit vectors (tuples) for the network 
H 

in the positive and negative directions, where hi, (1::; i::; n H+)' and hi, (1::; i::; n H-)' 

are the maximum possible distance from a given node at dimension i in the positive and 

negative directions. 

-k 
COROLLARY 2.3. The number of nodes at distance i from a given node in Q n is given by 

-k 
AnU) = 8(H6,Ha,i), 

+ Lk-1j Lk-1j Lk-Ij) and Ho-=(rk=-'lrk=-'l .... rk~'l) aret\\o where Ho =( 2 ' -2- , ... , 2 '.!..!. 

initial II-tuple vectors. 
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PROOF. The claim follows directly from Theorem 2.3, having in mind that the maximum 

possible hops made by a message in each dimension is L k ~ 1 J in one direction (say 

positive) and I k~ll in the other direction (negative).~ 

Now, a non-recursive expression is derived to count the number of nodes at distance i 

from a given node in the bidirectional k-ary n-cube. In order to use Proposition 2.1 which 

deals with cells of equal capacity, we have to consider the problem separately for odd and 

even k. Let us first consider the problem for the simpler case where the network radix k is 

odd. 

LEMMA 2.1. The number of nodes at distance i from a given node in Q,~ when k is odd is 

given by 

PROOF. We should count the number of ways that i like objects can be distributed over 

two groups, each of n cells, say G = {C1 ,C2,···,Cn } and G'= {C'l ,C'2 ,···,C'n }, such 

that each cell contains not more than (k-I )/2 objects and no two corresponding groups, Ci 

and C'i for i = 0, I, ... ,n , can be assigned objects at the same time. The problem can be 

thought of as that of finding the number of different destinations that an i-hop message can 

choose from a given source node in Q,~, when k is odd, using a minimal routing 

algorithm. It is apparent that a message can take at most (k-I)/2 hops in each dimension as 

the network is bidirectional. 

Let us consider the case that an i-hop message makes some hops over Ill, (Ill = 0,1.2, .... 11 ). 

fixed dimensions (each in one direction) so that the message has made at least one hop in 
k 

each dimension. This can be realized in r;2 (i,m) ways. Each of n dimensions could be in 
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these m dimensions resulting in (~tlt (i,m) possible combinations that III dimensions 

are passed (each in one direction). Recalling that each of two directions in one dimension 

can be chosen yields the total number of ways to pass m dimension with at least one hop in 

each dimension as 2m( ~ {It (i,m). Summing up all the combinations for m =0.1.2 ..... 11 

gives the total number of nodes at distance i from a given node in Q,~ as 

Now, we consider the problem when the radix k is even. 

LEMMA 2.2. The number of nodes at distance ifrom a given node in a Q~ (with even k) is 

given by 

AnU)=LL L(-1)12 11l 7 n~t 7 [- 2 -2/-1,. -k n n-t III ()()( )(. k(l+t) 1 
t=Om=OI=O m -1 ) 

PROOF. We should count the number of ways that i like objects can be distributed over 

two groups, each of n cells, say G = {C) ,C2 , .. ·,Cn } and G'= {C') ,C'2" ",C'n }, such 

that each cell in G contains not more than k12-1 and each cell in G' contains not more than 

kl2 and no two correspondent cells, Ci and C'i, for all i = O,I, ... ,n, can be assigned 

objects at the same time. Suppose that t, t = O,I,2, ... ,n, cells in G' have received k1'2 

objects. in (7) ways. The remaining objects may be distributed over the remaining 11-' 

dimensions using the equation given in Lemma 2.1, since each dimension in G and G' now 

receives at most k12-1 objects. Therefore, we can write A~ (i) = i (': )A~=! (i - tk / '2) . 
(=0 
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Figure 2.3: The surface area in some unidirectional and bidirectional k-ary n­
cubes versus radius i. 

-k-l 
Substituting An-t (i - tk / 2) from Lemma 2.1 derives the equation claimed by the Lemma, 

I.e. 

An (i) = L L LC-1)i 2 11l 7 n~t 7 1- 2 _-2l-1,.0 -k n n-t III ()()( )(. k(l+t) 'I 
t=Om=O!=O m 1 ) 

THEOREM 2.4. The number of nodes at distance ifrom a given node in Q~ is given by 

k IS odd 

-k 
An (i) = 

11 11-t In ()()( )(. k(l+t) 21 1) L L L(_1)i 211l '; n,~t '7 1- 2 - -

t=OI1l=O/=O m-l 

otherwise 

PROOF. The theorem follows directly from Lemmas 2.1 and 2.2. D 
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Figure 2.3 illustrates the surface area in some unidirectional and bidirectional k-ary n­

cubes versus radius i. 

-k 
COROLLARY 2.4. The volume, V n, of the sphere of radius i in Q,~ is given by 

1+ ± t iC-1/2m(~)(7)(j-~-2l-1) 
j=lm=Ol=D m-I 

k is odd 

1+ ~I I IC-1)12m 7 n~t 7 }--2--2l - 1 i n n-t m ()()( )(. k(l+t) ) otherwise 
j=lt=Dm=Ol=D m-1 

PROOF. It follows directly from Theorem 2.4 and Definition 2.4. 0 

As an illustration of the application of these results, let us calculate the mean distance, d, 

traveled by a message in both Q~ and Q~, assuming that destinations are uniformly 

distributed; the mean distance is the mean number of hops that a message makes when the 

destination address is chosen randomly. Using Theorems 2.2 and 2.4, we can calculate the 

mean message distance in Q~ and Q~ , respectively, as 

d= Ii.An(i)= I IiC-I)1 7 l-l~~~-I, _ n(k-l)_k 1 n(k-l) n ( )(. ) 

N -1 i=l N -1 i=O 1=0 

and 

fk-1l _ n -2 -k 

d = Ii ·An(i) 
N -1 i=! 

rk-1l 1 111--7 n m ( )( )(. kl 2l I) -- L I IC-li2m l~l 7 1-2 __ -
N -1 i=! nr-=iJldJ m 1 

= 
rk-1l () nl--7 II II-t m . k(l+t) 

_1_ L L L L. C_I)12 11l(;)(n ;;/)(7) 1--2-_-2l-I 
N -1 i=! tdJl1r-=iJldJ m 1 

k is odd 

otherwise 

Note that the terms n(k -1) and nr k~'l are the diameters in Q~ and Q~ . respecti\'t~ly. 
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2.3 Adaptive routing in k-ary n-cubes 
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This section first describes the node structure in a k-ary n-cube. It then introduces Duato's 

methodology for designing adaptive routing algorithms. The application of this 

methodology for designing adaptive routing algorithm for k-ary n-cubes is described. 

2.3.1 Node structure 

A k-ary n-cube has N=e identical nodes each consisting of a processing element (PE) and 
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router, as shown in Figure 2.4. The PE contains a processor and some local memory. The 

router has 2n+ 1 input channels and 2n+ 1 output channels (n+ 1 input and n+ 1 output 

channels in a unidirectional cube). A node is connected to its neighbours through 2n inputs 

and 2n output channels (n input and n output channels in unidirectional cube): there are 

two channels (only one in a unidirectional cube) in each dimension corresponding to the 

positive and negative direction respectively. The remaining channels are used by the PE to 

inject messages into or absorb messages from the network. Messages generated by the PE 

are injected into the network through the injection channel. Messages at the destination 

node are transferred to the PE through the ejection channel. The router contains flit buffers 

for each input virtual channel. The input and output channels are connected by a crossbar 

switch that can simultaneously connect multiple input to multiple output channels given 

that there is no contention over the output channels. 

2.3.2 Duato's adaptive routing algorithm 

Many adaptive routing algorithms have been discussed in literature, each with their own 

special requirements [59]. Amongst these, Duato's algorithm [63] is attractive since it 

requires a limited number of virtual channels to ensure deadlock freedom. It has therefore 

been widely studied and is accepted as a practical approach to adaptive routing with 

minimal resource requirements. The Cray T3E [13,45] and the reliable router [53] are two 

examples of recent practical systems that have adopted Duato's routing algorithm. 

2.3.2.1 The general methodology 

The chain of channels a message may pass to reach its destination is called a route or path. 

When a message reserves a channel, and later requests the use of another channel possibly 

several hops further on, there is a dependency between those channels. Also. at a given 

node. a message may request the use of several channels. then select one of them (adapti\e 
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routing). With deterministic routing, messages have a single routing option at each node. 

In this situation, it is necessary to remove all the cyclic dependencies between channels to 

prevent deadlocks [51] or messages may indefinitely hold some channels while waiting for 

other channels that are held by competitors. When adaptive routing is considered, on the 

other hand, messages typically have several choices at each node and it is not necessary to 

eliminate all the cyclic dependencies, provided that every message can always find a path 

towards its destination whose channels are not in such dependencies. The channels of 

these paths can be considered as escape channels from the cycles [63]. A routing 

sub function is a restriction of a routing algorithm which supplies escape channels. 

THEOREM 2.5. A connected and adaptive routing function for an interconnection network 

is deadlock-free if there are no cycles in its channel dependency graph [63]. 

THEOREM 2.6. A connected and adaptive routing function for an interconnection network 

is deadlock-free if there exists a subset of network channels that defines a deadlock-free 

routing subfunction [63]. 

2.3.2.2 The algorithm for k-ary n-cubes 

As discussed above, to design an adaptive routing algorithm for a k-ary n-cube, we need a 

deadlock-free routing subfunction. However, such a routing subfunction can itself be 

deterministic. In k-ary n-cubes, deadlock-free deterministic routing algorithms can be 

designed using virtual channels [59]. The authors in [51] have shown that the wrap-around 

connections in k-ary n-cubes can lead to deadlock situations due to the cyclic 

dependencies that can occur within a dimension but propose the use of an additional 

virtual channel to transform dependency cycles into spirals. On this basis, two virtual 

channels are needed to implement a deadlock-free deterministic routing algorithm in a k­

ary ll-cube network. 
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Applying Duato's methodology for k-ary n-cubes (k >2) requires V, (V >2), virtual 

channels per physical channel. The V virtual channels (vI, \'2 " ", vv) associated \\i th a 

given physical channel are split into two sets: VCI = {vI, \'2} and VC 2 = {l'3' V -+,"', \'\' } . 

The two virtual channels in VCI (also called deterministic virtual channels) are used to 

implement a deadlock-free routing subfunction (escape paths), e.g. dimension order 

deterministic routing. The other virtual channels in VC2 (called adaptive virtual channels), 

can be visited by a message in any order that brings it closer to its destination (as required 

by any minimal routing scheme). A message firstly checks all adaptive virtual channels of 

the remaining dimensions to be negotiated. If some adaptive virtual channels are free, one 

of them is chosen randomly to route through. If all adaptive virtual channels of the 

remaining dimensions are busy, the message is routed through the deterministic virtual 

channels of the lowest dimension to be passed. If the deterministic virtual channels are 

also busy the message is blocked and waits for a proper virtual channel becoming free. 

Figure 2.5 illustrates Duato's minimal adaptive routing algorithm for unidirectional k-ary 

n-cubes in pseudo code. For a bidirectional k-ary n-cube, lines 2, 5 and 6 in the algorithm 

should change as follows. 

{
q+ if(cq-dq)modk«dq-cq)modk . 

5. else {q= max {i I 1 ~ i ~ n, ci 7:- d i }; pc= q_ otherwise ' 

and 

6. if (c q < d q) then \'c= 1 else vc=2; 

As mentioned before, when k=2 the k-ary n-cube collapses to the familiar hypercube. 

According to Duato' s methodology, when designing adaptive routing for hypercubes \\ith 
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ALGORITHM adaptive routing in the unidirectional k-ary n-cube; 

INPUT: Destination node address vector D =dndn- 1 .. ·d l 
and 

current node address vector C =cncn-l . "cl' 

OUTPUT: The virtu~l channel vc, of the physical channel pc, to be taken by the 
message In the next hop. A returned value of zero in pc means that there is 
not any available virtual channel to take and the message is blocked. 

BEGIN 

1. if (C = D) then return ejection channel; 

II message has arrived at destination. 

2. P = { j 11 :::; j:::; n ,c 1 7:- d l' 3v E VCil) and v is free}; 

3. pc = random P; II random gives an element of set P at random 
II it returns 0 if P={}. 

4. if (pc 7:- 0) then vc = random {v I v E VCi pc
) and v is free}; 

5. else pc=maxUll:::;i:=::;n, Ci7:-dd; 

II max A returns the maximum element in set A 
6. if (ci < d i ) then vc= 1 else vc=2; 

7. if (virtual channel vc of physical channel pc is not free) then pc=O; 
endif; 

return vc, pc; 

END; 

Figure 2.5: Adaptive routing algorithm in the unidirectional k-ary n-cube. 

v, (V> 1), virtual channels per physical channel, the virtual channels are split into two sets: 

VCI = {vI} and VC2 = {v2' v3'''', vv}. This is because only one virtual channel (here VI in 

VCI) is needed to implement a deadlock-free deterministic sub-routing algorithm, e.g. e­

cube routing algorithm [59], since with two nodes per dimension and minimal routing 

there is no cyclic dependency between channels of each dimension. As described earlier. 

the remaining virtual channels, those in VC2 . associated to all usable physical channels 

are adaptively used by message to get closer to their destinations. If all adaptive \'irtual 
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channels of usable physical channels are busy, the message is routed through the 

deterministic virtual channel of the physical channel associated to the highest dimension 

remaining to be traversed. The routing algorithm for the hypercube would be the same as 

unidirectional k-ary n-cube except for line 6 which should change to 

6. vc=l; 

as there are no wraparound connections In hypercubes and the deterministic routing 

subfunction for such networks requires only one virtual channel, according to e-cube 

routing (a dimension order routing algorithm) [59]. 

2.4 Summary 

We have drawn a careful distinction between the unidirectional and bidirectional k-ary n­

cube interconnection networks and then derived expressions for calculating the number of 

nodes at some distance from a given centre in each. These results are used in the models 

developed in the next chapters, but they are also interesting in their own right. For 

example they are very useful in the study of the spanning trees widely used in the design 

of collective communication (multicast and broadcast) and resource placement algorithms 

[20, 31, 70-72, 156]. 

We have described the basic router structure which supports wormhole switching in k-ary 

n-cubes and selected Duato's routing methodology for its ability to provide full adaptivity 

with a minimum requirement of virtual channels. We have applied this methodology to 

define a minimal adaptive routing algorithm for k-ary n-cubes. In the next chapters, we 

shall construct analytical models of k-ary n-cubes using this algorithm for routing with the 

aim of studying behavior under different traffic patterns and loads. 



Chapter 3 

Performance Modelling of Adaptive 
Wormhole Routing in k-Ary n-Cubes with 
Uniform Traffic 

Several researchers have recently proposed analytical models of fully adaptive routing [33, 

43, 120, 142]. For instance, Boura et al [33] have proposed a model of fully adaptive 

routing in the hypercube. More recently, the authors in [43, 120] have extended the model 

for the 2-dimensional torus while the author in [142] has generalised it for high-radix k-ary 

n-cubes. 

The most difficult part in developing any analytical model of adaptive routing is the 

computation of the probability of message blocking at a given router due to the number of 

combinations that have to be considered when enumerating the paths that a message may 

have used to reach its current position in the network. The problem is further exacerbated 

when the network dimensionality increases since the number of alternative paths then also 

increases. While the model in [142] exhibits a good degree of accuracy under light and 

moderate traffic loads, it loses accuracy as the network enters the heavy traffic regions. 

The discrepancy between the model and simulation is more noticeable as the number of 
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alternative paths increases because the model resorts to approximations when computing 

the probability of message blocking. 

This chapter describes a new analytical model for wormhole-switched k-ary n-cubes. The 

proposed model exhibits a good degree of accuracy in light, moderate and heavy traffic 

conditions. It achieves this because it computes the exact expressions for the probability of 

message blocking at a given router by considering all the possible paths that enable a 

message to cross from its source to its current position in the network. The model 

determines the value of different components that make up the average message latency. 

including the message transfer time and the blocking delay for messages, in the network. It 

also considers the use of virtual channels with the adaptive routing algorithm described in 

Chapter 2. 

The analytical model is described first for unidirectional k-ary n-cubes. It is then extended 

for bidirectional k-ary n-cubes and for traffic patterns that exhibit communication locality. 

The remainder of this chapter is organised as follows. Section 3.1 outlines the assumptions 

used in the analysis. Section 3.2 presents the model for the unidirectional k-ary n-cube 

while Section 3.3 validates it through simulation experiments. Extensions of the model for 

the bidirectional k-ary n-cube and for capturing the effects of communication locality are 

described in Section 3.4. Section 3.5 uses the proposed model to analyse the performance 

of k-ary n-cubes for different network parameters. Finally, Section 3.6 concludes this 

chapter. 

3.1 Assumptions 

The model uses the following assumptions that are widely accepted in the literature [3-6. 

12,32-34,42,43,48,49,58,81, 84-86, 99,120,142.143]. 

a) Nodes generate traffic independently of each other, following a Poisson process 
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with a mean rate of Ag messages per cycle. 

b) The arrival process at a given channel is approximated by an independent Poisson 

process. This approximation has often been invoked to determine the arrival 

process at channels in store-and-forward networks [103, 104]. Although 

wormhole routing differs from store-and-forward in various aspects (e.g. flit 

buffering and advancing as opposed to message buffering and forwarding), 

simulation experiments from previous studies have revealed that this is still a 

reasonable approach to determine the arrival process [36, 83, 85, 121, 141]. 

Therefore, the rate of the process arrival at a channel can be calculated using 

formulae borrowed from Jackson's queueing networks [104]. 

c) Message destinations are uniformly distributed across network nodes. 

d) Message length is fixed and equal to M flits, each of which is transmitted in one 

cycle from one router to the next using wormhole switching. 

e) The local queue at the injection channel in the source node has infinite capacity. 

Moreover, messages are transferred to the local processor as soon as they arrive 

at their destinations through the ejection channel. 

f) V virtual channels are used per physical channel, as shown in the router structure 

illustrated in Figure 2.2(a). These are divided into two classes: Vel and ve2. 

According to the adaptive routing algorithm, described in Section 2.2.2, Class ve2 

contains (V - 2) virtual channels that are crossed adaptively. On the other hand, 

class Vel contains two virtual channels that are crossed deterministically. Let the 

virtual channels belonging to class ve2 and vel be called the adaptive and 

deterministic virtual channels, respectively. When there is more than one adaptive 

virtual channel available a message chooses one at random. To simplify the model 

derivation no distinction is made between the deterministic and adaptive \'irtual 

channels when computing virtual channel occupancy probabilities [1'+2]. 
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3.2 The analytical model 

The notation used to describe the model is briefly listed in Table 3.1. The model computes 

the mean message latency as follows. 

3.2.1 Outline of the model 

The mean network latency, S, that is the time to cross the network, is first determined. 

Then, the mean waiting time seen by a message in the source node, Ws ' is evaluated. 

Finally, to consider the effects of virtual channels multiplexing, the mean message latency 

is scaled by a factor, V , representing the average degree of virtual channels multiplexing 

that takes place at a given physical channel. Thus the mean message latency can be written 

as 

Latency=(S+Ws)V. (3.1 ) 

The average number of hops that a message makes across one dimension and across the 

network, k and d respectively, are given by [6] 

- k-l 
k=-

2 ' 

-
d =nk. 

(3.2) 

(3.3) 

Fully adaptive routing allows a message to use any available channel that brings it closer 

to its destination resulting in an evenly distributed traffic rate on all network channels. A 

router in the k-ary n-cube has n output channels and the PE generates, on average, Ag 

messages in a cycle. Since each message travels, on average, d hops to cross the network 

the rate of messages received by each channel, Ae , can be written as [6] 
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Table 3.1: Notation used in the model for uniform traffic 

Symbol Description 

B· } blocking time seen by a message at the j-th hop during in its journey 

D destination node 

d average hops that a message takes in the network 

H set denoting the distance between Sand D in each dimension i for 1 :::; i :::; n 

IHI distance between the source node S and the destination node D 

k network radix 

k average hops that a message takes in one dimension 

Latency average latency seen by a message 

Ag message generation rate at a node 

Ac messages arrival rate on a channel 

M message length 

n network dimension 

nH number of elements in set H 

N network size 

Ij) (h, j) number of ways to distribute j hops over n H dimensions with at most hi hops in 
dimension i for 1:::; i :::; n 

Pa probability that all adaptive virtual channels at a physical channel are busy 

Pa&d 
probability that all adaptive and deterministic virtual channels at a physical 
channel are busy 

Pblock j probability that a message is blocked at the j-th hop channel 

Pv probability that v virtual channels at a physical channel are busy 

PassZ: 
} probability of passing z dimensions after j-th hop in a journey towards D 

Jl \' state that v virtual channels of a physical channels are occupied 

Q\, temporary variable used for calculating PI' 

SH message latency to cross the network from source node S to destination node D 

-
S mean message latency 

V number of virtual channels per physical channel 

-
V average multiplexing degree of the virtual channels at a physical channel 

H' mean waiting time seen by a message at a given physical channel 

Ws 
mean waiting time seen by a message at the source node before entering the 
network 
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(3.4) 

Since the k-ary n-cube is symmetric, averaging the network latencies seen by the messages 

generated by a given node for all other nodes, gives the mean message latency in the 

network. Let S=sls2"'Sn be the source node and D=d1d 2 ···dll denotes a destination 

node such that DE G - {S} where G is the set of all nodes in the network. Let us define 

the set H = {hi}, (1::; i ::; n) , where each element hi denotes the number of hops that the 

message makes along dimension i when it traverses the network from the source node to 

the destination node, that is (si +hi)modk =di . The network latency, SH' seen by the 

message crossing from node S to node D consists of two parts: one is the delay due to the 

actual message transmission time, and the other is due to the blocking time in the network. 

Therefore, S H can be written as 

IHI 
SH =IH I+M + LB), 

)=1 

(3.5) 

where M is the message length, I H I is the distance (in terms of the number of hops made 

by the message) between the source and the destination node, and B) is the blocking time 

seen by a message on its j-th hop. The terms I H I and B j are given by 

n 

IHI= Lhi' 
i=1 

B) = Pb/ock j W , 

(3.6) 

(3.7) 

with Pb1ock. being the probability that a message is blocked on its j-th hop during its 
} 

network journey and W is the mean waiting time to acquire a channel in the event of 

blocking. Let us now calculate the blocking probability Pblock j . To do so, let Il H denote 

the number of elements in the set H = {hl,lI] ," ·,lIn }, calculated for source and 
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destination nodes Sand D as shown earlier. Recall that !p (H, j) , defined by Theorem 2.1, 

can give the number of ways that j hops can be distributed over n H dimensions such that 

the number of hops made in each dimension i, (1:S; i :s; n H ), can be at most the i-th 

element of the set H, that is hi' 

The probability that a message has entirely crossed one dimension on its j-th hop IS 

therefore gi ven by 

n 

If//(H'(l), j - hi) 

Pasi =.!:..1=_1~ ____ _ 
} 

(3.8) 
f//(H, j) 

where H'(l) = {hi -1,h2 -I," ·,hl - I -1.0,hz+1 -I,,, ·,hn -l}. Similarly, the probability that 

a message has entirely crossed two dimensions on its j-th hop can be expressed as 

(3.9) 
f//(H, j) 

where H'(l1,/ 2 )={h l -l,h2 -1, ... ,hll_I-I,Q,hl[+I-I, ... ,hI2-I-l,Q,hI2+1-1, ... ,hn -I}. 

More generally, the probability that a message has entirely crossed z dimensions can be 

written as 

-n 

I 
n 

I f//( H ' (II ,/2 ' ... , I z ), j - I hi i ) 

i=! (3.10) 

where 

(3.11) 



Chapter 3. Petformance modelling of adaptive wormhole routing in k-ary n-cubes with /III itimn rraffh 55 

i = I) or i = 12 or .,. or i = L 
~ 

otherwise (3.12) 

A message is blocked at a given channel when all the adaptive virtual channels of the 

remaining dimensions to be visited and also the deterministic virtual channels of the 

lowest dimension still to be visited are busy. The probability of blocking depends on the 

number of output channels, and thus on the virtual channels that a message can use at its 

next hop. When a message has entirely crossed z dimensions it can select any of the 

available (n-z)(V-2) adaptive virtual channels and one deterministic virtual channel to 

make its next hop. The probability of blocking, Pblock. , can therefore be written as 
} 

n-l 

Pblock j = L Pass) (Pa r- z
-

1 
Pa&d ' 

z=O 

(3.\3) 

with P
a 

being the probability that all adaptive virtual channels of a physical channel are 

busy and Pa&d being the probability that all adaptive and deterministic virtual channels 

of a physical channel are busy. To compute Pa three cases should be considered, and are 

as follows [142]. 

a) V virtual channels are busy which means all adaptive virtual channels are busy as 

well. 

b) (V-I) virtual channels are busy. The number of combinations where (V-I) out of 

V virtual channels are busy is C~l) of which only two combinations result in all 

adaptive virtual channels being busy. 

c) (V-2) virtual channels are busy. The number of combinations where (V-2) out of 

V virtual channels are busy is (V~2) of which only one combination results in all 

adapti ve virtual channels being busy. 

Similarly, to compute Pa&d' two cases should be considered, as follows [1-l-21. 
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a) V virtual channels are busy, that is all adaptive and deterministic virtual channels 

are busy. 

b) (V-I) virtual channels are busy. In this case only two combinations out of C\~I) 
result in all adaptive and deterministic virtual channels being busy. 

Let Pv ' (0 ~ v ~ V) , represent the probability that v virtual channels at a physical channel 

are busy. Taking into account the different cases mentioned above, Pa and Pa & dare 

given in terms of Pv by 

2PV - 1 PV - 2 

Pa = IV + ( V 1 + ( V Y 
V-I V-2 

) ) 

2PV - 1 
Pa&d = Pv + ( V Y 

V-I 
) 

(3.14 ) 

(3.15) 

To determine the mean waiting time, w, to acquire a virtual channel a physical channel is 

treated as an M/G/1 queue with a mean waiting time of [104] 

pS(1+C~) 
w= s 

2(1- p) 

O'~ 
C~=~ 

S -2' 
S 

(3.16) 

(3.17) 

(3.18) 

') 

where Ac is the traffic rate on the channel, S is its service time, and o-~ is the variance 

of the service time distribution. While Ac is given by Equation 3.4 above, the quantities S 

and O'~ are computed as follows. Since adaptive routing distributes traffic evenly among 
S 
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all channels, the mean service time at each channel is the same regardless of its position, 

and is equal to the mean network latency, S. Equation 3.5 gives the network latency. S H ' 

seen by a message in crossing from the source node S to the destination node D. 

