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Abstract

Recently, a large number of results have appeared on the small weights of the (dual)
linear codes arising from finite projective spaces. We now focus on the large weights of
these linear codes. For q even, this study for the code Ck(n, q)⊥ reduces to the theory
of minimal blocking sets with respect to the k-spaces of PG(n, q), odd-blocking the k-
spaces. For q odd, in a lot of cases, the maximum weight of the code Ck(n, q)⊥ is equal
to qn + · · · + q + 1, but some unexpected exceptions arise to this result. In particular,
the maximum weight of the code C1(n, 3)⊥ turns out to be 3n + 3n−1. In general, the
problem of whether the maximum weight of the code Ck(n, q)⊥, with q = 3h (h ≥ 1),
is equal to qn + · · · + q + 1, reduces to the problem of the existence of sets of points in
PG(n, q) intersecting every k-space in 2 (mod 3) points.

Keywords: 2 (mod 3) sets, weights of code words, blocking sets, projective geometry codes

1 Introduction

Originally introduced by Gallager [7], low density parity check (LDPC) codes are used fre-
quently these days due to their excellent empirical performance under belief-propagation/sum-
product decoding. In some cases, their performance is even near to the Shannon limit [17].
In general, an LDPC code C is a linear block code defined by a sparse parity check matrix
H; this is a matrix that contains a lot more 0s than nonzero symbols.

Codes from finite geometries have been shown to have excellent decoding performance for
relatively short block lengths [11, 16, 18]. This led to a rediscovery and thorough study
of finite geometry codes. Together with the bonus one gets from structural properties of
the geometry (allowing a theoretical study of the code), finite geometry codes are generally
considered to be the most interesting class of LDPC codes. Originally, only projective and
affine spaces were studied, but lately several other constructions have been investigated,
such as generalized quadrangles [10, 16], linear representations [19, 23, 24] and partial and
semipartial geometries [9, 15].
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In particular, codes derived from projective spaces have been used in several high-end modern
data transmission systems [3, 4]. In this paper, we will continue the study of the code words
in the linear codes and the dual linear codes arising from finite projective spaces. A large
number of results have already appeared on the small weights of the linear codes and dual
linear codes arising from finite projective spaces [5, 6, 12, 13, 14].

We will focus on the large weights of the linear codes and dual linear codes arising from finite
projective spaces. First of all, major differences between the results for q even and for q odd
arise.

• For q even, the study of large weight code words in Ck(n, q)
⊥ reduces to the theory

of minimal blocking sets with respect to the k-spaces of PG(n, q), odd-blocking the
k-spaces. This shows that the maximum weight is equal to qn + · · ·+ qn−k+1.

• For q odd, in a lot of cases, the maximum weight of the code Ck(n, q)
⊥ is equal to

qn + · · · + q + 1, but some exceptions arise to this result. In particular, the maximum
weight of the code C1(n, 3)⊥ is equal to 3n + 3n−1. In general, the problem of whether
the maximum weight of the code Ck(n, 3)⊥ is equal to 3n + · · · + 3 + 1 reduces to the
problem of the existence of sets in PG(n, 3) intersecting every k-space in 2 (mod 3)
points. For k > n/2, such sets intersecting every k-space in 2 (mod 3) points trivially
exist as the union of two disjoint (n − k)-spaces intersects every k-space in 2 (mod 3)
points. For k = 1, such sets do not exist and for 2 ≤ k ≤ n/2, the existence of such sets
is an open problem.

2 Preliminaries

Notation 2.1. We denote by PG(n, q) the n-dimensional projective space over the finite field
Fq. For n = 2, we call this a projective plane and write PG(2, q). The point set of PG(n, q)
is denoted by P.

Definition 2.2. A set S ⊆ P in PG(n, q) is called a blocking set with respect to the k-spaces
if every k-space contains at least one point of S. If it is clear from the context what k is, we
will simply call S a blocking set. If there is no s ∈ S such that S \ {s} is also a blocking set,
then S is called minimal. If every k-space contains an odd number of points of S, then we
say that S is odd-blocking the k-spaces.

