548 research outputs found

    Characterization, Modelling and State Estimation of Lithium-Sulfur Batteries

    Get PDF

    NREL Energy Storage Projects -- FY2012 Annual Report

    Full text link

    LITHIUM-ION BATTERY DEGRADATION EVALUATION THROUGH BAYESIAN NETWORK METHOD FOR RESIDENTIAL ENERGY STORAGE SYSTEMS

    Get PDF
    Batteries continue to infiltrate in innovative applications with the technological advancements led by Li-ion chemistry in the past decade. Residential energy storage is one such example, made possible by increasing efficiency and decreasing the cost of solar PV. Residential energy storage, charged by rooftop solar PV is tied to the grid, provides household loads. This multi-operation role has a significant effect on battery degradation. These contributing factors especially solar irradiation and weather conditions are highly variable and can only be explained with probabilistic analysis. However, the effect of such external factors on battery degradation is approached in recent literature with mostly deterministic and some limited stochastic processes. Thus, a probabilistic degradation analysis of Li-ion batteries in residential energy storage is required to evaluate aging and relate to the external causal factors. The literature review revealed modified Arrhenius degradation model for Li-ion battery cells. Though originating from an empirical deterministic method, the modified Arrhenius equation relates battery degradation with all the major properties, i.e. state of charge, C-rate, temperature, and total amp-hour throughput. These battery properties are correlated with external factors while evaluation of capacity fade of residential Li-ion battery using a proposed detailed hierarchical Bayesian Network (BN), a hierarchical probabilistic framework suitable to analyze battery degradation stochastically. The BN is developed considering all the uncertainties of the process including, solar irradiance, grid services, weather conditions, and EV schedule. It also includes hidden intermediate variables such as battery power and power generated by solar PV. Markov Chain Monte-Carlo analysis with Metropolis-Hastings algorithm is used to estimate capacity fade along with several other interesting posterior probability distributions from the BN. Various informative and promising results were obtained from multiple case scenarios that were developed to explore the effect of the aforementioned external factors on the battery. Furthermore, the methodologies involved to perform several characterizations and aging test that is essential to evaluate the estimation proposed by the hierarchical BN is explored. These experiments were conducted with conventional and low-cost hardware-in-the-loop systems that were developed and utilized to quantify the quality of estimation of degradation

    Advanced state of charge estimation for lithium-sulfur batteries.

    Get PDF
    Lithium-sulfur (Li-S) batteries have a high theoretical energy density, which could outperform classic Li-ion technology in weight, manufacturing costs, safety and environmental impact. The aim of this study is to extend the research around Li-S through practical applications, specifically to develop a Li-S battery state of charge (SoC) estimation in the environment of electrical vehicles. This thesis is written in paper based form and is organised into three main areas. Part I introduces general topic of vehicle electrification, the framework of the research project REVB, mechanisms of Li-S cells and techniques for SoC estimation. The major scientific contribution is given in Part II within three studies in paper-based form. In Paper 1, a simple and fast running equivalent circuit network discharge model for Li-S cells over different temperature levels is presented. Paper 2 uses the model as an observer for Kalman filter (KF) based SoC estimation, employing and comparing the extended Kalman filter, the unscented Kalman filter and the Particle filter. Generally, a robust Li-S cell SoC estimator could be realized for realistic scenarios. To improve the robustness of the SoC estimation with different current densities, in Paper 3 a fast running online parameter identification method is applied, which could be used to improve the battery model as well as the SoC estimation precision. In Part III, the results are discussed and future directions are given to improve the SoC estimation accuracy for a wider range of applications and conditions. The final conclusion of this work is that a robust Li-S cell SoC estimation can be achieved with Kalman filter types of algorithms. Amongst the approaches of this study, the online parameter identification approach could deliver the best results and also contains most potential for further improvement