Averaging over the (N-l) possible destination nodes in the network yields the mean 

network latency as 

- 1 
S=- ISH' 

N -1 DEG-{S} 
(3.19) 

Since the minimum service time at a channel is equal to the message length, M, following 

a suggestion proposed in [58], the variance of the service time distribution can be 

approximated as a2:. = (S - M)2 . Hence, the mean waiting time becomes 
S 

(3.20) 

A message originating from a gi ven source node sees a network latency of S (gi ven by 

Equation 3.19). Modelling the local queue in the source node as an M/GIl queue, with the 

mean arrival rate Ag IV (recalling that a message in the source node can enter the network 

through any of the V virtual channels) and service time S with an approximated variance 

(5 - M J yields the mean waiting time seen by a message at source node as 

Ag-2 (5-MJ 
- S 1 + -'------'--
V -2 

S 
Ws = --~--::1---....L 

/lg -
2(1--S) 

V 

(3.21) 

The probability, ~" that \' virtual channels are busy at a physical channel can be 

determined using a Markovian model as shown in Figure 3.1. State 1l \" (0 ~ \' ~ \'), 
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1 
S 

1 

S 
1 
S 

1 

S 
~_'l 
- /l.,c 
S 

Figure 3.1: The Markov chain used for computing the probability of virtual 
channel occupancy of a physical channel. 

corresponds to v virtual channels being busy. The transition rate out of state II \' to state 

llv+I is the traffic rate Ac (given by Equation 3.4) while the rate out of state lll'to state 

II v-I is .l (S is given by Equation 3.19). The transition rate out of state llV is reduced 
S 

by Ac to account for the arrival of messages while a channel is in this state. The steady-

state solutions of the Markovian model yield the probability PI" (1 ::; v ::; V) , as [49 J 

where 

1, 

v=O 

O<v<V, 

v=V 

v=O 

O<l'<V 

\' =V 

(3.22) 

(3.23) 

When multiple virtual channels are used per physical channel they share the band\\idth in 
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a time-multiplexed manner. The average degree of multiplexing of virtual channels. that 

takes place at a given physical channel, can be estimated by [49] 

(3.2-+ ) 

3.2.2 The hypercube case 

When the network is a hypercube (a k-ary n-cube with k=2), some of equations derived 

above are modified as follows. The average distance, d , traversed by a message crossing 

the network is given by [1] 

d = ~.tl 
L.

l 
N-l 

i=l 

nN 

2(N -1) 
(3.25) 

Since in the hypercube, when a message makes one hop it has consequently passed one 

dimension, the probability that the message is blocked at its j-th hop is simply given by 

R - (p \/HI-j 
block j - a ) Pa &d . (3.26) 

Since only one deterministic virtual channel per physical channel is sufficient to ensure 

deadlock-free fully adaptive routing in the hypercube, as described in Section 2.3, the 

probability that all adaptive virtual channels associated to a physical channel are busy, Pa . 

and the probability that all adaptive and deterministic virtual channels associated with a 

physical channel are busy, Pa&d ' are expressed as [36] 

PV - 1 
Pa =f\; +( V r 

V-I 
) 

(3.27) 

n.28) 
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3.2.3 Implementation issues 

The above equations reveal that there are several inter-dependencies between the different 

variables of the model. For instance, Equations 3.5, 3.7 and 3.19 reveal that S is a 

function of w while Equation 3.20 shows that w is a function of S . Given that closed-form 

solutions to such inter-dependencies are very difficult to determine the different variables 

of the model are computed using iterative techniques for solving equations [104]. The 

procedure for computing the mean message latency using the above model is as follows. 

Step 1) Let S be initialized to M. 

Step 2) Compute Pv , Pa , Pa&d and w, using Equations 3.14, 3.15, 3.22, and 3.20. 

Step 3) Compute SH, for all HEN - {S}, using Equation 3.5. 

Step 4) Compute new S using Equation 3.19. If it is different from the old value by 

greater than E (a predefined error limit) then go to Step 2. 

Step 5) Compute Ws ' V and Latency using Equations 3.21, 3.24 and 3.1. 

To ease the implementation of the above procedure we can assume that node ° (with 

address pattern 0, 0, 0, ... , 0) is the source node (S) and nodes 1, ... , kn -1 are destination 

nodes (D E N - {S} ). This will simply result in H=D. 

Note that we may avoid computing SH for some H vectors recalling that, due to adaptive 

routing and network symmetry, the latency SH is the same for all permutations of hiS. 

l5,i5,n, in H =(h I ,h2 , .. ·,hn ). Using this property the run time of the model will be 

lower. For example, for a 3-ary 3-cube, and assuming a source node at (000), we have 

H=DE{001,002,010,011,012,020,021,022, 100, 101, 102, 110, Ill, 112, 120.121, 

122, 200, 20 I, 202, 210, 211, 212, 220. 221, 222} for \\hich we han? 
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S(002) = S(020) = S(200) , S(OII) = S(lIO) = SoO!) , 

S(022) = S(220) = S(202) ' S(l12) = S(l21) = S(211), S(l22) = S(221) = S( 21:::) , and 

S(OI2) = S(l20) = S(20l) = S(102) = S(02I) = S(2l0)' Therefore, S can be computed about 

26/9=2.88 times faster since we may consider calculating the 9 different latency factors 

(listed above), instead of computing all 33_1 message latencies corresponding to the 26 

different destination nodes, as S = [SOlI) + S(222) + 3S(OOI) + 3S(002) + 

3S(011) + 3S(022) + 3S(12) + 3S(l22) + 6S(OI2) ]/26. Such equivalent latency factors would 

appear even more when the network size increases. 

3.3 Model validation 

The analytical model has been validated through a discrete-event simulator that mimics 

the behaviour of Duato's fully adaptive routing at the flit level in k-ary n-cubes. In each 

simulation experiment, a total number of 100000 messages is delivered. Statistics 

gathering was inhibited for the first 10000 messages to avoid distortions due to the initial 

startup conditions. The simulator uses the same assumptions as the analysis, and some of 

these assumptions are detailed here with a view to making the network operation clearer. 

The network cycle time is defined as the transmission time of a single flit from one router 

to the next. Messages are generated at each node according to a Poisson process with a 

mean inter-arrival rate of Ag messages/cycle. Message length is fixed at M flits. 

Destination nodes are determined using a uniform random number generator. The mean 

message latency is defined as the mean amount of time from the generation of a message 

until the last data flit reaches the local PE at the destination node. The other measures 

include the mean network latency, the time taken to cross the network, and the mean 

queueing time at the source node, the time spent at the local queue before entering the first 

network channel. 
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Numerous validation experiments have been performed for several combinations of 

network sizes, message lengths, and number of virtual channels to validate the model. 

However, for the sake of specific illustration, Figures 3.2, 3.3 and 3.4 depict latency 

results predicted by the above models plotted against those provided by the simulator for a 

8-ary 2-cube (N = 82
), 8-ary 3-cube (N = 83

), and 8-dimensional hypercube (N = 28), 

respectively, and for different message lengths, M=32, 64 and lOO flits. Moreover, the 

number of virtual channels per physical channel was set to V=3 and 5. 

The horizontal axis in the figures shows the traffic generation rate at each node (Ag ) while 

the vertical axis shows the mean message latency. The figures reveal that in all cases, the 

analytical model predicts the mean message latency with a good degree of accuracy in the 

steady state regions. Moreover, the model predictions are still good even when the 

network operates in the heavy traffic region and when it starts to approach the saturation 

region. However, some discrepancies around the saturation point are apparent. These can 

be accounted for by the approximation made to estimate the variance of the service time 

distribution at a channel. This approximation greatly simplifies the model as it allows us to 

avoid computing the exact distribution of the message service time at a given channel. 

which is not a straightforward task due to the interdependencies between service times at 

successive channels (since wormhole routing relies on a blocking mechanism for flow 

control). However, the main advantage of the proposed model is its simplicity which 

makes it a practical evaluation tool for assessing the performance behaviour of fully 

adaptive routing in k-ary n-cubes. 

3.4 Extension of the model 

This section outlines briefly the modifications that have to be made in order to extend the 
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Figure 3.2: The average message latency predicted by the model against 
simulation results for an 8-ary 2-cube with message length M=32, 64 and 100 
flits and (a) V=3 and (b) V=5 virtual channels per physical channel. 
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Figure 3.3: The average message Latency predicted by the model against 
simulation results for an 8-ary 3-cube with message length M=32, 64 and 100 
flits and (a) V=3 and (b) V=5 virtual channels per physical channel. 
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Figure 3.4: The average message Latency predicted by the model against 
simulation results for an 8-dimensional hypercube with message length M=32, 
64 and 100 flits and (a) V=3 and (b) V=5 virtual channels per physical channel. 
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above model for bidirectional k-ary n-cubes and for capturing the effects of 

communication locality. 

3.4.1 The model for the bidirectional k-ary n-cubes 

The average number of hops that a message makes across one dimension, k, gi\'en by 

Equations 3.1, should be changed to [6] 

if n IS even 
-
k= (3.29) 

if n is odd 

Since a router in the k-ary n-cube has 2n output channels, the rate of messages received by 

each channel, Ac ' is now given by [6] 

(3.30) 

Let set H = {hi}, (1::; i ::::: n) , denote the number of hops that the message makes along 

each dimension when it traverses the network from the source node S = 5152 ... 5 n to the 

destination node D = d l d 2 .. ·dn as discussed above for the unidirectional case. We have 

(3.31 ) 

where h -:t- and h -:- are distance between the source and destination nodes in i-th dimension 
/ / 

using channels in, respectively, increasing and decreasing directions. These numbers, ht 
and hi- , are the smallest integer numbers satisfying the following equations 

0.32) 
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(3.33) 

3.4.2 Capturing the effects of communication locality 

Locality has an important impact on network performance [96]. Thus, deriving an 

analytical model to study the effect of locality on the overall performance of a network 

would be very beneficial. The above modelling approach can be easily extended to 

account for the case when traffic contains communication locality. Using a simple locality 

model proposed by Agarwal [6] allows the probability of blocking to be determined in a 

similar way to that of the uniform traffic case. Letf denote the locality factor, which is the 

fraction of nodes that are potential candidates to receive a message from a source node. 

Moreover, for a given source node, destination node is chosen randomly among the nodes 

in an n-dimensional sub-cube withfN nodes centred at the source. Note thatf=l refers to a 

pure uniform traffic without locality. For a given fraction of locality, f, destination nodes 

for messages originating at a source node with address x = (Xt X2 ···xn ), 0 ~ Xi ~ k -1, are 

randomly chosen from the set of nodes Y = (Yt Y2 ... Yn ) where Xi ~ )'i ~ Xi + ~ fN -1 

(modulo k). With such a locality model, k given by Equation 3.2 should be replaced in the 

model by k f given by 

(3.34) 

The destination node D = d td 2 .. ·dn for a message generated at a given source node 

S = StS2 .. 'sn' can be any node in the set Gr -S where 

(3.35) 

The vector H for each destination node D is now made up from new hiS. (1 S; i ~ n), 

derived to meet the condition used in Equations 3.32 and 3.33. Since the number of 
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possible destination nodes D for the given source node is fN -1 (the number of elements 

in Gf excluding the source node), Equation 3.19 should change to 

(3.36) 

3.5 Performance analysis 

The proposed analytical model is used to study the performance merits of the k-ary n-cube 

with adaptive routing and virtual channels. In this section, the 10-ary 3-cube is often used 

for the sake of a concrete example, but the conclusions reached here have been found to be 

similar when other network configurations are considered. 

Figure 3.5 shows, for the case of a unidirectional 10-ary 3-cube with message length 

M=50 flits and V=4 virtual channels, as a function of offered traffic by each node, the 

main components of the message latency, Latency: average network latency, S; average 

waiting time at a source node to inject a message into the network, Ws; and average 

degree of virtual channels multiplexing, V. As can be seen from the figure, the waiting 

time at the source and average degree of virtual channels multiplexing grow almost 

linearly when the offered traffic increases, whereas the average network latency remains 

almost fixed when the network has not approached the heavy traffic region. The network 

latency starts to increase rapidly when the traffic is around Ag = 0.0015. 

Figure 3.6 illustrates latency results against traffic generation rate when the message 

length is M = 50 flits for different numbers of virtual channels. The results show that 

increasing the number of virtual channels improves network performance especially when 

the increase in the number of virtual channels is relatively considerable (compared to the 

number of existing virtual channels). That is, the performance improvement from \'=3 to 
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Figure 3.5: Main components making the average message latency, (a) S, (b) 
Ws ' and (c) V , versus traffic generation rate in a unidirectional 1 O-ary 3-cube with 
message length M=50 flits and V=4 virtual channels per physical channel. 

V=4 (with a 4/3 increase ratio) is much more noticeable than that from V=6 to V=7 (with a 

7/6 ratio). As we add more and more virtual channels, the achieved performance 

improvement is reduced, since the network approaches the actual limits imposed by the 

total physical bandwidth of its channels. Thisjs better shown in Figure 3.7, which reveals 

the effects of the number of virtual channels on network performance by plotting the 

offered traffic when the network is saturated (saturation traffic) against the number of 

virtual channels. The network enters the saturation region when p ~ 1 (given by Equation 

3. 17); the corresponding Ag for which the condition p ~ 1 is satisfied is the saturation 

traffic rate. As can be seen from the figure, increasing the number of virtual channels 

increases the saturation traffic rate. However. the increase of the saturation traffic rate 
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Figure 3.6: The average message latency versus traffic generation rate in a 
unidirectional 1 O-ary 3-cube with message length M=50 flits and V=3, 4, 5, 6, and 
7 virtual channels per physical channel. 
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Figure 3.8: The average message latency versus traffic generation rate in a 
unidirectional and bidirectional 10-ary 3-cube with message length M=50 and 200 
flits and V=4 virtual channels per physical channel. 
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becomes smaller when the number of virtual channels becomes larger. This continues until 

an increase in the number of virtual channels does not change the saturation traffic rate 

noticeably. Such a limit saturation traffic rate is indeed the physical bandwidth limit of the 

network. The convergence of the saturation traffic rate to such a limit, when the number of 

virtual channels increases, can be easily observed in Figure 3.7. 

Figure 3.8 shows the mean message latency curves for the unidirectional and bidirectional 

10-ary 3-cube when the message length is M = 50 and 200 flits and V = 4 virtual channels 

per physical channel. The bidirectional k-ary n-cube has double the bisection width and 

node pin-out than its unidirectional equivalent. In order to have a fair and realistic 

comparison, the bisection width or pin-out constraint was held constant in the two 

networks. So, if we use the unidirectional network as a basis for the comparison (with a 

channel width equals the flit size), the channel width in the bidirectional network will be 

half of the flit size, i.e. two channel cycles are required for each flit transmission over a 

channel in the bidirectional network. The figure reveals that the bidirectional k-ary n-cube 

outperforms its unidirectional counterpart under the constant bisection width and pin-out 

constraints. This is because the former network has a lower message distance and lower 

message traffic rate on its channels which compensate for the lower channel bandwidth. 

Figure 3.9 depicts the saturation rates In the unidirectional 10-ary 3-cube when the 

message length is M=50 and 200 flits and V=4 virtual channels per physical channel as a 

function of the locality factor f The results show that the network saturates sooner as the 

locality factor increases although the performance degradation is faster for longer 

messages. This is because the larger locality factor f imposes higher traffic rates over 

network channels. Longer messages increase their service times at a network channel. 

resulting in longer blocking times. The influence of longer messages on network 

performance is more noticeable when f increases, as the network suffers from both higher 

traffic rates on its channels and longer channel service times imposed by longer messages. 
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Figure 3.10: The saturation traffic rate versus message length M in (a) 10-ary 2-
cube and 20-ary 2-cube, and in (b) 7-dimensional and 9-dimensional hypercube, 
with V=4 virtual channels per physical channel. 

Finally, Figure 3.10 investigates the impact of message length on network performance 

(saturation rate) in the two well-known instances of k-ary n-cubes. namely the 2-

dimensional torus and the hypercube. Figure 3.10(a) depicts the saturation traffic versus 

message length M in the unidirectional 10-ary 2-cube and 20-ary 2-cube, respectively. 

when V=4 virtual channels per physical channel. The results show that performance 

degrades when the network size increases from 100 nodes to 400 nodes. Figure 3.1 O(b) 

shows the same quantities for the 7- and 9-dimensional hypercubes where an increase 
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factor of four in network size has not had a noticeable change in the network saturation 

traffic. The results reveal an important characteristic of the torus and hypercube, and that 

is the torus (low dimensional k-ary n-cube) is not truly scalable as its performance depends 

strictly on its size, while the hypercube (high-dimensional k-ary n-cube) is much more 

scalable as the total network bandwidth, as a function of the total number of channels, 

increases with network size. 

3.6 Conclusions 

In this chapter an analytical model to compute the mean message latency in k-ary n-cubes 

with fully adaptive wormhole routing was proposed. Simulation experiments have 

revealed that the latency results predicted by the analytical model are in good agreement 

with those obtained through simulation. The proposed model achieves a good degree of 

accuracy under different operating conditions because it computes the exact expression for 

the probability of message blocking at a given router. It uses M/G/l queuing theory when 

calculating the message blocking time at each channel. Furthermore, it achieves this high 

degree of accuracy while maintaining simplicity, making it a practical evaluation tool that 

can be used to gain insight into the performance behavior of fully adaptive routing in 

wormhole-routed k-ary n-cubes. The model was also extended for bidirectional k-ary n­

cubes and for traffic patterns that exhibit communication locality. 

The analysis using the proposed model shows that the number of virtual channels and the 

traffic locality have a great impact on network performance. A preliminary comparison 

between unidirectional and bidirectional k-ary n-cubes, under both constant bisection 

bandwidth and pin-out constraints, reveals that bidirectional k-ary n-cube outperform their 

unidirectional counterparts. It is also shown that higher-dimensional k-ary n-cube 

networks such as hypercubes, are more scalable than their lower-dimensional counterparts 

such as tori, because, in the former. total network bandwidth scales better with net\\ ork 
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sIze. 

Future work in this area may extend the proposed analytical model for other common 

multicomputer network topologies such as n-dimensional meshes, which are \ariations of 

k-ary n-cubes without wrap-around connections. Developing a model for meshes is more 

complicated than for k-ary n-cubes because traffic rates and service times have to be 

computed at each network channel; these differ from one channel to the next due to the 

inherent asymmetry of the topologies. 

Existing studies [29, 67, 158, 162, 174] have so far relied on software simulation to 

examine the performance of adaptive routing under other traffic patterns, such as those 

generated by the presence of hotspots in the network and matrix transpose communication. 

In the next chapters, we propose new analytical models that deal with important non­

uniform traffic patterns such as hotspots and permutation traffic patterns. 



Chapter 4 

An Analytical Model of Adaptive 
Wormhole Routing in the 
Presence of Hotspot Traffic 

Several analytical models of fully adaptive routing have recently been proposed for 

wormhole-routed k-ary n-cubes under the uniform traffic pattern. Recent studies [59, 74, 

158] have revealed that the performance advantages of adaptive routing over deterministic 

routing are more noticeable when traffic is non-uniform due, for example, to the presence 

of hotspots in the network [149]. Hotspots arise when a number of nodes direct a fraction 

of their generated messages to a single destination node. For instance, global 

synchronisation where each node in the system sends a synchronisation message to a 

distinguished node is a typical situation that can produce hotspots [88, 149, 158]. The 

reduction operation [59], where a node receives messages from all other nodes. is another 

example that may generate hotspots. In distributed shared-memory (OSM) 

multicomputers, the traffic generated by cache coherency protocol, mainly composed of 

im'olidation and ackllmvledgement messages, is also likely to create hotspots [88]. 
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To the best of our knowledge, no study has been reported in the literature for modelling 

hotspots in wormhole-routed k-ary n-cubes, and consequently most studies have resorted 

to simulation to evaluate the performance benefits of adaptive routing in these networks. 

This chapter proposes the first analytical model for computing the mean message latency 

in k-ary n-cubes with fully adaptive routing in the presence of hotspot traffic. The model is 

developed for Duato's fully adaptive routing algorithm [63], but the modelling approach 

can equally use the other routing algorithms described in [115, 174]. 

4.1 The analytical model 

This study assumes that there is only a single hotspot node in the network. The main 

reason behind this restriction is to keep the notation used for describing the model at a 

manageable level. Our modeling approach, however, can be extended to deal with the case 

of multiple hotspots with some effort. 

4.1.1 Notation and assumptions 

The list of symbols used to describe the model is shown in Table 4.1. Moreover, the model 

uses the following assumptions that are widely employed in the literature [3-6, 12, 32-34, 

42,43,48,49,58,81,84-86,91,120,142,143]. 

a) The traffic model proposed by Pfister and Norton [149] is used to generate 

hotspot traffic. In this model, each generated message has a finite probability h 

of being directed to the hotspot node, and probability (1- h) of being directed to 

the other network nodes. Let us refer to these two types of messages as hotspot 

and regular messages respectively. 

b) Nodes generate traffic independently of each other, following a Poisson process 

with a mean rate of Ag messages/cycle consisting of regular and hotspot portions 
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Table 4.1: Notation used in the model for hotspot traffic. 

Notation Description 
I 

Br mean blocking time seen by a regular message at a given channel 

B 
hm,j mean blocking time seen by ai-hop hotspot message at its m-th hop channel 

d average number of hops that a regular message makes across the network. 

h fraction of hotspot messages generated by each node 

1 set of channels that are} hops away from the hotspot node 

11111 number of elements in the set J 

k network radix 

k average number of hops that a regular message makes in a dimension 

n network dimension 

n· I number of nodes located i hops away from a given node 

N network size (N=e) 

Qv. intermediate variable used for calculating p 
\' . 

J J 

Ph' } 
probability that a message crosses a channel located} hop away from the hotspot 

Pa . probability that all adaptive virtual channels at a physical channel located} hops away from 
J hotspot node are busy 

Pa&d. 
probability that all adaptive and deterministic virtual channels at a channel located} hops 

} away from hotspot are busy 

Pv . probability that v virtual channels at a channel located } hops away from hotspot node are 
J busy 

Pt I , probability of termination for a message that makes, on average, I in each dimension 

S· } network latency of ai-hop hotspot message 
-- latency seen by a hotspot message to cross from a channel located } hops away from the 
Sh· 

J hotspot node to its destination (i.e .. the hotspot node) 
-
S mean network latency 

Sh· 
} 

network latency of ai-hop hotspot message 

SrlSh mean network latency of a regularlhotspot message 

Ss. 
J 

message latency for a source node located} hops away from hotspot. 

- average multiplexing degree of the virtual channels at a given physical channel. V 

W· 
} 

mean waiting time seen by a message at a channel} hops away from the hotspot node 

Ws· 
} 

mean waiting time at a source node located} hops away from the hotspot node 

Ws mean waiting time in a given source node 

9\1' . 
state in the Marko\' chain denoting that v virtual channels are busy at a channel located j 

} hops away from the hotspot , 

~} 
ratio of the number of nodes which are} hops away from the hotspot node to the number ot 

nodes that are i. }::; i ::; d max . hops away from hotspot. --

Ag message generation rate at a node 
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Table 4.1: (continued). 

Notation Description 

Ah . 
} 

traffic rate of hotspot messages on a channel that is j hops away from the hotspot node' 

A' j total traffic rate on a channel that is j hops away from the hotspot node 

Ar traffic rate of regular messages on a channel 

6· j probability of generating aj-hop message 

qJ . I j, 
probability of blocking for a message that makes, on average, I hops per dimension 

n p,1 
p~obab~lity that p dimensions have been crossed by a message that makes, on average. / per 
dImensIOn 

of hAg and (1- h )Ag respectively. 

c) Message length is fixed and equal to M flits, each of which is transmitted in one 

cycle between two adjacent nodes. 

d) The local queue at the injection channel in the source node has infinite capacity. 

Moreover, messages are transferred to the local PE as soon as they arrive at their 

destinations through the ejection channel. 

e) V virtual channels are used per physical channe1. as shown in the router structure 

illustrated in Figure 2.2(a), which are divided into two classes VC I and VC2. 

According to the adaptive routing algorithm, described in Section 2.2.2, Class 

VC2 contains (V - 2) virtual channels that are crossed adaptive1y. On the other 

hand, class vel contains two virtual channels that are crossed deterministically. 

Let the virtual channels belonging to class VC2 and VC I be called the adaptive 

and deterministic virtual channels, respecti\·ely. When there is more than one 

adaptive virtual channel available a message chooses one at random. To simplif) 

the model derivation no distinction is made between the deterministic and 
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adaptive virtual channels when computing virtual channel occupancy 

probabilities [142]. 

4.1.2 The outline of the model 

The mean message latency is composed of the mean network latency, S , that is the time 

to cross the network, and the mean waiting time seen by a message in the source node. 

Ws . However, to capture the effects of virtual channel multiplexing, the mean message 

latency has to be scaled by a factor, V , representing the average degree of virtual 

channels multiplexing, that takes place at a given physical channel. Therefore, the mean 

message latency can be written as 

Latency = (S + Ws)V . (4.1 ) 

The regular and hotspot messages see different network latencies as they cross different 

numbers of channels to reach their destinations. If S rand S h denote the mean network 

latency for regular and hotspot messages respectively, the mean network latency taking 

into account both types of messages is gi ven by 

(4.2) 

Let us now determine the quantities S r ' S h ' S, WS and V . 

4.1.2.1 Calculation of the mean network latencies S rand S II 

-
The average number of hops that a regular message makes across one dimension. k, and 

across the network, d , are given by [6] 

- k-I 
k=-. , 
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d = Ilk . (.fA) 

Fully adaptive routing allows a message to use any channel that brings it closer to its 

destination, resulting in an evenly distributed traffic rate of regular messages on all 

network channels. A touter in the k-ary n-cube has n output channels and the PE generates, 

on average, (1- h )Ag regular messages in a cycle. Since each regular message travels, on 

average, d hops to cross the network, the rate of regular messages received by each 

channel, Ar , can be written as 

1 = (1-h)Ag d 
/l.,r -------===----- (4.5) 

n 

The network latency for a message consists of two parts: one is the delay due to the actual 

message transmission time, and the other is due to the blocking time in the network. As we 

shall see below, the mean blocking time experienced by a regular message at a given 

channel is the same across all the channels along its path. Since a regular message makes, 

on average, d hops to reach its destination the mean network latency, S r ' of a regular 

message can therefore be written as 

(4.6) 

where M is the message length and Br is the mean blocking time seen by a regular 

message at a channel. 

The hotspot traffic is not uniformly distributed across the network channels as channels 

located nearer to the hotspot node receive higher traffic rates than those further away. 

Consider a channel that is j hops away from the hotspot node, and let Ph j be the 

probability that a hotspot message uses this channel to reach its destination, \\hich is the 

hotspot node. Given that each of the N nodes generates, on average, hAg hotspot mc:-,sagcs 
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in a cycle, the rate of hotspot traffic received by the channel, Ah j , is simply gi \'en by 

(-L 7) 

The number of nodes located j hops away from a given node (here the hotspot node) is 

gi ven by Theorem 2.2 as 

ni=An (z)=L.,.(-1) . --k. ~ l(nli-zk+n-lJ 
1=0 1 n-1 

(4.8) 

To calculate Ph" we firstly have to derive an expression for the number of channels 
} 

locatedj hops away from a given node in the unidirectional k-ary n-cube. 