Definition 2.3. An element of the vector space FPp , which consists of the mappings P → Fp,
can be seen as a vector of length |P| consisting of elements of Fp. For a given subset π ⊆ P,
let vπ be its characteristic function; this is a {0, 1} mapping which is 1 for points in π and
0 for points outside of π. This vector vπ is called the incidence vector of π. Often, we will
identify π with its incidence vector and write π instead of vπ. The support supp(c) of an
element c ∈ FPp is the set of points which is mapped to a nonzero element of Fp.

Notation 2.4. The code Ck(n, q), q = ph with p prime and h ≥ 1, is the linear code over Fp
generated by the incidence vectors of the k-dimensional subspaces of PG(n, q). Its dual, the
code Ck(n, q)

⊥, is then the set of vectors c ∈ FPp with c · vπ = 0 (over Fp) for each k-space π,
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where · denotes the standard inner product. In other words, a vector c ∈ FPp is in Ck(n, q)
⊥

if and only if
∑

r∈π cr = 0 for every k-space π of PG(n, q).

Definition 2.5. A t (mod p) set with respect to the k-spaces of PG(n, q), with q = ph and p
prime, is a set S which intersects every k-space of PG(n, q) in t (mod p) points. By conven-
tion, we let 0 ≤ t ≤ p− 1.

3 The case q even

In this section, we will study the code words of large weight in Ck(n, q)
⊥, when q is even.

We are studying a binary code, hence a code word is uniquely identified by its support. In
particular, the support supp(c) of a code word c ∈ Ck(n, q)⊥ of large weight corresponds to
a large set of points, intersecting every k-space in an even number of points. Since every
k-space contains an odd number of points, the complement S of this set is a small set which
intersects every k-space in an odd number of points. In particular, S contains at least one
point of every k-space, hence it is a blocking set with respect to the k-spaces.

Theorem 3.1. The maximum weight of Ck(n, q)
⊥, q even, is qn + · · ·+ qn−k+1, and all the

code words of this weight are the incidence vector of the complement of an (n − k)-space of
PG(n, q).

Proof. The incidence vector of the complement of any (n−k)-space π is a code word of weight
qn + · · ·+ qn−k+1 of Ck(n, q)

⊥: since each projective k-space intersects this (n− k)-space in
a nonempty projective subspace, this intersection contains 1 (mod q) points, and hence its
complement in π contains 0 (mod q) points. Therefore, the maximum weight of Ck(n, q)

⊥ is
at least qn + · · ·+ qn−k+1.

Since the complement S of the support of a code word of Ck(n, q)
⊥ is a blocking set with

respect to the k-spaces, we have |S| ≥ qn−k + · · · + q + 1 by the Bose-Burton theorem [2],
and if equality occurs, then S is an (n − k)-space. This shows that the bound is sharp, and
it characterizes the code words of weight qn + · · ·+ qn−k+1.

The Bose-Burton result on blocking sets is crucial in the proof of Theorem 3.1, and this is not
the only place where we will run into a connection with blocking sets. The following theorem
improves [22, Theorem 3.1] for p = 2, for the special case of odd-blocking sets.

Theorem 3.2. Let S be a set of projective points, odd-blocking the k-spaces of PG(n, q), q
even. If |S| ≤ 2(qn−k + qn−k−1 + · · ·+ q + 1), then S is a minimal blocking set.

Proof. Assume by contraposition that S is not minimal, i.e. there is a point p ∈ S such that
S \ {p} still blocks the k-spaces. Hence, every k-space through p is blocked by S in at least
2 points. But it is also blocked by an odd number of points of S, so every k-space through p
contains at least 3 points of S.

Now, there are two cases:
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• either there exists a (k − 1)-space π through p which contains no other points of S.
Every k-space through π contains by assumption at least two other points of S, hence
each of the qn−k + qn−k−1 + · · · + q2 + q + 1 different k-spaces through π contains at
least 2 points of S outside of π. Since two such k-spaces only intersect in π, this means
that |S| ≥ 1 + 2(qn−k + qn−k−1 + · · ·+ q2 + q + 1), a contradiction.

