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We propose a realistic generalization of the MakieThompson rumour model by assuming that each
spreader ceases to propagate the rumour right after being involved in a random number of stifling expe-
riences.Weconsider theprocesswith ageneral initial configuration andestablish the asymptotic behaviour
(and itsfluctuation) of theultimateproportionof ignorants as thepopulation size grows toN. Our approach
leads to explicit formulas so that the limiting proportion of ignorants and its variance can be computed.
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1. Introduction

In the past decades, there has been great interest in under-
standing and modelling different processes for information diffu-
sion in a population. Most of the time, the mathematical theory of
epidemics is adapted for this purpose, even though there are
differences between the process of spreading information and
the process of spreading avirus or a disease. In the standard versions
of the models, the most noticeable differences are between the way
spreaders cease to spread an item of information and the way
infected individuals are removed from epidemic processes. Still,
some slightly modified models fit both processes (see, for example,
Dunstan, 1982, where the general stochastic epidemic model is
considered as a model for the diffusion of rumours).

Kurtz et al. (2008) recently introduced amodel using a complete
graph in which, as soon as an individual is infected, an anti-virus
is given to that individual in such a way that the next time a virus
tries to infect it, the virus is ineffective. Besides, a virus can survive
ayn), fmachado@ime.usp.br
uez).
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up to L individuals empowered with anti-virus. Individuals are
represented by the vertices of the complete graph, while the virus
is represented by a moving agent that replicates every time it hits
a healthy individual. The authors prove a Weak Law of Large
Numbers and a Central Limit Theorem for the proportion of infec-
ted individuals after the process is completed.

There are two classical models for the spreading of a rumour in
a population, which were formulated by Daley and Kendall (1965)
and Maki and Thompson (1973). In the model proposed by Maki
and Thompson (1973), a closed homogeneously mixing pop-
ulation experiences a rumour process. Three classes of individuals
are considered: ignorants, spreaders and stiflers. The rumour is
propagated through the population by directed contact between
spreaders and other individuals, which are governed by the
following set of rules. When a spreader interacts with an ignorant,
the ignorant becomes a spreader; whenever a spreader contacts
a stifler, the spreader turns into a stifler and when a spreader meets
another spreader, the initiating spreader becomes a stifler. In the
last two cases, it is said that the spreader was involved in a stifling
experience. Observe that the process eventually ends (when no
more spreaders are left in the population).

We show how the techniques used by Kurtz et al. (2008) in the
context of epidemic models can be useful in studying a general
rumour process. In particular, we propose a generalization of the
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MakieThompson model. In our model, each spreader decides to
stop propagating the rumour right after being involved in a random
number of stifling experiences.

To define the process, consider a closed homogeneously mixing
population of size N þ 1. Let R be a nonnegative integer valued
random variable with distribution given by P(R ¼ i) ¼ ri for i ¼ 0,
1, ., and let m ¼ E[R] > 0 and n2 ¼ Var[R]. Assign independently to
each initially ignorant individual a random variable with the same
distribution as R. Once an ignorant hears the rumour, the value of R
assigned to him determines the number of stifling experiences
the new spreader will have until he stops propagating the rumour.
If this random variable equals zero, then the ignorant joins the
stiflers immediately after hearing the rumour.

For i¼ 1, 2,., we say that a spreader is of type i if this individual
has exactly i remaining stifling experiences. We denote the number
of ignorants, spreaders of type i and stiflers at time tbyX(N)(t),Y ðNÞ

i ðtÞ
and Z(N)(t), respectively. Let YðNÞðtÞ ¼ PN

i¼1 Y
ðNÞ
i ðtÞ be the total

number of spreaders at time t, so XðNÞðtÞ þ Y ðNÞðtÞ þ ZðNÞðtÞ ¼ N þ 1
for all t. Notice that the infinite-dimensional process

n
V ðNÞðtÞ

o
t�0

:¼
n�

XðNÞðtÞ; YðNÞ
1 ðtÞ; YðNÞ

2 ðtÞ; .
�o

t�0
(1)

is a continuous time Markov chain with increments and corre-
sponding rates given by

increment rate

ð�1;0;0; .Þ r0XY�� 1;0; .; 0
i�1

;1
i
; 0
iþ1

; .
�

riXY i ¼ 1;2; .