THEOREM 4.1. The number of channels that are j hops away from a given node in the 

unidirectional k-ary n-cube is 

c . = 'I11I: ( -1) t (n _/)(n In -I X j - t( k - 1) - 1 J. 
J 1 t n-I-1 

I=Ot=O 
(4.9) 

PROOF. Let the given node be the one with address X = (xI ,x2''''xn ). It is easy to see 

that all the n output channels of the nodes Yj = (YI' Y2,", Yn) located j hops away from 

the given node X should be counted except those nodes whose addresses include at least 

one digit Yi' 1:::; i :::; n, which is equal to the corresponding digit in the given node address 

pattern, i.e. Xi = Yi' 1 :::; i :::; n. If Xi = .\'i the output channel at dimension i of node Yj 

should not be considered when counting. Node may have 0, 1, 2, ... , or n-l such 

uncountable channels depending to its address pattern. The number of nodes having no 

such a channel is simply rlk-1(j,n) (given by Proposition 2.1), since r{-I(j,n) gives the 

number of nodes located j hops away from the given node, each at least at distance 1 from 

the given node in every dimension. The number of nodes having one channel to be 
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excluded for counting is (7 Jt- I 
(j,n -I) , which is the number of nodes located j hops 

away from the given node whose distance from the given node in exactly one dimension is 

zero. Generally, the number of nodes which have l channels to be omitted when countin o 
b 

the number of channels j hops away from the given node is (7 rt-I Un -/). Summing 

up all the channels to be counted results in the total number of channels which are j hops 

away from the gi ven node, C j , as 

C·= I(n-l) n lk-I(j,n-l)= I I (-l)t(n-l) n n-l }-t(k-l)-l . -n-I ( J n-In-/ (X X . ) 
} l l t n-l-l 

1=0 [=Ot=O 

The probability, Ph .' that a message has used, during its network journey, a particular 
] 

channellocatedj hops away from the hotspot node, can be derived as follows. Consider all 

the channels located j hops away from the hotspot node. Theorem 4.1 gives the number of 

such channels to be Cj . Recalling that a k-ary n-cube has N nodes, the number of source 

nodes for which any of these channels (channels located j hops away from the hotspot 
j-I 

node) can act as an intermediate channel to reach the hotspot node is N - Inl . 
1=0 

Therefore, Ph. can be written as 
] 

j-I 

N- In/ 
1=0 

C·N } 

d max 

Inl 
/= j 

C·N } 

(4.10) 

where d max is the maXImum number of hops that a message may take to reach its 

destination (also called network diameter) and is given by 

d max = 11 (k - 1) . p. I I) 

Unlike its regular counterpart, a hotspot message encounters different blocking times at 

different channels due to the non-uniform traffic rates on network channels caused by the 
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hotspot traffic. A hotspot message may visit j= 1, 2, ... , or d max channels to reach the 

hotspot node. All these cases have to be taken into account when computing the mean 

network latency for hotspot messages. The network latency seen by a j-hop hotspot 

message is given by 

(-+.12) 

where Bh""j' 1 ~ j ~ d max ' is the blocking time of aj-hop hotspot message at its l1l-th hop 

channel. Let 6 j be the probability that a randomly chosen node is j-hops away from a 

given node as destination (here the hotspot node). The number of nodes that are j hops 

away from a given node can be obtained using Equation 4.8. Dividing this over the total 

number of nodes (excluding the given node) yields 6 j as 

n· 
().= } 

} N-I 
(4.13) 

Hence, the average network latency seen by a hotspot message, S h ' can be expressed by 

(4.14 ) 

4.1.2.2 Calculation of the blocking times Br and Bh . 
m,j 

A regular or hotspot message is blocked at a given physical channel when all the adapti ve 

virtual channels of the remaining dimensions to be visited and also the deterministic 

virtual channels of the lowest dimension still to be visited are busy, The mean blocking 

time depends on the probability of blocking at a physical channel and on the mean "aiting 

time to access a virtual channel. The probability of blocking depends on the number of 

output channels. and thus on the virtual channels that a message can use at its next hop. 
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When blocking occurs, the mean waiting time depends on the location of the current 

channel relative to the hotspot node as the traffic rate varies from one channel to the next. 

A regular message makes, on average, d hops to cross the network. Suppose that the 

message has reached the mth -hop (1:S; m :s; d) channel along its path. This channel can be 

between 1 and d max hops away from the hotspot node. Let qJ j,l denote the probability of 

blocking for a message which makes, on average, I hops per dimension-in case of a 

regular message I = k -when the current channel is j hops, 1:S; j :s; d max' away from the 

hotspot node. Moreover. let W j denote the mean waiting time when blocking occurs at the 

channel. Since there are C j channels (given by Theorem 4.1) that are j hops away from 

the hotspot node, out of the total number of channels in the network liN. the mean 

blocking time, B r ' for a regular message can be written as 

d max C j 
Br = I. -(jJ .-Wj' 

j=i nN J.k 

(4.15) 

The probability of blocking qJ . - is computed as follows. Since a regular message makes. 
J.k 

on average, k hops per dimension, the probability of termination. ~.k' which is the 

probability that a message has crossed all the channels of a given dimension when it 

reaches a given router, is therefore given by [48] 

(4.16) 

Hence. the probability that a message still has to visit. say, f3 out of the 11 dimensions. 

Jr - , can be wri tten as 
j3,k 

Jr _ = (11 'VI - P - r pll~ j3 
j3,k f3 )" {,k {,k 

( 4.17) 
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With f3 dimensions still to be visited, a regular message can select anyone of the (\ '-2) 

adaptive virtual channels belonging to the (fJ -1) dimensions still to be visited adapti\cl); 

it can also use one of the two deterministic channels and anyone of the (V-2) adaptivc 

virtual channels at the lowest dimension. Using Equation 4.17 we can write qJ . - as 
j,k 

n f3 1 
m - = "Jr -P - P 
't' j,k f3~1 {J,k a j a&d j , (4.18) 

with Pa . being the probability that all adaptive virtual channels of a physical channel 
} 

located} hops away from the hotspot node are busy and Pa&d. being the probability that 
} 

all adaptive and deterministic virtual channels of that channel are busy. 

Let Pv.' (0 ~ v ~ V), represent the probability that ~' virtual channels are busy at a 
} 

physical channel located} hops away from the hotspot node. Using the same scheme for 

computing Equations 3.14 and 3.15 in Chapter 3, we can write 

2P(V-l) . 
P -P.. + } 

a&d j - ~ v j (V I 
V-I 

) 

( 4.19) 

(4.20) 

To determine the mean waiting time, H'j, to acquire a virtual channel, a physical channel 

is treated as an M/G/1 queue with a mean waiting time of [104] 

(4.21 ) 

( 4.12) 
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(J2 
S· j 

2 ' 
S· J 

(-L~3) 

where Aj is the traffic rate on the channel located j hops away from the source node. S j 

is its service time, and (J~. is the variance of the service time distribution. The rate of 
j 

messages arriving at the channel is composed of regular messages and hotspot messages. 

and is equal to 

(4.24) 

Let us assume for a moment that there is no hotspot traffic present in the network. Since 

adaptive routing distributes regular traffic evenly across the network channels. the mean 

service time for regular messages is the same across all channels and is equal to the mean 

network latency, S r [36, 142]. The presence of hotspot traffic, however, causes the 

service time to vary from one channel to another due to the non-uniformity of traffic rates 

on the channels. When a message reaches a channel that is j hops away from the hotspot 

node, the mean service time considering both regular and hotspot messages can be written 

as 

(4.25) 

where S h. is the mean latency seen by a hotspot message to cross from a channel located j 
j 

hops away from the hotspot node to the hotspot node itself. The expression of S II j is 

given by 

_ d max ( j-1 I 
S h. = M +" ;i J' L Biz, . .. , j L..., +1-j.l 

i=j 1=1 ) 

(4.26) 
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Figure 4.1: Number of nodes located j=1 ,2, ... , dmax hops away from the hotspot 
node, ni, in the k-ary n-cube. 

with ~i , j being the ratio of the number of nodes which are i, } ~ i ~ d ma x ' hops away 

from the hotspot node to the number of nodes that are} hops or farther away from the 

hotspot node as shown in Figure 4.1. The number of nodes located} hops away from the 

hotspot (or number of nodes in band) as shown in Figure 4. 1) is given by Equation 4.8. 

Summing up the number of nodes in bands},}+ I, ... , and dll /(/x wi ll give the number of 

nodes located} hops or further away from hotspot. Hence, we can write ~i , j as 

n · ): _ I 
~i , j - d 

max 

In"l 
111 = J 

( 4.27) 

Since the minimum service time at a channel is equal to the message length. M . follov\ 'ing 

a sugges ti on proposed in [58], the variance of the service time distributi on can be 

approx i mated as 
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(4.28) 

As a result, the mean waiting time, given by Equation 4.21, becomes 

(4.29) 

All the possible number of hops made by a hotspot message have to be considered \\'hen 

computing its mean blocking time. A hotspot message may make between I and d max 

hops to reach its destination, the hotspot node. The possible number of hops made along a 

given dimension is between 0 and k -1. Equation 4.8 can be used to determine the 

number of ways to distribute the hops made by the hotspot message among the 1/ 

dimensions. However, instead of considering all the possible combinations when 

distributing the hops among the n dimensions, we consider the average case where the 

message makes an equal number of hops per dimension. This greatly simplifies the 

computation of the mean blocking time especially when nand k are large due to the large 

number of combinations that has to be considered. Section 4.3 will reveal that our 

suggested approximation does not sacrifice the model's accuracy. Using this 

approximation, the above calculation of the mean blocking time for regular messages can 

be easily adapted for hotspot messages. When the message reaches the m
th 

-hop channel, 

it is (j-m+ I) hops away from the hotspot node. Therefore, the mean blocking time can be 

written as 

Bhl/l,j = rp j_l1l+!,jln ll 'j-IIl+!' 
( 4.30) 

The new expressions for the probability of blocking, q; j-lIl+ I. j/n ' and mean \\aiting time. 

lI'j-IIl+! ' for hotspot messages can be obtained by simply substituting (j-m+ I) for j and 
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j I n 1 for k in Equations 4.15-4.18. 

Examining the above equations reveals that there are several inter-dependencies between 

the different variables of the model. For instance, Equation 4.25 and 4.26 reveal that s) is 

a function of B h . while equations 4.29 and 4.30 show that B is a function of S .. 
m,} hill,) } 

Given that closed-form solutions to such inter-dependencies are very difficult to 

determine, the different variables of the model are computed using iterative techniques for 

solving equations [104]. 

4.1.2.3 Calculation of the mean waiting time at the source Ws 

A regular message originating from a source node that is j hops away from the hotspot 

node sees a network latency of S r ' whereas a hotspot message sees a latency of S h. to 
} 

reach the hotspot node. Therefore, the mean network latency for a message that originates 

at a source node that is located j hops away from the hotspot node, S s . , taking into 
} 

account both regular and hotspot messages with their appropriate weights, is simply 

(4.31 ) 

Modelling the local queue in the source node that is located j hops away from hotspot 

node as an MIG/l queue, with the mean arrival rate Ag IV (recall that a message in the 

source node can enter the network through any of the V virtual channels) and service time 

Ss. with an approximated variance (Ss' _M)2, yields a mean waiting time of 
) } 

A 
2(1- -S ) 

V Sj 

1 Min(1, jln) should be used instead of j/n when j<n . 

(4.32) 
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Figure 4.2: The Markov chain used for computing the probability of virtual 
channel occupancy of a physical channel located j hops away from hotspot. 
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Averaging over all possible values of j, 1::::; j::::; d max ' gives the mean waiting time in a 

source node as 

(4.33) 

4.1.2.4 Calculation of average virtual channels multiplexing degree v 

The probability, Pv .' that v virtual channels are busy at a physical channel that is j hops 
J 

away from the hotspot node, can be determined using a Markovian model shown in Figure 

4.2. In this figure, state 9\ t" corresponds to v virtual channels being busy. The transition 
J 

rate out of state 9\v. to 9\(v+I). is A
J
" while the rate out of 9\t" to 9\(t'-I) is 1/ S j' The 

J J J J 

transition rate out of the last state, 9\v., is reduced by A j to account for the arrival of 
J 

messages while a channel is in this state. In the steady state, the model yields the 

following probabilities 

1, \'=0 

O<\,<V (-+.3-+) 

\' =V 
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and 

v 
II L Qi., v =0 
·0) 1= 

O<v<V (4.35) 

v=V 

In virtual channel flow control, multiple virtual channels share the bandwidth of a physical 

channel in a time-multiplexed manner. After averaging over all the possible values of j. 

1 ::; j ::; n, the average degree of multiplexing of virtual channels. that takes place at a 

given physical channel, is given by [49] 

V 2 
I. v Pv· 

) 

V . = ..:...v_==-l --
J V 

I. vPv . 
) 

v=l 

d max _ 

V = I. {}jVj. 
j=l 

4.1.3 The hypercube case 

(4.36) 

(4.37) 

When the network is a hypercube (k=2) some equations in the above model should change 

as follows. The network diameter, the number of nodes located i hops away from a gi ven 

node, ni' in the n-dimensional hypercube. and the probability that a node is i hops away 

from the given node, 6 i , are given respectively by [3] 

d max = Il, 
(4.38) 

Ili = ('! 1. 
1 ) 

( 4.39) 
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The average latency for the regular messages, S r , can be calculated as 

(4.41 ) 

where Sri is the latency for an i-hop regular message which can itself be computed as 

(4.42) 

Bri,! is the mean blocking time seen by an i-hop regular message at its /-th hop channel, 

1:::;; I:::;; i. Let ~,j,l denote the probability of blocking for an i-hop regular message when 

at l-th hop is j hops away from the hotspot node. Then, the probability B r. is gi ven by 
I,/ 

n C. 
B = '" -j p. . IW . ri,/ ,L; N l,j, j' 

. 1 n j= 

(4.43) 

The number of channels located j hops away from the hotspot node in an n-dimensional 

hypercube is given by [1] 

(4.44 ) 

The probability P. . I can be derived as follows. At the Ith -hop channel, an i-hop regular 
l,j, 

message can use (i -I + I)(V -I), 1:::;; i :::;; n, 1:::;; I:::;; i, adaptive virtual channels at the 

remaining (i -I + 1) dimensions to be visited adaptively. It can also use one deterministic 

channel at the lowest dimension to be visited according to deterministic routing. A 
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message is blocked when all the possible virtual channels it can use are busy. So. the 

probability that blocking occurs can be written as 

p. . =pi-Ip 
I,j,l a· a&d·· 

J J 
(-1-..+5 ) 

Recalling that the virtual channel requirement for Duato's adaptive routing in hypercube is 

slightly different from that in the general k-ary n-cube, the probability that all adapti\'e 

virtual channels are busy, Pa. ' and the probability that all adaptive and also deterministic 
J 

virtual channels are busy, Pa&d ' ' are given by [36] 
J 

p 
a, 

J 

P(V -1) , 

= PV j + (V J), 
V-I 

(4.46) 

(4.47) 

As with a regular message, a hotspot message is blocked at a given channel when all the 

adaptive virtual channels of the remaining dimensions to be visited, and also the 

deterministic virtual channels of the lowest dimension still to be visited. are busy. 

Therefore, the above calculation of the mean blocking time for regular messages can be 

easily adapted for hotspot messages. Consider a hotspot message that has to cross j 

channels to reach its destination, the hotspot node. When the message reaches the m-th 

hop channel, it is (j-m+ 1) hops away from the hotspot node. Therefore, the mean blocking 

time can be written as 

Bh = p. . ! H' . ! . m.j j,lIl,j-m+ j-m+ 
(-1-.48) 

The new expressions for the probability of blocking, Pj ,lIl.j-m+!' and mean waiting time, 

H'j-IIl+! ' can be obtained by simply substituting j by (j-m+ I) in the abo\'e equations. 



Chapter 4. An analytical model of adaptive wormhole routing in the presence of hotspot trarffic 9-
~ 

4.2 Model validation 

The above model has been validated through a discrete-event simulator that performs a 

time-step simulation of the network operations at the flit level. In each simulation 

experiment, a total number of 100000 messages is delivered. Statistics gathering was 

inhibited for the first 10000 messages to avoid distortions due to the initial start up 

conditions. Extensive validation experiments have been performed for several 

combinations of network sizes, message lengths, and virtual channels, and the general 

conclusions have been found to be consistent across all the cases considered. However, for 

the sake of specific illustration we provide results for the following cases: 

Examined networks are 8-ary 2-cube, 8-ary 3-cube and 8-dimensional hypercube. 

Message length M=32 and 64 flits. 

Number of virtual channels V=3 and 5 for the 8-ary 2-cube and 8-ary 3-cube and 

V=2 and 4 for the hypercube. 

Fraction of hotspot traffic h = 0.07, 0.21, 0.35 and 0.49. The hotspot node is 

assumed to be the node (4,4) in 8-ary 2-cube, the node (4,4,4) in 8-ary 3-cube and 

the node with linear address N-l =255, in the 8-dimensional hypercube. Due to the 

symmetry of k-ary n-cube networks, any node can obviously be the hotspot node 

without any change in simulation results. 

Figures 4.3-4.6 show the mean latency curves predicted by the model against those 

obtained through simulation experiments. In all the figures, the horizontal axis represents 

the traffic rate (Ag) while the vertical axis shows the mean message latency in crossing 

from source to destination. The figures indicate that the analytical model predicts the mean 

message latency with a reasonable degree of accuracy when the network is in the steady 
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Figure 4.3: The average message latency predicted by the model against 
simulation results for an 8-ary 2-cube with message length M=32 and 64 flits, 
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=3 virtual channels 
per physical channel. 

state regIOn, that is when it has not reached saturation point. HO\\e\'cr. there are 

discrepancies in the results provided by the model and simulation when the network is 

under heavy traffic and approaches the saturation point. This is due to the approximations 

that have been made in the analysis to ease the model development. For instance. Equation 
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Figure 4.4: The average message latency predicted by the model against 
simulation results for an 8-ary 2-cube with message length M=32 and 64 flits, 
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=5 virtual channels 
oer ohvsical channel. 

4.28 is a crude approximation for computing the variance of the service time recei\t~J by a 

message at a given output channel. especially in heavy traffic regions, but it greatl) 

simplifies the calculation of the mean message waiting time. The minimum service time, 

M, for a channel assumed in 4.28 is much less than the real minimum senice time \\hen 
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Figure 4.5: The average message latency predicted by the model against 
simulation results for an 8-ary 3-cube with message length M=32 and 64 flits, 
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=3 virtual channels 
per phvsical channel. 

the traffic is dense, although it is an appropriate approximation for light traffic loads. 

Nevertheless, we can conclude that the model produces latency results with a good degree 

of accuracy in the steady state regions and its simplicity makes it a good practical 

evaluation tool that can be used to gain insight into the performance behavior of fully 

adaptive routing in the k-ary n-cube in the presence of hotspot traffic. 
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Figure 4.6: The average message latency predicted by the model against 
simulation results for an 8-ary 3-cube with message length M=32 and 64 flits, 
hotspot traffic portions h=0.07, 0.21, 0.35 and 0.49, and V=5 virtual channels 
per physical channel. 

As can be seen in the figures, changing the number of virtual channels from \'=3 in Figure 

4.3 to V=5 in Figure 4.4 has improved the mean message latency. However. the effect of 

the number of virtual channels is more noticeable when the hotspot traffic portion is 

relatively small. Thus, for a small percentage of hotspot traffic, the saturation point for the 

8-ary 2-cube for V=3 and 5 are quite different. However. \\hen the hotspot traffic rate is 
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high, more virtual channels cannot effectively improve the latency because most of 

messages are targeted at the hotspot node and are waiting for many other messages which 

are also being sent to the same node. When the network is an 8-ary 3-cube, even a hotspot 

traffic factor as small as h=0.07 defines a sufficiently large hotspot traffic portion to place 

the network in a condition where adding two virtual channels cannot help to improve 

message latency (see Figures 4.5 and 4.6). In an 8-ary 3-cube network (512 nodes), this 

corresponds to a total rate of 511 *0.07=35.77 Ag messages/cycle sent to the hotspot node. 

This is higher than the same parameter in a 8-ary 2-cube (with 64 nodes) network with a 

hotspot traffic factor h=0.49, corresponding to 63*0.49=30.87 Ag hotspot messages/cycle. 

In order to assess the accuracy of the model in predicting the latency for the different types 

of messages in the network, Figures 4.7 and 4.8 provides detailed results for the overall 

message latency (regular and hotspot messages combined together), hotspot message 

latency (hotspot messages only), and regular message latency (uniform messages only) 

predicted by the analytical model, plotted against those obtained by the simulator when 

V=2. Figure 4.9 shows the results for the overall message latency only with V =4. (We 

have opted to show results for the overall message latency only in Figures 4.9 for brevity). 

The accuracy of the model against the hotspot fraction is illustrated in Figure 4.10, where 

the overall message latency is plotted against the fraction of the hotspot traffic where V = 

4.3 Modelling bidirectional k-ary n-cubes 

In this section, the above model is modified for bidirectional k-ary n-cubes. To this end. 

the following changes should be made to the model's equations. The average number of 

hops that a regular messages makes at each dimension k. and the network diameter d max' 

are given by [6] 
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Figure 4.7: The average message latency predicted by the model against 
simulation results in an 8-dimensional hypercube with V=2 virtual channels per 
physical channel, M=32 and 64 flits, and hotspot traffic portions h= 0.07, 0.21. 
Bottom row shows the overall message latency while the top and middle rows 
show the latency of uniform and hotspot messages respectively. 
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Figure 4.8: The average message latency predicted by the model against 
simulation results in an 8-dimensional hypercube with V=2 virtual channels per 
physical channel, M=32 and 64 flits, and hotspot traffic portions h= 0.35, 0.49. 
Bottom row shows the overall message latency while the top and middle rows 
show the latency of uniform and hotspot messages respectively. 
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Figure 4.9: The overall message latency predicted by the model against 
simulation results in the 8-dimensional hypercube with V=4 virtual channels per 
physical channel, message length M=32 and 64 flits, and hotspot traffic portions 
h=0.07, 0.21,0.35,0.49. 
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if k is even -
k= 

otherwise 
(4.49) 

(4.50) 

The number of nodes which are i hops away from a given node, ni' in the bidirectional k­

ary n-cube is the surface area of radius i (given by Theorem 2.6), i.e. 

n·= I 

± f(-1)12m(~)(7)(i-~ __ 21-1J, 
m=OI=O m 1 

L L L ( -1) 12m 7 n ~ t 7 1 - 2 _ - 21 - 1 n n-t m ()()( )(. k(l+t) ) 

t=Om=OI=O m 1 

k is odd 

(4.51 ) 

otherwise 

To calculate the number of channels located j hops away from a gIven node, in the 

bidirectional k-ary n-cube, we need to know the number of nodes located j hops away 

from a given node with at least one hop distance from the given node in each dimension. 

THEOREM 4.2. The number of nodes located i hops away from a gIven node in the 

bidirectional k-ary n-cube with at least one hop distance from the given node in each 

dimension, is given by 

n III ( X f' I(k-l) I 1J L L(_1)/ 2n ~ 7 I-n- ~1 + - , 
<l>k,n (i) = 111=01=0 m 

~l Il n-t 111 (X X r' tk Ik+ 21 -1) L L L(_1)/ 21l-t n n-t m 1-2"+t-n-2" , 
t m I m-l 

t=Om=OI=O 

k is odd 

otherwise 

PROOF. We should count the number of ways that i like objects can be distributed o\'t~r 

two groups, each of n cells, say C = {Ct , C2 ,···, Cn } and C'= {C't ,C'2 , ... , C'n }. such 
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that each cell contains not less than one and not more than (k-l )/2 cells and no t\\O 

corresponding cells, Ci and C'i for i =1,2 ... ,n, can be assigned objects at the same time. 

The problem can be thought of as that of finding the number of different destinations that 

an i-hop message can chose from a given source node in Q,~, using a minimal routing 

algorithm. We should consider two cases: odd k, and even k. 

When k is odd, it is apparent that a message can take at most (k-l )/2 hops in each 

dimension since the network is bidirectional. Let us consider the case that an i-hop 

message makes some hops over m, (m = O,l,2, ... ,n), fixed dimensions (each in one 

direction) so that the message has made at least two hops in each dimension. The message 
k-\ 

makes one hop at any other n-m dimensions. This can be realized in f22 (i - n + m,m) 

ways. Each of n dimensions could be one of these m dimensions resulting in 

~ 22 (i - n + m,m) possible combinations that m dimensions are passed (each in one 
(

n L k-\ 

m) 

direction). Recalling that each of two directions in one dimension can be chosen yields the 

total number of ways to pass m dimension with at least two hop in any of 111 dimensions as 

2111 (n } ;2\ (i _ n + m, m). The hops made at each of the other n-m dimensions (one per 
m) 

dimension) can be made in positive or negative directions, with 2
1l

-
m 

combinations, 

making a total number of 2n - m 2m ( n } ;;-\ (i - n + m,m) ways to pass m dimensions with 
m) 

at least two hops at each dimension and one hop per each n-m remaining dimensions. 

Summing up all the combinations for m = O,l, ... ,n gives the total number of nodes at 

distance i from a given node in Q~ (with odd k), such that the distance between these 

nodes from the given node at each dimension be at least one, to be 

(4.53) 
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When the radix k is even, we should count the number of ways that i like objects can be 

distributed over two groups, each of n cells, say G = {C1 ,C.2.···. C
II 

} and 

G'= {C'1 ' C'2 , ... , C'n }, such that each cell in G contains not less than one and not more 

than k12-1 objects and each cell in G' contains not less than one and not more than kl2 

objects and no two correspondent cells, Ci and C'i, for all i = 0,1, .... n , can be assigned 

objects at the same time. Suppose that t, t = O,l, ... ,n, cells in G' have received f.J2 objects. 

in (n I ways. The remaining objects may be distributed over the remaining n-t dimensions 
t ) 

using the equation given above for odd k, since each dimension in G and G' now receives 

at most k/2-1 and at least one objects. Therefore, we can write 

<I>~ren ,n (i) = i (n J<I>~~ I odd ,n-t (i - tk I 2). Substituting <I>~~ I odd .Il-t (i - tk I 2) using the 
t=O t 

above equation (derived for odd k) results in 

<I>~even,n(i)= L L L(-1)12n- t 2 2 . n n-t m (n In - t 1m Ii -tk + t - n - lk + 21 - 1 J 
_1 t m I m - 1 

t=Om=OI=O 

Hence, from Equation 4.53 and Equation 4.54, we have 

mk,n(.) _ 
'V;:::: 1 1 -

(-1-.5-1- ) 

k is odd 

otherwise 

Let us now calculate the number of channels located} hops away from a given node, in the 

bidirectional k-ary n-cube. 