• either every (k − 1)-space through p contains at least one other point of S. Let now
i be the largest integer (with necessarily i < k − 1) for which there exists an i-space
through p which contains no other points of S. Such an integer i must exist, since
i = 0 clearly has this property and i = k − 1 does not. Let now π be such an i-space
through p, containing no other points of S. Because of the maximality of i, each of the
qn−i−1 + qn−i−2 + · · ·+ q2 + q+ 1 different (i+ 1)-spaces through π must again contain
at least one other point of S. Since two such (i + 1)-spaces only intersect in π, this
means that |S| ≥ 1 + (qn−i−1 + qn−i−2 + · · · + q2 + q + 1). Since i ≤ k − 2 and q ≥ 2,
this implies that

|S| ≥ 1 + (qn−i−1 + qn−i−2 + · · ·+ q2 + q + 1)
≥ 1 + (qn−k+1 + qn−k + · · ·+ q2 + q + 1)
≥ 1 + (2qn−k + 2qn−k−1 + · · ·+ 2q + 2 + 1)
> 2(qn−k + qn−k−1 + · · ·+ q + 1),

a contradiction.

Both cases lead to a contradiction and hence S must be minimal.

The preceding theorem implies that the study of the code words in Ck(n, q)
⊥, q even, of weight

larger than or equal to qn + · · ·+ qn−k+1 − qn−k − · · · − q − 1 is reduced to the study of the
minimal blocking sets with respect to the k-spaces of PG(n, q), odd-blocking the k-spaces.
Some important results on minimal blocking sets with respect to the k-spaces of PG(n, q)
were obtained by Szőnyi [21], Szőnyi and Weiner [22], and Sziklai [20].

Let S(q) be the set of possible sizes of minimal blocking sets in PG(2, q) with cardinality
smaller than 3

2(q+1), then [20, Corollary 5.1 and 5.2] yield the following summarizing theorem
for q even.

Theorem 3.3. Let c be a code word of the code Ck(n, q)
⊥, q even, of weight larger than

qn + · · ·+ q+ 1−
√

2qn−k. Then the weight of c equals qn + · · ·+ q+ 1−x, with x ∈ S(qn−k).
Moreover, c is the incidence vector of the complement of a small minimal blocking set, odd-
blocking the k-spaces.

Regarding larger minimal blocking sets with respect to the k-spaces of PG(n, q), not many
results are known. Here, there are still many open problems, including results on the cardi-
nalities of these minimal blocking sets.
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4 Large weight constructions

From now on, we will assume that q is odd. We consider the p-ary linear code of points and
k-spaces of PG(n, q), with q = ph and with p > 2 prime. A code word of the code Ck(n, q)

⊥

corresponds to a map ϕ from the set of projective points to Fp, such that for each k-space
Π we have

∑
p∈Π ϕ(p) = 0 as an element of Fp. The image of a point under ϕ is called the

coefficient of that point.

In this section, we try to determine when the maximum possible Hamming weight of this
code is attained, i.e. when there exist code words of weight qn + · · ·+ q+ 1. In case this does
not work, we provide constructions to attain sharp lower bounds on the maximum weight of
these codes. Surprisingly, we will again find several strong links with small minimal blocking
sets. We begin with a useful lemma.

Lemma 4.1. Let {Bi}i∈I be a family of 1 (mod p) sets with respect to the k-spaces of
PG(n, q), such that no point is contained in more than p−1 of these sets. Then the maximum
weight of Ck(n, q)

⊥ is at least

qn + qn−1 + · · ·+ q + 1−

∣∣∣∣∣⋂
i∈I

Bi

∣∣∣∣∣ .
Proof. For each i ∈ I, define c(i) to be the incidence vector of the complement of Bi. Since Bi
intersects every k-space in 1 (mod p) points, and every k-space has 1 (mod p) points itself,
the complement of Bi intersects every k-space in 0 (mod p) points and hence c(i) is a code
word of Ck(n, q)

⊥.

Now, c :=
∑p−2

i=0 c
(i) is a code word of Ck(n, q)

⊥, of which we will now determine its weight.
The coefficient in c of each point consists of a sum of p − 1 elements, and each element
is either 0 or 1. Hence, a zero coefficient in the sum c cannot be obtained by summing
up ones. Therefore, if a point has zero coefficient in the sum c, it has to be zero in each
c(i), which means that it should lie in each of the Bi. Therefore, the weight of c is exactly
qn + qn−1 + · · ·+ q + 1−

∣∣⋂
i∈I Bi

∣∣, as claimed.

The easiest example of a small minimal blocking set with respect to the k-spaces, is an m-space
with m ≥ n− k. This yields us the following lower bounds on the maximum weight.