�
0; .; 0; 1

i�1
;�1

i
; 0
iþ1

; .
� ðN � XÞYi i ¼ 2;3; .

ð0;�1;0;0; .Þ ðN � XÞY1:

We see that the first case indicates the transition of the process
in which a spreader interacts with an ignorant and the ignorant
becomes a stifler immediately (which happens with probability r0).
The second case indicates the transition in which a spreader
interacts with an ignorant and the ignorant becomes a spreader of
type i (which happenswith probability ri). The third case represents
the situation in which a spreader of type i is involved in a stifling
experience but remains a spreader (of type i � 1), and finally the
last transition indicates the event that a spreader of type 1 is
involved in a stifling experience, thus becoming a stifler.

We suppose that the process starts with

XðNÞð0Þ ¼ ðN þ 1ÞxðNÞ0 ;

YðNÞ
i ð0Þ ¼ ðN þ 1ÞyðNÞi;0 for i ¼ 1;2; . and

ZðNÞð0Þ ¼ ðN þ 1ÞzðNÞ0 :

That is, xðNÞ0 ; yðNÞi;0 ; zðNÞ0 ˛½0;1� are the initial proportions of igno-
rants, spreaders of type i and stiflers of the population, respectively,
which are defined in such a way thatXN
i¼1

yðNÞi;0 > 0 and xðNÞ0 þ
XN
i¼1

yðNÞi;0 þ zðNÞ0 ¼ 1:

In addition, we assume that the following limits exist:

x0 ¼ lim
N/N

xðNÞ0 > 0 and yi;0 ¼ lim
N/N

yðNÞi;0 for all i ¼ 1;2; .;

and that

w0 ¼
XN
i¼1

iyi;0 < N:
As already mentioned, the process eventually ends. Let

sðNÞ ¼ inf
n
t : YðNÞðtÞ ¼ 0

o
be the absorption time of the process. Our main purpose is to
establish limit theorems for the proportion N�1X(N)(s(N)) of igno-
rants at the end of the process. For the classical MakieThompson
model, this problemwas first studied rigorously by Sudbury (1985),
who proved, by using martingale arguments, that this proportion
converges in probability to 0.203. This result was later generalized
by Watson (1988) using the normal asymptotic approximation.
Lefevre and Picard (1994) derived the exact joint distribution of
the final number of people who heard the rumour and the total
personal time units during which the rumour was spread. In
Belen and Pearce (2004), the authors present an analysis of the
proportion of the population who never hear the rumour starting
from a general initial condition. See also Chapter 5 of Daley and
Gani (1999) for an excellent account of rumour models.

The approach used to prove our theorems is the theory of
density dependent Markov chains, presented in Ethier and Kurtz
(1986). To the best of our knowledge, this technique is used for
the first time in the context of rumour models here and in
Lebensztayn et al. (2010). In that paper, the authors study a family
of rumour processes which includes the classical DaleyeKendall
and MakieThompson models as particular cases. The results
presented here are of independent interest, as they refer to
a generalization of the MakieThompson model with random
stifling and general initial configuration.

2. Main results

Definition 2.1. Suppose that m < N and consider the function
f : ð0; x0�/R given by

f ðxÞ ¼ w0 þ ð1þ mÞðx0 � xÞ þ log
x
x0
:

We define xN ¼ xN(m, x0, w0) as the unique root of f in the
interval (0, x0] satisfying f0(x) � 0.

Notice that xN is the unique root of f, except in the case where
x0 > (1 þ m)�1 and w0 ¼ 0. See Fig. 1.

Remark 2.2. We can express xN in terms of the Lambert W
function, which is the inverse of the function x 1 xex. Indeed, xN
satisfies

xN ¼ x0e
�ð1þmÞðx0�xNÞ�w0

which can be written as

�x0ð1þ mÞe�x0ð1þmÞ�w0 ¼ �xNð1þ mÞe�xNð1þmÞ: (2)

Then, if W0 denotes the principal branch of the Lambert W
function (that is, the branch that satisfies W(x) � �1), we obtain
from (2) that

xNðm;x0;w0Þ ¼ �ð1þmÞ�1W0

�
� x0ð1þmÞe�x0ð1þmÞ�w0

�
; (3)

by noting that �e�1 <�x0ð1þmÞe�x0ð1þmÞ�w0 < 0. More details
about the Lambert function can be found in Corless et al. (1996).

