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How can we localize the source of diffusion in a complex network? Because of the tremendous size of

many real networks—such as the internet or the human social graph—it is usually unfeasible to observe

the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the

source from measurements collected by sparsely placed observers. We present a strategy that is optimal

for arbitrary trees, achieving maximum probability of correct localization. We describe efficient imple-

mentations with complexity OðN�Þ, where � ¼ 1 for arbitrary trees and � ¼ 3 for arbitrary graphs. In the

context of several case studies, we determine how localization accuracy is affected by various system

parameters, including the structure of the network, the density of observers, and the number of observed

cascades.
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Localizing the source of a contaminant or a virus is an
extremely desirable but challenging task. In nature, many
animals are intrinsically capable of performing source
localization. Through chemotaxis, for example, certain
bacteria can analyze concentration gradients around them
in order to quickly move towards the source of a nutrient,
or quickly avoid the source of a poison [1,2]. Animals such
as the Pacific salmon and the green sea turtles are capable
of using olfaction to navigate in odor plumes, for foraging
or reproductive activities [3,4]. In certain systems, how-
ever, the task of localizing the source has to be performed
in a network, rather than in the continuous space. This is
the case, for example, when an infectious disease spreads
through human populations across a large region, as ob-
served with the worldwide H1N1 virus pandemic in 2009.
Here, the system is more conveniently modelled as a net-
work of interconnected people, and source localization
reduces to identifying which person in the network was
first infected.

In recent years, there has been significant effort in
studying the dynamics of epidemic outbreaks on networks
[5–11]. In particular, the focus has been on the forward
problem of epidemics: understanding the diffusion process
and its dependence on the rates of infection and cure, as
well as on the structure of the network. In this Letter, we
focus on the inverse problem of inferring the original
source of diffusion, given the infection data gathered at
some of the nodes in the network. The ability to estimate
the source is invaluable in helping authorities contain the
epidemic or contamination. In this context, the inference of
the underlying propagation network was studied in [12],
while the inference of the unknown source was analyzed in
[13], in both cases assuming that we know the state of all
nodes in the network. More recently, the controllability of
complex networks was considered in [14], using appropri-
ately selected driver nodes. Here, our goal is to locate the
source of diffusion under the practical constraint that only

a small fraction of nodes can be observed. This is the case,
for example, when locating a spammer who is sending
undesired emails over the internet, where it is clearly
impossible to monitor all the nodes. Thus, the main
difficulty is to develop tractable estimators that can be
efficiently implemented (i.e., with subexponential com-
plexity), and that perform well on multiple topologies.
We first introduce our network model. The underlying

network on which diffusion takes place is modeled by a
finite, undirected graph G ¼ fV; Eg, where the vertex set V
has N nodes, and the edge set E has L edges (Fig. 1). The
graphG is assumed to be known, at least approximately, as
is often verified in practice—e.g., rumors spreading in a
social network, or electrical perturbations propagating on
the electrical grid. The information source, s� 2 G, is the
vertex that originates the information and initiates the
diffusion. We model s� as a random variable (RV) whose

FIG. 1 (color). Source estimation on an arbitrary graph G. At
the unknown time t ¼ t�, the information source s� initiates the
diffusion of information. In this example, there are three observ-
ers, which measure from which neighbors and at what time they
received the information. The goal is to estimate, from these
observations, which node in G is the information source.
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prior distribution is uniform over the set V; i.e., any node in
the network is equally likely to be the source a priori.

The diffusion process is modeled as follows. At time t,
each vertex u 2 G has one of two possible states:
(i) informed, if it has already received the information
from any neighbor; or (ii) ignorant, if it has not been
informed so far. Let V ðuÞ denote the set of vertices
directly connected to u, i.e., the neighborhood or vicinity
of u. Suppose u is in the ignorant state and, at time tu,
receives the information for the first time from one neigh-
bor—say, s—thus becoming informed. Then, u will re-
transmit the information to all its other neighbors, so that
each neighbor v 2 V ðuÞns receives the information at
time tu þ �uv, where �uv denotes the random propagation
delay associated with edge uv. The RVs f�uvg for different
edges uv have a known, arbitrary joint distribution. The
diffusion process is initiated by the source s� at an un-
known time t ¼ t�. This diffusion model is general enough
to accommodate various scenarios encountered in practice.