THEOREM 4.3. The number of channels that are } hops away from a given node in a 

bidirectional k-ary n-cube is given by 



Chapter 4. An analytical model of adaptive wormhole routing in the presence of hotspot traffic 107 

Cj= 

I. I. I. (-1) z 2 n-l (n -l) - I - n -I - 2 + .: - 1 , n-1 n-l m (n In 11m!. z(k-1) J 
l=Om=Oz=O l m Z m-l 

k is odd 

I. I. I. I.( -1)Z 2n- l - t (n -l) n n - n - - t m i - ~ + t -ll -1--1- + 2.: -1 , n-1n-/n-l-t m (I II 1 I I k ) 

/=Ot=O m=O z=o I t m Z m - 1 

otherwise 

H.55) 

PROOF. A similar scheme used to prove Theorem 4.1 can be applied here. A channel 

located} hops away from a given node, say A, is an output channel of a node also} hops 

away from A. However, some of these channels might be ignored when counting. The 

number of nodes having no such a channel is simply <t>~,t (j) (given by Equation 4.52), 

since <t>~'t (j) gives the number of nodes located} hops away from A, each at least at 

distance one from A in each dimension. The number of nodes having one channel to be 

excluded for counting is (7 f~·t-' (j). which is the number of nodes locatedj hops away 

from A whose distance from A in exactly one dimension is zero. Generally, the number of 

nodes which have I channels to be omitted when counting the number of channels located) 

hops away from A is (7 f~·t-l (j). Summing up all these cases results in the total 

number of channels which are) hops away from A, C j , as 

k is odd 

.0 

The mean blocking time, B r ' for a regular message can now be written as 
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d max C· 
B = ~ _J m -w. 

r L... 2N't"k J' . 1 n J, 
J= 

(4.56) 

4.4 Performance analysis 

In this section we use the model proposed above to conduct a performance analysis of k­

ary n-cubes under traffic workloads containing a hotspot. For the sake of an example, th~ 

10-ary 3-cube is used, but the conclusions reached are found to be similar when other 

network configurations are considered. 

Figure 4.11 reveals the effect of the number of virtual channels on the performance by 

plotting the offered traffic when the network is saturated (saturation traffic) versus the 

number of virtual channels in the unidirectional 10-ary 3-cube with message length M=50 

flits and number of virtual channels V=4 for hotspot fractions h=O.O 1 and 0.2. It is 

assumed that the network enters the saturation region when P j ~ 1 (given by Equation 

4.22); the corresponding Ag for which the condition P j ~ 1 is satisfied is the saturation 

traffic. As can be seen in the figure, adding virtual channels when the hotspot fraction is 

low (h=O.OI) increases the performance noticeably. However, a performance improvement 

is not noticeable at all when the hotspot fraction is relatively high (h=0.2). In this situation, 

more virtual channels cannot effectively improve the latency because messages sent to the 

hotspot node are forced to wait for other messages trying to reach the same destination. 

Figure 4.12 shows the average network latency, S, as a function of offered traffic by each 

node for a unidirectional 10-ary 3-cube with message length M=50 flits and number of 

virtual channels V=4 for hotspot fractions h=O.O 1 and 0.2. The contributions of hotspot 

and regular traffic to total mean message latency, S, are shown separately in dark and 

light grey, respectively. The figure reveals that when the hotspot fraction is low, the 

component causing network saturation is the part contributed by regular me~sagl's. 
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Figu~e 4.11: Th~ satu~a~e t~affic rate versus number of virtual channels per 
phYSical channel In a unidirectional 10-ary 3-cube with message length M=50 flits 
and hotspot traffic portions h=0.01 and 0.2. 

However, when hotspot fraction is high, the part due to hotspot messages dominates the 

other part and causes saturation. 

Figure 4.13 shows mean message latency curves for message length M = 50 flits in 

unidirectional and bidirectional 10-ary 3-cubes with V = 4 virtual channels per physical 

channel and hotspot fractions h=O.O 1 and 0.2. The bidirectional k-ary n-cube has double 

the bisection width and node pin-out of its unidirectional equivalent. In order to have a fair 

and realistic comparison, the bisection width or pin-out constraint was held constant in the 

two networks. So, if we use the unidirectional network as a basis for the comparison (with 

a channel width of the flit size), the channel width in the bidirectional network will be half 

of the flit size, i.e. for each flit communication over a channel in the bidirectional net\\ ork, 

two channel cycles are required. The figure reveals that the bidirectional k-ary /I-cube 
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Figure 4.12: The mean message latency composed of two parts (hotspot and 
uniform messages) versus traffic generation rate in a unidirectional 1 O-ary 3-cube 
with message length M=50 fl its V=4 virtual channels per physical channe l for (a) 
hotspot traff ic portion h=O.01 , and (b) hotspot traffic portion h=O .2 . 



Chapter 4. An analytical model of adaptive wormhole routing in th '+h e presence oJ otspot traffic 111 

300 

~ 
<:.J c: 200 
Q,j -~ -

--unidirectional 
- bidirectional 

h=O.2 
I h = 0.01 

50+----,----~---,----~--~----~~ 

o 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018 0.0021 

Offered traffic (messages/node cycle) 

Figure 4.13: The mean message latency versus traffic generation rate in the 
unidirectional and bidirectional 10-ary 3-cube with message length M=50 flits and 
V=4 virtual channels per physical channel for hotspot traffic portions h=0.01 and 
0.2, under pin-out and bisection bandwidth constraints. 

outperforms its unidirectional counterpart under constant bisection width and pin-out 

constraints when the hotspot fraction is low. This is because the former network has a 

lower message distance and lower message traffic rate on its channels, compensating for 

its lower channel bandwidth. Note that when the hotspot fraction is low, the traffic is 

almost equally distributed over network channels. However, when the hotspot fraction is 

relatively high, the unidirectional network outperforms the bidirectional counterpart. This 

is because the large fraction of hotspot traffic causes a large portion of traffic to be placed 

on the channels around the hotspot. Even the lower diameter of a bidirectional net\\ urk 
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cannot compensate for the long service time of the channels around a hotspot \vhose 

bandwidths are half of those in an equivalent unidirectional network. 

4.5 Conclusions 

Several analytical models of fully adaptive routing have recently been proposed for 

wormhole-routed k-ary n-cubes under the uniform traffic pattern. However, the "uniform 

traffic" assumption is not always justifiable in practice as there are many parallel 

applications that exhibit non-uniform traffic flows, which can produce, for example, 

hotspots in the network [88]. This chapter presented the first analytical model to comput~ 

the mean message latency in the presence of hotspot traffic in wormhole-routed k-ary 11-

cubes with fully adaptive routing. The model is based on assumptions widely used in 

similar studies. Simulation experiments have revealed that the proposed model produces 

latency results that are in a good agreement with those produced through simulation 

experiments. 

A preliminary performance analysis has revealed that increasing the number of virtual 

channels can improve network performance when the hotspot traffic portion, h, is low. 

However, when h is relatively large (defining a high percentage of hotspot traffic), adding 

virtual channels cannot improve performance noticeably. It was also shown that when h is 

small, the dominating factor causing network saturation is the uniform message 

component while for large h, the dominating factor is the average latency for hotspot 

messages. Comparing unidirectional k-ary n-cubes against their bidirectional counterparts. 

under both constant bisection bandwidth and pin-out constraints, shows that bidirectional 

k-ary n-cubes provide better performance when the hotspot traffic rate is 10\\. However, 

the opposite is true when hotspot traffic is relatively high. 

In the next chapter. we will develop models to deal with two important non-uniform traffic 
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patterns, namely matrix-transpose and digit-reversal. These patterns are exhibited in many 

applications including signal processing and matrix-computation. 



Chapter 5 

Modelling of k-Ary n-Cubes for Other 
Important Non-Uniform Traffic Patterns 

Many real-world parallel applications in science and engineering exhibit non-uniformity in 

the traffic patterns [41, 57, 90, 168] they create. For instance, the computation of multi­

dimensional FFTs, finite element algorithms, matrix problems, and divide and conquer 

strategies all generate regular communication patterns [79], which may be non-uniform 

and put uneven bandwidth requirement on network channels. Permutations such as matrix-

transpose, digit-reversal, shuffle, exchange, butterfly and vector-reversal are examples of 

regular communication patterns that generate typical non-uniform traffic in the network 

(see [59, 79] for more details on these permutations). 

In this chapter, analytical models of fully adaptive routing in k-ary n-cubes in the presence 

of non-uniform traffic generated by two important permutation patterns, namely matrix­

transpose and digit-reversal, are proposed. Results obtained through simulation 

experiments confirm that the proposed models predict message latency with an acceptable 

degree of accuracy under different working conditions. 

The rest of the chapter is organised as follows. Section 5.1 describes the analytical model 
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for matrix-transpose permutations. In Section 5.2 the model is described for digit-re\er~al 

traffic. Both models are validated in Section 5.3 through simulation experiments, \\hile 

Section 5.4 discusses the changes required for bidirectional k-ary n-cubes. Section 5.5 uses 

the proposed models for performance analysis of k-ary n-cubes in the presence of 

permutation traffic patterns. Section 5.6 concludes the chapter. 

5.1 The analytical model for matrix-transpose traffic 

The notation used in the model is shown in Table 5.1. Moreover, the model uses 

assumptions which are commonly employed in the literature [3-6, 12. 32-34, 42. '+3, 48, 

49,58,81,84-86,99,120,142,143] as follows. 

a) To cover a wider traffic range and to allow for a more generally applicable model 

we assume that there are two types of traffic in the network: "matrix-transpose" 

and "uniform". In the traffic pattern generated according to the matrix-transpose 

permutation [79], a message originating from source node X = XI X2 ... ;rll is sent 

to the node 

if n = 2! 
if n = 2! + 1 . 

(5.1 ) 

In the uniform traffic pattern, a message is destined to any other nodes in the 

network with equal probability. Let us refer to these two types of messages as 

matrix-transpose and uniform messages, respectively. When a message is 

generated it has a probability l1l of being a matrix-transpose message and 

probability 1-l1l of being uniform. When l1l=0 the traffic pattern is purely uniform 

and when 111= 1 only matrix-transpose traffic is defined. A similar traffic model has 

already been used by the authors in [149] to generate other non-uniform traffic 
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Table 5.1: Notation used in the model for matrix-transpose permutation traffic 

Notation Description 

dill average number of hops made by a matrix-transpose message across the network 

d u average number of hops made by a uniform message across the network 

d average number of hops made by a message across the network 

k network radix 

ku average number of hops made by a uniform message in each dimension 

km average number of hops made by a matrix-transpose message in each dimension 

L message length 

m probability that a source generates a matrix-transpose message 
Yl(X) matrix-transpose permutation function 

n network dimension 

n . number of different source and destination pairs whose addresses differ in i digits and the 
m[ ,even 

destination address is the matrix-transpose permutation of the source address when 11 is 
even 

nmi,odd 
number of different source and destination pairs whose addresses differ in i digits and the 
destination address is the matrix-transpose permutation of the source address when n is odd 

n m · number of different source and destination pairs whose addresses differ in i digits and the 
[ destination address is the matrix-transpose permutation of the source address 

N network size (N=kn) 

Pa probability that all adaptive virtual channels at a physical channel are busy 

Pa&d 
probability that all adaptive and deterministic virtual channels at a physical channel are 
busy 

p probability of blocking when a matrix-transpose message, whose source and destination 
blockm · . 

addresses differ in i digits, is at its j-th hop channel [,j 

Pblockml .. 
probability of blocking when a matrix-transpose message, whose source and destination 

./,J addresses differ in i digits, has already passed I dimensions and is at its j-th hop channel 

p probability of blocking when a du-hop uniform message is at its j-th hop channel blocku' 
j 

p probability of blocking when a du-hop uniform message has already passed I dimensions at 
blockul . 

its j-th hop channel ,j 

Pm· 
probability that the source and destination addresses for a matrix-transpose message differ 

[ in exactly i digits 

p probability that I dimensions are passed by a matrix-transpose message, whose source and 
passml.i,j destination addresses differ in i digits, when it is at its j-th hop channel 

P probability that I dimensions are passed when a du-hop uniform message is at its j-th hop 
passUI . 

channel ,j 

Pu · 
[ 

probability that a uniform message makes i hops to reach its destination 

P v probability that ~' virtual channels at a physical channel are busy 

Q~, an intermediate variable for calculating P, 

S mean network latency for a message 

S1ll mean network latency for a matrix-transpose message 

S 
network latency for a matrix-transpose message whose source and destination addresse\ 

1IIj differ in i digits 

Su mean network latency for a uniform message .-.. _. 



Chapter 5, Modelling of k-ary n-cubesfior other important ;.r. ,ff, Ilon-unljorm trajjlC patterns 117 

Table 5.1: continued 

Notation Description 

V number of virtual channels used per physical channel 

V average degree of multiplexing of virtual channels at a physical channel 

we mean waiting time to acquire a virtual channel when a message is blocked 

Ws mean waiting time at a source node 

X address of a source node x - XI x2 '" Xn 

Sill fraction of the matrix-transpose traffic in the network 

Su fraction of the uniform traffic in the network 

Am generation rate of matrix-transpose messages at a source node 

Ac message rate on a channel 

Ag generation rate of messages at a source node 

Au generation rate of uniform messages at a source node 

(j~ 
S 

variance of the service time distribution at a channel 

patterns containing hotspots. 

b) Nodes generate traffic independently of each other which follows a Poisson 

process with a mean rate of Ag messages/cycle. Hence, the mean generation rate 

of the uniform traffic is (1- m)Ag and that of the matrix-transpose traffic is mAg. 

c) Message length is fixed and equal to M flits, each of which is transmitted in one 

cycle between two adjacent nodes. 

d) The local queue in the source node has infinite capacity. Moreover, messages are 

transferred to the local PE through the ejection channel as soon as they arri \'e at 

their destinations. 

e) V virtual channels are used per physical channel, divided in two groups \'C I and 

VC2 as discussed in Chapter 2. Group VC I contains 2 virtual channels. crossed 

deterministically (e.g. in an increasing order of dimensions) and group \'C2 

contains (V - 2) virtual channels crossed adaptivel), When there is more than one 
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adaptive virtual channel available a message chooses one at random. To '>implify 

the model derivation, no distinction is made between the deterministic and 

adaptive virtual channels when computing the different virtual channel occupancy 

probabilities [142]. 

5.1.1 The outline of the model 

The mean message latency is composed of the mean network latency, S, that is the time 

to cross the network, and the mean waiting time seen by a message in the source node, 

Ws . However, to capture the effects of virtual channel multiplexing, the mean message 

latency has to be scaled by a factor, V , representing the average degree of virtual channel 

multiplexing, that takes place at a physical channel. Therefore, the mean message latency 

can be written as 

Latency = (S + Ws)V . (5.2) 

Given that a uniform message can make between 1 and dmax=n(k-l) hops (i.e., the network 

diameter), the average number of hops that a uniform message makes across the network, 

d u ' is given by 

d max 

dl/ = I.,iPu ., 
I 

(5.3) 

i=l 

where P
u

. is the probability that a uniform message makes i hops to reach its destination. 
1 

The average number of hops that a uniform message makes in each dimension can 

therefore be expressed as 

d k =_1I 
II 

11 

The probability Pu ' can be calculated using Theorem 2.-+ as 
1 

(5.4) 
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-k 
An (i) 1 In I (n Ii -lk + n -1 ) P. = =- (-1) u· . 

I N - 1 N - II =0 I n - 1 (5.5 ) 

Before computing the average number of hops that a matrix-transpose message makes 

across the network, let us first calculate the probability, Pm.' that the source and 
I 

destination addresses for a newly-generated matrix-transpose message differ in exactly i 

digits. Examining the address patterns generated by matrix-transpose permutations reveals 

that this probability has to be calculated in different ways for odd and even values of n. 

Let X = xl x2 ... xn and M(X) = x'l x'2 ... x'n be, respectively, the source and destination 

addresses for a matrix-transpose message. When n is even, every digit difference between 

the first n12 digits of the source and destination addresses, X\ X2 ... Xn I 2 and 

x'l x'2 ... x'n I 2, results in a same digit difference in the remaining nl2 address digits, 

Xn12xnI2+1",xnand x'nl2 x'nI2+1··· x 'n· Therefore, Pmi is zero when i is odd. Let us 

determine the number of possible cases where the source and destination address patterns 

of a matrix-transpose message differ in i (i= 0, 2, 4, ... , n) digits. This can be done by 

simply considering only the first n12 digits in the source and destination addresses, and 

thus enumerating the number of combinations where xlx2 "'Xn I2 and x'l x'2 ···x'n12 are 

different in exactly j; (j= 0, 1, 2, ... , n12) digits. Digits in the address pattern x\ X2 ... Xn /2 

with a corresponding digit in the pattern x'l x'2 ... x'n 12 make up e combinations in k 

combinations of which those two digits are equal while in the other e -k combinations they 

are different. Therefore, the number of possible combinations that result in the patterns 

., . .. . (fl I 2 ) fl /2 - j (k 2 k) j (j-
xl x2 ... xn 12 and x'l x'2 ... x'n 12 dIffer In exactly) dIgIts IS \j k --

0,1,2, ... , n12). The number of possible combinations where xlx2 "'Xn and x'\ x'2 ···x'n 

are different in exactly i digits (i= 0, 2,4, ... , n) is given by 

(5.6) 
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Consider the case where n is odd. Examining the address patterns of the source X\ X2 ... XII 

and destination x'I x'2 ... x'n address patterns for a matrix-transpose permutation shO\\ ~ 

that finding the number of combinations where these address patterns are different in 

exactly i digits (i= 0, I, 2, ... , n) is equivalent to the problem of finding the number of i­

digit radix-k address patterns where no two adjacent digits are equal and the first and last 

digits are also different. To compute such a number consider the following result from 

graph theory. 

DEFINITION 5.1. Chromatic polynomial [175]: The chromatic polynomial of a graph is a 

function giving the number of ways that the graph nodes may be colored using a given 

number of colors such that no two neighboring nodes get the same color. 

PROPOSITION 5.1. If G is a ring of length i, then the chromatic polynomial of Gis 

(5.7) 

where C is the number of available colors [175]. 

Assume that each node in a ring of i nodes corresponds to a digit of an i-digit address 

pattern where each can be colored with color 0,1, ... , or k-I such that no two adjacent 

nodes have the same color. Equation 5.7 can be applied to find the number of address 

patterns meeting the conditions given above, by replacing C with k. Since these i digits can 

be chosen from n, the number of combinations in which the address patterns of the source 

and destination nodes of a matrix-transpose message differ in exactly i digits can be 

expressed as 

(5.8) 
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Combining Equations 5.6 and 5.8 gives a general expression for the number of possible 

combinations where address patterns Xl x2 ... xn and x'l x'2 ... x'1I differ in exacth i digits - '-

U= 0, 1, ... , n), as 

0, if 1 is odd 

if n is even and 1 IS even 

(5.9) 

if n is odd and i IS even 

Thus, the probability that the source and destination addresses for a matrix-transpose 

message differ in i digits, Pm ' can be written as 
I 

nm · 
I 

N-n mo 

0, 

(7)(k -If +(7 )< _l)1 (k -I) 
k/1 -k 

if 1 is odd 

if n is even and i IS even 
(5.10) 

if n is odd and 1 IS even 

Let us assume that the i-th digit (i= 0, 1, ... , n) in the source address, Xi, is different from 

that of the destination address, i.e. X'i. Considering all possible values that Xi and X'i may 

take (i.e. O~xi,x'i<k) the average difference between Xi and X'i, which is the average 

number of hops that a matrix-transpose message makes in the i-th dimension, is given by 

[6] 

k -1 
kill =--

2 
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The average number of hops that a matrix-transpose message makes across the net\\ or\,: is 

n 

d m = I)kmPmi 
i=l 

( 5.12) 

Examining the traffic generated by the matrix transpose permutation shows that a fraction 

nm / N of the network nodes send uniform messages only and the remaining fraction o 
(1- nmo / N) send a combination of uniform (with probability I-m) and matrix-transpose 

messages (with probability m). Using Equations 5.3-5.12, the average number of hops, d , 

that a message makes in the network is derived as 

(5.13) 

where the uniform and matrix-transpose messages contribute with the following weights 

(5.14) 

(5.15) 

As adaptive routing uses any available channel to bring messages closer to their 

destinations, it distributes the rate of message traffic almost evenly among all network 

channels. Since a message makes, on average, d hops in the network, the total traffic 

existing in the network at a given time is N d Ag . Given that a router in the k-ary n-cube 

has Il output channels the rate of messages arriving at each channel, Ac ' can be written <.\\ 

[6] 
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_ NdAR dAR 
Ac ---"-

nN n (.'\ .16) 

The uniform and matrix-transpose messages see different network latencies as they cross 

different channels to reach their destinations. If S u and Sm denote the mean network 

latency for uniform and for matrix-transpose messages, respectively, the mean network 

latency taking into account both types of messages can be written as 

(5.17) 

Averaging over all possible cases for a matrix-transpose message, gives the mean network 

latency for matrix-transpose messages, Sm' as 

(5.18) 

where Sill' is the network latency for a matrix-transpose message whose source and 
I 

destination address patterns differ in i digits. As a uniform message takes, on average, d u 

hops to cross the network, the mean network latency for uniform messages, Su' is given 

by 

(5.19) 

where Pblocku' is the probability of blocking when a uniform message arri \'es at the j-th 
} 

hop channel and We is the mean waiting time to acquire a virtual channel given that a 

message is blocked. The term M + d u in the above equation accounts for the message 

transmission time, while Pbl k H' accounts for the delay due to blocking at the j-th hop 
oc u j c 

channel (l::; j ::; d u) along the message path. Similarly, the network latency for a matrix-

transpose message, S whose source and destination address patterns an.' different in ; 
111 i ' 

digits, is given by 
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(5.20) 

where Pblockm' . is the probability of blocking when the matrix-transpose message arri\es 
I,J 

at the j-th hop channel. A message (uniform or matrix-transpose) is blocked at the j-th hop 

channel when all the adaptive virtual channels of the remaining dimensions to be visited 

and, in addition, the deterministic virtual channel of the lowest dimension to be visited are 

busy. To compute the probability of blocking, Pblocku' ' for a uniform message let us 
J 

consider such a message that makes d u hops across the network (ku hops in each of 11 

dimensions) and has arrived at the j-th hop channel along its path. The message may 

already have passed up to (j -1) / ku dimensions. If I, 0:::::: I :::::: (j -1)/ k ll , dimensions are 

passed then there are still (n-l) dimensions to pass. Therefore, the probability of blocking 

can be expressed as 

Pn-l-Ip 
P.bl k = ppassU[' a a &d . oc U[ . ,J ,J 

(5.21) 

In the above equation, ppassU[ . is the probability that I dimensions are passed at the j-th 
,J 

hop channel, P
a 

is the probability that all adaptive virtual channels of a physical channel 

are busy and P
a 

&d is the probability that all adaptive and deterministic virtual channels at 

a physical channel are busy. Since I may be 0, 1, ... , or (j -1) / kll ' the probability of 

blocking at the j-th hop channel is given by 

P blocku ' 
J 

(5.22) 

The probability that 1 dimensions are passed at the j-th hop channeL p/Jassu/,j' can be 

computed as follows. The number of combinations that 1 particular dimensions are passed 

. rku- I ( '-lk -I) These 1 dimensions can be chosen from fl dimensions in ~I) \\ays 
IS 0 J u' n . 

I .. t I f (11 )rku -I (J' -Ik 11-/) combinations. Di\'iding this hy the total resu tmg m a to a 0 I lOU' 
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number of combinations that j hops can be made over n dimensions \\ill gl\e the 

probability that a uniform message has passed I dimensions at its j-th hop as 

p 
passU[,i (5.23) 

Let us consider a matrix-transpose message passing i dimensions to reach its destination. 

i.e. a matrix-transpose massage whose source and destination addresses differ in i digits. 

Such a message makes ikm hops over i dimensions. Adopting the same approach taken 

above for calculating Pblocku' for uniform messages we can derive Pblockm' . as 
j I.j 

p 
pass 11l [ •. ,I,j 

(i ~kl11-1 (. lk . I) I}-O j- 111,1-

r kl11 ( .. ) ° j,l 

p. =Ppass p~-I-Ipa&d' (O~l~(j-l)/km)' 
block 111 [ ,i ,j 111/,i ,j 

(5.24 ) 

(5.25) 

(5.26) 

Let ~" 0 ~ v ~ V , denote the probability that \' virtual channels are busy at a physical 

channel. As in equations 3.14 and 3.15, the probabilities Pa and Pa&d can be expressed 

in terms of ~" as 
j 

2PV - 1 
Pa &d = Pv + ( V Y 

V-I 
) 

(5.27) 

(5.28) 

a \irtual channel when a me"sa~c IS To determine the mean waiting time to acqUIre 
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blocked, we' an M/G/l queue with an arrival rate of A and servl'ce t' f -5' d c' Ime 0 , IS use . 

The waiting time for such a queue can be expressed as [104] 

ps~+c~ ) 
w = S 

c ' 2(1- p) 

(j~ 
C~=~ 

S -2' 
S 

(5.29) 

(5.30) 

(5.3\ ) 

where (j~ is the variance of the service time distribution. Since the minimum service time 

is equal to the message length M, following a suggestion proposed in [58], the variance of 

the service time distribution can be approximated as 

(5.32) 

As a result, the mean waiting time, We' to acquire a virtual channel when a message is 

blocked, given by Equation 5.29, becomes 

(5.33) 

The probability, p\" that v adaptive virtual channels are busy at a physical channel, can be 

determined using a Markov chain as shown in Figure 3.1 with V+ \ states: JZo, JZ \ , ••. , JZv • 

State JZ v' (0 ~ v ~ V), corresponds to v virtual channels being busy. The transition rate out 

of state JZ \' to state JZ \'+ 1 is the traffic rate Ac while the rate out of state JZ \' to state JZ \'-\ 

IS ± . The transition rate out of state JZ\, is reduced by Ac to account for the arri\al of 
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messages while a channel is in this state. The probability PI. can be computed using the 

steady-state equations as [49] 

1, if v =0 

Qv= QV-IAc S, if 0 < v < V 

Qv-l 
Ac 

if v =V 
l-A 

, 

S c 

V 

II I,Qi' if v =0 
i=O 

P = Pv-1AcS, if 0< v < V v 

Pv- 1 
Ac 

if v =V 
l-A 

, 

S c 

(5.35) 

In virtual channel flow control, multiple virtual channels share the bandwidth of a physical 

channel in a time-multiplexed manner. The average degree of multiplexing of virtual 

channels at a physical channel in the network is given by [49] 

(5.36) 

The calculation of the mean waiting time, Ws ' at the local queue in the source node is 

realized in the same manner as that used for calculating the mean waiting time at a given 

network channel. The local queue is treated as an M/GIl queue with an arrival rate of 

Ag I V (recall that a message in the source node can enter the network through any of the \' 

virtual channels), a service time of S , and thus a mean waiting time of [1041 



Chapter 5. Modelling of k-ary n-eubesfior other important non un;+' t rffi - IJorm ra Ie pattems 128 

(5.37) 

5.1.2 The hypercube case 

For an n-dimensional hypercube network (2-ary n-cube) the above model changes slightly 

as follows. Equation 5.5 giving the probability that a new-generated uniform message is an 

i-hop message, is now given by [3] 

(5.38) 

As a digit in the hypercube is a bit, each digit difference between two nodes' address 

patterns also means a distance of one hop between the two nodes. Hence, the average 

distance traversed by a matrix-transpose message in the network (given by equation 5.12) 

is now given by 

n 

dm = 1)P'ni . (5.39) 

i=l 

The network latency for a message consists of the message transmission time and the 

delay due to blocking in the network. Therefore, we can write Smi (given by equation 

5.20) as 

I _ 

S = M + i + L Pbloek .. S . 
mi' 111, } 

j=l . 

The probability of blocking when an i-hop matrix-transpose message arri\'es at the j-th hop 

channel is now given by 
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B - P i- j 
block m · . - a Pa&d, 

l,j (:~ .-+\) 

where Pa is the probability that all adaptive virtual channels of a physical channel are 

busy and Pa &d is the probability that all adaptive and deterministic virtual channels of a 

physical channel are busy. 

