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Abstract 
Batteries continue to infiltrate in innovative applications with the technological 

advancements led by Li-ion chemistry in the past decade. Residential energy storage is one 

such example, made possible by increasing efficiency and decreasing the cost of solar PV. 

Residential energy storage, charged by rooftop solar PV is tied to the grid, provides 

household loads. This multi-operation role has a significant effect on battery degradation. 

These contributing factors especially solar irradiation and weather conditions are highly 

variable and can only be explained with probabilistic analysis. However, the effect of such 

external factors on battery degradation is approached in recent literature with mostly 

deterministic and some limited stochastic processes. Thus, a probabilistic degradation 

analysis of Li-ion batteries in residential energy storage is required to evaluate aging and 

relate to the external causal factors. The literature review revealed modified Arrhenius 

degradation model for Li-ion battery cells. Though originating from an empirical 

deterministic method, the modified Arrhenius equation relates battery degradation with all 

the major properties, i.e. state of charge, C-rate, temperature, and total amp-hour 

throughput. 

These battery properties are correlated with external factors while evaluation of 

capacity fade of residential Li-ion battery using a proposed detailed hierarchical Bayesian 

Network (BN), a hierarchical probabilistic framework suitable to analyze battery 

degradation stochastically. The BN is developed considering all the uncertainties of the 

process including, solar irradiance, grid services, weather conditions, and EV schedule. It 

also includes hidden intermediate variables such as battery power and power generated by 
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solar PV. Markov Chain Monte-Carlo analysis with Metropolis-Hastings algorithm is used 

to estimate capacity fade along with several other interesting posterior probability 

distributions from the BN. Various informative and promising results were obtained from 

multiple case scenarios that were developed to explore the effect of the aforementioned 

external factors on the battery. Furthermore, the methodologies involved to perform several 

characterizations and aging test that is essential to evaluate the estimation proposed by the 

hierarchical BN is explored. These experiments were conducted with conventional and 

low-cost hardware-in-the-loop systems that were developed and utilized to quantify the 

quality of estimation of degradation.
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Outline 
Batteries, much like their users, operate by deriving energy from internal chemical 

reactions. Over the years, with multiple iterations of different tasks, the batteries' 

performance degrades, just like human beings. The degradation of batteries occurs 

internally with the deterioration of the involved chemical processes. These degradations 

culminate as either loss of capacity or loss of power. The loss of capacity limits the total 

energy that the battery can hold with a single charging procedure whereas, loss of power 

limits the current that the battery can provide at a certain instance. Thus, it is of paramount 

importance to determine the degradation of any battery to ensure continued performance 

and modification of usage pattern to elongate lifespan. These degradation phenomena can 

not be determined through measurements. Hence, these behaviors need to be estimated. 

There are several approaches to define the degradation of the battery. In most cases, 

these can be categorized into two major groups, off-line laboratory experiment, simulation 

based and on-line application specific approach. The first group focuses on lab based 

experiments and develops models to represent battery degradation. This approach, though 

highly accurate, is limited to the specific chemistry of the battery and a particular 

application. The other approach is geared towards the particular application where the 

aging is determined from solely available measurements while the battery is operating. 

This method is more suitable to define batteries' health to a battery management system 

(BMS). This dissertation focuses on the first approach while attempting to relate to specific 

applications through probabilistic methods. The battery degradation is based on the lab 
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based off-line experiments and simulations whereas, probabilistic methods are utilized to 

incorporate, and relate the external factors to the degradation characteristics. 

A recent survey from the National Renewable Energy Laboratory (NREL) shows 

that renewable energy resources are significantly less expensive than 10 years ago [1]. 

These renewable energy resources can reduce the cost of expansion while improving 

efficiency to meet the higher demand of the population. The research from NREL supports 

this trend of reducing the cost of solar panels and wind turbines. One issue with such 

renewable energy sources is storage. The production of renewable energy sources does not 

coincide with the electrical energy demand of the population. For example, with solar 

panels, the sun sets just as electricity demand increases with people coming home from 

work. Better energy storage, i.e. batteries will allow the electricity to be available to match 

the demand, even if the renewable source is not live. Lithium-ion is the most successful 

battery being used with renewable energy sources.     

With the advancement of renewable energy systems and desire for demand side 

management, energy storage at residence is becoming an inevitability. Due to li-ions high 

energy density, longer service life, lower maintenance, it has become the leading 

technology in residential energy storage systems. The literature review on the degradation 

of residential energy storage revealed some shortcomings. There are several research 

groups working toward determining li-ion capacity degradation. These researchers use 

either stochastic, equivalent circuits, performance-based, electrochemical or empirical 

models of battery to solve this problem. These methods are based on modeling the battery 

degradation with data available from the prior lab-based tests. These methods produce a 
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deterministic result for degradation. Also, the lab experiments providing the degradation 

data are carried in a controlled environment. However, neither the process of degradation 

is deterministic, nor the factors affecting degradation remain constant over the lifetime of 

the battery. This non-deterministic nature of degradation arises from the fact that batteries 

operate with multiple applications. Most of these applications have stochastic nature, i.e. 

solar irradiation and weather patterns. It is not possible to define degradation for numerous 

scenarios generated by such stochastically operating causal factors. Thus, a data-driven 

method such as Bayesian Network is required to incorporate uncertainty in the 

measurement of data and process, provide probability distribution instead of deterministic 

value, and show the causal relationship between degradation to the factors that affect the 

deterioration process. Therefore, Bayesian models can provide a more insightful and 

accurate evaluation of li-ion capacity degradation. 

My research attempts to establish a probabilistic battery degradation method. The 

purpose is to develop a methodology that can be utilized by the manufacturers and users 

alike to ascertain the remaining life of the battery in terms of capacity fade. Thus, it solves 

the shortcomings of contemporary techniques to determine battery degradation. This 

research generates a causal relationship between physical degradation of the battery 

capacity and their effects on the factors affecting the deterioration process leading towards 

performance deterioration of the entire system surrounding the li-ion battery. Though the 

research focuses on li-ion battery and limits itself on a residential application, the property 

of the Bayesian Network itself allows to branch out towards other future technologies and 
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applications with minor variations. This research was carried out through multiple stages 

as shown by the graphical outlined in Figure. 1. 

 

Figure 1.  Graphical Outline. 

The literature review stage was a two-part process, the study of battery performance 

and degradation characteristics, with associated experimental procedures involved. The 

study about battery performance, modeling, associated time-domain, and frequency-

domain testing resulted in the foundation of the Energy Storage System and Sustainability 

(E3S) lab. Starting off E3S consisted of battery tester, thermal chamber, data acquisition 

system, impedance analyzer. The experimental procedures and equipment were utilized in 

stage two. Exploration of degradation methods supported the selection of the most 

appropriate method of defining capacity fade of li-ion batteries, modified Arrhenius 
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equation. The modified Arrhenius equation serves as the foundation of the mathematical 

model of capacity fade and utilized throughout stage three extensively. 