Theorem 4.2. The maximum weight of Ck(n, q)
⊥, q = ph, p prime, h ≥ 1, is

• exactly qn + qn−1 + · · ·+ q + 1 if (n+ 1)/k ≤ p− 1,

• at least qn + qn−1 + · · ·+ qn−k(p−1)+1 if (n+ 1)/k > p− 1.

Proof. Let m :=
⌈
n+1
k

⌉
. Define as follows subspaces H0, . . . ,Hm−1 of PG(n, q). For i =

0, 1, . . . ,m−2, let Hi be the (n−k)-space with equations Xik = Xik+1 = · · · = X(i+1)k−1 = 0.
Let Hm−1 be the k(m− 1)-space with equations Xk(m−1) = Xk(m−1)+1 = · · · = Xn = 0.
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If (n + 1)/k ≤ p − 1, then S := {H0, . . . ,Hm−1} is a set of 1 (mod p) sets with respect to
the k-spaces. The intersection of all sets in S is trivial, because the coordinates (X0, . . . , Xn)
of any point in

⋂m−1
i=0 Hi must have X0 = · · · = Xk−1 = 0, Xk = · · · = X2k−1 = 0, . . .,

Xk(m−1) = Xk(m−1)+1 = · · · = Xn = 0 and hence it is the zero vector, which is not a point of
PG(n, q). Since there are only d(n + 1)/ke ≤ p− 1 sets in S, each point is indeed contained
in at most p− 1 sets of S. Lemma 4.1 yields the desired result.

If (n+1)/k > p−1, then S := {H0, . . . ,Hp−2} is a set of 1 (mod p) sets with respect to the k-
spaces. Since S only contains p−1 sets, each point is contained in at most p−1 sets of S. The
intersection of all sets in S consists of all points (X0, . . . , Xn) for which X0 = · · · = Xk−1 = 0,
Xk = · · · = X2k−1 = 0, . . ., Xk(p−2) = · · · = Xk(p−1)−1 = 0. This is a projective subspace of

dimension n − k(p − 1) in PG(n, q), which has qn−k(p−1) + qn−k(p−1)−1 + · · · + q + 1 points.
Lemma 4.1 yields the desired result.

If (n + 1)/k ≤ p − 1, then a maximum weight of qn + qn−1 + · · · + q + 1 is reached. If
(n + 1)/k > p − 1, the contrary is not necessarily true. For example, we have the following
sufficient condition for the maximum weight qn + qn−1 + · · · + q + 1 to appear, based on t
(mod p) sets.

Theorem 4.3. If a t (mod p) set exists with respect to the k-spaces of PG(n, q), with t 6≡ 0, 1
(mod p), then the maximum weight of Ck(n, q)

⊥ is qn + qn−1 + · · ·+ q + 1.

Proof. Let S be such a set and let T be its complement. Assign coefficient 1 to all points in
T and assign coefficient 1− t−1 to all points in S, where the inversion of t is done over Fp. We
will show that this defines a code word of Ck(n, q)

⊥. Since we are given that every k-space
intersects S in t (mod p) points and T in p+ 1− t (mod p) points, the sum of all coefficients
in every k-space is t · (1− t−1) + (p+ 1− t) · 1 ≡ 0 (mod p), so c is a code word of Ck(n, q)

⊥.
Since 1 and 1− t−1 are nonzero elements of Fp, c has full weight, as claimed.

Sometimes the existence of t (mod p) sets is trivial, for example when k ≥ n+1
2 .

Corollary 4.4. If k ≥ n+1
2 , two skew (n−k)-spaces exist in PG(n, q) and hence both Theorem

4.2 and and Theorem 4.3 show that a maximum weight of qn + qn−1 + · · ·+ q + 1 is attained
for Ck(n, q)

⊥.

In other cases it is however not at all obvious. Even in the planar case (where n = 2 and
k = 1), this is not trivial. Since n+1

k = 3, the maximum weight is attained for p ≥ 5 by
Theorem 4.2, but for p = 3, no such easy construction is known.

Lemma 4.5. If q = 3h, where h > 1, then there exists a non-square element in Fq\{x2−x|x ∈
Fq}.

