1,750 research outputs found

    Studies on generalized Yule models

    Full text link
    We present a generalization of the Yule model for macroevolution in which, for the appearance of genera, we consider point processes with the order statistics property, while for the growth of species we use nonlinear time-fractional pure birth processes or a critical birth-death process. Further, in specific cases we derive the explicit form of the distribution of the number of species of a genus chosen uniformly at random for each time. Besides, we introduce a time-changed mixed Poisson process with the same marginal distribution as that of the time-fractional Poisson process.Comment: Published at https://doi.org/10.15559/18-VMSTA125 in the Modern Stochastics: Theory and Applications (https://vmsta.org/) by VTeX (http://www.vtex.lt/

    A process of rumor scotching on finite populations

    Get PDF
    Rumor spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumor is propagated by pairwise interactions between spreaders and ignorants. Spreaders can become stiflers only after contacting spreaders or stiflers. Here we propose a model that considers the traditional assumptions, but stiflers are active and try to scotch the rumor to the spreaders. An analytical treatment based on the theory of convergence of density dependent Markov chains is developed to analyze how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can be applied to study systems in which informed agents try to stop the rumor propagation. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumor propagation.Comment: 13 pages, 11 figure

    Scale-free behavior of networks with the copresence of preferential and uniform attachment rules

    Get PDF
    Complex networks in different areas exhibit degree distributions with heavy upper tail. A preferential attachment mechanism in a growth process produces a graph with this feature. We herein investigate a variant of the simple preferential attachment model, whose modifications are interesting for two main reasons: to analyze more realistic models and to study the robustness of the scale free behavior of the degree distribution. We introduce and study a model which takes into account two different attachment rules: a preferential attachment mechanism (with probability 1-p) that stresses the rich get richer system, and a uniform choice (with probability p) for the most recent nodes. The latter highlights a trend to select one of the last added nodes when no information is available. The recent nodes can be either a given fixed number or a proportion (\alpha n) of the total number of existing nodes. In the first case, we prove that this model exhibits an asymptotically power-law degree distribution. The same result is then illustrated through simulations in the second case. When the window of recent nodes has constant size, we herein prove that the presence of the uniform rule delays the starting time from which the asymptotic regime starts to hold. The mean number of nodes of degree k and the asymptotic degree distribution are also determined analytically. Finally, a sensitivity analysis on the parameters of the model is performed

    Complex network analysis and nonlinear dynamics

    Get PDF
    This chapter aims at reviewing complex network and nonlinear dynamical models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary introduces some applications of complex networks to economics, finance, epidemic spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issue

    Topological fractal networks introduced by mixed degree distribution

    Get PDF
    Several fundamental properties of real complex networks, such as the small-world effect, the scale-free degree distribution, and recently discovered topological fractal structure, have presented the possibility of a unique growth mechanism and allow for uncovering universal origins of collective behaviors. However, highly clustered scale-free network, with power-law degree distribution, or small-world network models, with exponential degree distribution, are not self-similarity. We investigate networks growth mechanism of the branching-deactivated geographical attachment preference that learned from certain empirical evidence of social behaviors. It yields high clustering and spectrums of degree distribution ranging from algebraic to exponential, average shortest path length ranging from linear to logarithmic. We observe that the present networks fit well with small-world graphs and scale-free networks in both limit cases (exponential and algebraic degree distribution respectively), obviously lacking self-similar property under a length-scale transformation. Interestingly, we find perfect topological fractal structure emerges by a mixture of both algebraic and exponential degree distributions in a wide range of parameter values. The results present a reliable connection among small-world graphs, scale-free networks and topological fractal networks, and promise a natural way to investigate universal origins of collective behaviors.Comment: 14 pages, 6 figure

    Relaxation dynamics of maximally clustered networks

    Get PDF
    We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics---the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erd\H{o}s--R\'enyi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erd\H{o}s--R\'enyi phenomenology

    Locating the Source of Diffusion in Large-Scale Networks

    Get PDF
    How can we localize the source of diffusion in a complex network? Due to the tremendous size of many real networks--such as the Internet or the human social graph--it is usually infeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely-placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(N^{\alpha}), where \alpha=1 for arbitrary trees, and \alpha=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.Comment: To appear in Physical Review Letters. Includes pre-print of main paper, and supplementary materia

    A Comprehensive Analysis of Swarming-based Live Streaming to Leverage Client Heterogeneity

    Full text link
    Due to missing IP multicast support on an Internet scale, over-the-top media streams are delivered with the help of overlays as used by content delivery networks and their peer-to-peer (P2P) extensions. In this context, mesh/pull-based swarming plays an important role either as pure streaming approach or in combination with tree/push mechanisms. However, the impact of realistic client populations with heterogeneous resources is not yet fully understood. In this technical report, we contribute to closing this gap by mathematically analysing the most basic scheduling mechanisms latest deadline first (LDF) and earliest deadline first (EDF) in a continuous time Markov chain framework and combining them into a simple, yet powerful, mixed strategy to leverage inherent differences in client resources. The main contributions are twofold: (1) a mathematical framework for swarming on random graphs is proposed with a focus on LDF and EDF strategies in heterogeneous scenarios; (2) a mixed strategy, named SchedMix, is proposed that leverages peer heterogeneity. The proposed strategy, SchedMix is shown to outperform the other two strategies using different abstractions: a mean-field theoretic analysis of buffer probabilities, simulations of a stochastic model on random graphs, and a full-stack implementation of a P2P streaming system.Comment: Technical report and supplementary material to http://ieeexplore.ieee.org/document/7497234
    • …
    corecore