Let O ¼4 fokgKk¼1 � G denote the set of K observers,

whose location on G is chosen or known. Each observer
measures from which neighbor and at what time it received
the information. Specifically, if tv;o denotes the absolute

time at which observer o receives the information from its
neighbor v, then the observation set is composed of tuples

of direction and time measurements, i.e.,O ¼4 fðo; v; tv;oÞg,
for all o 2 O and v 2 V ðoÞ.

How is the source location recovered from the measure-
ments taken at the observers? We adopt a maximum proba-
bility of localization criterion, which corresponds to
designing an estimator ŝð�Þ such that the localization

probability Ploc ¼4 PðŝðOÞ ¼ s�Þ is maximized. Since we
consider s� to be uniformly random over G, the optimal
estimator is the maximum likelihood (ML) estimator,

ŝðOÞ ¼ argmax
s2G

PðOjs� ¼ sÞ ¼ argmax
s2G

X
�s

Pð�sjs� ¼ sÞ

�
Z

� � �
Z

gð�1; � � � ; �L;O;�s; sÞd�1 � � �d�L:
(1)

Here,�s is the set of all possible paths fP s;okgKk¼1 between

the source s and the observers in the graph G; the set
f�lgLl¼1 represents the random propagation delays for all

L edges of graph G; and g is a deterministic function that
depends on the joint distribution of the propagation delays
in a complicated way. In essence, the estimator in (1) is
performing averages over two different sources of random-
ness: (a) the uncertainty in the paths that the information
takes to reach the observers, and (b) the uncertainty in the
time that the information takes to cross the edges ofG. Due
the combinatorial nature of (1), its complexity increases
exponentially with the number of nodes in G, and is there-
fore intractable. In what follows, we propose a strategy of
complexity OðNÞ that is optimal for general trees, and a

strategy of complexityOðN3Þ that is suboptimal for general
graphs.
Consider first the case of an underlying tree T . Because

a tree does not contain cycles, only a subsetOa � O of the
observers will receive information emitted by the unknown

source. We call Oa ¼ fokgKa

k¼1 the set of Ka active observ-

ers. The observations made by the nodes inOa provide two
types of information: (a) the direction in which information
arrives to the active observers, which uniquely determines
a subset Ta � T of regular nodes [called active subtree,
Fig. 2(a)]; and (b) the timing at which the information

arrives to the active observers, denoted by ftkgKa

k¼1, which

is used to localize the source within the set Ta. It is
also convenient to label the edges of Ta as EðTaÞ ¼
f1; 2; . . . ; Eag, so that the propagation delay associated
with edge i 2 E is denoted by the RV �i [Fig. 2(a)]. We
consider that the propagation delays associated with the
edges of T are independent identically distributed RVs
with Gaussian distribution N ð�;�2Þ, where the mean �
and variance �2 are known [15]. With these definitions, we
have the following result.
Proposition 1 (optimal estimation in general trees).—

For a general propagation tree T , the optimal estimator is
given by

ŝ ¼ argmax
s2T a

�T
s�

�1

�
d� 1

2
�s

�
; (2)

where d is the observed delay,�s is the deterministic delay,
and � is the delay covariance, given by

½d�k ¼ tkþ1 � tk; (3)

½�s�k ¼ �ðjP ðs; okþ1Þj � jP ðs; o1ÞjÞ; (4)

FIG. 2 (color). (a) Active tree Ta. The vector next to each

candidate source s is the normalized deterministic delay ~�s ¼4
�s=�. The normalized delay covariance for this tree is ~� ¼4
�=�2 ¼ ½5; 2; 2; 4�. (b) Equiprobability contours of the proba-
bility density function Pðdjs� ¼ sÞ for all s 2 Ta, and the
corresponding decision regions. For a given observation d,
the optimal estimator chooses the source s that maximizes
Pðdjs� ¼ sÞ.
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½��k;i ¼ �2 �
( jP ðo1; okþ1Þj; k ¼ i;

jP ðo1; okþ1Þ \ P ðo1; oiþ1Þj; k � i;
(5)

for k, i¼1; . . . ;Ka�1, with jP ðu; vÞj denoting the number
of edges (length) of the path connecting vertices u and v.

Intuitively, �s and � represent, respectively, the mean
and covariance of the observed delay d (a random vector),
when node s is chosen as the source (see Fig. 2 for visual
interpretation). The full proof of proposition 1 is given in
the Supplemental Material [16], Sec. S1.

