1,348 research outputs found

    On the behaviour of a rumour process with random stifling

    Get PDF
    We propose a realistic generalization of the Maki-Thompson rumour model by assuming that each spreader ceases to propagate the rumour right after being involved in a random number of stifling experiences. We consider the process with a general initial configuration and establish the asymptotic behaviour (and its fluctuation) of the ultimate proportion of ignorants as the population size grows to ∞\infty. Our approach leads to explicit formulas so that the limiting proportion of ignorants and its variance can be computed.Comment: 12 pages, to appear in Environmental Modelling & Softwar

    Limit theorems for a general stochastic rumour model

    Full text link
    We study a general stochastic rumour model in which an ignorant individual has a certain probability of becoming a stifler immediately upon hearing the rumour. We refer to this special kind of stifler as an uninterested individual. Our model also includes distinct rates for meetings between two spreaders in which both become stiflers or only one does, so that particular cases are the classical Daley-Kendall and Maki-Thompson models. We prove a Law of Large Numbers and a Central Limit Theorem for the proportions of those who ultimately remain ignorant and those who have heard the rumour but become uninterested in it.Comment: 13 pages, to appear in SIAM Journal on Applied Mathematic

    A large deviations principle for the Maki-Thompson rumour model

    Full text link
    We consider the stochastic model for the propagation of a rumour within a population which was formulated by Maki and Thompson. Sudbury established that, as the population size tends to infinity, the proportion of the population never hearing the rumour converges in probability to 0.20320.2032. Watson later derived the asymptotic normality of a suitably scaled version of this proportion. We prove a corresponding large deviations principle, with an explicit formula for the rate function.Comment: 18 pages, 2 figure

    A spatial stochastic model for rumor transmission

    Full text link
    We consider an interacting particle system representing the spread of a rumor by agents on the dd-dimensional integer lattice. Each agent may be in any of the three states belonging to the set {0,1,2}. Here 0 stands for ignorants, 1 for spreaders and 2 for stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate \lambda. At rate \alpha a spreader becomes a stifler due to the action of other (nearest neighbor) spreaders. Finally, spreaders and stiflers forget the rumor at rate one. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability

    Phase transition for the Maki-Thompson rumour model on a small-world network

    Full text link
    We consider the Maki-Thompson model for the stochastic propagation of a rumour within a population. We extend the original hypothesis of homogenously mixed population by allowing for a small-world network embedding the model. This structure is realized starting from a kk-regular ring and by inserting, in the average, cc additional links in such a way that kk and cc are tuneable parameter for the population architecture. We prove that this system exhibits a transition between regimes of localization (where the final number of stiflers is at most logarithmic in the population size) and propagation (where the final number of stiflers grows algebraically with the population size) at a finite value of the network parameter cc. A quantitative estimate for the critical value of cc is obtained via extensive numerical simulations.Comment: 24 pages, 4 figure

    A general Markov chain approach for disease and rumour spreading in complex networks

    Get PDF
    Spreading processes are ubiquitous in natural and artificial systems. They can be studied via a plethora of models, depending on the specific details of the phenomena under study. Disease contagion and rumour spreading are among the most important of these processes due to their practical relevance. However, despite the similarities between them, current models address both spreading dynamics separately. In this article, we propose a general spreading model that is based on discrete time Markov chains. The model includes all the transitions that are plausible for both a disease contagion process and rumour propagation. We show that our model not only covers the traditional spreading schemes but that it also contains some features relevant in social dynamics, such as apathy, forgetting, and lost/recovering of interest. The model is evaluated analytically to obtain the spreading thresholds and the early time dynamical behaviour for the contact and reactive processes in several scenarios. Comparison with Monte Carlo simulations shows that the Markov chain formalism is highly accurate while it excels in computational efficiency. We round off our work by showing how the proposed framework can be applied to the study of spreading processes occurring on social networks
    • …
    corecore