Next, we state the Weak Law of Large Numbers for the propor-
tion of the population who have never heard the rumour.

Theorem 2.3. If 0 < m < N, then

lim
N/N

XðNÞ�sðNÞ�
N

¼ xN in probability:



Fig. 1. Behaviour of f e The four possible cases in terms of x0 and w0.
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As a consequence of this theorem,

Corollary 2.4. If m ¼ N, then

lim
N/N

XðNÞ�sðNÞ�
N

¼ 0 in probability:

Proof: Let R1 and R2 be nonnegative integer valued random
variables such that R1 � R2, that is, PðR1 � iÞ � PðR2 � iÞfor all i � 1.
Consider the processes V ðNÞ

1 ðtÞ t�0 and V ðNÞ
2 ðtÞ t�0

�non
defined as in

(1) by using the random variables R1 and R2, respectively, and with
the same initial conditions. Let sðNÞ1 and sðNÞ2 be the respective
absorption times. By a coupling argument, these processes can be
constructed in such a way that

XðNÞ
2

�
sðNÞ2

�
� XðNÞ

1

�
sðNÞ1

�
; a:s: (4)

Now suppose that V ðNÞðtÞ t�0
��

is the process defined in (1) with
the random variable R satisfying m ¼ N. Recall that ri ¼ P(R ¼ i),
i � 0, and for each k � 1 define the random variable Rk with
distribution given by

PðRk ¼ iÞ ¼ ri if i < k and PðRk ¼ kÞ ¼
XN
j¼ k

rj:

By construction, we have that Rk � R for all k. Taking this and (4)
into account, we conclude that

XðNÞ
�
sðNÞ

�
� XðNÞ

k

�
sðNÞk

�
; a:s: (5)

for all k. Then (5) and Theorem 2.3 imply that

0 � lim sup
N/N

XðNÞ�sðNÞ�
N

� xNðmk; x0;w0Þ a:s:;

where mk ¼ E[Rk]. Since x0 > 0 and limk / Nmk ¼ N, we have that
x0 > (1 þ mk)�1 for large enough k and in this case xN(mk, x0, w0)
(given by (3) with m ¼ mk) goes to 0 as k / N. This completes the
proof of Corollary 2.4.

We now present the Central Limit Theorem for the ultimate
proportion of ignorants in the population.

Theorem 2.5. Suppose that n2 <N. Assume also that w0 > 0 or that
w0 ¼ 0 and x0>(1 þ m)�1. Then,

ffiffiffiffi
N

p  
XðNÞ�sðNÞ�

N
� xN

!
/N

�
0; s2

�
as N/N;

where / denotes convergence in distribution, and N(0,s2) is the
Gaussian distribution with mean zero and variance given by

s2 ¼ xN
�
1� �x�1

0 þw0 þ ðx0 � xNÞ�1þ m� n2
��
xN
�

ð1� ð1þ mÞxNÞ2
: (6)

Remark 2.6. Observe that our results refer to a general initial
condition, similar to that considered in the deterministic analysis
presented in Belen and Pearce (2004). The process starting with
one spreader and N ignorants corresponds to x0 ¼ 1 and w0 ¼ 0, in
which case the limiting fraction of ignorants and the variance of
the asymptotic normal distribution in the CLT reduce respectively
to

xN ¼ xNðm;1;0Þ ¼ �ðmþ 1Þ�1W0

�
� ðmþ 1Þe�ðmþ1Þ

�
and

s2 ¼ xNð1� xNÞ�1� �1þ m� n2
�
xN
�

ð1� ð1þ mÞxNÞ2
:

The behaviour of xN as a function of m is shown in Fig. 2.
Here are some important cases:

(a) For R h k (k � 1 an integer), we have the k-fold stifling
MakieThompson model (so called by Daley and Gani, 1999, in
the context of the DaleyeKendall model), for which



Table 2
R w Geometric(p), x0 ¼ 1 and w0 ¼ 0.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

xN 0.0000167 0.00252 0.0139 0.0340 0.0595 0.0878 0.117 0.147 0.175
s2 0.0000167 0.00268 0.0163 0.0427 0.0780 0.118 0.159 0.199 0.238