Similarly the probability of blocking when a typical uniform message (which' d-h 
IS a II op 

message) arrives at the j-th hop channel is now given by 

B P d - jp 
block = a U a &d . u· j 

The probabilities Pa and Pa&d can now be computed by [36] 

_ PV - 1 

P
a 

-P
v +( V " 

V-I 
) 

5.2 The analytic model for digit-reversal traffic 

(5.-1-~) 

(5.43 ) 

(5.44 ) 

The model for digit-reversal traffic pattern uses almost the same notation and assumptions 

used for the matrix-transpose traffic pattern. However, to define the digit-reversal traffic 

assumptions a and b should change as follows. 

a) There are two types of traffic in the network: "uniform" and "digit-reversal". In the 

uniform traffic pattern, a message is sent to any other node in the network with 

equal probability. In the traffic pattern generated according to the digit-re\lT-,al 

permutation [59, 79]. a message generated in the source node X = x,x2 .. '\11 i" 

sent to the node D(X)='\·Il Xn-1 ",xI' Let us refer to these t\\O types of mes"ages a" 



Chapter 5. Modelling of k-ary n-cubesfior other important no ;1: ,-Ft. n-UnIJorm traJJlc pattenzs 130 

uniform and digit-reversal messages respectively When a " . , . message IS generated It 

has a finite probability Q of being a digit-reversal message and probabilit} 

(1- Q) of being uniform. When Q = 0, the traffic pattern is purely uniform while 

Q = 1 defines a pure digit-reversal traffic. 

b) Nodes generate traffic independently of each other, and which follows a Poisson 

process with a mean rate of Ag messages/cycle. Therefore. the messag:~ 

generation rate of the uniform and digit-reversal traffics are respectiwly 

(1- Q)A.g and aAg . 

The mean message latency is the sum of the mean network latency, 5, the time to cross 

the network, and the mean waiting time seen by a message in the source node, Ws ' both 

scaled by V , the average degree of virtual channel multiplexing that takes place at a 

physical channel, i.e. 

Latency = (5 + Ws)V . (5.45) 

Examining the address patterns generated by digit-reversal permutations reveals that we 

need to consider even and odd values of n separately when computing the different 

quantities, S, Ws ' and V . This is because when n is even all network channels receive 

both uniform and digit-reversal traffic. However, when n is odd not all channels receive 

both types of messages. While the channels associated with the centre dimension 

(dimension (n+ 1)/2) receive uniform messages only, channels at the other dimensions (1, 

2, ... , (n-1)/2, (n+l)/2+1, ... , n) receive the uniform as well as digit-reversal messages. 

5.2.1 Outline of the model when n is even 

As mentioned above in assumptions we use the digit-re\'ersal permutation functinn I( Y) 

(instead of Yl(X) in the model described above for the matrix-transpose traffic) and thu\ 
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use digit-reversal traffic portion parameter a (instead of parameter 111 used for generating a 

traffic pattern including matrix-transpose and uniform traffic patterns). When the number 

of dimensions, n, is even, the analysis is similar to that of matrix-transpose traffic pattern 

with even n. The model in this case can be obtained by simply changing all indices 111 in 

the matrix-transpose model to d. 

5.2.2 Outline of the model when n is odd 

As explained above, when n is odd, channels belonging to dimension (11+ 1 )/2 recei H~ 

uniform messages only. The traffic due to digit-reversal messages falls only on the 

channels belonging to dimensions 1, 2, ... , (n-l )/2, (n+ 1 )/2+ 1, ... , 11. Let us refer to 

dimension (n+ 1)/2 as the "centre-dimension" and the channels belonging to this 

dimension as the "centre-channels". Similarly, let us refer to other dimensions as "other-

dimensions" and their associated channels as the "other-channels". In subsections 5.2.2.1 

to 5.2.2.6, required changes in the model are discussed. 

5.2.2.1 Calculation of the number of ways that two addresses are 

different in i digits 

When n is odd the digit x(n+l)/2 in the address X is equal to the digit X'(11+1)12 in D(X). 

As a result, the number of combinations, where the address patterns X and D(X) are 

different in i digits, is multiplied by k to account for all possible values that digit x(1I+l)12 

may have. Therefore, the number of possible combinations where x\ X2 .. , xI! and 

x'\ x'2" ·x'n are different in exactly i digits (i= 0, 2, 4, ... , 11) is given by 

( 'f ) ~ 2 - k , k ",I -t+ I = ( 'f ) ~ -I' k ";' . The number of combi nations. where the 

address patterns X and D(X) are different in i digits for i=O, I, ... ,11, is therefore gi\l~n by 
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5.2.2.2 Calculation of the probability of blocking 
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Let P and P &d define the probability that all adaptive virtual channels at an 
aother a other 

other-channel are busy and the probability that all adaptive and deterministic virtual 

channels at an other-channel are busy. Similarly, let P and P define the 
a centre a&dcentre 

probability that all adaptive virtual channels at a centre-channel are busy and the 

probability that all adaptive and deterministic virtual channels at a centre-channel are 

busy. When I dimensions are passed, the remaining n-/ dimensions may make several 

combinations. The probability that the centre-channel is already passed is ~1-=-11 )j~l ). 
Therefore, the blocking probability after passmg I dimensions IS 

[(i.=i }(? )pn- 1- 1 P . If the centre-channel has not been passed yet, with a 
aother a&dother 

probability of 1 - 0-=-11 )/0 ), two cases may arise. First, the centre-channel is passed as last 

dimension with a probability of 1/(n-/) for which the blocking probability becomes 

lI(n -l)~ - {n-l )I{n ).r.n - 1- 1 P . Second, the centre-channel is not be passed as the 
\j -1 \j a other a & d centre 

last dimension, with a probability of (n -/- 1) I(n -/); in this case the probability of 

blocking becomes (n_I_1)/(n_l)~_{n-=-1)/n)f.n-I-2p P &d . Putting all 
\j 1 V aother a centre a other 

these cases together will result in the probability of blocking, for the uniform message, 

when it has already passed I dimensions, as 

(n-l ) 
~pn-l-lp + (7) aMha a&dotha 

1 p ll - I- l p + (11 -1-1) pfl-I-2 p P f ). (5.'+7) 
a a&( I (n -I) aother a&dcenter (11 -I) aotha (,(,liter ot ,,,,. 
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5.2.2.3 Calculation of the probabilities of virtual channel occupancy for 

other/centre-channels 

Adapting the same method as for deriving Equations 3.14 and 3.15. we can express the 

probability that all adaptive virtual channels of a centre-channel are busy. Pa ' the 
• centre 

probability that all adaptive and deterministic virtual channels of a centre-channel are 

busy, Pa&d ' the probability that all adaptive virtual channels of an other-channel are 
centre 

busy, Pa ' and the probability that all adaptive and deterministic virtual channels of an 
other 

other-channel are busy, Pa&d ' all in terms of PI' and PI' f as other centre of ler 

2Pv -I centre Pv -2centre 

Pacentre = PVcentre + -( -V~'\"":""- + ( V '\ ' 

V-I) V-2) 

(5A8) 

2R -I 
P _ R V cenlre 

a&dcentre - Vcentre + (V 1 ' 
V-I ) 

(5.49) 

p _ lV + 2PV-Iofher + lV-2other 

aother - other (V 1 (V 1 ' 
V-I) V-2) 

(5.50) 

2PV - 1 
P - R + other 

a&dother - Yother (V '\ 
V-I ) 

(5.51) 

5.2.2.4 Calculation of the traffic rate on network channels 

While all channels receive uniform traffic, only the channels belonging to other-

. ., . h ~ hen n is odd the traffic rate arri\ing 
dimensions receIve dIgIt-reversal traffIc. T erelore. W 

h h h I A can be expressed as 
at each centre-channel, A and eac ot er-c anne, Cother' 

C centre 
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A c center n 
(5.52) 

5.2.2.5 Calculation of the mean waiting times at a network channel 

The mean waiting time for a centre-channel and an other-channel , H" 
( centre 

and W( ,can 
other 

be expressed as 

W 
(centre 

and 

..te"",,, S';[l+ (Su ~t f] 
2(1 - Ac centre S U ) 

Cather (other S 2 
A S 2 II + _(S t=othe,-,----r -_M_Y] 

(other 
W - ------=----~..:.::.:...----=-

(other - 2(1-AS) 
Cather (other 

(5.5-1-) 

(5.55) 

where Su (given by Equation 5.19) and S( (calculated below) are approximated 
other 

values for service time of a centre-channel and an other-channel, respectively. Therefore, 

the mean waiting time for a channel taking both types into account would be 

I [1 ] H' = - H' + 1 - - w . ( n (centre n (other 

(5.56) 

The mean service time for an other-channeL S( , can be approximated as 
other 

ACcentre S ll- ACcentre Js 
A u+ A d' 

c other C other 
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Adapting the approach used to calculate Pv when n is even, we can write the expression 

of the probability of having v busy virtual channels at a centre-channel. P,. , and at an 
centre 

other-channel, Pv ' as follows. 
other 

1, if v =0 

if 0 < V < V 
(5.58) 

Qv-lcentre _1 __ A-

S Ccentre u 

if V = V 

v 
11 IQicentre ' 

if V =0 

p. 
V centre 

i=O 

Pv -1 centre A-c centre S u ' 
if 0< V < V , (5.59) 

A-
ccentre 

Pv -1 centre _1 __ A-

S Ccentre u 

if V = V 

1, if V =0 

QVother 

if 0< V < V, (5.60) 

Q,,-lother 1 -A-
S cotehr 

tother 

if V = V 

and 

if \' = 0 

~, 
other 

ifO<\'<V, 

S tother 
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where Stather is the mean service time for an other-channel (given by Equation 5.57). The 

average degree of multiplexing of virtual channels belonging to ace t hId n re-c anne an to an 

other-channel in the network, and the total average multiplexing degree of \'irtual channeb 

in the network, are given by 

v 
"i 2 p: 
L..J I centre 

- i=O 
V centre = ..:..........:v~---

" iP L..J I centre 
i=O 

v 
"i2 P. L..J lather 

- i=O 
Vother = -=--V~---

LiPiother 
i=O 

-}- [1]-
V = -;; V center + 1 - -;; Vother. 

5.2.3 The hypercube model 

(5.62) 

(5.63) 

(5.64) 

When the network is hypercube (k=2), if the dimensionality of the network n is even 

similar changes to those made on the matrix-transpose model with even n must be applied. 

For odd n, we may adopt the proposed model for odd n with similar changes made to the 

model for hypercube with even n. Only Equation 5.47, giving the probability of blocking, 

should now change to 

D j7~npll-i-lp + 
'block &d 

Ui (~ I aather a other 

1 ) 

,J~l~nll pn-i-l p +(n-i-l)pn-i-].p p. ).1).6)) ( 7) ) (11 - i) a "'''''' a & d ,.,.", (11 - i) a",,,,., a "'m,', a & d ",h,', 
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5.3 Validation of the models 

The above model has been validated through a discrete-event simulator that mimic'. the 

behaviour of Duato's fully adaptive routing at the flit level in k-ary n-cubes. In each 

simulation experiment, a total number of lOOK messages is delivered. Statistics gathering 

was inhibited for the first 10K messages to avoid distortions due to the initial startup 

conditions. The mean message latency is defined as the mean amount of time from the 

generation of a message until the last data flit reaches the local PE at the destination node. 

The other measures include the mean network latency, the time taken to cross the network, 

and the mean queueing time at the source node, the time spent at the local queue before 

entering the first network channel. 

Numerous experiments have been performed for several combinations of network sizes. 

message lengths, digit-reversal traffic fractions, and number of virtual channels to validate 

the model. However, for the sake of specific illustration, Figures 5.1-5.5 depict latency 

results predicted by the proposed models plotted against those provided by the simulator 

for an 8-ary 2-cube, an 8-ary 3-cube, a 7-dimensional hypercube and an 8-dimensional 

hypercube with M=32 and 64 flits. Moreover, the number of virtual channels per physical 

channel was set to V=2, 3, 4, or 5 and the fraction of matrix-transpose and digit (bit)­

reversal messages was assumed to be m, 0. = 0.1, 0,2, 0.6, 0.7 or 0.8. We have tried to 

include a wide range of parameters (for V, m, 0.) getting different values in different 

scenanos. 

The horizontal aXIs In each figure shows the traffic generation rate at each node (Ag ) 

while the vertical axis shows the mean message latency. Figure 5.1 sho\\s the average 

latency versus message generation traffic in an 8-ary 2-cube for \ '=3 and 5 virtual 

, 11th M-'1) and 64 fll'ts and matrix-transpose channels per phYSical channe, message eng -_1.... . . . 
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Figure 5.1: The average message latency predicted by the model against 
simulation results in an 8-ary 2-cube for V=3 and 5 virtual channels per physical 
channel, and message length M=32 and 64 flits, with matrix-transpose traffic 
portions m=O.1 and 0.7. 

traffic portions 111=0.1 and 0.7. Note that since n=2. we have )l(X)=J.:(X) and therefore 

this figure is also valid for digit-reversal traffic pattern. 
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Figure 5.2: The average message latency predicted by the model against 
simulation results in an 8-ary 3-cube for V=3 and 5 virtual channels per physical 
channel, and message length M=32 and 64 flits, with matrix-transpose traffic 
portions m=0.1 and 0.7. 

Figure 5.2 illustrates the average latency versus message generation traffic in an 8-ary 3-

cube for V=3 with 5 virtual channels per physical channel, message length M=32 and 64 

flits, and matrix-transpose traffic portions m=O.l and 0.7. Figure 5.3 shows the a\t.Tagt.' 
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Figure 5.3: The average message latency predicted by the model against 
simulation results in an 8-ary 3-cube for V=3 and 5 virtual channels per physical 
channel, and message length M=32 and 64 flits, with digit-reversal traffic portions 

0=0.1 and 0.7. 

latency versus message generation traffic for the same scenano but for digit-rc\crsal 

traffic pattern with a=O.l and 0.7. 
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Figure 5.4: The average message latency predicted by the model against 
simulation results in an 8-dimensional hypercube with V=2 and 4 virtual channels 
per physical channel, message length M = 32 and 64 flits and matrix-transpose 
traffic potions m= 0.1 and 0.8. 

Figure 5.4 shows mean message latency predicted by the analytical model against 

simulation results in an 8-dimensional hypercube, for message length M = 32 and 6..+ tlih. 

number of virtual channels V=2 and 4, and matrix transpose traffic portion 111= 0.1 and 0.8. 
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Figure 5.5: The average message latency predicted by the model against 
simulation results in a 7-dimensional hypercube with V=3 and 5 virtual channels 
per physical channel, message length M=32 and 64 flits, and bit-reversed traffic 
portions 0=0.2 and 0.6. 

Finally, Figure 5.5 shows mean message latency predicted by the analytical model against 

simulation results in a 7-dimensional hypercube, for message length AI = 3~ and 6.+ nib. 

number of virtual channels V=3 and 5, and bit-re\t~rsal traffic portion a= 0.2 and 0.6. 
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The figures reveal that in all cases, the analytical model predicts the mean me:.sage latency 

with a good degree of accuracy in the steady state regions. However. some discrepancies 

around the saturation point are apparent. This is due to the approximations made to ease 

the derivation of the model such as in the estimation of the variance of sen'ice time 

distribution at a channel. Such an approximation greatly simplifies the model as it allows 

us to avoid computing the exact distribution of message service time at a gi \'en channeL 

which is not a straightforward task due to the interdependencies between service times at 

successive channels caused by the reliance of wormhole routing on a blocking mechanism 

for flow control. However, the simplicity of the model makes it a practical evaluation tool 

that gives insight into the performance behavior of fully adaptive routing in k-ary n-cube 

interconnection networks. 

It is worth noting that latency results for different values of 111 and 0. reveal that matrix­

transpose or digit-reversal traffic patterns has a little impact on the mean message latency 

since adaptive routing is able to exploit alternative paths of the k-ary ll-cube to route 

blocked messages, and as a result it can distribute traffic load approximately evenly 

among the network channels. 

5.4 Considering bidirectional networks 

When the network is bidirectional some equations in the models described above should 

change as follows. The network diameter dmax is 1l~; J . The prot:.afility that a uniform 
All (i) -

message is an i-hop message is given, using Theorem 2.4, to be N -I . Therefore, 

P - \ 
Ui - N-\ 

11 III ! (n )(111 )(i - k! - 2/- I ) I Ie-1) 211l :2, 
IIl=O!=O III l 111-1 

n n-( III e_1)!2 11l (n)(11-t)(111)(i- kU
2+()-21-1} 

II I t 111 1 111-1 
(=OIll=O!=O 

k is odd 

. (5.66) 

othen\i:,c 
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The average number of hops that a matrix-transpose or a dl·g·t I· . I -reversa message takes In 

each dimension are now 

k 

4 
if k IS even 

(5.67) 

if k is odd 

Since a router in the k-ary n-cube has 2n output channels, the rate of messages received by 

each channel, Ac ' is now given by [6] 

(5.68) 

Recall that, when developing the models for unidirectional k-ary n-cubes, we assumed an 

almost equal traffic on network channels. Validation experiments confirmed that this was 

an acceptable approximation with adaptive routing in unidirectional k-ary n-cubes. 

However, with bidirectional networks such an assumption may result in inaccurate 

predictions especially for high traffic generation rates. 

5.5 Analysis 

The proposed analytical models are now used to study the performance merits of the k-ary 

n-cube with adaptive routing and virtual channels under the non-uniform traffic posed by 

matrix-transpose and digit-reversal permutations. We have repeated the analysis of 

Chapter 3 (for uniform traffic) and observed the same results in all cases. This \\as 

predictable since, in the validation section (Section 5.3), we saw that the effect of matri\­

transpose and digit-reversal traffic patterns on network performance is small. HO\\ever. let 

us consider two networks, a IO-ary 4-cube and a IO-ary 5-cube, as examples with even and 
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odd dimensionality (n) and examine the effect of a non-uniform traffic portion (m and a) 

on network performance. We have used these networks for the sake of the present 

discussion, but the conclusions reached here have been found to be universally \alid. 

Figure 5.6 shows the saturation traffic rate against matrix-transpose traffic portion (m) in a 

unidirectional 10-ary 4-cube (network with even n), with V=4 virtual channels per physical 

channel, and message length M=50 and 200 flits. The network enters the saturation region 

when p ~ 1 (Equation 5.30); the corresponding Ag for which p ~ 1 is satisfied, is the 

saturation traffic rate. As can be seen from the figure, the effect of the matrix-transpose 

traffic portion is negligible especially for long messages (M=200 flits). The same curves 

are obtained when considering digit-reversal traffic pattern, since n is even. 

---+--- Message length=50 flits 
-e-Message length=200 flits 

0.0015 ~ $ $ $ $ $ $ ~ 

= o .--
0.0012 

~ 0.0009 
I-< 

=' -~ r;r., 

~ 0.0006 

o 0 0 0 0 DOD 

0.0003 .!---.....,-------r---,---,--
0.1 0.3 0.5 0.7 0.9 

Matrix-transpose traffic portion (m) 

Figure 5.6: The saturation traffic rate versus matrix-transpose tra~ic portion (m) in 
a unidirectional 1 O-ary 4-cube, with V=4 virtual channels per phYSical ~h~nnel and 
message length M=50 and 200 flits. Note that the curves for the digit-reversal 

traffic pattern are the same since n is even. 
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Figure 5.7: The saturation traffic rate versus permutation traffic portions (m or a) 
in a unidirectional 10-ary 5-cube, with V=5 virtual channels per physical channel, 
and message length M=50 and 200 flits; (a) in the presence of matrix-transpose 
traffic, (b) in the presence of digit-reversal traffic. 
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A similar trend can be seen in Figure 5.7 for a lO-ary 5-cube (network with odd 11) with 

V=5 virtual channels per physical channel and message lengths of M=50 and 200 tlih in 

the presence of matrix-transpose and digit-reversal traffic patterns. 

These figures again confirm that the effect of non-uniformity posed by matrix-transpose 

and digit-reversal traffic patterns on network performance is almost negligible since 

adaptive routing enables the blocked messages to advance towards their destination using 

free alternative paths. 

5.6 Conclusions 

This chapter has presented analytical models for computing message latency in wormhole­

switched k-ary n-cubes with fully adaptive routing in the presence of traffic generated by 

the matrix-transpose and digit-reversal permutations used in many parallel applications 

(e.g., matrix problems and signal processing). Simulation experiments have confirmed that 

the latency results predicted by the analytical models are in good agreement with those 

obtained through simulation experiments. The results show that matrix-transpose and 

digit-reversal traffic portions do not have a large impact on overall network performance 

when fully adaptive routing algorithms are used in unidirectional k-ary n-cubes. 

In the next chapter, we shall use the models proposed in Chapters 3, 4 and 5 to compare 

the performance of k-ary n-cubes under two well-known technological constraints: 

constant bisection bandwidth and pin-out. To do so, we need a new cost-performance 

model, the first to consider the costs of both network channels and internal router 

hardware. 



Chapter 6 

Performance Comparison of 
Multi-dimensional k-Ary n-Cubes 

An extensive examination of interconnection networks has been conducted over the last 

decade, both with a view to studying fundamental graph-theoretic properties and 

feasibility of implementation in various technologies [4, 6, 10, 20, 35, 44, 62, 85, 157]. 

The latter consideration is of crucial importance since In practice implementation 

technology puts bandwidth constraints on network channels, and these are important 

factors in determining how well the theoretical properties of a particular network topology 

can be exploited. When systems are implemented on a single VLSI-chip, the wiring 

density of the network determines the overall system cost and performance [48]. For 

instance, Dally [44] has shown that under the constant wiring density constraint (with 

constant bisection bandwidth), the 2D torus outperforms the hypercube. This is because 

the former topology has wider channels, thus higher channel bandwidth, that compensate 

for its higher diameter. 

Other researchers, including Abraham [4] and Agrawal [6], have conducted similar studies 

to Dally's and arrived at the same conclusion. However. they have also argued that \\hile 

the wiring density constraint is certainly applicable where an entire network i:--
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implemented on a single VLSI-chip, this is not the case in the currently more realistic 

situation where a network has to be partitioned over many chips. In such circumstances, 

they have identified that the most critical bandwidth constraint is imposed by the chip's 

110 pins through which any data entering or leaving the chip must travel. Abraham [4] and 

Agrawal [6] have concluded that it is the hypercube which exhibits better performance 

under such a pin-out constraint. All these studies [4, 6, 10, 20, 44, 157] have used 

deterministic routing. Moreover, they have all taken account of network channel costs 

while ignoring those associated with the internal hardware of the routers. 

This chapter examines the relative performance merits of the torus and hypercube with 

fully adaptive wormhole routing in the presence of different traffic patterns, namely 

uniform, hotspot, matrix-transpose and digit-reversal. To do so, we use the analytical 

models proposed in Chapters 3, 4 and 5, of fully adaptive routing in wormhole-switched k­

ary n-cubes in the presence of uniform, hotspot, matrix-transpose and digit-reversal traffic 

patterns. The comparison is conducted under constant bisection bandwidth and pin-out 

constraints and for both pipelined and non-pipelined wire delay models I [157]. 

The rest of the chapter is organised as follows. Section 6.1 briefly gives the assumptions 

made in comparison. Section 6.2 defines a new cost-performance model while section 6.3 

uses the proposed cost-performance model and compares the performance merits of the 

torus and hypercube under both the constant bisection bandwidth and pin-out constraints, 

and considering pipelined and non-pipelined wire delay models, in the presence of 

different traffic patterns. Finally, Section 6.4 concludes this chapter. 

6.1 Assumptions 

We make the following assumptions, widely used in the literature [3-6, 10, 29-31. 38, 39, 

1 We talk about these wire delay models in Section 6.2.2. 
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44,45,54,77,80-82,95,114, 135, 136]. 

a) The uniform and non-uniform (hotspot, matrix-transpose and digit-reversal) 

traffic patterns are considered. 

b) Nodes generate traffic independently of each other, which follows a Poisson 

process with a mean rate of Ag messages/cycle. In case of non-uniform traffic, 

two non-uniform and uniform portions, XAg and (1- X)Ag , are presented where x 

may be replaced by h for hotspot, m for matrix-transpose and a for digit-reversal 

traffic patterns. 

c) Message length is fixed and equal to M flits. 

d) The channel cycle time and switch internal delay are assumed to be respectively, 

tc and ts clock cycles. 

e) The local queue at the injection channel in the source node has infinite capacity. 

Moreover, messages are transferred to the local PE as soon as they arrive at their 

destinations through the ejection channel. 

f) V virtual channels are used per physical channel, divided in two groups Vel and 

ve
2 

as discussed in Chapter 2. In a general k-ary n-cube network, group Vel 

contains 2 virtual channels which are crossed deterministically (e.g. in an 

increasing order of dimensions) and group vez contains (V - 2) virtual channels 

which are crossed adaptively. For the special case, the hypercube (k=2), group 

Vel contains 1 virtual channel and group vez contains V-I virtual channels. 

Note that switch internal delay was not considered when developing the models in 

Chapters 3, 4 and 5 as the accuracy of the model does not depend on this parameter and is 

mainly dependent on how well the model can predict the blocking delay in the network. 

However. as we will see, the pipelined wire delay model depends on the switch internal 
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delay. To take this into account, we have to rewrite some of the Equations in the proposed 

models. For example, Equation 3.5 should change to SH =(iH i+M)*(tc +ts)+ 'f'B
j

. 

j=\ 

and the variance of the service time distribution, used to compute Equations 3.20 and 3.21. 

can be approximated as ()~ = (S - M *(ts + tc »2. 

6.2 The proposed cost-performance model 

Most practical and experimental machines employ either the 2D torus or 3D torus as the 

two most famous instances of lower-dimensional k-ary n-cubes, and the hypercube as the 

best-known example of higher dimensional networks. In this section. we compare the 

performance merits of these networks for different implementation constraints and 

working conditions. To do so, we use the analytical models already introduced in Chapters 

3, 4, and 5. We would rather use the unidirectional k-ary n-cube model since a hypercube 

is topologically a unidirectional 2-ary n-cube whereas the bidirectional 2-ary n-cube is a 

hypercube with redundant inter-node links. However. before discussing the relative 

performance merits of the torus and the hypercube, this section examines the constraints 

imposed by implementation technology on channel bandwidth and wiring delays. 