Proposition 1 essentially reduces the estimation formula
in (1) to a tractable expression whose parameters can be
simply obtained from path lengths in the tree T . Further-
more, it is easy to show that the complexity of (2)–(5)
scales as OðNÞ with the number of nodes N in the tree
(Supplemental Material [16], Sec. S2). In practice, the
Gaussian condition for the propagation delays can often
be relaxed to non-Gaussian scenarios. The estimator in
proposition 1 can be shown to be near-optimal (see the
Supplemental Material [16], Sec. S3, for a concrete ex-
ample), as long as the observers are sparse—which is often
verified in practice—and the propagation delays have finite
moments. The sparsity implies that the distance between
observers is large, and so is the number of RVs of the sum

dk ¼ tkþ1 � t1 ¼
X

i2P ðs�;okþ1Þ
�i �

X
i2P ðs�;o1Þ

�i:

Then, the observer delay vector d can be closely approxi-
mated by a Gaussian random vector, due to the central limit
theorem.

We now consider the most general case of source esti-
mation on an arbitrary graph G. When the information is
diffused on the network, there is a tree corresponding to the
first time each node gets informed, which spans all nodes in
G. Since the number of spanning trees can be exponentially
large, we introduce an approximation by assuming that the
actual diffusion tree is a breadth-first search (BFS) tree.
This corresponds to assuming that the information travels
from the source to each observer along a minimum-length
path, which is intuitively satisfying. The resulting estima-
tor can be written as

ŝ ¼ argmax
s2G

Sðs;d;T bfs;sÞ; (6)

where S ¼ �T
s�

�1
s ðd� 1

2�sÞ, with parameters �s and�s

computed with respect to the BFS tree T bfs;s rooted at s. It
can easily shown that the complexity of (6) scales subex-
ponentially with N, asOðN3Þ (Supplemental Material [16],
Sec. S2).

We now turn our attention to the localization perform-
ance and its dependence on (i) the structure of the network,
(ii) the density and placement of the observers, and (iii) the
observation of multiple information cascades. We first
apply the proposed estimator to various synthetic net-
works, shown in Table I. Clearly, the estimator performs

the best in scale-free networks (such as the Barabási-Albert
[17,18] and the Apollonian models [19–21])—in some
cases requiring as few as 4% of observers to achieve a
localization probability of 90%. This is because scale-free
networks exhibit ‘‘hubs’’ with large degrees, which can be
picked as observers and are able to receive a large amount
of information about the source. If the network is not scale-
free (such as the Erdös-Rényi model), or the observers are
placed uniformly at random, then more observers are nec-
essary to achieve the same localization performance.
So far we assumed that the source of information trans-

mits only one message. However, in many scenarios, the
source emits different messages over time, which diffuse
independently over the network. These information cas-
cades can be gathered and exploited by the observers, as
revealed by the following proposition.
Proposition 2 (effect of multiple cascades).—If the

source s� transmits C independent cascades of information
on a treeT , then the probability of correct localization Ploc

achieved by the optimal estimator is given by

Ploc ¼ Pmax �Oðe�aCÞ;
where Pmax is the maximum probability of localization
achieved under deterministic propagation, and a is a
constant.
The full proof is given in the Supplemental Material

[16], Sec. S4. The proposition shows that as the observers
collect more information from successive cascades, they
can average out the variance associated with random
propagation, and approach the localization performance
of the deterministic scenario (Pmax) at a rate that is at least
exponential. We can think of such phenomenon as a time-
resolution tradeoff: the observers can achieve higher accu-
racy of localization by waiting for a longer time, over
which they can observe more cascades.
Finally, we test the effectiveness of the proposed algo-

rithm with real, measured data. We consider the well-
documented case of cholera outbreak that occurred in the
KwaZulu-Natal province, South Africa, in 2000 [Fig. 3(a)].
The epidemic was caused by a strain of Vibrio cholerae,
which colonizes the human intestine and is transmitted

TABLE I. Percentage K=N of observers necessary to achieve
Ploc ¼ 90% for different networks and observer placements. The
‘‘high-degree’’ placement picks the highest-degree nodes as
observers, while the ‘‘random’’ placement picks the observers
randomly. We consider N ¼ 100 nodes and propagation ratio
�=� ¼ 4.

