49,760 research outputs found

    Minimum aberration designs for discrete choice experiments

    Get PDF
    A discrete choice experiment (DCE) is a survey method that givesinsight into individual preferences for particular attributes.Traditionally, methods for constructing DCEs focus on identifyingthe individual effect of each attribute (a main effect). However, aninteraction effect between two attributes (a two-factor interaction)better represents real-life trade-offs, and provides us a better understandingof subjects’ competing preferences. In practice it is oftenunknown which two-factor interactions are significant. To address theuncertainty, we propose the use of minimum aberration blockeddesigns to construct DCEs. Such designs maximize the number ofmodels with estimable two-factor interactions in a DCE with two-levelattributes. We further extend the minimum aberration criteria toDCEs with mixed-level attributes and develop some general theoreticalresults

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Dominating sets in projective planes

    Get PDF
    We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result which shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q>81q>81 is smaller than 2q+2[q]+22q+2[\sqrt{q}]+2 (i.e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q+q+12q+\sqrt{q}+1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines.Comment: 19 page

    Large weight code words in projective space codes

    Get PDF
    AbstractRecently, a large number of results have appeared on the small weights of the (dual) linear codes arising from finite projective spaces. We now focus on the large weights of these linear codes. For q even, this study for the code Ck(n,q)⊥ reduces to the theory of minimal blocking sets with respect to the k-spaces of PG(n,q), odd-blocking the k-spaces. For q odd, in a lot of cases, the maximum weight of the code Ck(n,q)⊥ is equal to qn+⋯+q+1, but some unexpected exceptions arise to this result. In particular, the maximum weight of the code C1(n,3)⊥ turns out to be 3n+3n-1. In general, the problem of whether the maximum weight of the code Ck(n,q)⊥, with q=3h (h⩾1), is equal to qn+⋯+q+1, reduces to the problem of the existence of sets of points in PG(n,q) intersecting every k-space in 2(mod3) points

    Exploring the Way to Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model

    Full text link
    Drift-diffusion model is an indispensable modeling tool to understand the carrier dynamics (transport, recombination, and collection) and simulate practical-efficiency of solar cells (SCs) through taking into account various carrier recombination losses existing in multilayered device structures. Exploring the way to predict and approach the SC efficiency limit by using the drift-diffusion model will enable us to gain more physical insights and design guidelines for emerging photovoltaics, particularly perovskite solar cells. Our work finds out that two procedures are the prerequisites for predicting and approaching the SC efficiency limit. Firstly, the intrinsic radiative recombination needs to be corrected after adopting optical designs which will significantly affect the open-circuit voltage at its Shockley-Queisser limit. Through considering a detailed balance between emission and absorption of semiconductor materials at the thermal equilibrium, and the Boltzmann statistics at the non-equilibrium, we offer a different approach to derive the accurate expression of intrinsic radiative recombination with the optical corrections for semiconductor materials. The new expression captures light trapping of the absorbed photons and angular restriction of the emitted photons simultaneously, which are ignored in the traditional Roosbroeck-Shockley expression. Secondly, the contact characteristics of the electrodes need to be carefully engineered to eliminate the charge accumulation and surface recombination at the electrodes. The selective contact or blocking layer incorporated nonselective contact that inhibits the surface recombination at the electrode is another important prerequisite. With the two procedures, the accurate prediction of efficiency limit and precise evaluation of efficiency degradation for perovskite solar cells are attainable by the drift-diffusion model.Comment: 32 pages, 11 figure
    • …
    corecore