8 research outputs found

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    Computing Real Roots of Real Polynomials

    Full text link
    Computing the roots of a univariate polynomial is a fundamental and long-studied problem of computational algebra with applications in mathematics, engineering, computer science, and the natural sciences. For isolating as well as for approximating all complex roots, the best algorithm known is based on an almost optimal method for approximate polynomial factorization, introduced by Pan in 2002. Pan's factorization algorithm goes back to the splitting circle method from Schoenhage in 1982. The main drawbacks of Pan's method are that it is quite involved and that all roots have to be computed at the same time. For the important special case, where only the real roots have to be computed, much simpler methods are used in practice; however, they considerably lag behind Pan's method with respect to complexity. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted ANEWDSC, which is simpler than Pan's method, but achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real roots of any real square-free polynomial, given by an oracle that provides arbitrary good approximations of the polynomial's coefficients. ANEWDSC can also be used to only isolate the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it achieves near optimal complexity for the latter task.Comment: to appear in the Journal of Symbolic Computatio

    On the complexity of the {Descartes} method when using approximate arithmetic

    No full text
    In this paper, we introduce a variant of the Descartes method to isolate the real roots of a square-free polynomial F ( x ) = ∑ i = 0 n A i x i with arbitrary real coefficients. It is assumed that each coefficient of F can be approximated to any specified error bound. Our algorithm uses approximate arithmetic only, nevertheless, it is certified, complete and deterministic. We further provide a bound on the complexity of our method which exclusively depends on the geometry of the roots and not on the complexity of the coefficients of F. For the special case, where F is a polynomial of degree n with integer coefficients of maximal bitsize τ, our bound on the bit complexity writes as O ˜ ( n 3 τ 2 ) . Compared to the complexity of the classical Descartes method from Collins and Akritas (based on ideas dating back to Vincent), which uses exact rational arithmetic, this constitutes an improvement by a factor of n. The improvement mainly stems from the fact that the maximal precision that is needed for isolating the roots of F is by a factor n lower than the precision needed when using exact arithmetic.Abstract Keywords 1. Introduction 2. Preliminaries 3. A modified Descartes method 4. Algorithm 5. Conclusion Acknowledgements Appendix A. Reference

    On Flows, Paths, Roots, and Zeros

    Get PDF
    This thesis has two parts; in the first of which we give new results for various network flow problems. (1) We present a novel dual ascent algorithm for min-cost flow and show that an implementation of it is very efficient on certain instance classes. (2) We approach the problem of numerical stability of interior point network flow algorithms by giving a path following method that works with integer arithmetic solely and is thus guaranteed to be free of any nu-merical instabilities. (3) We present a gradient descent approach for the undirected transship-ment problem and its special case, the single source shortest path problem (SSSP). For distrib-uted computation models this yields the first SSSP-algorithm with near-optimal number of communication rounds. The second part deals with fundamental topics from algebraic computation. (1) We give an algorithm for computing the complex roots of a complex polynomial. While achieving a com-parable bit complexity as previous best results, our algorithm is simple and promising to be of practical impact. It uses a test for counting the roots of a polynomial in a region that is based on Pellet's theorem. (2) We extend this test to polynomial systems, i.e., we develop an algorithm that can certify the existence of a k-fold zero of a zero-dimensional polynomial system within a given region. For bivariate systems, we show experimentally that this approach yields signifi-cant improvements when used as inclusion predicate in an elimination method.Im ersten Teil dieser Dissertation präsentieren wir neue Resultate für verschiedene Netzwerkflussprobleme. (1)Wir geben eine neue Duale-Aufstiegsmethode für das Min-Cost-Flow- Problem an und zeigen, dass eine Implementierung dieser Methode sehr effizient auf gewissen Instanzklassen ist. (2)Wir behandeln numerische Stabilität von Innere-Punkte-Methoden fürNetwerkflüsse, indem wir eine solche Methode angeben die mit ganzzahliger Arithmetik arbeitet und daher garantiert frei von numerischen Instabilitäten ist. (3) Wir präsentieren ein Gradienten-Abstiegsverfahren für das ungerichtete Transshipment-Problem, und seinen Spezialfall, das Single-Source-Shortest-Problem (SSSP), die für SSSP in verteilten Rechenmodellen die erste mit nahe-optimaler Anzahl von Kommunikationsrunden ist. Der zweite Teil handelt von fundamentalen Problemen der Computeralgebra. (1) Wir geben einen Algorithmus zum Berechnen der komplexen Nullstellen eines komplexen Polynoms an, der eine vergleichbare Bitkomplexität zu vorherigen besten Resultaten hat, aber vergleichsweise einfach und daher vielversprechend für die Praxis ist. (2)Wir erweitern den darin verwendeten Pellet-Test zum Zählen der Nullstellen eines Polynoms auf Polynomsysteme, sodass wir die Existenz einer k-fachen Nullstelle eines Systems in einer gegebenen Region zertifizieren können. Für bivariate Systeme zeigen wir experimentell, dass eine Integration dieses Ansatzes in eine Eliminationsmethode zu einer signifikanten Verbesserung führt
    corecore