6.2.1 Implementation constraints 

Due to the limited channel bandwidth imposed by implementation technology. a flit is 

broken into channel words (or phits [55]), each of which is transferred in one cycle. If the 

channel width (i.e. number of wires) is C\ bits, a message of B bits is di\'ided into 

M=BIC\\, phits [6]. In practice, a flit in wormhole routing may be composed of one or 

more phits. 
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Dally [44] has used the bisection width, i.e. the number of wires that cross the middle of 

the network, as a rough measure of the network wiring densit) in a pure \'LSI 

implementation. Let us define k2D-torus' k3D-torus and n to be, respectively, the radix of 

the 2D torus, the radix of the 3D torus and the dimension of the hypercube network. 

chosen such that the network SIze In the three topologies IS equal to 

N = (k2D-torus f = (k3D-torus ~ = 211 . Let us assume that a network is implemented on the 

two dimensional physical plane with fN nodes along each dimension. The bisection 

width of the 2D torus, the 3D torus and the hypercube. B2D-torus' B3D-torus and 

B with a channel width C. , C. and C, , can be hypercube' , H 2D-torus 11 3D-torus It Inpercli/Je 

expressed as [6, 44] 

B2D-torus = 2fN x C w2D-torus ' 
(6.1 ) 

B -2~N2 xC 3D-torus - w3D-torus ' 
(6.2) 

N 
Bh b = 2-XC'I' = NxCw h' ypercu e 2 ' Inperclihe hypercu e 

(6.3) 

If the bisection width is held fixed, the relationship between channel widths in the 20 

torus, the 3D torus and the hypercube is given by 

c, =fiNxcw 1\ 2D-torlls 3D-torus 

fN 
=-C. . 2 11 hypercube 

(6.-+) 

Similarly, in multiple-chip implementations, where a complete node is fabricated on a 

chip, pin-out, which is the number of VO pins (i.e. node degree x channel \\idth). is a 

't bl t' [1 'J] The node pin-out for the 20 torus. 3D torus and hypercube. more SUI a e me nc ,_1. 

P P and P can be wri tten as 
2D-torus' 3D-torus hypercube' 

(6.5 ) 
P'D t = 4C , . - - OrtiS 1\ 2D-tllrus 
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P3D-torus = 6C w3D ' -torus (6.6) 

Phypercube = 2nC w hypercube . (6.7) 

Assuming a constraint of constant node pin-out, the channel width relationship III the 

considered networks will be 

C =2c =~C 
W2D-torus 2 W3D-torus 2 Whypercube' (6.8) 

Equations 6.4 and 6.8 reveal that the torus has wider channels than the hypercube under 

both the constant bisection width and node pin-out constraints. For typical network sizes, 

under the constant wiring density constraint the 2D torus has even wider channels than 

under constant pin-out constraint, relative to the 3D torus and hypercube. 

6.2.2 Wire delay model 

We take the 2D torus as our base network for the comparison and calculate the desired 

parameters in the 3D torus and the hypercube in terms of those in the 2D torus base 

network. When mapped into the 2D plane, the 3D torus and the hypercube end up with 

longer wires, and therefore with higher wire delays than their 2D torus equivalent because 

of their larger number of dimensions, which have to be folded into the 2D plane. Note that 

this has to be taken into account even when a constant pin-out constraint is in effect 

because any network system has to be implemented ultimately either in a 2D (e.g PCBs) 

or 3D (cabinets, etc) physical medium. We focus here on a 2D plane (i.e. normalising the 

implementation parameters for a 2D torus) rather than a 3D space although we could 

equally use a 3D space implementation constraint [157], simply changing Equations 6.9 

and 6.10 below. However, as long as a relative performance assessment is the goal, a 20 

plane or 3D space implementation constraint result in similar conclusions. 
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The WIre delay, due to long WIres, can be reduced by usmg WIre transmission line 

characteristics, as suggested by Scott and Goodman [157]; the wire has a storage capacity 

and can simply be treated as sequence of stages in the pipeline transmission of phits. with 

no need to wait for a phit to arrive before transmitting the next one. Such pipe1ined wire 

delays can be easily modelled by scaling the channel cycle time by factor r . /. d 
pipe l1le • 

given as [157] 

- 2(-iN -1) 
r pipe lined "'" nkR ' (6.9) 

where R is the ratio of the switch cycle time (ts) to the channel cycle time, f,. in the 20 

torus. A detailed derivation of r pipelined can be found in [1571. When R= L the wire delay 

is equivalent to the switch delay in a 2D torus, but becomes higher in the 3D torus and the 

hypercube, reflecting their longer wires. When normal channels are considered (non-

pipeline wire delay model) the channel cycle time is scaled by [157] 

-iN 
kR ' 

if k > 2 

r non- pipelined = 
(6.10) 

-iN 
4R' 

if k = 2 

6.2.3 Cost of routers 

The constant bisection bandwidth and pin-out constraints have already been used [4. 6, -+-+ 1 

to fix the network cost (without taking into account the router's internal hardware cost) 

when VLSI implementation and multiple-chip implementation are considered. However 

these constraints do not consider the cost of the hardware used inside a router. and to make 

a fair comparison we must also take this into account (due to the crossbar switch. addre"" 

decoder unit, virtual channel buffers and associated logic) fixing it for the hypercube. the 
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2D torus and the 3D torus. This is also useful when calculating the channel cycle time in 

the 3D torus and hypercube with respect to the channel cycle time in the 20 torus. To do 

so, each virtual channel in the 2D torus, the 3D torus and the hypercube is associated with 

a flit-size buffer (we assume that the flit size is the channel width of the 20 torus). This 

means that the phit size is equal to the flit size in the 2D torus while in the hypercube and 

the 3D torus it is different as the channel width in the hypercube and the 3D torus is 

smaller than that of the 2D torus. With Cw ' C w and C\\. being the 2D-torus 3D-torus Inpact/hi:' 

phit size (also channel width) in the 2D torus, the 3D torus and the hypercube, 

respectively, and t c being the channel cycle time in the 20 torus, the time required 
2D-torus 

to send a flit across a physical channel (or flit transmission delay), in the 3D torus and the 

hypercube, can be given by 

t C3D-turus = Jl.3D-torustc2D-turus ' 
(6.1 1) 

(6.12) 

where "3D and "h b are scaling factors of flit transmission delay in the 3D 
r -torus r ypercu e 

torus and the hypercube (compared to that in the 2D torus), given by 

C W2D-torus 
f.13D-torus = C r 3D-torus' 

w3D-orus 

(6.13) 

C. -
H 2D-torus 

f.1 hypercube = C r hypercube' 
H'hypercuhe 

(6.14) 

This takes into account the effect of wire delay when mappmg the 3D torus and the 

hypercube into a 2D plane (given by Equations 6.9 and 6.10) and the effect of narrower 

channel width in the 3D torus and hypercube. 

Using pipelined channels, taking the 2D torus as the base network and assummg ih 

. f' ( I k cycle) \\c em deri\c the nit 
channel cycle period is equal to the umt 0 tIme one c oc . L 
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transmission delay factors for the 3D torus and the hypercube (using Equations 6.-+ and 

6.8), when the constant bisection width constraint is considered as , 

= f[N x 2(-iN -1) _ 2(-iN -1) 
JL3D-torus 3R V!i - 3R f[N , 

-iN 2(-iN -1) N --iN 
JLhypercube = -2- x 2nR = 2nR . 

When the pin-out constraint is applied these equations are found to be 

3 2C-iN-l) -iN-I 
JL3D-torus = 2' x 3R V!i = R VN ' 

n 2(-iN-I) -iN-I 
JLhypercube = 2' x 2nR = 2R . 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

Similarly, for normal Cnon-pipelined) channels when the constant bisection width 

constraint is considered we can write 

(6.19) 

-iN -iN N 
flhypercube = -2- x 4R = 8R ' 

(6.20) 

and when the pin-out constraint is applied we have 

(6.21 ) 

(6.22) 

The above equations help us to calculate the normalised channel cycle time in the 3D torus 

and the hypercube with respect to that of the base network (the 20 torus) but it makes the 
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Figure 6.1: The result of normalizing the cost of routers internal hardware for the 
64-node network with three different topologies, (a) 6-dimensional hypercube, 
(b) 4x4x4 3D torus, and (c) 8x8 20 torus. 
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total buffer used in the 3D torus and the hypercube larger than that in the base network. 

For instance, with a 64-node network size, the 2D base network (8x8 torus) has 2 flit 

buffers for the two input channels, the 3D network (4x4x4 torus) has 3 flit buffers for the 

three input channels and the hypecube (6-dimensional) has 6 flit buffers for the 6 input 

channels at each node. 

To make the total buffer size equal for each router, for the three different networks, we 

increase the number of virtual channels (associated to each physical channel) in the 20 

and 3D torus to make the total node buffer size equal to that in the equivalent hypercube. 

The total buffer used in the router is simply (number of physical channel) x (number of 

virtual channels per physical channel). Therefore, the total buffer space used inside the 

router in the 2D torus, the 3D torus and the hypercube is respectively given by 

Bujferhypercube = n Vhypercube ' (6.23) 

Bujfer2D-torus = 2V2D-torus' 
(6.24) 

Bujfer3D-torus = 3V3D-torus ' 
(6.25) 

where V V and V 3D denote respectively the number of virtual 
hypercube' 2D-torus' -torus 

channels per physical channel in the hypercube, 2D torus and 3D torus. Recalling that the 

minimum number of virtual channels (per physical channel) in the hypercube Vhypercube' 

according to the Duato's theory, is 2 and using Equations 6.23, 6.24 and 6.25, we have 

Vhypercube = 2, 

V2D-torus = n , 

211 
V3D-torus =:3' 

(6.26) 

(6.27) 

(6.28) 
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assuming equal buffer reqUIrements at different node types (for the three different 

topologies). Note that V2D-torus and V3D-torus must be at least 3 to be able to exploit 

Duato's adaptive routing. For the above 64-node example network, \\e have 

Vhypercube = 2, V2D-torus = 6, and V3D-torus = 4 each imposing a total of 12 flit buffers 

(corresponding to 12 virtual channels) at each node as illustrated in Figure 6.1. 

Without the above normalisation, the crossbar switch and address decoder deJa) may be 

different in each network for the following reasons. The router's internal switch (bridging 

the input channels to the output channels) in the hypercube would be larger than that in the 

torus due to its larger number of input and output channels. As a consequence. the 

switching delay in the hypercube would be higher due to the additional complexity. 

according to Chien's model [35]. However, comparable switch and address decoder delays 

in the networks can be obtained if the routers have comparable switch sizes and equal 

number of virtual channels. Using such a intra-node cost model for normalising the total 

number of virtual channels at different node types, we firstly make the cost of hardware 

used inside a router (both with buffer and crossbar switch size) in the 2D torus. the 3D 

torus and the hypercube network equal; secondly, we make the crossbar switch and 

address decoder delays in these networks comparable since these delays are some 

functions of the number of virtual channels in the router [35]. 

6.3 Comparison results and discussion 

In this section, the performance of the three networks in question is examined for both the 

constant bisection width and the constant pin-out constraints. For illustration. the 

following various network sizes are examined: 

_ A small size of N=64 nodes; configured as an 8x8 torus. a 4x-l-x4 torus. and a 6-

dimensional hypercube. 
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Table 6.1: Calculated flit transmission delay factors' (J.1) and b f' 
channel h' I hi' num er 0 virtual s per p YSlca c anne (\I) In the t~ree topologies (20 torus 3D torus 
hypercube) fO.r dl~ferent network sizes and Implementation constraint's with R-1' 
and for both plpellned and non-pipelined channels. -

~ 
N -64 N -512 

size 
.\" 4096 

jl J.1 J.1 
V Bisection width Pin - out V 

Topology 
Bisection width Pin - out V BI,~ction width Pin - out 

plpcLincJ non ·pipclincd pipclincd non-pipclinco lrirclJn~J non-pipclined plpclincd non· pipe-lined plpclined non - pipelincd plpclin<~ 110n - p.peltoN 

2DTorus 6 1 1 1 1 9 1 1 I 1 12 I 1 I I 

3D Torus 4 3 4 2 3 6 6 8 3 5 8 II 16 4 6 

Hypercube 2 5 8 4 6 2 28 64 II 26 2 168 512 32 96 

*All calculated values are rounded up to the nearest integer number. 

_ A medium size of N=512 nodes; configured as a 23x23 torus
l

, an 8x8x8 torus, and a 

9-dimensional hypercube. 

_ A moderately large size of N=4096 nodes; configured as a 64x64 torus, a 16x 16x 16 

torus and a 12-dimensional hypercube. 

The flit transmission dealys in the 3D torus and the hypercube are normalised to that of the 

2D torus using Equations 6.11 and 6.12 under the constant wiring density and pin-out 

constraints. Let us set R=I, implying that the switching time (ts) is equal to the channel 

cycle time (tc) in the 2D torus. Assuming that a physical channel in the hypercube has \1=2 

virtual channels, one deterministic and one adaptive, and using Equations 6.26 and 6.27 

the number of virtual channels per physical channel in the 2D torus and the 3D torus are 

calculated in order to have an equal router cost for the three considered networks. Table 1 

illustrates the flit transmission delay factor (ji) and the number of \'irtual channels per 

physical channel (V) calculated for three network sizes (N=64, 512 and 4096) under both 

1 Approximate root is used for N=512. 
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the constant bisection width and pin-out constraints usmg both pipelined and non­

pipelined wire delay models, for the three network topologies (20 torus, 3D torus and 

hypercube). In what follows, all message lengths are quoted in terms of flits in the 20 

torus. 

6.3.1 The results for uniform traffic load 

Figure 6.2 (a) depicts latency results in the 2D torus, 3D torus and hypercube under the 

constant bisection width constraint, using pipelined wire delay model, and for message 

length M=64 flits in the 64, 512, and 4096- node systems. The figure reveals that the 20 

torus is able to exploit its wider channels to provide a lower latency than the 3D torus and 

hypercube under light to moderate traffic. 

For small network SIzes, however, as traffic increases its performance degrades as 

message blocking rises, soon offsetting any advantage of having wider channels compared 

to the hypercube. This is mainly due to small diameter of the hypercube and its rich 

connectivity providing more alternative routes and thus more adaptivity. Moreover for 

small networks the relative flit transmission delay in the hypercube is not large compared 

to the 2D torus base network. 

With moderate and large networks, the relatively slower and thinner channels in the 

hypercube and 3D torus plus the effect of blocking prevent the hypercube from exploiting 

its main topological advantages (lower diameter and more alternate routes, giving more 

adaptivity), resulting in performance degradation compared to the 20 torus. This is most 

noticeable in large networks (e.g. 4096 node networks in the figure). In all cases, when the 

traffic is low, since there are no message blocking effects. the lower flit transmission delay 

in the 20 torus (compared to the 3D torus and the hypercube). results in a hetter 

Th I . btal'ned b')· Oall}· [-+-+ I and performance in the 20 torus. e same conc USlOn was 0' . 
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Figure 6.2: The average message latency for different network sizes (N=64, 512, 
4096) and topologies (the 2D torus, 3D torus and hypercube), for message length 
M=64 flits, and pipelined wire delay model when (a) constant bisection width 
constraint, and (b) constant pin-out constraint, are applied. 
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Figure 6.3: The average message latency for different network sizes (N=64, 512, 
4096) and topologies (the 2D torus, 3D torus and hypercube), for message length 
M=64 flits, and non-pipelined wire delay model when (a) constant bisection width 
constraint, and (b) constant pin-out constraint, are applied. 
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Agarwal [6] for deterministic routing and uniform traffic, i.e. lower dimensional k-an 12-

cubes outperform their higher dimensional counterparts under a bisection bandwidth 

constraint. 

Let us now consider the effect of constant pin-out constraint with pipelined wire delay 

model. As can be seen in Figure 6.2(b), the pin-out constraint favours the higher 

dimensional k-ary n-cubes (compared to the bisection width constraint) thus advantaging 

the hypercube. This is the case for all network sizes. Abraham [4] and Agarwal [6] have 

also compared the performance merits of the torus and the hypercube under a constant pin­

out constraint with deterministic routing and uniform traffic. They concluded that higher 

dimensional k-ary n-cubes have superior performance over their lower dimensional 

counterparts under this constraint. 

Figure 6.3 shows the same quantities as Figure 6.2 but for a non-pipelined wire delay 

model. When the constant bisection bandwidth constraint is considered, the conclusion 

arrived at is almost the same as for the pipelined wire delay model (shown in Figure 

6.3(a)), i.e. lower dimensional k-ary n-cubes exhibit superior performance compared to 

their higher dimensional counterparts, especial1y for moderately large networks. However, 

when a constant pin-out constraint is considered, the results are very interesting. For smal1 

moderate, and large networks the topology exhibiting the best relative performance is 

respectively the hypercube, 2D torus and 3D torus. This differs from Abraham's [4] and 

Agarwal's [6] conclusions because we have considered the effects of virtual channels and 

the cost of hardware used inside the routers. 

6.3.2 The results for hotspot traffic 

Figure 6.4 depicts latency results in the 2D torus, 3D torus and hypercube under the 
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constant bisection width constraint, USIng a pipelined WIre delay model, for mes"agt' 

length M=64 flits and hotspot traffic fraction h=0.05, 0.2 and 0.5 in the 64, 512, and 4096-

node systems. The figure reveals that the 20 torus is able to exploit its wider channels to 

provide a lower latency than the 30 torus and hypercube under light to moderate traffic 

when the hotspot portion is small. However, as traffic increases its performance degrades 

as message blocking rises, soon offsetting any advantage of having wider channels, e\'t'n 

when h is small. This is mainly due to the fact that the small diameter of the hypercube 

and its rich connectivity provide more alternative routes and thus more adaptivity. 

Moreover for small networks the relative flit transmission delay in the hypercube is not 

large (compared to the 20 torus base network). When hotspot traffic fraction increases, the 

20 torus dominates the hypercube because, in such a scenario, the main component 

contributing to the mean message latency is due to hotspot messages (see Chapter 4, 

Section 4.2). These messages are often blocked in the network by other hotspot mt'ssages 

that have already acquired the channels leading to the hotspot node. The effects of 

blocking plus the relatively higher flit transmission delay of the hypercube, in this case, do 

not enable the hypercube to exploit its main topological advantages (lower diameter and 

more alternate routes giving more adaptivity), resulting in a performance degradation 

compared to the 20 torus. 

With moderate and relatively large networks even small hotspot fractions cause the same 

conditions that occur in small networks with larger h. In addition, relativey slower and 

thinner channels in the hypercube and 30 torus favour the 20 torus further. This is most 

noticeable in large networks (e.g. 4096 node networks in the figure). In all cases, when the 

traffic is low, since there is no message blocking effect, the lower flit transmi<.;sion delay in 

the 20 torus (compared to the 30 torus and the hypercube), results in a better performance 

in the 20 torus. The same conclusion was derived by Dally [44] and Agarwal [6] for 

deterministic routing and uniform traffic. 
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Figure 6.5 shows latency results in the 2D torus, 3D torus and hypercube under the 

constant pin-out constraint, using pipelined wire delay model, for message length .\1=6-'+ 

flits in 64, 512, and 4096- node systems. As can be seen in the figure, the pin-out 

constraint favours the higher dimensional k-ary n-cubes (compared to the bisection width 

constraint) thus advantaging the hypercube slightly. However, similar to the results 

obtained for the bisection bandwidth constraint, the same conclusion can be made for 

small networks with a large hotspot fraction and for medium and large networks with a 

relatively small hotspot fraction. Note that the saturation traffic rates in the three networks 

are closer compared to those shown in Figure 6.4 under the constant bisection width 

constraint. Abraham [4] and Agarwal [6] have compared the performance merits of the 

torus and the hypercube under the constant pin-out constraint with deterministic routing, 

uniform traffic and a non-pipelined wire delay model, showing that the hypercube has 

superior performance over the torus. Their conclusion is different from ours because we 

have considered the virtual channels effects and also the cost of hardware used inside the 

routers in the presence of hotspot traffic. 

Figures 6.6 and 6.7 show the same results shown in Figures 6.4 and 6.5 for a non­

pipelined wire delay model. Since the non-pipelined wire delay model favours the 2D 

torus more than when the pipelined wire delay model is considered, a better performance 

is achieved for the 2D torus. The conclusion in the case of the non-pipelined wire delay 

model is similar. 

Since it is clear that the 2D torus gives better performance than the other two for medium 

and large network sizes, let us now focus on the smaller network (64-nodes). Figure 6.8 

illustrates the mean message latency against message length in the 64-node 2D torus. 3D 

torus and hypercube networks for both the constant bisection width and pin-out constraints 

with a pipelined wire delay model. The traffic generation rate at each node, A", is fi\.:d at 

0.0001 and the hotspot fraction is assumed to be h = 0.2. As can be seen in the figure. 
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Figure 6.4: The average message latency for different network sizes (N=64, 512, 
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Figure 6.5: The average message latency for different network sizes (N=64, 512, 
4096) and topologies (the 2D torus, the 3D torus and the hypercube), with hotspot 
traffic portions h=0.05, 0.2, and 0.5, when the constant pin-out constraint and 
pipelined wire delay model are applied. The message length is M=64 flits. 
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Figure 6.6: The average message latency for different network sizes (N=64, 512, 
4096) and topologies (the 20 torus, the 30 torus and the hypercube), with hotspot 
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and non-pipelined wire delay model are applied. The message length is M=64 
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Figure 6.7: The average message latency for different network sizes (N=64, 512, 
4096) and topologies (the 20 torus, the 3D torus and the hypercube), with hotspot 
traffic portions h=0.05, 0.2, and 0.5, when the constant pin-out constraint and 
non-pipelined wire delay model are applied. The message length is M=64 flits. 
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Figure 6.8: The effect of message length M on the average message latency in a 
64-node 2D-torus, 3D-torus, and hypercube under constant (a) bisection width 
and (b) pin-out constraints, with hotspot traffic portion h=0.2, and message 
generation rate Ag =0.0001 ,when pipelined wire delay model is applied. 

the 2D torus shows a lower latency for short messages. Note that under constant pin-out 

constraint the latency in the three networks get closer for long messages. 

Figure 6.9 shows the effects of the hotspot traffic fraction on the saturation traffic rate of 

the 64-node 2D torus, 3D torus and hypercube, when M=64, for both the constant 

bisection width and pin-out constraints, using pipelined wire delay model. The results 

reveal that the 2D torus behaves better than the others when h increases. Under the pin-out 

constraint the saturation rates in the three networks are closer although the hypercube 

saturates later than the torus when h=O.1 and earlier when h= 1. Under the constant 

bisection width constraint, the relative performance merits of the three networks does not 
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change as h increases, while the ranking is changed between the 3D torus and hypercube 

from h=O.l to h= 1 under the pin-out constraint. 

6.3.3 The results for matrix-transpose and digit-reversal 

permutation traffic patterns 

We have examined different scenarios for different network sizes and topologies with 

different matrix-transpose and digit-reversal traffic portions and different number of 

virtual channels and observed almost the same trends in the latency curves as for uniform 

traffic. This is not so surprising as we have already seen in Chapter 5 that the effect of 

matrix-transpose and digit-reversal traffic portions on the total mean message latency is 

small. Therefore, for the sake of brevity, we do not report the analyses for matrix-

transpose and digit-reversal traffic patterns since the conclusion of these is similar to that 

for the uniform traffic pattern. 

6.4 Conclusions 

Many studies have stressed the performance benefits of adaptive over deterministic 

routing in the presence non-uniform traffic patterns [55, 148] such as hotspots [142]. This 

chapter examined the relative performance merits of adaptively routed multi-dimensional 

k-ary n-cubes under uniform, hotspot, matrix-transpose and digit-reversal traffic patterns. 

Our analysis has considered virtual channels and taken into account the cost of both 

network links and the internal hardware of routers. We believe previous analyses reported 

in the literature [4, 6, 44] could not be entirely fair since they considered only the cost of 

network links and ignored the cost of router hardware. 
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Figure 6.9: The effect of hotspot traffic portion h on the saturation traffic rate in a 
64-node 2D-torus, 3D-torus , and hypercube under constant (a) bisection width 
and (b) pin-out constraints , with message length M=64 flits , when pipelined wire 

delay model is applied. 
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We conducted our comparisons for three network sizes: small, medium and large net\\orks 

with respectively 64, 512 and 4096 nodes. With uniform traffic and a pipelined wire deb: 

model, both constant bisection bandwidth and pin-out constraints give results in agreement 

with those achieved by Abraham [4] and Agarwal [6]. However, when a non-pipelined 

wire delay model is considered, the constant pin-out constraint results in a different 

conclusion from that reached by Abraham and Agarwal. While they concluded that higher 

dimensional k-ary n-cubes should perform better than their lower dimensional counterparts 

with a constant pin-out constraint, we have found that for relatively large networks 

(thousands of nodes), it is, surprisingly, the 3D torus that is the network with the best 

performance while for moderate size networks (hundreds of nodes) the 2D torus gives the 

best results. Under the stated conditions, it is only in small networks (less than hundred) 

that the hypercube dominates. 

The results, in the presence of hotspot traffic, indicate that, under a constant bisection 

bandwidth constraint, the torus has better performance than the hypercube, just as reported 

in previous work with deterministic routing, e.g. Dally's [44] and Agrawal's [6]. However, 

this present study has reached a different conclusion from previous ones (e.g. in [4, 6]) 

under the constant pin-out constraint. Our results have shown that for moderate and large 

network sizes the 2D torus always shows better performance than the hypercube under 

constant bisection bandwidth and pin-out constraints when hotspot traffic is present. 

With matrix-transpose and digit-reversal traffic patterns the results obtained were almost 

the same as for a uniform traffic pattern. 



Chapter 7 

Conclusions and Future Directions 

The interconnection network is a crucial component in any parallel computer since any 

interaction between the processing elements ultimately depends on its effectiveness [136]. 

Although many network architectures have been studied [110], and indeed deployed, none 

has proved clearly superior in an roles, since the communication requirements of different 

applications vary widely. Nevertheless, the k-ary n-cube has undoubtedly been the most 

popular interconnection network used in practice [7,13,92,93,98,131,147,170] 

because, on balance, it has the most desirable properties [169, 173]. It has been studied 

extensively in many aspects and but still merits further exploration of its properties. 

This thesis has undertaken just such an exploration of the characteristics and performance 

capabilities of k-ary n-cubes. The work has, in particular, focussed on combining adaptive 

routing and wormhole switching with virtual channels, a scenario of especial interest to 

current research, using mathematical models validated through simulation experiments. 

The performance of adaptive routing in wormhole-routed k-ary n-cubes was evaluated 

under different traffic conditions by developing analytical models for calculating average 

message latency. 
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Unlike other models, reported in the literature, those proposed in this study are more 

realistic and take account of more details of a real system. Pre\ious attempts to consider 

equivalent levels of details have been based on measurement and simulation experiments. 

However, to simulate a massively parallel machine, say a system with se\'eral thousand 

nodes, these latter techniques can absorb enormous computational power in order to model 

realistically the interaction between network parameters and their effect on 

communications performance. Accurate and comprehensive analytical models are, in 

principle, powerful alternatives to such compute-intensive tasks and can indeed save 

considerable time and expense for network designers and researchers. This work has 

shown that such cost-effective models can be built with sufficient detail and accuracy to 

give a useful insight into performance merits of k-ary n-cubes. This should make it 

possible for prospective manufacturers to inform critical technical decisions prior to the 

actual construction of new machines that employ adaptive routing by reducing the 

potentially enormous design-space and allowing detailed effort to focus on the most 

promIsmg scenanos. 

The models developed were then used to compare performance merits of low-dimensional 

k-ary n-cubes to their high-dimensional counterparts under two major implementation 

constraints, constant bisection width and constant node pin-out. Several previous 

comparative analyses of networks have also used wiring density and pin-out count to 

quantify implementation cost in VLSI and multiple-chip technology. However, none has 

taken account of the cost of the routers, which may be complex and expensive to 

implement. We have extended cost constraints to include the internal architecture costs of 

the switch, and therefore have developed a significantly more realistic cost model. \\'e 

have used this new and more realistic cost model in tandem with the more accurate and 

realistic analytical models proposed earlier to undertake a more reliable comparison of the 

systems in question. Incorporating these details has indeed resulted in notabl~ different 
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conclusions from those reported by previous studies l'llustratl'ng th t~· h . a suc compansons are 

very sensitive to the detail and realism of the assumptions made. 