Fig. 2. Graph of xN(m,1,0).
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s2 ¼ xNð1� xNÞ
1� ðkþ 1ÞxN;
where

xN ¼ xNðk;1;0Þ ¼ �ðkþ 1Þ�1W0

�
� ðkþ 1Þe�ðkþ1Þ

�
: (7)
Table 1 exhibits the values of xN and s2 in this case for
k ¼ 1, ., 8. The original MakieThompson model is obtained by
considering R h 1, x0 ¼ 1 and w0 ¼ 0, consequently our theo-
rems generalize classical results proved by Sudbury (1985) and
Watson (1988). For the 2-fold stifling MakieThompson model,
the asymptotic value of xN z 0.0595 was originally obtained by
Carnal (1994). Formula (7) is presented in Appendix D of Belen’s
(2008) doctorate thesis.

(b) Let RwGeometric(p), that is, r0¼ 0 and ri¼ p(1� p)i � 1, i¼ 1, 2,
. In this model, an ignorant always becomes a spreader upon
hearing the rumour and each time a spreader meets another
spreader or a stifler, he decides with probability p to become
a stifler, independently for each spreader and each meeting.
Thus, given that a spreader has not yet stopped propagating the
rumour, the conditional distribution of the additional number
of stifling experiences he will have does not depend on how
many stifling experiences he already had. This means that
every time a spreader chooses whether or not to become
a stifler, he does not have a “memory” of how many unsuc-
cessful telling meetings he has been involved in. Table 2 shows
the values of xN and s2 for x0 ¼ 1, w0 ¼ 0 and some arbitrarily
chosen values of p.

(c) Consider R w Poisson(l), in which case an ignorant individual
has the choice (with a positive probability equal to e�l) of
becoming a stifler as soon as he learns the rumour. Moreover, in
his successive decisions about stifling, a spreader does have
some “memory” of the number of his previous stifling experi-
ences. Table 3 presents the values of xN and s2 for x0¼ 1,w0¼ 0
and some values of l.

3. Proofs

Here are the main ideas in the proofs of Theorems 2.3 and 2.5.
First, by means of a suitable time change of the process, we define a
new process f~V ðNÞðtÞgt�0 with the same transitions as V ðNÞðtÞ t�0

��
,

Table 1
k-fold stifling model, x0 ¼ 1 and w0 ¼ 0.

k 1 2 3 4 5 6 7 8

xN 0.203 0.0595 0.0198 0.00698 0.00252 0.000918 0.000336 0.000124
s2 0.273 0.0681 0.0211 0.00718 0.00255 0.000923 0.000337 0.000124
so that they end at the same point of the state space. Next, wework

with a reducedMarkov chain obtained from f~V ðNÞðtÞgt�0 in order to
apply the theory of density dependent Markov chains presented in
Ethier and Kurtz (1986). As the arguments follow a path similar to
that presented in Kurtz et al. (2008), we present only a brief sketch
of the proofs.

3.1. Time-changed process

As the distribution of XðNÞðsðNÞÞ depends on the process
V ðNÞðtÞ t�0

��
only through the embedded Markov chain, we

consider a time-changed version of the process. Let f~V ðNÞðtÞgt�0 be
the infinite-dimensional continuous time Markov chain

	

~X
ðNÞðtÞ; ~YðNÞ

1 ðtÞ; ~YðNÞ
2 ðtÞ; .

��
t�0

with increments and corresponding rates given by

increment rate
ð�1;0;0; .Þ r0~X�� 1;0; .; 0

i�1
;1
i
; 0
iþ1

; .
�

ri~X i ¼ 1;2; .

�
0;0; .; 1

i�1
;�1

i
; 0
iþ1

; .
� �

N � ~X
�
~Y
i

�
~Y
��1

i ¼ 2;3; .