Observer placement

Network High-degree Random

Apollonian 4% 25%

Barabási-Albert 18% 41%

Erdös-Rényi (Np ¼ 0:5) 34% 49%

Erdös-Rényi (Np ¼ 2) 32% 44%
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through contamination of aquatic environments. The data
set was provided by the KwaZulu-Natal Health Depart-
ment, and consists of each single cholera case, specified by
the date and health subdistrict where it occurred. To per-
form source localization, we consider a network model of
the basin [Fig. 3(b)] developed in [10]. The nodes represent
human communities and associated water reservoirs, in
which the disease can be diffused and grow. The edges of
the graph represent hydrological links between the com-
munities. The propagation parameters for this bacteria
were obtained from past epidemics (see the Supplemental
Material [16], Sec. S5) [22]. Source localization is per-
formed by monitoring the daily cholera cases reported inK
communities (the observers). These are selected uniformly
at random, due to the lack of a priori information about the
source location. Figure 3(c) shows that by monitoring only
20% of the communities, we achieve an average error of
less than four hops between the estimated source and the
first infected community. This small distance error may
enable a faster emergency response from the authorities in
order to contain an outbreak.

To conclude, the results in this Letter suggest that a
sparse deployment of observers may provide an effective
alternative to the individual monitoring (either human or
automatic) of all nodes in a network. However, several
challenges remain. First, in some scenarios, it may be
difficult to exactly determine the underlying graph on
which diffusion occurs. In a cholera outbreak, for example,
the diffusion of the bacteria is also influenced by the

long-range movement of infected individuals, in addition
to the basic hydrological transport. Since this mobility
network cannot be reliably measured, further study is
needed to determine the robustness of our framework to
inaccuracies in the underlying graph. Second, the choice of
observers in the network strongly affects the performance
of the proposed algorithm. Optimal strategies for observer
placement need to be further investigated. Nevertheless,
our results indicate that source localization in large net-
works—a seemingly impossible task with only a few sen-
sors—is indeed feasible, both in terms of localization
accuracy and computational cost.
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[9] A. Ganesh, L. Massoulié, and D. Towsley, Proceedings of

IEEE Conference on Computer Communication, Miami,
2005 (IEEE, New York, 2005), p. 1455.

[10] E. Bertuzzo, S. Azaele, A. Maritan, M. Gatto, I.
Rodriguez-Iturbe, and A. Rinaldo, Water Resour. Res.
44, W01424 (2008).

[11] P. G. Lind, L. R. da Silva, J. S. Andrade, Jr., H. J.
Herrmann, Phys. Rev. E 76, 036117 (2007).

[12] M. Rodriguez, J. Leskovec, and A. Krause, Proceedings of
ACM SIGKDD Conference, Washington, DC, 2010 (ACM,
New York, 2010), p. 1019.

[13] D. Shah and T. Zaman, Proceedings of the NIPS
Workshop, Vancouver, 2009 (NIPS, San Diego, 2009).

[14] Y. Y. Liu, J. J. Slotine, A.-L. Barabási, Nature (London)
473, 167 (2011).

[15] Since delays are nonnegative, the mean of each delay must
be much larger than its standard deviation, so that the
model has practical significance. We later relax this
Gaussian assumption.

[16] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.068702 for addi-
tional details on proofs, accuracy of approximations, com-
plexity, and parameters of the case study.

[17] A.-L. Barabási and R. Albert, Science 286, 509
(1999).

[18] R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47
(2002).

[19] J. S. Andrade, Jr., H. J. Herrmann, R. F. S. Andrade, and
L. R. da Silva, Phys. Rev. Lett. 94, 018702 (2005).

[20] J. P. K. Doye and C. P. Massen, Phys. Rev. E 71, 016128
(2005).

[21] A. A. Moreira, D. R. Paula, R. N. C. Filho, J. S. Andrade,
Jr., Phys. Rev. E 73, 065101 (2006).

[22] E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe,
and A. Rinaldo, J. R. Soc. Interface 7, 321 (2009).

PRL 109, 068702 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

068702-5

http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.2909
http://dx.doi.org/10.1103/PhysRevLett.86.2909
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1029/2007WR006211
http://dx.doi.org/10.1029/2007WR006211
http://dx.doi.org/10.1103/PhysRevE.76.036117
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10011
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.068702
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.068702
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevLett.94.018702
http://dx.doi.org/10.1103/PhysRevE.71.016128
http://dx.doi.org/10.1103/PhysRevE.71.016128
http://dx.doi.org/10.1103/PhysRevE.73.065101
http://dx.doi.org/10.1098/rsif.2009.0204