7.1 Summary of the results 

This thesis has detailed several important achievements. 

Firstly, expressions for calculating the number of nodes at and within a given distance 

from a chosen centre in a k-ary n-cube, were derived. Such expressions are useful in the 

study of spanning trees, widely used in collective communication algorithms and in the 

problem of resource placement in networks [20, 31, 70-72, 156]. 

Secondly an accurate analytical model to compute the mean message latency in k-ary n­

cubes with fully adaptive wormhole routing was developed. This model achieves a high 

degree of accuracy under different operating conditions because it computes the exact 

expression for the probability of message blocking at any router. The model was extended 

to include bidirectional k-ary n-cubes and traffic patterns that exhibit communication 

locality. Using this model to draw a comparison between unidirectional and bidirectional 

k-ary n-cubes under both constant bisection bandwidth and pin-out constraints, has shown 

that bidirectional k-ary n-cubes outperform their unidirectional counterparts. The model 

also showed that the higher-dimensional k-ary n-cube networks (with large n), e.g. 

hypercubes, are more scalable than their low-dimensional counterparts (with large k), e.g. 

tori, because their total network bandwidth scales better with network size. 

Thirdly, the first analytical model to compute the mean message latency in the presence of 

hotspot traffic in wormhole-routed k-ary /I-cubes was then presented. Performance 

analysis has revealed that increasing the number of virtual channels can improve netv .. ork 

performance when the hotspot traffic rate. h, is low. However, with the aid of the new 
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model, it was shown that when h is relatively large (defining a high percentage of hotspot 

traffic), adding virtual channels cannot improve performance noticeably. It was also 

shown that when h is small, the dominating factor causing network saturation is the 

uniform traffic component, while for large h, the dominating factor is the a\'erage latency 

for hotspot messages. Interestingly, comparing unidirectional and bidirectional k-ary 1l­

cubes under both constant bisection bandwidth and pin-out constraints, has shown that 

bidirectional k-ary n-cubes perform better when the hotspot traffic rate is low, but that the 

opposite conclusion is reached when hotspot traffic is relatively large. 

Fourthly, analytical models with fully adaptive routing were used to study the performance 

of cubes executing matrix-transpose and digit-reversal permutations. Simulation 

experiments are in good agreement with the latency results predicted by the analytical 

models. In fact these results show that matrix-transpose and digit-reversal traffic does not 

have a large impact on the overall network performance when fully adaptive routing 

algorithms are employed in unidirectional k-ary n-cubes. This is because adaptive routing 

in such networks is able to exploit all network channels and distribute the traffic load over 

network channels almost balanced. 

Finally, the relative performance merits of k-ary n-cubes of differing dimensionality was 

assessed in the context of adaptive routing under uniform, hotspot, matrix-transpose and 

digit-reversal traffic patterns. A cost-model considering virtual channels and taking into 

account both network links and router hardware was adopted. Three network sizes have 

been considered: small, medium and large networks with respectively 64, 512. and 4096 

nodes. The results obtained under uniform traffic and both constant bisection bandwidth 

and pin-out constraints are in agreement with those achieved by Abraham [-+] and Agarwal 

[6] when a pipelined wire delay model is used. Since many current systems as well as 

those which will one day be constructed using system-on-chip technology use non­

pipelined channels, however, we have also conducted a comparison for this latter ca:-.c. 
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When a non-pipelined WIre delay model is considered, assuming a constant pin-out 

constraint, our model leads to different conclusions from that of Abraham and A CTarwal 
b 

except in the case of small networks. We found that the 3D torus has the best performance 

in large networks, the 2D torus at moderate sizes and the hypercube proving superior only 

in small systems. When hotspot traffic is introduced, the 2D torus shows always better 

performance than the hypercube in moderate and large networks under both constant 

bisection bandwidth and pin-out constraints, contrary to the conclusions of previous 

studies [4, 6]. A similar result applies to matrix-transpose and digit-reversal traffic with 

uniform traffic. 

7.2 Directions for the future work 

There are number of issues and open problems that require further investigation. These 

can be grouped in two broad categories: (1) those which makes the proposed models more 

realistic, and (2) those which tackle other important issues in interconnection networks. 

7.2.1 Developing more realistic models 

There are a number of suggestions as to how the proposed models might be modified to 

capture other real-world situations. For example, in the proposed model for hotspot traffic, 

we considered only one hotspot. However, in real environments this may be overly 

restrictive and it would be useful to adapt the model to handle multiple hotspots. This does 

not require new tools and only requires a small amount of additional complexity. 

The proposed models consider networks with virtual channels each with only a one-flit 

buffer, thus implementing a pure wormhole switching: method. Some current 

implementations however use deeper buffers to effect partial or full yirtual cut-through 

[97]. Again it would be useful to extend the models to include this scenario. 
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Many studies have revealed that the Poisson model cannot properly emulate the traffic 

characteristics in some actual applications such as those incorporating multimedia stream~. 

Self-similar and pseudo self-similar traffic models have been suggested as a more faithful 

alternative [82, 146] but most studies considering such traffic models are based on 

simulation and measurement experiments. A more challenging extension of our work 

would be to analytically model k-ary n-cubes under self-similar traffic load. 

7.2.2 Future research in interconnection networks 

Moving beyond the core of the present work, there remain many interesting problems in 

the field which would benefit from the same analytical approach adopted in this thesis. A 

selection of such problems is listed below as an illustration of the potential of this line of 

attack. 

In real systems increasing size will increase failure rates, and incorporation of fault-

tolerant techniques will be of great importance [59]. Many studies [10, 11. 38, 101. 109, 

116, 181, 182] have investigated fault-tolerant routing in interconnection networks and 

assessed performance via simulation [59]. There is currently no analytical model of fault­

tolerant routing in the kind of networks under discussion above. 

Many studies [28, 113, 114, 122, 125, 126, 135, 144, 145] have been conducted on 

designing, implementation, and simulation- and experimental-based performance 

evaluation of collective communication algorithms on different networks including k-ary 

n-cubes. Such operations are used in many applications [127] and are basic operations in 

DSM machines using cache coherency mechanisms [46, 106]. There is currently no 

mathematical model, for collective communication in multicomputer interconnection 

networks. 
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Several recent studies [14, 101, 124, 151-153] have revealed that deadlocks occur \a) 

infrequently in the network, especially when enough routing freedom is provided [1)3]. 

Routing algorithms based on deadlock avoidance, including Duato's algorithm. resene 

some virtual channels or routing options to specifically deal with deadlocks, and as a result 

they are not utilized most of the time. Routing algorithms based on deadlock recOl'ery [59] 

allow messages to use all available virtual channels to cross the network. and efficiently 

handle infrequently occurred deadlocks. These algorithms are attracting interest in the 

research community and developing analytical model for them would be beneficial. 

Given that integration limits are being achieved, the use of optical and optoelectronic 

interconnection networks will be a big challenge in the next decade [150]. They have been 

widely studied [123, 183] and have still many issues to be further explored. Developing 

analytical tools to study the performance merits of these networks and comparing them 

with their fully electronic counterparts is an open problem. 



References 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[ 11] 

S. Abraham, Issues in the architecture of direct interconnection schemes for 
multiprocessors, PhD Thesis, University of Illinois at Urbana-Champaign, 1990. 

S. Abraham, Interconnection networks: dimensions in design, Proceedings 
Workshop of International Conference on Parallel Processing, 1996, pp. 45-51. 

S. Abraham, K. Padmanabhan, Performance of the direct binary n-cube networks 
for multiprocessors, IEEE Transactions on Computers, Vol. 37, No.7, 1989, pp. 
1000-1011. 

S. Abraham, K. Padmanabhan, Performance of multicomputer networks under Pin­
out constraints, Journal of Parallel and Distributed Computing, Vol. 12, No.3, 
1991, pp. 237-248. 

V. Adve, M.K. Vernon, Performance analysis of mesh interconnection networks 
with deterministic routing, IEEE Transactions on Parallel and Distributed 
Systems, Vol. 5, No.3, 1994, pp. 225-246. 

A. Agarwal, Limits on interconnection network performance, IEEE Transactions 
on Parallel and Distributed Systems, Vol. 2, No.4, 1991, pp. 398-412. 

A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J. Kubiatowicz. 
B.H. Lim, K. Mackenzie, D. Yeung, The MIT Alewife machine: architecture and 
performance, Proceedings of 22nd Annual International Symposium Computer 
Architecture, 1995, pp.2-13. 

S.B. Akers, D. Hare1, B. Krishnamurthy, The star graph: an attractive alternative to 
the n-cube, Proceedings of International Conference on Parallel Processing, 1987, 
pp.393-400. 

S.B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric 
interconnection networks, IEEE Transactions on Computers, Vol. 38, No.4, 1989. 
pp. 555-566. 

J. AI-Sadi, K. Day, M. Ould-Khaoua, Fault-tolerant routing in hypercubes using 
probability vectors, Parallel Computing. Vol. 27, No. 10,2001. pp. 1381-1399. 

J. AI-Sadi, K. Day, M. Ould-Khaoua, Unsafety vectors: A fault-tolerant routing for 
k-ary n-cubes, Microprocessors and Microsystems, Vol. 25, No. ), 2001. pp. 239-



References 183 

[ 12] 

[ 13] 

[ 14] 

[ 15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

246. 

J .. ~. A.nderso~, S. Abraham, Multidimensional network performance with 
umdIrectIOnal lInks, Proceedings of International Conference on Parallel 
Processing, 1997, pp. 26-33. 

E. ~nderson, J. Brooks, C. Grassl, S. Scott, Performance of the Cray T3E 
multIprocessor, Proceedings of Supercomputing Conference, 1997, pp. 19. 

K.V .. Anjan, T.M. Pinkston, J. Duato, Generalised theory for deadlock-free 
adaptIve wormhole routing and its application to DISHA concurrent, Proceedings 
10th Int. Parallel Processing Symposium (IPPS'96), 1996, pp. 815-821. 

K. Aoyama, A.A. Chien, The cost of adaptivity and virtual lanes in a wormhole 
router, VLSI Design, Vol. 2, No.4, 1995, pp. 315-333. 

R. Arlanskas, iPSC/2 system: a second generation hypercube, Proceedings of 3rd 
ACM Conference on Hypercube Concurrent Computers and Applications, 1988, 
pp. 38-42. 

Y. Ashir, LA. Stewart, On embedding cycles in k-ary n-cubes, Parallel Processing 
Letters, Vol. 7,1997, pp. 49-55. 

Y. Ashir, LA. Stewart, A. Ahmed, Communication algorithms in k-ary n-cube 
interconnection networks, Information Processing Letters. Vol. 61, 1997, pp. 43-

48. 

W.C. Athas, C.L. Seitz, Multicomputers: message passing concurrent computers, 
IEEE Computer, Vol. 21, No.8, 1988, pp. 9-24. 

M.M. Bae, B. Bose, Resource placement in torus-based networks, IEEE 
Transactions on Computers, Vol. 46, No.1 0, 1997, pp. 1083-1092. 

A. Bakoglu, Circuits, interconnections, packaging for VLSI, Addison-Wesley, 

1990. 

M. Banikazemi, V. Moorthy, L. Herger, D. K. Panda, and B. Abali, Efficient 
Virtual Interface Architecture Support for the IBM SP Switch-Connected NT 
Clusters, Proceedings International Parallel and Distributed Processing 
Symposium (lPDPS'2000), 2000, pp. 33-42. 

D. Basak, D. Panda, Designing clustered multiprocessor systems under packaging 
and technological advances, IEEE Transactions on Parallel and Distributed 

Systems, Vol. 7, No.9, 1996, pp. 962-978. 

D. Basak, D. Panda, Alleviating consumption channel bottleneck in wormhole­
routed k-ary n-cube systems, IEEE Transactions on Parallel and Distrihuted 

Systems, Vol. 9, No.5, 1998, pp. 481-496. 

S. Bettayeb, On k-ary hypercube, Theoretical Computer Science. Vol. 140, 1995, 

pp. 333-339. 

L.N. Bhuyan, D.P. Agrawal, Generalized hypercube and hyperbus structurc>s for a 
computer network, IEEE Transactions on Computers. Vol. 33, 1984, pp. 323-333. 

T. Boku. K. Itakura, H. Nakamura, K. Nakazawa, CP-PACS: a massively parallel 



References 18~ 

[28] 

[29] 

[30] 

[31 ] 

[32] 

[33] 

[34] 

[35] 

[36] 

[37] 

[38] 

[39] 

[40] 

[41] 

processor for large scale scientific calculations, Proceedings of AC\J 
Supercomputing Conference, 1997, pp. 108-115. 

R.V. Boppana, S. Chalasani, C.S. Raghavendra, Resource deadlocks and 
performance of wormhole multicast routing algorithms, IEEE Transactions on 
Parallel and Distributed Systems, Vol. 9, No.6, 1998, pp. 535-549. 

R.V .. Boppana, S. Chalasani, A comparison of adaptive wormhole routing 
algonthms, Proceedings of 20th Annual International Symposium 011 Computer 
Architecture, 1993, pp.351-360. 

R.V. Boppana, S. Chalasani, A framework for designing deadlock-free wormhole 
routing algorithms, IEEE Transactions on Parallel and Distributed Systems. Vol. 
7, No.2, 1996, pp. 169-183. -

B. Bose, B. Broeg, Y. Kwon, Y. Ashir, Lee distance and topological properties of 
k-ary n-cubes, IEEE Transactions on Computers, Vol. 44, 1995, pp. 1021-1030. 

Y. Boura, C.R. Das, Modeling virtual channel flow control in n-dimensional 
hypercubes, Proceedings International Symposium on High Peiformance 
Computer Architecture, 1995, pp. 166-175. 

Y. Boura, C.R. Das, A performance model for adaptive routing in hypercubes, 
Proceedings of International Workshop on Parallel Processing, 1994, pp. 11-16. 

Y.M. Boura, C.R. Das, Performance analysis of buffering schemes in the routers, 
IEEE Transactions on Computers, Vol. 46, No.6, 1997, pp. 687-695. 

Y.M. Boura, C.R. Das, A class of partially adaptive routing algorithms for n­
dimensional meshes, Proceedings 221ld International Conference 011 Parallel 

Processing, 1993, pp. 175-182. 

Y. Boura, Design and analysis of routing schemes and routers for wormhole-routed 
mesh architectures, Ph.D. Dissertation, Department of Computer Science and 
Engineering, Penn State University, 1995. 

B. Broeg, Topological properties of k-ary n-cubes, PhD Thesis, Department of 
Computer Science, Oregon State University, June 1995. 

M.S. Chen, K.G. Shin, Adaptive fault-tolerant routing in hypercube 
multicomputers, IEEE Transactions on Computers, Vol. 39, No. 12, 1990, pp. 

1406-1416. 

A.A. Chien, A cost and speed model for k-ary n-cube wormhole routers, IEEE 
Transactions on Parallel and Distributed Systems, Vol. 9, No.2. 1998, pp. 150-

162. 
A.A. Chien, J.K. Kim, Planar adaptive routing: low cost adaptive networks for 
multiprocessors, Proceedings 1<jh International Symposium on Computer 

Architecture, 1992, pp. 268-277. 

J. Choi, J.1. Dongarra, D.W. Walker, Parallel matrix transpose algorithms on 
distributed memory concurrent computers, Parallel Computing. Vol. 21, No.9, 

1995, pp. 1387-1405. 



References 185 

[42] B. Ciciani, M .. C~lajanni, C. Paolucci, Performance e\aluation of deterministic 
wormhole routIng In k-ary n-cubes, Parallel Computing. Vol. 2.+ 1998 ')oS~-

[43] 

[44] 

[45] 

[46] 

[47] 

[48] 

[49] 

[50] 

[51 ] 

[52] 

) 

[53] 

[54] 

[55] 

[56] 

2075. . . pp. - --

M: Colaja~ni, B. C.icia~i, F. Quaglia, Performance analysis of wormhole switching 
wIth adaptive routIng In two-dimensional torus, Proceedings EuroPar'99, LNCS 
1685, 1999,pp. 165-172. 

P.F .. Corbett, Rotator graphs: An efficient topology for point-to-point 
multIprocessor networks, IEEE Transactions on Parallel and Distributed Systems. 
Vol. 3, No.5, 1992, pp. 622-626. -

Cray Research Inc., The Cray T3E scalable parallel processing system, on Cray's 
Web Page at http://www.cray.comIPUBLIC/product-infofT3E/ CRAY_T3E.html. 

D. Dai, D.K. Panda, Effective use of virtual channels in wormhole routed DSM 
systems, Technical Report, OSU-CISRC-I0/97-TR46, Department of Computer 
and Information Science, The Ohio-State University, 1997. 

W.J. Dally, C.L. Seitz, Deadlock-free message routing in multiprocessor 
interconnection networks, IEEE Transactions on Computers, Vol. 36, No.5. 1987, 
pp.547-553. 

W.J. Dally, Performance analysis of k-ary n-cubes interconnection networks. IEEE 
Transactions on Computers, Vol. C-39, No.6, 1990, pp. 775-785. 

W.J. Dally, Virtual channel flow control, IEEE Transactions on Parallel and 
Distributed Systems, Vol. 3, No.2, 1992, pp. 194-205. 

W.J. Dally, C.L. Seitz, The torus routing chip, Journal of Distributed Computing, 

Vol. 1, No.3, 1986, pp. 187-196. 

W.J. Dally, H. Aoki, Deadlock-free adaptive routing in multicomputer networks 
using virtual channels, IEEE Transactions on Parallel and Distributed Systems, 

Vol. 4, No. 4, 1993,pp. 66-74. 

W.J. Dally, Network and processor architecture for message-driven computers, in 
R. Suaya and G. Birtwistle (Eds.): VLSI and parallel computation, Morgan 

Kaufmann Publishers, 1990. 

W.J. Dally, L.R. Dennison, D. Harris, K. Kan, T. Xanthopolous. The reliable 
router: a reliable and high-performance communication substrate for parallel 
computers, Proceedings 1st Workshop on Parallel Computer Routing and 

Communication, 1994, pp. 241-255. 

S. Dandamudi, Hierarchical interconnection networks for multicomputer systems. 
PhD Thesis, Computer Science Department, University of Saskatchewan. 

Saskatoon, Canada, 1988. 

K. Day and A. AI-Ayyoub, The cross product of interconnection networks. IEEE 
Transactions on Parallel and Distributed Systems, Vol. 8, No.2, 1997, pp. 109-

118. 
E. Demaine, S. Srinivas, A novel routing algorithm for f..:-<.lr) ',I-cube 
interconnection networks, International Journal of High Speed Compllt/1lg. \ 01. 8. 



References 
186 

[57] 

[58] 

[59] 

[60] 

[61] 

[62] 

[63] 

[64] 

[65] 

[66] 

[67] 

[68] 

[69] 

[70] 

[71] 

No.1, 1996, pp. 81-92. 

K.S. Ding, C.T. Ho, 1.1. Tsay, Matrix transpose on meshes with wormhole and XY 
routing, Discrete Applied Mathematics, Vol. 83, 1998, pp. 41-59. 

1.T. ~raper, 1. Ghosh, A comprehensive analytical model for wormhole routing in 
multicomputer systems, Journal of Parallel and Distributed Computing. Vol. 23. 
1994, pp. 202-214. 

1. Duato, C. Yalamanchili, L. Ni, Interconnection networks: an engi neeri ng 
approach, IEEE Computer Society Press, 1997. 

1. Duato, P. Lopez, Performance evaluation of adaptive routing algorithms for k­
ary n-cubes, Proceedings Parallel Computers Routing and Com111unication. LNCS 
853, 1994, pp. 45-59. 

1. Duato, On the design of deadlock-free adaptive routing algorithms for 
multicomputers: design methodologies, Proceedings Parallel Architectures and 
languages Europe, 1991, pp. 390-405. 

1. Duato, Deadlock-free adaptive routing algorithms for multicomputers: 
evaluation of a new algorithm, Proceedings 3rd IEEE International Symposium on 
Parallel and Distributed Processing, 1991, pp. 840-847. 

J. Duato, A new theory of deadlock-free adaptive routing in wormhole networks, 
IEEE Transactions Parallel Distributed Systems, Vol. 4, No. 12. 1993, pp. 1320-
1331. 

1. Duato, Improving the efficiency of virtual channels with time-dependent 
selection functions, Proceedings Parallel Architectures and Languages, 1992, pp. 
635-650. 

J. Duato, Why commercial multicomputers do not use adaptive routing, IEEE 
Technical Committee on Computer Architecture Newsletter, 1994, pp. 20-22. 

J. Duato, M. Malumbers, Optimal topology for distributed shared-memory 
multiprocessors: hypercubes again?, Proceedings of EuroPar'96, 1996, pp. 205-
212. 

W. Feng, K. Shin, The effect of virtual channels on the performance of wormhole 
algorithms in multicomputer networks, University of Michigan, Directed Study 
Report, May 1994. 

A. Ferreira, A.G. vel Lejbman, S.W. Song, Bus-based parallel computers: a viable 
way for massive parallelism, Proceedings of Parallel Architectures and 

Languages, 1994, pp. 553-564. 

M. Fill 0 , S. W. Keckler, W. 1. Dally, N. P. Carter. A. Chang, Y. Gurevich. W.S. 
Lee, The M-Machine Multicomputer, Proceedings 28th IEEE/ ACM Internationul 
Symposium on Microarchitectures, 1995, pp.146-156. 

P. Fragopoulou, S.G. Akl. H. Meijer, Optimal communicat~on. primitives on .the 
generalized hypercube network, Journal of Parallel and DIstrIbuted Complltl1lg. 

Vol. 32, 1996, pp. 173-187. 

P. Fragopoulou, S.G. Akl, Efficient algorithms for global data communication on 



References 187 

[72] 

[73] 

[74] 

[75] 

[76] 

[77] 

[78] 

[79] 

[80] 

[81 ] 

[82] 

[83] 

[84] 

[85] 

[86] 

the multidimensional torus network, Journal of Parallel and Disrribllred 
Computing, Vol. 24,1995, pp. 55-71. 

P. Fra~opoulou, S.G. Akl, Optimal communication algorithms on star graphs using 
spanmng tree constructions, Journal of Parallel and Distributed Computing, \' of 
24, No.1, 1995, pp. 55 - 71. 

M.A. Franklin, Pin limitation and partitioning of VLSI interconnection network 
IEEE Transactions on Computers, Vol. C-36, No.5, 1987. pp. 54-7-553. ' 

G. L. Frazier, Buffering and flow control in communication switches for scalabk 
multicomputers, PhD Thesis, University of California, Los Angles, 1995. 

H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, M. Koga, O. Ishihara, M. Kashivama, 
H. Wada, T. Sumimoto, Architecture and performance of the Hitachi SR- 2201 
massively parallel processor system, Proceedings J t h International Parallel 
Processing Symposium, 1997, pp. 233-241. 

S.A. Ghozati, H.C. Wasserman, The k-ary n-cube network: modelling, topological 
properties and routing strategies, Computers and Electrical Engineering. Vol. 25, 
1999, pp. 155-168. 

C.J. Glass, L.M. Ni, The turn model for adaptive routing, Proceedings Jrjh 
International Symposium Computer Architecture, 1992, pp. 278-287. 

I.S. Gopal, Prevention of store-and-forward deadlock in computer networks, IEEE 
Transactions on Communications, Vol. 33, No. 12, 1985, pp. 1258-1264. 

M. Grammatikakis, D. F. Hsu, M. Kratzel, J. F. Sibeyn, Packet routing in fixed­
connection networks: a survey, Journal of Parallel and Distributed Computing, 

Vol. 54, pp. 77-132,1998. 

L. Gravano, G.D. Pi farre , P.E. Berman, J.L. Sanz, Adaptive deadlock- and 
livelock-free routing with all minimal paths in torus networks, IEEE Transactions 
on Parallel and Distributed Systems, Vol. 5, No. 12, 1994, pp.1233-1251. 

R.I. Greenberg, L. Guan, Modelling and comparison of wormhole routed mesh and 
torus networks, Proceedings 5th lASTED Conference on Parallel and Distributed 
Computing Systems, 1997, at http://www.math.1uc.edu/-rig/pubs/. 

M. Grosslauser, J.C. Bolot, On the relevance of long-range dependence in network 
traffic, Proceedings of the ACM SIGCOMM'96, 1996, pp. 15-24. 

L. Guan, Message routing and problem solving in multiprocessor networks. PhD 
Thesis, Computer Science Department, University of Maryland, 1997. 

W.J. Guan, W.K. Tsai, D. Blough, An analytical model for wormhok routing in 
multicomputer interconnection networks. Proceedings International Conference 

Parallel Processing, 1993, pp. 650-654. 

F.T. Hady, A performance study of wormhole route? netwo~ks th.rough analytical 
modeling and experimentation, PhD Thesis. Electncal EngIneenng Department. 

University of Maryland, 1993. 

F H 
d B L. Menezes, The performance of crossbar-based binary hypercubes. 

. a y, . I J08 PI -
IEEE Transactions on Computers, Vol. 44-. No.1 0, 1995. pp. - - - ). 



References 
188 

[87] N.C. Hock, Queueing modelling fundamentals. John Wiley and Son~ (Ed~.) 1996. 

[88] W .. Hsu: Perfor~a~ce issues in wire-limited hierarchical networks, PhD Thc~i~. 
UmversIty of IllInOIs-Urbana Champaign, 1992. 

[89] W. Hsu, P. Yew, Performance evaluation of wire-limited hierarchical network~. 
Journal of Parallel and Distributed Computing, Vol. 41, No.2. 1997. pp. 156-172. 

[90] K. Hwang, Advanced computer architecture: parallelism, scalability and 
programmability, McGraw-Hill (Ed.), 1993. 

[91] Intel Corp., iPSC/l reference manual, 1986. 

[92] Intel Corp., Paragon XP/S product overview, Supercomputer Systems Division. 
Beaverton, Oregon, 1991. 

[93] Intel Corporation, A Touchstone DELTA system description. 1991. 

[94] 

[95] 

[96] 

[97] 

[98] 

[99] 

[100] 

[101 ] 

[102] 

[103] 

[104] 

r 1 05] 

J. Jaja, Load balancing and routing in the hypercube and related networks. JOllrnal 

of Parallel and Distributed Computing, Vol. 14, 1992, pp. 431-435. 

J.H. Kai, A.A. Chien, An evaluation of planar adaptive routing. Proceedings 
Symposium of Parallel and Distributed Processing, 1992, pp. 470-478. 

S.W. Keckler, The importance of locality and load balancing for multiprocessors. 
MIT Concurrent VLSI Architecture Memo <ftp://ftp.ai.mit.edu/pub/users/skeckler 
/cva/sched.ps.Z>, April 1994. 

P. Kermani, L. Kleinrock, Virtual cut-through: a new computer communication 
switching technique, Computer Networks, Vol. 3, 1979, pp. 267-286. 