In stage two, extensive experimental procedure, both time and frequency-domain 

were performed in order to develop multiple equivalent circuit model (ECM) of the Li-ion 

battery. Two systematic approaches were followed to develop the ECMs. First, the ECM 

is developed through fitting the time-domain and frequency-domain test results carried out 

on a 50V commercial Li-ion battery composed of Samsung ICR18650-22P cells. Later 

Bayesian Network method was applied to estimate the ECM circuit elements. In both cases, 

multiple circuit topologies were used to compare the accuracy of the model. The models 

were developed in MATLAB/Simulink environment. A highly dynamic drive cycle was 

utilized to validate the ECMs through hardware-in-loop testing. It was observed that the 

appropriate ECM topology used for the linear least square regression fitting generated an 

average error of 3.3% whereas for BN estimation it was 3.5%. The purpose of the 

experimental part in this stage was to obtain the necessary skills required for battery 

degradation testing. Hardware-in-loop testing is instrumental in order to perform any 

battery degradation testing. Furthermore, impedance analyzer testing and following data 

analysis to develop ECM provided the expertise to define battery aging in terms of battery 

internal impedance or loss of power. These acquired skills were applied in stage four to 

validate the results of aging obtained from stage three. Finally, Bayesian Network based 

regression to develop the ECM grated the knowledge to generate the Hierarchical Bayesian 

Network that was used in stage three. The ECMs produced through this stage is one of the 

most accurate ECMs available within the considered boundary conditions. 
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In stage three, the effect of various residential load on the battery was required to 

estimate the degradation for a household application. A residence equipped with an energy 

storage system, renewable source, smart home energy management system (SHEMS), and 

common household loads was simulated as a mixed-integer linear programming problem. 

This simulation provided the profiles of various loads while optimizing to reduce electricity 

bill. These load profiles were used to generate a detailed hierarchical BN to 

probabilistically estimate the capacity fade degradation of a residential battery energy 

storage in a smart home environment. The BN utilizes a stochastic method to relate the 

causal factors of residential battery degradation. Experimental results of lithium iron 

phosphate batteries were used to train the BN. The capacity fade was evaluated for several 

cases, originated from SHEMS. Since the BN can estimate the hidden variables in battery 

capacity fade, it is a very strong tool with high accuracy and reliable results. The cases 

show that the capacity fade of the residential battery system relies heavily on SHEMS 

architecture, load characteristics, user preferences, and geographical location. The case 

studies revealed that performing grid services reduces the capacity fade by 3% more. 

Furthermore, geographical location with higher temperature and solar irradiance can have 

up to 5% more capacity fade with similar load patterns while reducing electricity 

consumption by 40%. The BN also provided information on the contribution of individual 

load on battery degradation. The overall result showed that a probabilistic analysis provides 

a more holistic picture of the battery health condition. The results of the estimation in this 

section, albeit supported by a trained BN with experimental results, is further verified in 

stage four. The battery load profile obtained through this probabilistic method for various 

scenarios was used in stage four to validate the estimations. 
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To validate the results, obtained from various scenarios in stage three, an 

experimental setup that could test multiple cells simultaneously was required. This system 

would reduce the time required for testing significantly as multiple cases could be tested 

concurrently. Previously, the battery tester used in stage 2, though highly accurate, could 

only test one cell at a time. Thus, a Raspberry Pi based “MiniLab” was developed to allow 

the testing of multiple cells. The Raspberry Pi acts as the processing unit, communicating 

with the DC/DC converter, electronic load, and battery through ADC and digital 

potentiometer. The control algorithm developed in Python consists of multiple PI 

controllers. These PI controllers ensure the battery was charging and discharging according 

to the load profile obtained from stage three. The preliminary testing of the MiniLab 

hardware shows promising results as the experimental results are in accordance with the 

result of the SHEMS optimized battery load profiles. The experimental procedure to 

degrade the battery in accordance with the load profiles is currently underway. Once the 

battery is depleted to a certain degree the results can be compared with estimations obtained 

from stage three.  

Therefore, this dissertation addressed battery aging challenges from a probabilistic 

perspective, combining both simulation and experimental work to better understand the 

cause of battery degradation in a residential application. 

References 

[1] R. Fu, D. J. Feldman, and R. M. Margolis, “U.S. Solar Photovoltaic System Cost 
Benchmark: Q1 2018,” Golden, CO (United States), Nov. 2018. 



8 

Chapter 1 

 

Analysis of Battery Degradation Models at 
Various Scales 

 
Abstract 

Due to the increasing interest in the Li-ion battery aging studies among researchers, 

there are numerous battery degradation models presented in the literature. However, they 

are either focused on a single technology, form factor or scale. This can be challenging for 

researchers that typically have to bridge multiple technologies and are interested in 

crossing multiple scales, from material-level to cell, module, and pack level. Moreover, 

most of the research is concentrated on a deterministic analysis of battery degradation in 

all the form factors. Though, recent investigations have found that modeling 

probabilistically produces improved degradation estimations. This chapter explores both 

deterministic and probabilistic models presented for Li-ion battery degradation in different 

scales from the material level to the application level. In each scale, the main aging 

variables are summarized, the mathematical presentation of models are analyzed, and the 

merits and disadvantages of each scale are discussed. This review aims at bringing together 

methods and results for multiple technologies, form factors for the most common Li-ion 
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battery technologies. This review leads to the selection of the most appropriate Li-ion 

battery degradation model to be used in this dissertation. 

1.1 Introduction 

As batteries are integrated into more applications than ever before, from portable to 

transportation, residential, and grid; defining battery degradation remains a challenging 

factor for manufacturers and users. The battery of choice of this growing industry is Li-ion 

due to available high energy density, but limited lifetime [1]. Up until recently, batteries 

were focused on performing single tasks. However, the trend is changing as batteries are 

being designed to perform multiple operations [2]–[4]. An example is residential energy 

storage systems, capable of participating in the ancillary services for the grid, besides 

providing backup for the residence. As each task has a different priority, degradation cost 

and economical cost or benefit, all these factors need to be considered when scheduling the 

tasks during the life of the battery. 

It can become even more relevant when batteries are repurposed for second life in 

residential applications. For example, in transportation, due to the high power and energy 

demands, the battery end of life is reached when the capacity degrades to 80% of the 

original capacity. Therefore, there is still available capacity that can be repurposed as a 

second life in less demanding applications such as residential energy storage [5]. In this 

second life, the battery starts from a degraded point due to its first life and will degrade 

even faster. Therefore, modeling and identifying the causes of degradation is highly 

relevant. However, approaches are spread out at different scales due to the dichotomy of 
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aging taking place at the material level, but decision making and control taking place at the 

system level [6]. 

Other challenges add to this scenario, namely considering different Li-based 

technologies, form factors and cycling characteristics that affect the degradation observed. 

Other available review papers [7]–[9] focus either on a single application, single 

technology, a single scale while considering a deterministic approach. However, most 

researchers must bridge scales, technologies and consider a probabilistic approach to 

address multiple degradation phenomena. The objective of this chapter is to analyze the 

current approaches to battery degradation or aging modeling in each scale and its 

application across Li-ion technologies. This review will help the researchers to identify the 

main degradation factors and variables in each scale. This will also cover mathematical 

aging models, their strengths and weaknesses to be able to simulate the models for their 

own purpose. Figure 1.1 provides the graphical illustration of this chapter’s perspective, 

which starts the discussion at the material level and gradually moves upwards towards the 

application level. This rest of the chapter is organized as follows. Section 1.2 explains the 

aging in the material and electrode level and presents the related models in this scale. 

