research

Phase transition for the Maki-Thompson rumour model on a small-world network

Abstract

We consider the Maki-Thompson model for the stochastic propagation of a rumour within a population. We extend the original hypothesis of homogenously mixed population by allowing for a small-world network embedding the model. This structure is realized starting from a kk-regular ring and by inserting, in the average, cc additional links in such a way that kk and cc are tuneable parameter for the population architecture. We prove that this system exhibits a transition between regimes of localization (where the final number of stiflers is at most logarithmic in the population size) and propagation (where the final number of stiflers grows algebraically with the population size) at a finite value of the network parameter cc. A quantitative estimate for the critical value of cc is obtained via extensive numerical simulations.Comment: 24 pages, 4 figure

    Similar works