    Development of Hybrid Fuel Cell / Li-ion Battery Systems

    Get PDF
    Electrochemical power systems are needed to de-carbonise the transport industry. Fuel cells and battery systems alone may not be able to meet the diverse set of requirements, but when hybridised, their applicability to this sector is vastly increased. This raises questions around the specific nature of hybridisation. This thesis aims to expand our understanding of fuel cell and lithium-ion battery hybridisation for automotive applications, through a combined experimental and computational approach. Prior to undertaking such research, an understanding of each individual system is required. This is perused along the themes of current heterogeneity, and applied to parallel battery cells in two common electrical configurations and across the active area of a 100 cm2 polymer exchange fuel cell. First, it is shown the electrical configuration of the parallel string has significant impact on the current distribution, impacting the charge throughput of each cell and the usable capacity of the module. Degradation modelling showed the lifetime of the module is reduced by 4.5% in the less optimal configuration. Secondly, the current and thermal distribution within a fuel cell is investigated for a range of operating conditions such as flooding, drying and cold start. Electrochemical impedance spectroscopy is used to understand the conditions of the membrane and reactant time constants in-situ. Results indicate how the design of fuel cells can be refined to improve performance in challenging operating conditions. Finally, the investigation of electrical and thermal hybridisation is conducted on a passenger sized vehicle. A common modelling framework is developed, using the models developed in the fuel cell and battery chapters, to assess electrical energy management systems. A novel fuzzy logic controller is developed which mutates the output membership functions based on the ‘state-of-degradation’, a parameter derived from an interconnected electrochemical surface area loss and system state model. The controller is able to extend the lifetime of the fuel cell by 32.8% in its presented configuration. The common framework is then developed to include dynamic thermal models of the fuel cell, battery pack, radiator and auxiliaries to investigate whether combining the battery pack and fuel cell stack onto a single coolant loop is feasible. The system is tested against a range of operating conditions and its performance is discussed. These findings are expected to aid the transport industry in the transition to a zero emission future

    Redes de sensores de fibra ótica para monitorização in situ de baterias de ião de lítio

    Get PDF
    In this work, fiber optic sensor networks were developed to be integrated in commercially available lithium-ion batteries (cylindrical and prismatic) and pre-fabricated batteries in a laboratory environment (pouch cells), with the objective of monitoring in situ, operando and in real time, the internal and external variations of temperature and strain, under different environmental conditions and different charge and discharge rates. To this end, and in order to show the improved performance of fiber optic sensors in relation to the electronic ones, typically used in this type of application, their response time and resolution were compared. An improvement of 28% of the response time and a better resolution are attained with fiber optic sensors. Monitorization studies of the temperature and strain variations using fiber Bragg gratings (FBGs) in the cylindrical configuration have been made, as well as temperature and bi-directional strain variations in the prismatic configuration, under normal or abusive operating conditions, using the FBG method strain free. When the batteries were subjected to abusive operating conditions, it was evident that greater temperature and strain variations occur, being promoted by the rapid transport of lithium ions between the positive and negative electrodes. Due to the thermal expansion of the materials that compose the battery, its internal structure is an important parameter to consider and that can influence its behavior in terms of expansion and contraction. In order to monitor the thermal performance of lithium-ion prismatic batteries in different environmental conditions, studies were performed in which the battery operated at different discharge rates over different conditions of temperature and relative humidity, in order to simulate the performance of the battery in three distinct climates: cold, temperate, and dry. From these studies, the poor performance of this type of batteries in the cold climate, and consequent lower thermal performance was verified. A network of 37 FBG sensors has also been used to monitor the interfaces of a pack of 3 lithium polymer batteries connected in series. It was possible to perform a spatial and temporal thermal mapping under different discharge rates, and to identify areas that are more susceptible to the appearance of hot spots and that are capable of endanger its normal functioning. Hotter zones were detected near the current collectors, due to the higher density of lithium ions in this region. For the first time, the simultaneous discrimination of internal temperature and strain variations in lithium-ion batteries in the pouch cell configuration was carried out, through the incorporation of hybrid sensors, which combine the operational characteristics of the Fabry-Perot and FBG sensors. The evolution of the strain and temperature signals was followed by the proposed sensors and the largest strain variations were detected at the beginning of the discharge process, in the bottom position of the pouch cell. With the work developed in this Thesis, it is concluded that the integration of optical fiber sensors into lithium-ion batteries contributes to a better internal and external knowledge of the thermal performance and volume variations under different operating conditions. This might improve the safety conditions and optimize the design of the next generation of lithium-ion batteries.No presente trabalho, desenvolveram-se redes de sensores em fibra ótica para integrar em baterias comerciais de ião de lítio (cilíndricas e prismáticas) e em baterias pré-fabricadas em ambiente de laboratório (pouch cells), com o objetivo de monitorizar in situ, em funcionamento e em tempo real variações internas e externas de temperatura e deformação, sob diferentes condições ambientais e diferentes taxas de carga e descarga. Para tal, e de maneira a mostrar o melhor desempenho dos sensores de fibra ótica em relação aos eletrónicos tipicamente usados neste tipo de aplicação, os seus tempos de resposta e resolução foram comparados, obtendo-se uma melhoria de 28% do tempo de resposta e uma resolução superior com os sensores em fibra ótica. Foram feitos estudos da monitorização de variações de temperatura e deformação através de redes de Bragg em fibra (FBG) na configuração cilíndrica e variações de temperatura e deformação bidirecional na configuração prismática, aquando do seu funcionamento em condições normais e abusivas, através do método FBG strain-free. Quando as baterias foram submetidas a condições operacionais abusivas, ficou evidente que ocorrem maiores variações de temperatura e de deformação, sendo promovidas pelo rápido transporte dos iões de lítio entre os elétrodos positivo e negativo. Devido à expansão térmica dos materiais que compõem a bateria, a sua estrutura interna é um importante parâmetro a ter em consideração e que pode influenciar o seu comportamento em termos de expansão e contração. A fim de monitorizar o desempenho térmico de baterias prismáticas de ião de lítio em diferentes condições ambientais, realizaram-se estudos nos quais a bateria operou sob diferentes taxas de descarga em diferentes condições de temperatura e humidade relativa, por forma a simular o desempenho da bateria em três climas distintos: frio, temperado e seco. Destes estudos, constatou-se o fraco desempenho deste tipo de baterias no clima frio, e consequente inferior desempenho térmico. Uma rede de 37 sensores FBG foi ainda usada para monitorizar as interfaces de um pack de 3 baterias poliméricas de lítio, conectadas em série. Foi possível realizar um mapa térmico espacio-temporal para diferentes taxas de descarga, e identificar as zonas mais suscetíveis ao aparecimento de pontos quentes e capazes de colocar em risco o seu normal funcionamento. As zonas mais quentes foram detetadas próximas dos coletores de corrente, devido à superior densidade dos iões de lítio nesta região. Pela primeira vez, foi realizada a discriminação simultânea de variações internas de temperatura e deformação em baterias de ião lítio na configuração pouch cell, através da incorporação de sensores híbridos, que combinam as características operacionais dos sensores Fabry-Perot e FBG. A evolução da deformação e temperatura foi seguida pelos sensores propostos e as maiores variações de deformação foram detetadas no início do processo de descarga, na posição inferior da pouch cell. Com o trabalho desenvolvido nesta Tese, conclui-se que a integração de sensores em fibra ótica em baterias de ião de lítio contribui para um melhor conhecimento, interno e externo, do desempenho térmico e de variações de volume sob diferentes condições de funcionamento. Assim, poder-se-á melhorar as condições de segurança e otimizar o design da próxima geração de baterias de ião de lítio.Programa Doutoral em Engenharia Físic