Afterward, section 1.3 scales up the aging models to the cell level. Section 1.4 explores 

how to use the aging models in the module, pack, and application level. Finally, section 

1.5 discusses the probabilistic approach to model battery degradation modeling followed 

by the conclusion. 
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Figure 1.1.  The trend of the aging models' analyses in this chapter. 

1.2 Material and Electrode Level Models 

Before discussing the degradation phenomenon inside the battery cell, a brief 

overview of the Li-ion battery cell’s performance will be helpful. A Li-ion battery cell is 

composed of a negative electrode, positive electrode, separator in between electrodes, and 

electrolyte permeating throughout the battery as shown in Figure 1.2. During discharge, Li 

ions de-intercalate from the negative electrode, passing through the electrolyte, and 

intercalate in the positive electrode. At the same time, electrons travel in the same direction 

through the external circuit. The opposite reactions take place during the charging process. 

Material scale models are based on the phenomenological approach developed by 

Doyle [10] to mathematically describe the movement of ions in the battery. This model 

was based on Newman’s porous electrode theory [11]. However, it did not include a 

thermal model, which was added to the porous electrode model [12]. 
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Figure 1.2.  Li-ion cell schematic 

Inside a Li-ion battery cell, aging starts in the electrodes/ electrolyte interface. The 

degradation in the positive and negative electrodes follows different mechanisms [13]. The 

negative electrode is commonly carbon-based and is made of graphite, titanate or silicon 

[14]. The major source of aging in the negative electrode is the formation of a resistive 

layer between the electrode and electrolyte surface due to the side reactions named solid 

electrolyte interface (SEI) [15]. The SEI is normally formed during the initial battery 

cycling and protects the electrode from corrosion and the electrolyte from reduction [16], 

[17]. However, in the long term, SEI’s thickness and shape continue to grow and penetrate 

the porous structure of the negative electrode. It leads to (i) loss of the effective surface of 

the electrode (ii) increased resistance against Li-ions penetration and (iii) loss of cyclable 

lithium [18]–[20]. Note that the electrolyte materials define the SEI shape and properties 

[21]. Studies show that the high temperatures enhance the aging associated with SEI 

formation [22]–[24], and low temperatures lead to Li plating due to the lower rate of lithium 
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diffusion which reduces the cyclable lithium [25]. Another aging factor in the negative 

electrode can be the mechanical or electrical contact loss between the anode active 

materials and connecting parts due to the cycling [26]. Most of the aging models in the 

material and electrode level focus on the aging in the negative electrode/electrolyte 

interface as they believe that side reactions, and as a result of SEI formation, are more 

likely in the negative electrode due to its potential [27], [28]. 

Aging in the positive electrode happens slightly differently than in the negative 

electrode. The SEI formation in the positive electrode is dependent on the material used in 

the electrode but it cannot be detected easily [29]. Experiments show that the rise of 

impedance in the negative electrode due to cycling is higher than the positive electrode 

[30]. This indicates that the main SEI formation takes place on the negative electrode 

surface. Although the first stage of aging in the Li-ion cell is the SEI formation and cyclable 

Li loss in the negative electrode, the second stage in the battery cell aging is the loss of 

active materials in the positive electrode. This causes the cathode to be more intercalated 

at the end of each discharge [24]. The cathode active material loss can be the result of 

structural disordering, phase transitions and metal dissolution [31]. The positive electrode 

aging is not limited to the active materials loss; it also can be caused by the inactive 

components’ degradation as binder decomposition, corrosion of the current collector and 

oxidation of the conductive agents [32]. Literature in the positive electrode aging mainly 

focuses on the experimentally oriented studies and does not present mathematical modeling 

of the aging in the cathode. Figure 1.3 summarizes the aging causes in the positive and 

negative electrodes. 
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Figure 1.3.  Degradation factors in the negative and positive electrodes 

There are two popular methods to model electrode level battery degradation, Pseudo-

2D Models (P2D), and Single Particle Model (SPM). The P2D is a physics-based electrode 

level model based on the conservation of species in electrode and electrolyte. Whereas, the 

SPM is another simplified form of P2D which excludes conservation of species in the 

electrolyte. These are discussed in detail in the following parts. 

1.2.1 Pseudo-2D Models 

  These models are based on the porous electrode models by Doyle and expand them 

by including diffusion in the electrolytes and electrode as well as Butler-Volmer kinetics. 

These non-linear set of partial differential equations are one of the most used physics-based 
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models. Conservation of charge in the electrode or solid phase is given in (1-1) with the 

boundary conditions in (1-2). Similarly, the conservation of charge in the electrolyte is 

given by (1-3) with boundary conditions of (1-4) and (1-5). To complete the system, the 

conservation of lithium species in the electrode is represented by (1-6) along with boundary 

conditions in (1-7) and (1-8). Conservation of lithium species in the electrolyte is given by 

(1-9) with boundary condition (1-10). Finally, the dynamic performance is characterized 

by the Butler-Volmer kinetics (1-11) and surface potential by (1-12). 
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𝜂𝜂�� (1-11) 

𝜂𝜂 = 𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑒𝑒 − 𝑈𝑈 (1-12) 

Here the solid and electrolyte potentials are 𝜙𝜙𝑠𝑠 and 𝜙𝜙𝑒𝑒, respectively. The lithium 

concentrations in the solid and electrolyte phases are represented with 𝑐𝑐𝑠𝑠 and 𝑐𝑐𝑒𝑒, 

correspondingly. The electronic conductivity 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒, ionic conductivity 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒, and the 

electrolyte diffusion coefficient 𝐷𝐷𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒 are corrected by the Bruggeman factor [33]. The solid 

and electrolyte phase volume fractions are defined by 𝜀𝜀𝑠𝑠 and 𝜀𝜀𝑒𝑒, respectively. Here, 𝑗𝑗𝐿𝐿𝐿𝐿 

represents the Li-ion current density, 𝐿𝐿0 is the exchange current density. Also, 𝐹𝐹, 𝑅𝑅 and 𝑅𝑅 

are the Faraday’s constant, the universal gas constant, and the temperature, respectively. 

The negative and positive electrodes transfer coefficients are 𝛼𝛼𝑠𝑠 and 𝛼𝛼𝑐𝑐, respectively.  

