research

Relaxation dynamics of maximally clustered networks

Abstract

We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics---the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erd\H{o}s--R\'enyi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erd\H{o}s--R\'enyi phenomenology

    Similar works