ð0;�1;0; .Þ
�
N � ~X

�
~Y
1

�
~Y
��1

:

Furthermore, f~V ðNÞðtÞgt�0can be defined in such a way that it
has the same initial state and the same transitions as V ðNÞðtÞ t�0

��
,

so both have the same embedded Markov chain. Thus, by defining

~sðNÞ ¼ inf
	
t : ~Y

ðNÞðtÞ ¼ 0
�
;

we have that XðNÞðsðNÞÞ ¼ ~X
ðNÞð~sðNÞÞ:

3.2. Dimension reduction and deterministic limit

In order to prove the desired limit theorems using Theorem
11.2.1 of Ethier and Kurtz (1986), we work with a reduced Markov
chain. We define

~W
ðNÞðtÞ ¼

XN
i¼1

i~Y
ðNÞ
i ðtÞ;

and note that the process fð~XðNÞðtÞ; ~WðNÞðtÞÞgt�0 is a continuous
time Markov chain with increments and rates given by

increment rate
[i ¼ ð�1; iÞ ri~X i ¼ 0;1;.

[�1 ¼ ð0;�1Þ N � ~X

: (8)
Table 3
RwPoisson(l), x0 ¼ 1 and w0 ¼ 0.

l 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

xN 0.824 0.577 0.417 0.309 0.233 0.178 0.138 0.107 0.0844 0.0668
s2 2.908 1.654 1.012 0.654 0.440 0.307 0.219 0.160 0.119 0.0895



VarðUxðsNÞÞ ¼ ððx0 � xNÞxNÞ=x0;
VarðUwðsNÞÞ ¼ ðmþ 1Þ2ðx0 � xNÞxN=x0 þ n2ðx0 � xNÞ

þð1� 2ðmþ 1ÞxNÞsN;

CovðUxðsNÞ;UwðsNÞÞ ¼ sNxN � ðmþ 1Þðx0 � xNÞxN=x0:
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Now we define, for t � 0,

~vðNÞðtÞ ¼


~xðNÞðtÞ; ~wðNÞðtÞ

�
¼ N�1



~X
ðNÞðtÞ; ~WðNÞðtÞ

�
;

and consider

b[�1
ðx;wÞ ¼ 1� x and b[i ðx;wÞ ¼ rix; i ¼ 0;1; .

Notice that the rates in (8) can be written as

Nb[i

 
~X
N
;
~W
N

!
;

so f~vðNÞðtÞgt�0 is a density dependent Markov chain with possible
transitions in the set [�1; [0; [1; .gf .

NowweuseTheorem11.2.1of EthierandKurtz (1986) to conclude
that the process f~vðNÞðtÞgt�0 converges almost surely as N / N to
a deterministic limit. The drift function defined in Ethier and Kurtz
(1986) by Fðx;wÞ ¼ PN

i¼�1 [ib[i ðx;wÞ is in this case given by

Fðx;wÞ ¼ ð � x; ðmþ 1Þx� 1Þ:
Hence the limiting deterministic system is governed by the

following system of ordinary differential equations:	
x0ðtÞ ¼ �xðtÞ;
w0ðtÞ ¼ ðmþ 1Þx� 1

with initial conditions x(0) ¼ x0 and w(0) ¼ w0. The solution of this
system is given by v(t) ¼ (x(t),w(t)), where

xðtÞ ¼ x0e
�t and wðtÞ ¼ f ðxðtÞÞ ¼ w0 þ ð1þ mÞðx0 � xðtÞÞ � t:

According to Theorem 11.2.1 of Ethier and Kurtz (1986), we have
that on a suitable probability space,

lim
N/N

~vðNÞðtÞ ¼ vðtÞ a:s:

uniformly on bounded time intervals. In particular, it can be proved
that

lim
N/N

~xðNÞðtÞ ¼ xðtÞ a:s: (9)

uniformly on R. See Lemma 3.6 in Kurtz et al. (2008) for an anal-
ogous detailed proof.