However, these equations do not capture the degradation phenomena completely as 

presented in Figure 1.3. As discussed, SEI formation and lithium plating are two dominant 

aging causes. They both modify the electrode film resistance, increasing it as the layers 

grow. This layer formation will affect the Butler-Volmer kinetics equation that represents 
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the rate of Li-ion intercalation in the electrode (1-13). The exponential terms are modified 

with 𝑅𝑅𝑒𝑒𝐿𝐿𝑓𝑓𝑓𝑓 to characterize SEI formation and lithium plating. The included 𝑅𝑅𝑒𝑒𝐿𝐿𝑓𝑓𝑓𝑓 is 

composed of both SEI and lithium plating as shown in (1-14). 
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 The loss of active surface due to fracture increases the overall active area whilst the 

isolation of particles decreases the area. These changes will affect the differential equations 

representing phenomena in the solid, which are the conservation of charge in the solid (1-

1) and the conservation of species in the solid (1-6). Modifications to these equations are 

linked to changes in the area A and 𝑎𝑎𝑠𝑠 is given in (1-15), that will be affected by the number 

of cycles N. Material parameter 𝑘𝑘 [34] dependent on particle size, state-of-charge, and its 

variations are obtained empirically for both fracture and isolation as given by (1-16) and 

(1-17), respectively. 
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Mechanical stress that affects the electrode volume [35] can be considered through 

the modification of the Butler-Volmer kinetics equation through the inclusion of the mean 

stress 𝜎𝜎𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖 and the partial molar volume of lithium in the electrode Ω as shown in (1-18). 
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�� (1-18) 

Randall et al. [36] suggest that computationally-heavy models such as P2D represent 

a burden for the battery management systems (BMS) capabilities. Therefore, they have 

presented an incremental model for SEI resistance and capacity fade calculations with 

simplifying assumptions as quasi-equilibrium state for cell and neglecting local electrolyte 

and electrode surface concentration variations, uniform intercalation and side reactions 

current density in anode surface and equal anode and cathode charge transfer coefficients. 

These simplifications account for less than 1% error, based on the results. 

1.2.2 Single Particle Models 

The Single Particle Models (SPM) presented in [10], [33], [37], [38] characterizes 

each electrode as a single particle. It represents a simplification of the P2D model by 

including the conservation of species in the electrode, but not in the electrolyte. By 

disregarding the lithium concentration distribution and the potential distribution in the 

electrolyte, the SPM can be prone to error at high currents [39]. The governing equations 

include the diffusion of lithium in the electrodes as (1-19) with boundary conditions (1-20) 

and (1-21), along with the modified Butler-Volmer equation (1-22). The latter can describe 

SEI growth by including the increased resistance. An increased resistance component is 

included to account for SEI growth to modify the Butler-Volmer equation. 
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Safari et al. [40] have considered the side reactions kinetic equation as the index for 

SEI formation rate as shown in (1-23). 
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Where, 𝑘𝑘𝑒𝑒,𝑠𝑠 and 𝑐𝑐𝑆𝑆𝐸𝐸 refer to rate constant of side reactions and solvent concentration 

in the SEI film, respectively. Also, 𝛽𝛽𝑠𝑠 is the charge transfer coefficient for the side reactions 

and 𝐼𝐼 is electrode total current. It is possible to calculate the side reactions current density 

by its dependency to total applied current, temperature, and the SEI layer thickness 𝛿𝛿, 

through the Arrhenius equation as shown in (1-24) [41]. 

𝐿𝐿𝑠𝑠 = 𝛽𝛽0𝑒𝑒−𝜆𝜆𝜆𝜆𝑒𝑒𝜕𝜕𝑒𝑒 (−𝐸𝐸𝑖𝑖/𝑅𝑅𝑅𝑅)𝐼𝐼 (1-24) 

Here, 𝛽𝛽0 is temperature independent pre-factor and 𝜆𝜆 is the limiting coefficient. Due 

to the weak relationship of 𝑒𝑒−𝜆𝜆𝜆𝜆 to the temperature, λ can be defined by the inverse 
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Arrhenius equation as given by (1-25). Also, 𝜆𝜆0 is constant. The growth rate of the SEI in 

(1-24) can be calculated with (1-26) [42]. Where, 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 stands for the SEI molecular weight 

and 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆 is its density. 

𝜆𝜆 = 𝜆𝜆0𝑒𝑒𝜕𝜕𝑒𝑒 (𝐸𝐸𝑖𝑖/𝑅𝑅𝑅𝑅) (1-25) 

𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

= −
𝐿𝐿𝑠𝑠

2𝐹𝐹
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆

𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆
 (1-26) 

Tanim et al. [43] have developed another reduced-order non-linear physic-based 

SPM and combined it with the degradation calculations as given by (1-27) and (1-28), 

which simplifies and reduces the model computations. The capacity fade is quantified by 

the percentage loss of the lithium 𝑐𝑐𝑠𝑠 in the negative electrode. Here, 𝑆𝑆𝑖𝑖 is the negative 

electrode’ active surface. To find the power fade, the rate of rise of the SEI resistance is 

calculated by (1-28). 

𝑑𝑑𝑐𝑐𝑠𝑠
𝑑𝑑𝜕𝜕

= 𝑆𝑆𝑖𝑖𝐿𝐿𝑠𝑠 (1-27) 

𝑑𝑑𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑𝜕𝜕

= −
1

𝜅𝜅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖
𝐿𝐿𝑠𝑠𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆

2𝐹𝐹𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆
 (1-28) 

1.2.3 Summarizing Degradation Models at Material & Electrode Level 

Graphical illustration of the discussed battery performance and degradation models 

in this scale is presented in Figure 1.4. The current and temperature are the input variables 

for the models. Open circuit voltage (OCV) as a function of SOC is obtained from the 

experiments and the electrochemical properties, that are defined for each battery chemistry 
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and materials. The outputs of these models are battery voltage, capacity, and power losses. 

In each iteration of the simulation, lithium current density is used to calculate the side 

reactions current and as a result the aging variables. Afterward, the SEI resistance and 

lithium concentration in the negative electrode are updated for the next simulation step. 

Battery Performance Model

 ϕs, ϕe, cs, ce, jLi  

Current

Temp.

OCV=f(SOC) Electro-chemical 
properties

Voltage

Battery Aging Model
 

 is
δSEI             RSEI
cs

jLi RSEI cs

Capacity loss

Power loss

Heat 
generated

 

Figure 1.4.  The basic idea of material and electrode level degradation models. 

In summary, the material and electrode level capacity and power fade models are 

simulated by first, calculating the side reactions current. Afterward, obtaining the SEI film 

thickness followed by SEI resistance growth for power fade analysis. Finally, calculating 

the cyclable lithium loss for the capacity fade analysis. These models have high accuracy 

due to their detailed inside-the-cell dynamic equations without requiring bulk experimental 

measurements. However, there are complicated differential equations to be solved in each 

iteration and therefore, high computational load is involved. Fan [44] quantified the RMS 

error during model order reduction and observed nearly error increasing 35 times as the 

model is reduced from a 5th order to a 1st order model. Table 1.1 presents a summary of 

both P2D and SPM models. 
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Table 1.1.  Summary of material and electrode level degradation models 
Type Major Mathematical Expressions 

Involved Variables Meas. Ref. Calculation Process Pros and Cons 

P2D 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜙𝜙𝑠𝑠� = 𝑗𝑗𝐿𝐿𝐿𝐿 

𝜕𝜕
𝜕𝜕𝜕𝜕

�κ𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜙𝜙𝑒𝑒�

+
𝜕𝜕
𝜕𝜕𝜕𝜕

�κ𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕
𝜕𝜕𝜕𝜕

ln 𝑐𝑐𝑒𝑒� = −𝑗𝑗𝐿𝐿𝐿𝐿 

𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝜕𝜕

=
𝐷𝐷𝑠𝑠
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2
𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝑟𝑟

) 

𝑗𝑗𝐿𝐿𝐿𝐿

= 𝑎𝑎𝑠𝑠𝐿𝐿0 �exp �
𝛼𝛼𝑠𝑠𝐹𝐹 
𝑅𝑅𝑅𝑅

𝜂𝜂�

− exp �
𝛼𝛼𝑐𝑐𝐹𝐹 
𝑅𝑅𝑅𝑅

𝜂𝜂�� 

Modifications to the exponential 
term: 