Proof. Let f be the mapping of Fq into itself defined by f(x) = x2 − x for all x ∈ Fq. Then
f(1 − x) = (1 − x)2 − (1 − x) = x2 − x for all x ∈ Fq, so we have f(x) = f(1 − x) for all
x ∈ Fq. Observe that for any x ∈ Fq, 1− x = x if and only if 2x = 1, i.e. if and only if x = 2.
Thus the cardinality of Im(f) is q−1

2 + 1 = q+1
2 .
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We will show that there exists an element in Fq \ Im(f) which is non-square. Suppose, to the
contrary, that every non-square element of Fq is in Im(f). Then Im(f) is the set of zero and
all non-square elements of Fq. Let x ∈ Fq \ F3 and y = 2− x. Then

f(x)f(y) = (x2 − x)(y2 − y) = (xy)2 − xy(y + x) + xy
= (xy)2 − 2xy + xy = (xy)2 − xy
= f(xy).

Since both f(x) and f(y) are non-square, it follows that f(x) = ωi and f(y) = ωj for
some odd integers i and j, where ω is a primitive element for Fq. Hence, i + j is even and
f(xy) = f(x)f(y) = ωi+j is square, contradiction.

Lemma 4.6 ([8, Lemma 13.8]). In PG(2, q), where q = 3h, the set {(1, x, x3) | x ∈ Fq} ∪
{(0, x, x3) | x ∈ Fq \ {0}} is a minimal blocking set which intersects every line in 1 (mod 3)
points.

Theorem 4.7. If q = 3h, where h > 1, then PG(2, q) contains a 2 (mod 3) set of size 3q−1.

Proof. By Lemma 4.5, there exists a non-square element b in Fq \ {x2−x | x ∈ Fq}. Consider
the mapping ϕ : (x, y, z) 7→ (z, y + bx, x) from PG(2, q) into itself. This is a collineation of
PG(2, q).

Now let
S = {(1, x, x3) | x ∈ Fq} ∪ {(0, x, x3) | x ∈ Fq \ {0}}.

Clearly, all points in the first set are distinct and disjoint from the second set, hence this part
contains q points of S. For the second part, points may coincide since projective points are
only defined up to a nonzero scalar multiple. In particular, one has (0, x, x3) = (0, y, y3) if

and only if x3

x = y3

y , hence if and only if
(
x
y

)2
= 1. Therefore, each point appears twice in

this second set, making the total cardinality of S equal to q + q−1
2 .

By Theorem 4.6, S is a blocking set intersecting every line in 1 (mod 3) points, and hence,
so is T = ϕ(S). Note that

T = {(x3, x+ b, 1) | x ∈ Fq} ∪ {(x3, x, 0) | x ∈ Fq \ {0}}.

Now we look at the union of S and T . If S and T are disjoint, then the union of these sets

gives a 2 (mod 3) set of cardinality 2
(
q + q−1

2

)
= 3q − 1. We will show that S and T are

disjoint. Suppose by contradiction that there exists a point P in the intersection of S and T .
Clearly, this is impossible in all but the following cases.

• If P belongs to the first sets of S and T , i.e. P = (1, x, x3) = (y3, y + b, 1) for some
x, y ∈ Fq\{0}, then since (1, x, x3) = (y3, xy3, (xy)3), we obtain the equation xy3 = y+b
and (xy)3 = 1, and the latter implies that xy = 1, which gives y2 = y+ b or b = y2− y,
a contradiction.

• If P belongs to the second set of S and to the first set of T with zero element in Fq,
i.e. P = (0, x, x3) = (0, b, 1) for some x ∈ Fq \ {0}, then since (0, x, x3) = (0, x−2, 1), it
follows that b = x−2 which contradicts the fact that b is non-square.
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Hence, S and T are disjoint, and the result follows.

So, the plane code C1(2, q)⊥, with q > 3 odd, indeed has maximum weight q2 + q + 1.

5 Upper bounds on the maximum weight

In this section, we will provide some upper bounds on the maximum weight. From the
preceding section, one might get the feeling that the study for q odd is not really interesting,
as one always attains the maximum weight, or gets at least very close to the maximum
weight. However, this is not correct, as we will now reveal upper bounds which show quite a
gap relative to qn + qn−1 + · · ·+ q + 1.

First we show that if the characteristic of the field is 3, then the converse of Theorem 4.3
holds as well.

Theorem 5.1. If p = 3, the maximum weight qn + qn−1 + · · ·+ q+ 1 is attained in Ck(n, q)
⊥

if and only if there exists a 2 (mod 3) set with respect to the k-spaces of PG(n, q).