    Modeling and control of fuel cell-battery hybrid energy sources

    Get PDF
    Environmental, political, and availability concerns regarding fossil fuels in recent decades have garnered substantial research and development in the area of alternative energy systems. Among various alternative energy systems, fuel cells and batteries have attracted significant attention both in academia and industry considering their superior performances and numerous advantages. In this dissertation, the modeling and control of these two electrochemical sources as the main constituents of fuel cell-battery hybrid energy sources are studied with ultimate goals of improving their performance, reducing their development and operational costs and consequently, easing their widespread commercialization. More specifically, Paper I provides a comprehensive background and literature review about Li-ion battery and its Battery Management System (BMS). Furthermore, the development of an experimental BMS design testbench is introduced in this paper. Paper II discusses the design of a novel observer for Li-ion battery State of Charge (SOC) estimation, as one of the most important functionalities of BMSs. Paper III addresses the control-oriented modeling and analysis of open-cathode fuel cells in order to provide a comprehensive system-level understanding of their real-time operation and to establish a basis for control design. Finally, in Paper IV a feedback controller, combined with a novel output-injection observer, is designed and implemented for open-cathode fuel cell temperature control. It is shown that temperature control not only ensures the fuel cell temperature reference is properly maintained, but, along with an uncertainty estimator, can also be used to adaptively stabilize the output voltage --Abstract, page iv

    Experimental and computational study of determining mass transport parameters in vanadium redox flow batteries

    Get PDF
    Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs. In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from inlet to outlet under a mass transport limited condition. This behavior is attributed to convective mass transport in the electrode. Computational flow simulation is utilized to assess velocity and pressure distributions; experimentally measured in-situ current distribution is quantified for the cell. CFD simulation has shown that the total current in the cell is directly proportional to electrolyte velocity in the electrode. However, maximum achievable current is limited by diffusion mass transport resistance between the liquid electrolyte and the electrode surfaces. The pressure drop arising due to any fluid path outside the channel-electrode region is found to be ineffective and must be minimized to improve overall system efficiency of the VRFB. A three-dimensional, steady-state multiphysics model for VRFB strip cell architecture is further developed to investigate mass transport more fundamentally. Numerical predictions are validated by experimental measurements (polarization curve and current distribution). Diffusion coefficient of the vanadium active species and electrode permeability are found to be the most important parameters affecting electrochemical performance and performance distribution. Carbon paper electrode permeability is investigated both computationally and experimentally. While three-dimensional pore-level Lattice Boltzmann model is adopted to predict electrode permeability, a permeability cell experimental setup is designed to measure carbon paper electrode permeability under different compressions. It is found that permeability is directly proportional to the electrode porosity. While a simulated solid domain considering only the fibers does not predict experimentally measured permeabilities for higher electrode porosities, a composite domain considering both fibers and filler material successfully simulates carbon paper electrode macropore structure
    corecore