• SEI formation and Li 
plating 

−
𝑅𝑅𝑒𝑒𝐿𝐿𝑓𝑓𝑓𝑓
𝑎𝑎𝑠𝑠

 𝑗𝑗𝐿𝐿𝐿𝐿 

• Mechanical stress 

−
Ω𝜎𝜎𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅
 

𝑐𝑐𝑒𝑒 
𝑐𝑐𝑠𝑠 
𝐿𝐿𝑠𝑠 

I 
T [45] 

[11] 
[32] 

• Calculate solid and 
electrolyte potentials 

• Calculate solid and 
electrolyte species 
concentration 

• Calculate current 
with modification of 
Butler-Volmer 
equation 

• Update electrode 
total current 

 Model results are 
valid over a large 
range of operation 

 Model is widely 
accepted 

− The intense 
computation 
required to solve 
multiple PDE 

 

SPM 

𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝜕𝜕

=
𝐷𝐷𝑠𝑠
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝑟𝑟
� 

𝑗𝑗𝐿𝐿𝐿𝐿

= 𝑎𝑎𝑠𝑠𝐿𝐿0

⎣
⎢
⎢
⎡ exp �

𝛼𝛼𝑠𝑠𝐹𝐹 
𝑅𝑅𝑅𝑅

𝜂𝜂 −
𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝑎𝑎𝑠𝑠

 𝑗𝑗𝐿𝐿𝐿𝐿�

−exp �
𝛼𝛼𝑐𝑐𝐹𝐹 
𝑅𝑅𝑅𝑅

𝜂𝜂 −
𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆
𝑎𝑎𝑠𝑠

 𝑗𝑗𝐿𝐿𝐿𝐿�
⎦
⎥
⎥
⎤
 

𝐿𝐿𝑠𝑠 = 𝛽𝛽0𝑒𝑒−𝜆𝜆𝜆𝜆exp (−𝐸𝐸𝑖𝑖/𝑅𝑅𝑅𝑅)𝐼𝐼 
𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

= −
𝐿𝐿𝑠𝑠

2𝐹𝐹
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆

𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆
 

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 
𝐿𝐿𝑠𝑠 
𝛿𝛿 

I 
T 

[32] 
[34] 
[40] 
[41] 
[42] 

 

• Calculate side 
reactions current 
with Butler-Volmer 
equation 

• Find SEI resistance 
growth rate with side 
reactions current 

• Update electrode 
total current 

 Requires less 
intense 
computation 

− Results are less 
accurate for higher 
C rates 

1.3 Cell Level Models 

Degradation models in the material and electrode level include the governing electro-

chemical differential equations to simulate both the real-time performance and aging of the 

battery, as observed in the previous section. These equations are solved simultaneously and 

after each iteration, the parameters related to the aging such as cyclable lithium loss and 
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SEI resistance are updated. The material and electrode level models are mostly physics-

based model to understand the internal functions of the cell and used in performance 

analysis of newer battery chemistry. However, in the cell level aging models, the battery 

cell is considered as an electrical equivalent circuit with time-variant elements. This 

approach is taken to use these models with in-conjunction with other engineering studies, 

i.e. control architecture development for the BMS. Scaling up from the material level to 

the cell level is changing the view from the electrochemical reactions inside the cell to the 

electrically measurable variable as voltage, impedance, ampere-hour (Ah) on the cell 

terminals. Thus, allowing the battery models to be analyzed and utilized with physically 

measurable quantities. 

The battery degradation phenomena occur in both the storage and utilization modes. 

The aging associated with the storage period, “calendar aging” is dependent on the storage 

temperature, state of charge (SOC), and time as shown in (1-29) [46]–[48]. As the SOC of 

the battery and its terminal voltage are directly related, some literature has translated the 

battery SOC to its storage voltage [49], [50]. For the aging caused by the battery utilization, 

“cycle aging”, the effectual factors are ambient temperature, SOC, depth of discharge 

(DOD), charge/discharge current and number of cycles as given (1-30) [51]–[53]. 

𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. = 𝑓𝑓(𝑅𝑅, 𝑆𝑆𝐿𝐿𝐿𝐿, 𝜕𝜕) (1-29) 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = 𝑔𝑔�𝑅𝑅, 𝑆𝑆𝐿𝐿𝐿𝐿,𝐷𝐷𝐿𝐿𝐷𝐷, 𝐼𝐼𝑐𝑐ℎ/𝑑𝑑𝑐𝑐ℎ,𝑑𝑑� (1-30) 
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Here, 𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. and 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. refer to the percentage calendar and cycle capacity fade 

respectively. The calculation trend from the mentioned aging factor to the capacity and 

power losses is shown in Figure 1.5. 

Time Temp. Current Number 
of cycles

SOCVoltage DOD

Calendar 
Aging

Ah

Cycle Aging

Capacity & 
Power loss

 

Figure 1.5.  Degradation factors in the cell level models 

Studies on the cell level aging modeling are empirically oriented and present fitted 

mathematical models to the data derived from extensive experimental data. These data are 

generated through both accelerated and non-accelerated testing methods for various battery 

technologies. Non-accelerated testing methods provide better results than accelerated 

testing. Regardless of the testing procedure, empirical models obtained through testing 

produces a considerable accurate result for a specific technology of battery. These results 

are deterministic in nature, providing a fixed value of capacity and power fade, as opposed 

to probabilistic answers, defined by a probability density function. Usually, these 

experimental data are fitted either with Arrhenius-like [49] or polynomial equation [53]. 

These two most popular cell level models are discussed here in detail. The choice of 
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mathematical model depended on the chemistry of the battery technology and the accuracy 

of the fitting.  

1.3.1 Arrhenius Kinetic Based Models 

Generally, most of the battery aging models obtained through empirical methods use 

the Arrhenius equation. Arrhenius equation dictates the relationship between the rate 

constant of a chemical reaction to major factors i.e. temperature, activation energy. 

Different researchers use this equation to relate the capacity and power fade of the battery 

with ambient temperature and time. Some variations and modifications are also performed 

in the base equation to accommodate the effect of SOC and Ah throughput. The rate 

constant k is defined by the Arrhenius equations as (1-31). Here, 𝐴𝐴 is a pre-exponential 

factor, 𝐸𝐸𝑖𝑖 is activation energy. 