Proof. The ‘if’ part follows from Theorem 4.3. For the ‘only if’ part, let c be a code word of
weight qn + qn−1 + · · ·+ q + 1 in Ck(n, q)

⊥. Let S be the set of points with coefficient 1 in c
and let T be its complement, i.e. the set of points with coefficient 2 in c. Now fix an arbitrary
k-space π. Let s and t be respectively the number of points of S and T in π. Clearly, s+ t ≡ 1
(mod p). Moreover, since c is a code word, s+ 2t ≡ 0 (mod p). Solving this, we get s ≡ t ≡ 2
(mod p), i.e., S and T are 2 (mod 3) sets with respect to the k-spaces of PG(n, q).

For q = 3, this yields a negative result.

Lemma 5.2. The projective plane PG(2, 3) does not have a 2 (mod 3) set with respect to the
lines.

Proof. Let q = 3. Clearly, a 2 (mod 3) set S has two points on every line. In particular, let
r /∈ S, then each of the 4 lines through r contains two points of S, i.e. |S| = 8. However, the
complement T of S is also a 2 (mod 3) set, i.e. |T | = 8. But there are only 13 points in this
plane, a contradiction.

Corollary 5.3. The linear code C1(2, 3)⊥ does not have code words of weight q2 +q+1 = 13.
Hence, the maximum weight of C1(2, 3)⊥ is q2 + q. In other words, the second bound from
Theorem 4.2 is sharp for q = 3, n = 2, k = 1.

Now we prove a reduction lemma. Again, it reveals a link with blocking sets and makes use
of the Bose-Burton Theorem [2]. It will greatly extend the gap between the actual maximum
weight and qn + qn−1 + · · ·+ q + 1 in some cases.
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Lemma 5.4. If there exists an integer m with k ≤ m ≤ n, for which Ck(m, q)
⊥ does not

attain full weight, then Ck(n, q)
⊥ has maximum weight at most qn + · · ·+ qn−m+1.

Proof. Let c be a code word of maximum weight in Ck(n, q)
⊥. Let S be the set of points on

which c is zero, i.e. S is the complement of supp(c). If there exists an m-space Π disjoint from
S, then all points in Π correspond to nonzero positions in the code word. Since

∑
r∈π cr = 0

for every k-space π of PG(n, q), this also holds for all k-spaces π ⊆ Π. Since the positions
corresponding to points outside of Π are not relevant for these equations, they still hold
when replacing them by 0, hence the restriction of c to the positions in Π is a code word of
Ck(m, q)

⊥. But Ck(m, q)
⊥ does not attain full weight; this contradicts our assumption.

Hence, each m-space contains at least one point of S, which means that S is a blocking set
with respect to the m-spaces of PG(n, q), and so, by the Bose-Burton Theorem [2], |S| has at
least the size of an (n−m)-space, i.e. |S| ≥ qn−m + · · ·+ q + 1. Hence, the maximum weight
of Ck(n, q)

⊥ is at most qn + · · ·+ qn−m+1.

Combining Corollary 5.3 and Lemma 5.4, with q = 3, m = 2 and k = 1, we get the following
result.

Theorem 5.5. The maximum weight in C1(n, 3)⊥ is 3n + 3n−1.

This is far below the expected value 3n+3n−1 + · · ·+3+1. The maximum weight of Ck(n, 3)⊥

is still an open problem for 1 < k < n+1
2 .

Remark 5.6. The preceding results show that the study of 2 (mod 3) sets in PG(n, q), q = 3h,
plays a crucial role for the investigation of the large weight code words of the code Ck(n, q)

⊥.
We therefore propose to investigate the existence problem of these 2 (mod 3) sets in the cases
not discussed in this article.

An other interesting problem is to determine the exact maximum weight of the codes Ck(n, q)
⊥,

q odd, not yet discussed in Theorem 4.2 and in the remaining theorems of this article. A way
to prove that the maximum weight of Ck(n, q)

⊥, q odd, is equal to qn + · · ·+ q+ 1 is to prove
the existence of t (mod p) sets with respect to the k-spaces of PG(n, q), with t 6≡ 0, 1 (mod p),
as indicated in Theorem 4.3. It is unknown whether one can ever obtain a larger weight than
with the construction in Lemma 4.1.
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