R.E. Kessler, J.L Swarszmeier, Cray T3D: a new dimension for Cray research, 
Proceedings CompCon, 1993, pp. 176-182. 

J. Kim, C.R. Das, Hypercube communication delay with wormhole routing, IEEE 
Transactions on Computers, Vol. 43, No.7, 1994, pp. 806-814. 

J.H. Kim, A.A. Chien, Network performance under bimodal traffic loads. JOllrnal 

of Parallel and Distributed Computing, Vol. 28, 1995, pp. 43-64. 

J. Kim, A. Chien, Z. Liu, Compressionless routing: A framework for adaptive and 
fault-tolerant routing, IEEE Transactions Parallel and Distributed Systems. Vol. 8. 

No.3, 1997,pp.229-244. 

J.H. Kim, A.A. Chien, The impact of packetization in wormhole-routed networks. 
Proceedings Parallel Architectures Languages, 1993, at http://www-csag.ucsd. 

edu/papers/ RoutNetArch-p.html. 

L. Kleinrock, On the modeling and analysis of computer networks. Proceedings of 

the IEEE, Vol. 81, No.8, 1993, pp. 1179-1191. 

L. Kleinrock, Queueing systems, Vol. 1, John Wiley and Sons. 1975. 

J. Konicek, T. Tilton, A. Veidenbaum, C.Q. Zhu, E.S. Da\'idson. R. Downing. \\. 
Haney, M. Sharma, P.C. Yew, P.M. Farmwald, D. Kuck, D. La\'~ry, R. LIJllbc~. 
D P

· J Ads T Beck T Murphy S Turner. I\. Warter, The . OInter, . n rew,. " " . 
Organization of the Cedar System, Intenzatiollal COl~ferellce Parallel p,.o('('s\/n..;. 

1991, pp. 49-56. 



References 
189 

[106] A. Kumar, L.. Bhuyan, Evaluating virtual channels for cache-coherence shared-

S
memory mul~lprocessors, Proceedings Idh ACM International Conference on 

upercomputzng, 1996. 

[107] J. Kuskin, D. Ofelt, M. Heinrich 1 Heinlein R Sl'monl' K Gh h 1 1 Ch . . ' . ,. ,. arac or 00, . 
apm, D. Nakahlra, 1. Baxter M Horowitz A Gupta M R bl 1 ,. ,. ,. osen urn, . 

Hennes~y, The Stanford FLASH multiprocessor, Proceedings 2Ft International 
SymposIum Computer Architectures, 1994, pp. 302-313. 

[108] J. Laud~n, D. t~noski, !he SGI Ori~in: A ccNUMA highly scalable ser\'er. 
Proceedzngs 24 InternatIOnal SymposIum on Computer Architecture 1997 pp 
241-251. . ,. 

[109] T.C. Lee, J.P. Hayes, A fault-tolerant communication scheme for hypercube 
computers, IEEE Transactions on Computers, Vol. 41, No. 10. 1992, pp. 12-+2-
1256. 

[110] F.T. Leighton, Introduction to parallel algorithms and architectures: arrays. trees. 
hypercubes, Morgan Kaufmann, 1992. 

[111] C. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman, M. Ganmukhi, 1. HilL W. 
Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong-Chan, Y. Saw-Wen, R. 
Zak, The network architecture of the Connection Machine CM-5, Journal of 
Parallel and Distributed Computing, Vol. 33, No.2, 1996, pp. 145-158. 

[112] D. Lenoski, 1. Laudon, K. Gharachorloo, W. Weber, A. Gupta, 1. Hennessy, M. 

[ 113] 

[114 ] 

[ 115] 

[ 116] 

[ 117] 

[ 118] 

[ 119] 

Horowitz, M.S. Lam., The Stanford DASH multicomputer. IEEE Computer, Vol. 
25, No.3, 1992, pp. 63-79. 

X. Lin, L.M. Ni, Deadlock-free multicast wormhole routing in multicomputer 
networks, Proceedings 18th International Symposium Computer Architecture, 
1991, pp. 116-125. 

X. Lin, P. McKinley, L.M. Ni, Deadlock-free multicast wormhole routing in 20-
mesh multicomputers, IEEE Transactions Parallel and Distributed Systems, Vol. 

5, No.8, 1994, pp. 793-804. 

X. Lin, P. McKinley, L.M. Ni, The message flow model for routing in wormhole­
routed networks, IEEE Transactions Parallel and Distributed Systems, Vol. 6, No. 

7,1995, pp. 755-760. 

D.H. Linder and J.C. Harden, An adaptive and fault tolerant wormhole routing 
strategy for k-ary n-cubes, IEEE Transactions on Computers, Vol. 40, No.1, 1991, 

pp.2-12. 

K.1. Liszka, 1.K. Antonio, H.J. Siegel, Problems with comparing interconnection 
networks: is an alligator better than an armadillo?, IEEE Concurrency. Vol. 5, No. 

4, 1997, pp. 18-28. 

Z. Liu, A.A. Chien, Hierarchical adaptive routing: a framework for fully adapti\t~ 
and deadlock-free wormhole routing, Proceedings Symposium Parallel and 

Distributed Processing, 1994, pp. 688-695. 

P. Lopez, J. Duato, Deadlock-free adaptive routing algorithms for the 3D-torus: 
limitations and solutions. Proceedin.gs Parallel Architectures and La1lguages. 



References 190 

1993, pp. 684-687. 

[120] S. Loucif, M. Ould-~haoua, L.M. Mackenzie, Analysis of fully-adaptive routing in 
wormhole-routed ton, Parallel Computing, Vol. 25, No. 12. pp. 1477-1487, 1999. 

[121] S. L~ucif, Performance evaluation of distributed crossbar switch hypermesh, PhD 
ThesIs, Department of Computing Science, University of Glasgow, 1999. 

[122] M. Malumbres, 1. duato, An efficient implementation of tree-based multicast 
routing for distributed shared-memory multiprocessors, Journal of Systems 
Architecture, Vol. 46, No.ll, 2000, pp. 1019-1032. . 

[123] G.C. Marsden, PJ. Marchand, P. Harvey, S.C. Esener, Optical transpose 
interconnection system architectures, Optics Letters, Vol. 8, No. 13, 1993, pp. 
1083-1085. 

[124] I.M. Martinez, P. Lopez, 1. Duato, T. M. Pinkston, Software-based deadlock 
recovery techniques for true fully adaptive routing in wormhole networks, 
Proceedings International Conference on Parallel Processing (ICPP '97), 1997, 
pp. 182-189. 

[125] P.K. Mckinley, C. Trefftz, Efficient broadcast in all-port wormhole-routed 
hypercubes, Proceedings International Conference Parallel Processing. 1993, pp. 
288-291. 

[126] P.K. Mckinley, H. Xu, A.H. Esfahanian, L.M. Ni, Unicast-based multicast 
communication in wormhole-routed networks, IEEE Transactions Parallel and 
Distributed Systems, Vol. 5, No. 12,1994, pp. 1254-1265. 

[127] P.K. Mckinley, D.F. Robinson, Collective communication in wormhole-routed 
massively parallel computers, IEEE Computer, Dec. 1995, pp. 39-50. 

[128] P.M. Merlin, PJ. Shweitzer, Deadlock avoidance in store-and-forward networks, 
IEEE Transactions on Communication, Vol. 28, No.3, 1980, pp. 345-354. 

[129] P. Mohapatra, Wormhole routing techniques in multicomputer systems. ACM 
Computing Surveys, Vol. 30, No.3, 1998, pp.375-411. 

[130] D. Nassimi, S. Sahni, Finding connected components and connected ones on a 
mesh-connected parallel computer, SIAM journal on Computing, Vol. 9, 1980, pp. 

744-757. 

[131] nCUBE Systems, N-cube handbook, 1986. 

[132] nCUBE Systems, nCUBE 2: nCUBE 6400 processor manual, 1990. 

[133] nCUBE Systems, nCUBE-3, at http//www.ncube.com. 

R. Nelson, Probability, stochastic processes, and queuing theory: the mathematics 

of computer performance modeling, Springer-Verlag, 1995. 
[134] 

[ 135] 

[ 136] 

L.M. Ni, Should scalable parallel computers support efficient ~ard:\'are multic.ast? 
Proceedings Workshop on Challenges for Parallel Processlllg 111 InternatIOnal 

Conference on Parallel Processing, 1995, pp. 2-7. 

L.M. Ni. D.K. Panda, Sea of interconnection networks: \\hat's \ our choice, 

Proceedings International Conference Parallel Processing. 1994. 



References 
191 

[137] L.M. Ni, P.K. McKinley, A survey of wormhole routing techniques in direct 
networks. IEEE Computer, Vol. 26, 1993, pp. 62-76. 

[138] M. .Noakes, D.A. Wallach, W.J. Dally, The l-machine multicomputer: an 
archItectural evaluation Proceed' 20th I . I . , zngs nternatlOna S\'11lpOSlllm Computer 
Architecture, 1993, pp. 224-235. . 

[139] M. Noakes, W.J. Dally, System design of the l-machine, Proceedings Ad\'anced 
Research in VLSI, MIT Press, 1990, pp. 179-192. 

[140] S.P. Nugent, The iPSC/2 direct-connect communication technology, Proceedings 
Conference Hypercube Concurrent Computers and Applications, 1988, pp. 51-60. 

[141] M .. Ould-Khaoua, Hypergraph-based interconnection networks for large 
lulttcomputers, PhD Thesis, Compting Science Department, Glasgow University. 
1994. 

[142] M. Ou1d-Khaoua, A performance model of Duato's adaptive routing algorithm in 
k-ary n-cubes, IEEE Transactions on Computers, Vol. 48, No. 12, 1999. pp. 1-8. 

[143] M. Ou1d-Khaoua, Message latency in the 2-dimensional mesh with wormhole 
routing, Microprocessors and Microsystems, Vol. 22, No.9, 1999, pp. 509-514. 

[144] D. Panda, Issues in designing efficient and practical algorithms for collective 
communication on wormhole-routed systems, Proceedings Workshop on 
Challenges for Parallel Processing of International Conference Parallel 

Processing, 1995, pp. 8-15. 

[145] D. Panda, S. Singal, R. Kesavan, Multidestination message passing in wormhole k­
ary n-cube networks with base routing conformed paths, IEEE Transactions 
Parallel and Distributed Systems, Vol. 10, No.1, 2000, pp. 76-96. 

[146] K. Park, G. Kim, M. Crovella, On the effect of traffic self-similarity on network 
performance, Proceedings of the SPIE International Conference on performance 
and Control of Network Systems, 1997, at http://www.cs.bu.edu/pub/barfordl 

ss_lrd.html. 

[147] C. Peterson, 1. sutton, P. Wiley, iWARP: a 100-MPOS VLIW microprocessor for 
multicomputers, IEEE Micro, Vol. 11, No. 13, 1991. 

[148] 

[149] 

[ 150] 

G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. 
McAuliffe, F.A. Melton, V.A. Norton, 1. WEiss, The IBM research parallel 
processor prototype (RP3): introduction and architecture, Proceedings 

International Conference Parallel Processing, 1985, pp. 764-771. 

G.J. Pfister, V.A. Norton, Hotspot contention and combining in multistage 
interconnection networks, IEEE Transactions on Computers, Vol. 34, No. 10, 

1985, pp. 943-948. 
T.M. Pinkston, The GLORI strategy for multiprocessor: Integrating o~tics ~nto the 
interconnect architecture, PhD thesis, Department of Electrical Engmeenng and 

Computer Science, Stanford University, 1992. 

[ 151] T M 
Pinkston Flexible and efficient routing based on progressi\e deadlock 

.' , 999 649-669 
recovery, IEEE Transactions on Computers, Vol. 48, No.7, 1 , pp. . 



References 
191 

[152] 

[ 153] 

[154] 

[ 155] 

[156] 

[157] 

[158] 

[159] 

[160] 

[161 ] 

[162] 

[163] 

[164] 

[ 165] 

[ 166] 

[ 167] 

T. M. Pinkston, S. Warnakulasuriya, Characterization of deadlocks in k-an n-cube 
networks, IEEE Transactions on Parallel and Distributed SYstems Vol 1 O' ~ 9 
1999, pp. 38-49. . . . .. o. . 

T. M. Pinkston S Warnakulasuriya On d dl k . . . ,. . ' ea oc s 10 mterconnection netv·:orks. 
Proceedings 24th InternatIOnal Symposium on Computer Architecture (ISCA '97). 
1997, pp. 38-49. 

F.P. Preparata an~ J. Vuillemin, The cube-connected cycles: a versatile network for 
parallel computatIOn, Communications of the ACM. Vol. 24, 1981, pp.300-309. 

K. Qiu, S.G. Akl, On some properties of the star graph, VLSI Design, Vol. 2. No. -+. 
1995, pp. 389-396. 

P. Ra~anat.han, S. Chalasani, Resource placement with multiple adjacency 
constramts 10 k-ary n-cubes, IEEE Transactions on Parallel and Distribllted 
Systems, Vol. 6, No.5, 1995, pp. 511-519. 

S. Ramany, D. Eager, The interaction between virtual channel flow control and 
adaptive routing in wormhole networks, Proceedings 8th ACM International 
Conference on Supercomputing, 1994, pp.136-145. 

S. Ramany, Routing in wormhole networks, PhD Dissertation. Computer Science 
Department, University of Saskatchewan, 1995. 

D.A. Reed, Cost-performance bounds for multicomputer networks. IEEE 
Transactions Computers, Vol. C-32, No.1, 1984, pp. 1183-1196. 

D.A. Reed, R.M. Fujimoto, Multicomputer networks: message-based parallel 

processing, MIT Press, 1987. 

J. Riordan, An introduction to combinatorial analysis, John Wiley & Sons, 1958. 

J. Saltz, S. Petiton, H. Berryman, A. Rifkin. Performance effects of irregular 
communication patterns on massively parallel multiprocessors, Journal of Parallel 

and Distributed Computing Vol. 13, 1991, pp. 202-212. 

H. Sarbazi-Azad, M. Ould-Khaoua, L.M. Mackenzie, Employing k-ary n-cubes for 
parallel Lagrange interpolation, Parallel Algorithms and Applications, Vol. 16. 

2001, pp. 283-299. 

H. Sarbazi-Azad, M. Ould-khaoua, L. Mackenzie and S.G. Akl, Lagrange 
interpolation on the star graph, to appear, Journal of Parallel and Distributed 

Computing. 

H. Sarbazi-Azad, M. Ould-Khaoua, L.M. Mackenzie, A parallel algorithm for 
Lagrange interpolation on the cube-connected cycles, Microprocessors and 

Microsystems, Vol. 24, No.3, June 2000, pp.135-140. 

H. Sarbazi-Azad, L.M. Mackenzie, M. Ould-Khaoua, The effect of the number of 
virtual channels on the performance of wormhole-routed mesh interconnection 
networks, Proceedings UK Performance Engineering Workshop, 2000. pp. 95-1 ()2. 

S.L. Scott, J .R. Goodman, The impact of pipelined channels on. k-ar~ ll~cube 
networks, IEEE Transactions Parallel and Distributed Systems. \ 01. ~. :';0. I. 

1994, pp. 2-16. 



References 
193 

[168] H.J. Seigel, Interconnection networks for large-scale parall I P , . \1 'G . 
Hill, New York, 1990. e rOLc'I'Img.. L [a\\-

[169] 

[170] 

[171 ] 

H.J. Siegel, ~.B .. Stun.kel, Trends in parallel machine interconnection networks. 
IEEE Computing in SClence and Engineering, 1996, pp. 69-71. 

C.L Seitz, The Cosmic cube, Communication 0+ the ACM Vol ')8 N 1 198~ 
pp. 22-33. 'J ,. -. 0.. ). 

C.L Seitz, The hypercube communication chip, Department of Computer Science 
CalTech, Display File 5182:DF:85, 1985. . 

[172] C.L Seitz, Mos.aic. C: an experimental fine-grain multicomputer. Proceedings of 
Future Tendencies in Computer Science, Control, and Applied Mathematics. 1992. 
pp.69-85. 

[173] C.B. Stunkel, Commercially viable MPP networks, Research Report RC20-l--I--I- (-1--
29-96), IBM Research Division, T.J. Watson Research Center, New York. 1996. 

[174] 

[175] 

[176] 

[177] 

[178] 

[179] 

[180] 

[181 ] 

[182] 

[ 183] 

C. Su and K.G. Shin, Adaptive deadlock-free routing in multicomputers using one 
extra channel, Proceedings International Conference Parallel Processing. 1993. 
pp.175-182. 

M.N.S. Swamy, K. Thulasiraman, Graphs, networks and algorithms. John Wiley & 
Sons, 1981. 

A.S. Tanenbaum, Computer networks, Prentice-Hall, 1989. 

C.D. Thompson, A Complexity theory for VLSI, PhD Thesis. Computer Science 
Department, Carnegie-Mellon University, 1980. 

S. Warnakulasuriya, T. M. Pinkston, A Formal Model of Message Blocking and 
Deadlock Resolution in Interconnection Networks, IEEE Transactiolls Parallel 
and Distributed Systems, Vol. 11, No.3, 2000, pp. 212-229. 

W.A. Whiteworth, Choice and chance, Cambridge University Press, 1901. 

C.S. Yang, Y.M. Tsai, S.L Chi, S.B. Shi, Adaptive wormhole routing in k-ary 12-

cubes, Parallel Computing, Vol. 21, 1995, pp. 1925-1943. 

J. Wu, Adaptive fault-tolerant routing in cube-based multicomputers using safety 
vectors, IEEE Transactions Parallel and Distributed Systerns. Vol. 9. No. -1-. 1998. 

pp. 321-334. 

Y. Yasuda, H. Fujii, H. Akashi, Y. Inagami, T. Tanaka, J. N~k~gosh~. H. Wada. T. 
Sumimoto Deadlock-free fault tolerant routing in the multIdImenSIOnal crossbar 
network ;nd its implementation for the Hitachi SR2201. Proceedings of I til 
International Parallel Processing Symposium. 1997, pp. 3-1-6-352. 

F Z P M
archand R. Pat uri , S. Esener, Scalable network architectures using 

. ane, . , . I . I 
the optical transpose interconnection system (OTI~). Proc~ed/1lgs lltemat/(~"a 
C 

,F. M' el,' Parallel ProceHill(J Umzg Optical InterCOIlIlCC[IOIlS 
onJerence on aSSlV. c 0 c 

(MPPOJ'96) , 1996, pp. 114-121. 



Publications during the course of this researclz 
CHAPTER 2 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie SAkI a . 
n-cubes, Proceedings of IEEE International C' ,f'.' ,n some properties of k-aQ' 
Systems (ICPADS'2001) 26-29 J 200 onJer~nce on Parallel and Distributed 

, une, 1, KyongJu CIty, Korea, pp. 517-52.+. 

H. Sarb.azi-Azad, M. Ould-Khaoua, L. Mackenzie, S. Akl, On the combinatorial 
properties of k-ary n-cube interconnection networks, under review in Networks, 

CHAPTER 3 

H. S~bazi-Azad, M. Ould-Khaoua, L. Mackenzie, An accurate analytical model of 
adaptIv~ wormhole routing in k-ary n-cube interconnection networks, Performallce 
Eva lua tzon, Vol. 43, No. 2-3, 2001, pp. 165-179. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, Performance analysis of k-an n­
cubes with fully adaptive routing, Proceedings of IEEE 7th International ConferclI(:e 011 

Parallel and Distributed Systems (ICPADS'2000), Iwate, Japan, July ,+-7,2000, pp. 2'+l)-

255. 

CHAPTER 4 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, Analytical modeling of wormhole­
routed k-ary n-cubes in the presence of hotspot traffic, IEEE Transactions on 

Computers, Vol. 50, No.7, 2001, pp. 623-634. 

M. Ould-Khaoua, H. Sarbazi-Azad, An analytical model of adaptive wormhole routing 
in hypercubes in the presence of hotspot traffic, IEEE Transactions on Parallel and 

Distributed System, Vol. 12, No.3, 2001, pp. 283-292, 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, On the performance of adaptive 
wormhole routing in the bidirectional 2D torus interconnection network: A hotspot 
analysis, Microprocessors and Microsystems, Vol. 25, No.6, 2001, pp. 277-285. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, An analytical model of fully-adaptive 
wormhole-routed k-ary n-cubes in the presence of hotspot traffic, Proceedings of 
IEEEIACM International Parallel and Distributed Processing Symposium (IPDPS'2000). 

Cancun, Mexico, May 1-5, 2000, pp. 605-610. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, Hotspot analysis in wormhole-routed 
tori, Proceedings of 19th IEEE International P~rfom~allc~, COII/puting. ') (l~I~1 
Communications Conference (IEEE-IPCCC'2000), Phoemx, Anzona, U.S,,\., Feb, _0- __ . 

2000, pp. 337-343. 

H S' b . -A . d M Ould-Khaoua, L. Mackenzie, Performance modeling of adaptiH~ 
. ar aZI za, . f' ,. C~'ICC"()()() 

wormhole-routed multi-computers with hotspot traffic, Procc('( Lng.\' (~. - , 

Tehran, Iran, March 7-9, 2000. 



CHAPTERS 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, Message latency in hypercubes in the 
presence of matrix-transpose traffic, The Computer Journal, Vol. 43, No.5, 2000. pp. 
411-419. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, An analytical model of adaptive 
wormhole routing in hypercubes with bit-reversal traffic pattern, Parallel Computing, 
Vol. 27, No. 13,2001, pp.1801-1816. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, A performance model of adapth'e 
routing in k-ary n-cubes with matrix-transpose traffic, Proceedings of International 
Conference on Parallel Processing (ICPP2000) , IEEE Computer Society Press, Toronto. 
Canada, August 21-24,2000, pp. 345-352. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, An analytic model for 
communication latency in wormhole-switched k-ary n-cube interconnection networks 
with digit-reversal traffic, Proceedings of International Symposium 011 High 
Performance Computing (ISHPC2K), Tokyo, Japan, Oct. 16-18, 2000, LNCS 1940. 
Springer-Verlag, 2000, pp. 218-229. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, Message latency in wormhole­
switched k-ary n-cubes under digit-reversal traffic workload, to appear. jOllrnal of 
Supercomputing, 2002. 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, Modeling k-ary n-cubes with matrix­
transpose traffic, under review in journal of Parallel and Distributed Computing. 

CHAPTER 6 

H. Sarbazi-Azad, M. Ould-Khaoua, L. Mackenzie, A more realistic comp~rative 
analysis of wormhole-routed tori and hypercubes, to appear, Proc. IEEE & ~C ~ Int. 
Parallel & Distributed Processing Symposium (IPDPS'2000) Workshops, Apnl 1)-19. 
2002, Fort Lauderdale, Florida, U.S.A. 

H S b . AdM Ould Khaoua L Mackenzie Towards a more realistic . ar aZl- za,. - ,., . 
. I' f multicomputer networks to appear, CornplltatlOll and comparative ana YSls 0 ' 

Concurrency: Practice and Experience, 2002. 

H S b 
. AdM Ould-Khaoua L. Mackenzie, Performance comparis.on of ar aZI- za.' ..' I . f . . .' k . a new cost model, under reVIew 10 a specla ISSue 0 

mterconnectlOn networ s usmg 
Cluster Computing. 

. Ould-Khaoua, L. Mackenzie, A new cost model for comparati\ l' 
H. Sarbazl-Azad, M. t d t' d hypercubes with uniform traffic. to appear. to 

alysis of wormhole-rou e on an . I 
an . ST'ED I t'l Con! Parallel and Distrihuted Complttl1lg al!( 
appear, Proceedmgs IA n . '. 
Networks (PDCN'2002), 18-21 Feb .. 2001, Innsbruck. Austna. 


	392609_0001
	392609_0002
	392609_0003
	392609_0004
	392609_0005
	392609_0006
	392609_0007
	392609_0008
	392609_0009
	392609_0010
	392609_0011
	392609_0012
	392609_0013
	392609_0014
	392609_0015
	392609_0016
	392609_0017
	392609_0018
	392609_0019
	392609_0020
	392609_0021
	392609_0022
	392609_0023
	392609_0024
	392609_0025
	392609_0026
	392609_0027
	392609_0028
	392609_0029
	392609_0030
	392609_0031
	392609_0032
	392609_0033
	392609_0034
	392609_0035
	392609_0036
	392609_0037
	392609_0038
	392609_0039
	392609_0040
	392609_0041
	392609_0042
	392609_0043
	392609_0044
	392609_0045
	392609_0046
	392609_0047
	392609_0048
	392609_0049
	392609_0050
	392609_0051
	392609_0052
	392609_0053
	392609_0054
	392609_0055
	392609_0056
	392609_0057
	392609_0058
	392609_0059
	392609_0060
	392609_0061
	392609_0062
	392609_0063
	392609_0064
	392609_0065
	392609_0066
	392609_0067
	392609_0068
	392609_0069
	392609_0070
	392609_0071
	392609_0072
	392609_0073
	392609_0074
	392609_0075
	392609_0076
	392609_0077
	392609_0078
	392609_0079
	392609_0080
	392609_0081
	392609_0082
	392609_0083
	392609_0084
	392609_0085
	392609_0086
	392609_0087
	392609_0088
	392609_0089
	392609_0090
	392609_0091
	392609_0092
	392609_0093
	392609_0094
	392609_0095
	392609_0096
	392609_0097
	392609_0098
	392609_0099
	392609_0100
	392609_0101
	392609_0102
	392609_0103
	392609_0104
	392609_0105
	392609_0106
	392609_0107
	392609_0108
	392609_0109
	392609_0110
	392609_0111
	392609_0112
	392609_0113
	392609_0114
	392609_0115
	392609_0116
	392609_0117
	392609_0118
	392609_0119
	392609_0120
	392609_0121
	392609_0122
	392609_0123
	392609_0124
	392609_0125
	392609_0126
	392609_0127
	392609_0128
	392609_0129
	392609_0130
	392609_0131
	392609_0132
	392609_0133
	392609_0134
	392609_0135
	392609_0136
	392609_0137
	392609_0138
	392609_0139
	392609_0140
	392609_0141
	392609_0142
	392609_0143
	392609_0144
	392609_0145
	392609_0146
	392609_0147
	392609_0148
	392609_0149
	392609_0150
	392609_0151
	392609_0152
	392609_0153
	392609_0154
	392609_0155
	392609_0156
	392609_0157
	392609_0158
	392609_0159
	392609_0160
	392609_0161
	392609_0162
	392609_0163
	392609_0164
	392609_0165
	392609_0166
	392609_0167
	392609_0168
	392609_0169
	392609_0170
	392609_0171
	392609_0172
	392609_0173
	392609_0174
	392609_0175
	392609_0176
	392609_0177
	392609_0178
	392609_0179
	392609_0180
	392609_0181
	392609_0182
	392609_0183
	392609_0184
	392609_0185
	392609_0186
	392609_0187
	392609_0188
	392609_0189
	392609_0190
	392609_0191
	392609_0192
	392609_0193
	392609_0194
	392609_0195
	392609_0196
	392609_0197
	392609_0198
	392609_0199
	392609_0200
	392609_0201
	392609_0202
	392609_0203
	392609_0204
	392609_0205
	392609_0206
	392609_0207
	392609_0208
	392609_0209
	392609_0210