3.3. Proofs of Theorems 2.3 and 2.5

To prove both theorems, we use Theorem 11.4.1 of Ethier and
Kurtz (1986). We adopt their notations, except for the Gaussian
process V defined on p. 458, that we would rather denote by
U ¼ (Ux,Uw). Here, 4(x,w) ¼ w, and

sN ¼ infft : wðtÞ � 0g ¼ w0 þ ð1þ mÞðx0 � xNÞ:
Moreover,

V4ðvðsNÞÞ$FðvðsNÞÞ ¼ w0ðsNÞ ¼ ðmþ 1ÞxN � 1 < 0: (10)

3.4. Proof of Theorem 2.3

We note that w0 > 0 and (10) imply that w(sN � 3) > 0 and
w(sN þ 3) < 0 for 0 < 3 < sN. Then, the almost sure convergence of
~wðNÞ to w uniformly on bounded intervals yields that

lim
N/N

~sðNÞ ¼ sN a:s: (11)
In the casewherew0¼ 0 and x0> (1þm)�1, this result is also valid
because w0(0) > 0 and (10) still holds. On the other hand, if w0 ¼ 0
and x0 � (1 þ m)�1, then w(t) < 0 for all t > 0, and again the almost
sure convergence of ~wðNÞ towuniformly on bounded intervals yields
that N/N~sðNÞ/sN ¼ o almost surely as N / N. Therefore, as
XðNÞðsðNÞÞ ¼ ~X

ðNÞð~sðNÞÞ, we obtain Theorem 2.3 from (9) and (11).
3.5. Proof of Theorem 2.5.

From Theorem 11.4.1 of Ethier and Kurtz (1986), we have that if
w0 > 0 or w0 ¼ 0 and x0 > (1 þ m)�1, then

ffiffiffiffi
N

p ð~xðNÞð~sðNÞÞ � xNÞ
converges in distribution as N / N to

UxðsNÞ þ xN
ðmþ 1ÞxN � 1

UwðsNÞ: (12)

The resulting normal distribution hasmean zero, so, to complete
the proof of Theorem 2.5, we need to calculate the corresponding
variance.

To this end, we have to compute the covariance matrix
CovðUðsNÞ;UðsNÞÞ, a task that can be accomplished using a math-
ematical software. The first step is to calculate the matrix of partial
derivatives of the drift function F and the matrix G. We obtain

vFðx;wÞ ¼

 �1 0
ðmþ 1Þ 0

�

and

Gðx;wÞ ¼



x �mx
�mx

�
n2 þ m2 � 1

�
xþ 1

�
:

Next, we compute the solution F of the matrix equation

v

vt
Fðt; sÞ ¼ vFðxðtÞ;wðtÞÞFðt; sÞ; Fðs; sÞ ¼ I2;

which is given by

Fðt; sÞ ¼



e�ðt�sÞ 0
ðmþ 1Þ�1� e�ðt�sÞ� 1

�
:

Hence, the covariance matrix of the Gaussian process U at time t
is obtained by the formula

CovðUðtÞ;UðtÞÞ ¼
Zt
0

Fðt; sÞGðxðsÞ;wðsÞÞ½Fðt; sÞ�Tds: (13)

As the final step to compute CovðUðsNÞ;UðsNÞÞ, we have to
replace e�t and t in the formula obtained from (13) by xN/x0 and sN,
respectively. The resulting formulas are
Using that sN ¼ w0 þ ð1þ mÞðx0 � xNÞ, (12) and well-known
properties of the variance, we get formula (6).

4. Concluding remarks

We have proposed a general MakieThompson model in which
an ignorant individual is allowed to have a random number of
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stifling experiences once he is told the rumour. The assigned
numbers of stifling experiences are independent and identically
distributed random variables with mean m and variance n2. We
prove that the ultimate proportion of ignorants converges in
probability to an asymptotic value as the population size tends to
N. A Central Limit Theorem describing the magnitude of the
random fluctuations around this limiting value is also derived. The
asymptotic value and the variance of the Gaussian distribution in
the CLT are functions of m, n2 and some constants related to the
initial state of the process.

We observe that in fact it is possible to obtain another result,
concerning the mean number m(N) of transitions that the process
makes until absorption. Using an argument analogous to that
presented in Theorem 2.5 of Kurtz et al. (2008), it can be proved
that, if n2 < N, then

lim
N/N

N�1mðNÞ ¼ sN ¼ w0 þ ð1þ mÞðx0 � xNÞ:

As a final remark, wewould like to point out the usefulness of the
theory of density dependent Markov chains as a tool for studying the
limiting behaviour of stochastic rumour processes. This approach
constitutesanalternative to thepgfmethodandtheLaplace transform
presented in Daley and Gani (1999), Gani (2000) and Pearce (2000).
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