𝑘𝑘 = 𝐴𝐴 𝑒𝑒𝜕𝜕𝑒𝑒 (−
𝐸𝐸𝑖𝑖
𝑅𝑅𝑅𝑅

) (1-31) 

Empirically obtained models require extensive testing, which demands substantial 

time and resources. These tests are performed under accelerated aging conditions with 

elevated temperatures. Note that the higher temperature has a significant effect on the 

battery aging acceleration [53], as batteries as significantly affected by exothermic 

conditions. So, Bloom et al. [54] tested 18650 cells in temperatures above 40°C to 

investigate the calendar and cycle life of the battery. They used the general Arrhenius 

equation to fit the experimental data (1-32). 
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𝑄𝑄 = 𝐵𝐵 𝑒𝑒𝜕𝜕𝑒𝑒 �
−𝐸𝐸𝑖𝑖
𝑅𝑅𝑅𝑅

� 𝜕𝜕𝑧𝑧 (1-32) 

Here, 𝐵𝐵 is a pre-exponential factor, t is time, and z is the power factor. The numerical 

values of these parameters for different test conditions are presented in [54]. Authors in 

[54] explain the battery capacity fade and power fade in both the calendar and cycle aging 

with a power law of time. Although the time is a reasonable variable in the calendar aging 

evaluation, the capacity fade due to the cycling is more dependent on the total Ampere-

hour (Ah) throughput of the battery. In addition, in constant current charge and discharge 

cycles, the Ah throughput is directly related to the time. Therefore, authors in [55] altered 

the time to Ah in the Arrhenius equation to be able to study the effect of different C-rates 

on battery degradation. Based on their model, the pre-exponential factor and activation 

energy are a function of C-rate and the power factor is a constant value as given in (1-33). 

Ah in (1-33) can be calculated according to (1-34). In (1-33), 𝐿𝐿 is the rated capacity of the 

battery cell and 𝑑𝑑 is the number of cycles. Numerical data for 𝐵𝐵 provided in [55] are 

adopted from fitting an exponential function of C-rate as given in (1-35) [56]. 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = 𝐵𝐵 𝑒𝑒𝜕𝜕𝑒𝑒 �
−31700 + 370.3𝐿𝐿𝑟𝑟𝑎𝑎𝜕𝜕𝑒𝑒

𝑅𝑅𝑅𝑅
�𝐴𝐴ℎ0.55 (1-33) 

𝐴𝐴ℎ = 𝑑𝑑 · 𝐷𝐷𝐿𝐿𝐷𝐷 · 𝐿𝐿 (1-34) 

𝑙𝑙𝑙𝑙 𝐵𝐵 = 1.226 𝑒𝑒𝜕𝜕𝑒𝑒(−0.2797 𝐿𝐿𝑟𝑟𝑎𝑎𝜕𝜕𝑒𝑒) + 9.263 (1-35) 

This model in (1-33) includes the effect of temperature, DOD, C-rate and number of 

cycles. However, it is not considering the impact of SOC. Authors in [57] present a similar 
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model relating the pre-exponential factor 𝐵𝐵 to the SOC of the battery during cycling as 

shown in (1-36). 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = (𝛼𝛼 𝑆𝑆𝐿𝐿𝐿𝐿 + 𝛽𝛽)𝑒𝑒𝜕𝜕𝑒𝑒 �
−𝐸𝐸𝑖𝑖 + 𝜂𝜂 × 𝐿𝐿𝑟𝑟𝑎𝑎𝜕𝜕𝑒𝑒

𝑅𝑅𝑅𝑅
�𝐴𝐴ℎ𝑧𝑧 (1-36) 

Where, values for 𝛼𝛼,𝛽𝛽, 𝜂𝜂, and 𝑧𝑧 can be found from [57]. These models are helpful to 

evaluate the battery health condition. However, they are valid only in identical repetitive 

conditions. Han et al. [8] have employed accumulated damage theory and modeled the 

battery degradation in each cycle which can be different from the previous cycling 

conditions. They have presented a discrete capacity fade model as shown in (1-37), (1-38), 

and (1-39). These equations calculate the capacity loss associated with each cycle. A 

cumulative of capacity fade for every cycle provides the aggregate capacity fade. The 

parameters used are generated from tests and it is a practical model that should be calibrated 

to avoid accumulated error due to the difference in the test and real-world conditions. 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(1) = 𝐵𝐵 𝑒𝑒𝜕𝜕𝑒𝑒 �
−𝐸𝐸𝑖𝑖
𝑅𝑅𝑅𝑅

�  𝑑𝑑   ,        𝑑𝑑 = 1 (1-37) 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(𝑁𝑁+1) = 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(𝑁𝑁) +  𝑘𝑘1 𝑒𝑒𝜕𝜕𝑒𝑒 �
𝑘𝑘2
𝑅𝑅
�𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(𝑁𝑁)

𝑘𝑘3  (1-38) 

𝑘𝑘1 = 𝑧𝑧𝐵𝐵
1
𝑧𝑧  ,𝑘𝑘2 = −

𝐸𝐸𝑖𝑖
𝑧𝑧𝑅𝑅

 ,   𝑘𝑘3 =
𝑧𝑧 − 1
𝑧𝑧

   (1-39) 

Another practical model that can be used for real-world battery degradation 

simulations is presented by Lam et al. [58] considering the effect of SOC, DOD, 

temperature and Ah throughput. Authors referred to [59] to calculate the average SOC, 
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𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑎𝑎 and its standard deviation, 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎 from the SOC profile of the battery after a 

cycling as given in (1-40) and (1-41). 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑒𝑒 =
1
𝐴𝐴ℎ

� 𝑆𝑆𝐿𝐿𝐿𝐿(𝐴𝐴ℎ)𝑑𝑑𝐴𝐴ℎ
𝐴𝐴ℎ𝑇𝑇

0
 (1-40) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎 = �
3
𝐴𝐴ℎ

� (𝑆𝑆𝐿𝐿𝐿𝐿(𝐴𝐴ℎ) − 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑎𝑎)2𝑑𝑑𝐴𝐴ℎ
𝐴𝐴ℎ𝑇𝑇

0
 (1-41) 

Following Millner’s work from [59], the capacity fade is calculated by the 

multiplication of exponentials of 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑎𝑎 and 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎. However, Lam’s experimental 

results fitting shows an empirical function. By including the temperature effect, the 

capacity fade model is concluded as shown in (1-42). Where, 𝑘𝑘1, 𝑘𝑘2,𝑘𝑘3, 𝑎𝑎𝑙𝑙𝑑𝑑 𝑘𝑘4 are 

calculated from fitting the experimental results. 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = ���𝑘𝑘1 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎,𝐿𝐿 𝑒𝑒𝜕𝜕𝑒𝑒�𝑘𝑘2 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑎𝑎,𝐿𝐿�
𝑁𝑁

𝐿𝐿

+  𝑘𝑘3 𝑒𝑒𝜕𝜕𝑒𝑒�𝑘𝑘4 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎,𝐿𝐿��𝑒𝑒𝜕𝜕𝑒𝑒 (−
𝐸𝐸𝑖𝑖
𝑅𝑅

(
1
𝑅𝑅𝐿𝐿
−

1
𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒

))� .𝐴𝐴ℎ𝐿𝐿  

(1-42) 

Arrhenius equation is used widely by different authors because of its considerable 

accuracy in defining capacity fade. This equation states that C-rate and temperature affect 

the capacity fade exponentially, while SOC is a pre-exponential factor. But this assumption 

is limited by battery technology and experimental conditions. 
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1.3.2 Polynomial Based Models 

Although the temperature dependency in most of the aging models is indicated by 

the Arrhenius law, Omar et al. [60] claim that the Li-ion cells’ characteristic is not 

completely exponential. Therefore, a polynomial function is used for calculating the 

number of cycles before the battery reached the end of life (EOL). These polynomial 

functions are developed from fitting results from extensive testing. Function for 

determining the number of cycles 𝐿𝐿𝐿𝐿 for the effect of temperature on the battery is given 

by (1-43). 

𝐿𝐿𝐿𝐿(𝑅𝑅) = 𝑘𝑘1𝑅𝑅3 + 𝑘𝑘2𝑅𝑅2 + 𝑘𝑘3𝑅𝑅 + 𝑘𝑘4 (1-43) 

Similarly, they use the experimental data to fit exponential functions to include the 

effects of discharge current 𝐼𝐼𝑑𝑑, DOD, and charge current 𝐼𝐼𝑐𝑐ℎ as given by (1-44), (1-45), and 

(1-46), respectively. 

𝐿𝐿𝐿𝐿(𝐼𝐼𝑑𝑑) = 𝑘𝑘5 𝑒𝑒𝜕𝜕𝑒𝑒(𝑘𝑘6𝐼𝐼𝑑𝑑) + 𝑘𝑘7 𝑒𝑒𝜕𝜕𝑒𝑒 (𝑘𝑘8𝐼𝐼𝑑𝑑) (1-44) 

𝐿𝐿𝐿𝐿(𝐷𝐷𝐿𝐿𝐷𝐷) = 𝑘𝑘9 𝑒𝑒𝜕𝜕𝑒𝑒(𝑘𝑘10𝐷𝐷𝐿𝐿𝐷𝐷) + 𝑘𝑘11 𝑒𝑒𝜕𝜕𝑒𝑒 (𝑘𝑘12𝐷𝐷𝐿𝐿𝐷𝐷) (1-45) 

𝐿𝐿𝐿𝐿(𝐼𝐼𝑐𝑐ℎ) = 𝑘𝑘13 𝑒𝑒𝜕𝜕𝑒𝑒(𝑘𝑘14𝐼𝐼𝑐𝑐ℎ) + 𝑘𝑘15 𝑒𝑒𝜕𝜕𝑒𝑒 (𝑘𝑘16𝐼𝐼𝑐𝑐ℎ) (1-46) 

Here, parameters 𝑘𝑘1 to 𝑘𝑘16 are concluded from the fittings and can be found in [60]. 

Considering these equations as the core of the model, the authors evaluate the effect of 

each factor in each cycling and calculate the maximum number of cycling in different 

conditions. 
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Not all the aging models focus on the cycle aging, some studies explore the calendar 

aging specifically. Ecker et al. [49] suggest that the calendar aging is the square root of 

time while it is affected by the temperature and voltage which can be calculated by the 

experimental data fitting method used by [61], [62] for supercapacitor aging calculations. 

However, the calendar aging does not always change by the square root of the time. 

Different tests show that it may have a linear dependency to time or even a combination of 

both [52]. Considering both perspectives, battery calendar aging can be fitted to (1-47). 

𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. = 𝑘𝑘1 𝜕𝜕 +  𝑘𝑘2√𝜕𝜕 (1-47) 

Where, 𝑘𝑘1 and 𝑘𝑘2 can represent the effect of the temperature and the SOC or voltage 

by an exponential function, polynomial function, or combination of both. Marongui et al. 

[50] considers capacity fade is dependent on the square root of time at 𝑘𝑘1 = 0, and defined 

an exponential fitting function for 𝑘𝑘2 as given by (1-48). Here, 𝑉𝑉 stands for battery storage 

voltage, 𝑅𝑅 is the temperature. The parameters 𝛼𝛼,𝛽𝛽,𝑎𝑎𝑙𝑙𝑑𝑑 𝜆𝜆 can be obtained from 

experimental data fitting. 

𝑘𝑘2 = 𝛼𝛼 𝑒𝑒𝜕𝜕𝑒𝑒 �−
𝛽𝛽
𝑅𝑅
� . 𝑒𝑒𝜕𝜕𝑒𝑒(𝜆𝜆 𝑉𝑉) (1-48) 

To present a more comprehensive study, authors in [48] considers both the calendar 

and cycle degradation to model total capacity fade 𝑄𝑄. The calendar life part is based on the 

battery storage voltage 𝑉𝑉, temperature 𝑅𝑅, and storage time 𝜕𝜕. The cycle life consists of the 

effect of the average voltage 𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎, DOD and total Ah throughput. The parameters 𝑘𝑘1 to 𝑘𝑘7 
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are obtained through fitting to experimental tests in both storage and cycling modes. The 

equations for this model are given by (1-49), (1-50) and (1-51). 

𝑄𝑄 = 𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. +  𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. =  𝛼𝛼 𝜕𝜕0.75 + 𝛽𝛽 𝐴𝐴ℎ0.5 (1-49) 

𝛼𝛼 = (𝑘𝑘1𝑉𝑉 + 𝑘𝑘2)𝑒𝑒𝜕𝜕𝑒𝑒 (
𝑘𝑘3
𝑅𝑅

) (1-50) 

𝛽𝛽 =  𝑘𝑘4(𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎 + 𝑘𝑘5)2 + 𝑘𝑘6 𝐷𝐷𝐿𝐿𝐷𝐷 + 𝑘𝑘7 (1-51) 

Similarly, in [63], [64], Zabala et al. have modeled the calendar capacity fade of the 

battery cell by the storage SOC, temperature, and time. The cycling capacity fade was 

modeled by DOD, and Ah while keeping the C-rate, and SOC level constant. This model 

is given by (1-52), (1-53), and (1-54); it is derived for different DOD limits from the 

experimental results. 

𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. = 𝑘𝑘1 𝑒𝑒𝜕𝜕𝑒𝑒 �
𝑘𝑘2
𝑅𝑅
� .𝑘𝑘3 𝑒𝑒𝜕𝜕𝑒𝑒(𝑘𝑘4𝑆𝑆𝐿𝐿𝐿𝐿)√𝜕𝜕 (1-52) 

10% ≤ 𝐷𝐷𝐿𝐿𝐷𝐷 ≤ 50%; 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = (𝑘𝑘5𝐷𝐷𝐿𝐿𝐷𝐷2 + 𝑘𝑘6𝐷𝐷𝐿𝐿𝐷𝐷 + 𝑘𝑘7 )𝐴𝐴ℎ0.87 (1-53) 

10% > 𝐷𝐷𝐿𝐿𝐷𝐷 𝑎𝑎𝑙𝑙𝑑𝑑 

𝐷𝐷𝐿𝐿𝐷𝐷 > 50%;      

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = (𝑘𝑘8 𝑒𝑒𝜕𝜕𝑒𝑒(𝑘𝑘9𝐷𝐷𝐿𝐿𝐷𝐷)

+  𝑘𝑘10𝑒𝑒𝜕𝜕𝑒𝑒 (𝑘𝑘11𝐷𝐷𝐿𝐿𝐷𝐷) )𝐴𝐴ℎ0.65 
(1-54) 

Here, 𝑘𝑘1 to 𝑘𝑘11 are fitted to best match the experimental data. In [65], an energy 

based aging model is presented that considers calendar and cycle aging. A new term as 

“state of energy (SOE)” is defined which is very similar to SOC. Total capacity fade in this 
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model is the sum of the calendar and cycle aging. Here the calendar life is a function of 

𝑆𝑆𝐿𝐿𝐸𝐸 and temperature as given by (1-55). 

𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. = 𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓.0 𝑒𝑒𝜕𝜕𝑒𝑒 �
𝑆𝑆𝐿𝐿𝐸𝐸 − 𝑆𝑆𝐿𝐿𝐸𝐸0

𝑘𝑘1
� . 𝑒𝑒𝜕𝜕𝑒𝑒 �

𝑅𝑅 − 𝑅𝑅0
𝑘𝑘2

�√𝜕𝜕 (1-55) 

Here, 𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓.0 is the nominal calendar capacity fade in the condition with 𝑆𝑆𝐿𝐿𝐸𝐸0 and 𝑅𝑅0. 

The parameters 𝑘𝑘1 and 𝑘𝑘2 are fitting parameters. For the cycle aging, different cycles’ 

accumulated capacity fade is considered. For each cycle, a polynomial function of change 

of SOE as expressed by (1-56) calculates the capacity fade. Also, parameter 𝑘𝑘3 to 𝑘𝑘5 are 

obtained through fitting experimental results. 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = �(𝑘𝑘3𝛥𝛥𝑆𝑆𝐿𝐿𝐸𝐸𝐿𝐿3 + 𝑘𝑘4𝛥𝛥𝑆𝑆𝐿𝐿𝐸𝐸𝐿𝐿2 + 𝑘𝑘5𝛥𝛥𝑆𝑆𝐿𝐿𝐸𝐸𝐿𝐿)
𝑁𝑁

𝐿𝐿

 (1-56) 

1.3.3 Summarizing Degradation Models at Cell Level 

Figure 1.6 summarizes the cell level degradation models like previous material and 

electrode level. It describes the essence of most of the models available in the current 

literature. The current and temperature are the input variables in the cell level models. OCV 

and circuit elements (R, L, and C) are obtained from the experiments as functions of SOC 

and temperature. SOC from the performance model is used besides the current and 

temperature to calculate the degradation and update the capacity. Degradation models will 

modify the battery performance model by varying the battery internal impedance 

parameters and capacity, which will result in a variation of the battery terminal voltage. 
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As observed, cell level degradation models rely on the experimental results and 

therefore, they are valid only for the specific battery technology and defined test conditions. 

Although these models are easy to simulate and reduce the computational load, they are 

less accurate compared to the material level models. One way to improve the accuracy of 

these models is to recalibrate the model parameters for any specific condition. To compare 

the mathematical models in cell level studies considering only cycle aging, they are 

presented in Table 1.2 with their references. The research work solely based on calendar 

aging and calendar aging combined with cycle aging are discussed in Table 1.3. These 

tables contain the key variables, required measurements, technologies, form factor, 

calculation process, and pro-cons of using each model are illustrated for a better 

understanding of these models. 

Battery Performance Model

 SOC, voltage drops (ΔV)  

Current

Temp.

OCV=f(SOC,T) Circuit Elements
R, L, C = g(SOC,T)

Voltage

Battery Aging Model

 t, V, Ah, DOD, SOCavg

SOC Capacity

Capacity loss

Power loss

Resistance

 

Figure 1.6.  The basic idea of cell level degradation models 
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Table 1.2.  Summary of cell level degradation models 
Major Mathematical Expressions Involved Variables Meas. Ref. Tech & 

Form 
Calculation 
Process Pros and Cons 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.

= 𝐵𝐵 𝑒𝑒𝜕𝜕𝑒𝑒 �
−31700 + 370.3 × 𝐿𝐿𝑟𝑟𝑎𝑎𝜕𝜕𝑒𝑒

𝑅𝑅𝑅𝑅
�𝐴𝐴ℎ0.55 

ln𝐵𝐵 = 1.226 exp(−0.2797 𝐿𝐿𝑟𝑟𝑎𝑎𝜕𝜕𝑒𝑒) + 9.263 

C-rate Ah 
T 

[46]–
[48] 

 

LFP 
18650 
26650 

• Calculate C-rate 
for each cycle 

• Find the 
capacity fade 
percentage 

• Update capacity 
after each cycle 

 Using Ah 
instead of 
time 

− Accelerated 
test reduce 
the accuracy 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.

= (𝛼𝛼 𝑆𝑆𝐿𝐿𝐿𝐿 + 𝛽𝛽)exp�
−𝐸𝐸𝑖𝑖 + 𝜂𝜂 × 𝐿𝐿𝑟𝑟𝑎𝑎𝜕𝜕𝑒𝑒

𝑅𝑅𝑅𝑅
�𝐴𝐴ℎ𝑧𝑧 

SOC 
C-rate 

Ah 
T [49] LFP 

26650 

• Calculate SOC 
and C-rate 

• Find the 
capacity fade 
percentage 

 The 
exponent of 
Ah is 
variable 

 Pre-
exponent 
considers 
the effect of 
SOC 

− Incorrect 
determinatio
n of Ah 
throughput 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(𝑁𝑁+1)

= 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(𝑁𝑁) + 𝑘𝑘1 exp�
𝑘𝑘2
𝑅𝑅
� .𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.(𝑁𝑁)

𝑘𝑘3 

𝑘𝑘1 = 𝑧𝑧𝐵𝐵
1
𝑧𝑧   ,𝑘𝑘2 = −

𝐸𝐸𝑖𝑖
𝑧𝑧𝑅𝑅

 , 𝑘𝑘3 =
𝑧𝑧 − 1
𝑧𝑧

 

𝑑𝑑 𝑅𝑅 
[50] 

NMC 
LFP 
LMO 

• Count number 
of cycles 

• Calculate 
capacity fade for 
each cycle with 
subsequent 
results 

 Discrete 
aging meas. 

− Needs 
recalibration 
for real-
world data 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.

= �

⎝

⎜
⎛�

𝑘𝑘1 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎,𝐿𝐿 exp�𝑘𝑘2 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑎𝑎,𝐿𝐿�
+𝑘𝑘3 exp�𝑘𝑘4 𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎,𝐿𝐿�

�

× exp (−
𝐸𝐸𝑖𝑖
𝑅𝑅

(
1
𝑅𝑅𝐿𝐿
−

1
𝑅𝑅𝑟𝑟𝑒𝑒𝑒𝑒

))
⎠

⎟
⎞

𝑁𝑁

𝐿𝐿

× 𝐴𝐴ℎ𝐿𝐿 

𝑆𝑆𝐿𝐿𝐿𝐿𝑑𝑑𝑒𝑒𝑎𝑎 
𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑎𝑎𝑎𝑎 

Ah 
T [51], 

[52] 

LFP 
18650 
26650 

• In cycle, find 
average SOC 
and DOD 

• Calculate 
capacity fade for 
cycle 

• Accumulate for 
number of 
cycles 

 SOC and 
polynomial 
based aging 

− Limited to a 
specific 
technology 

𝐿𝐿𝐿𝐿(𝑅𝑅) = 𝑘𝑘1𝑅𝑅3 + 𝑘𝑘2𝑅𝑅2 + 𝑘𝑘3𝑅𝑅 + 𝑘𝑘4 
𝐿𝐿𝐿𝐿(𝐼𝐼𝑑𝑑) = 𝑘𝑘5 exp(𝑘𝑘6𝐼𝐼𝑑𝑑) + 𝑘𝑘7 exp(𝑘𝑘8𝐼𝐼𝑑𝑑) 
𝐿𝐿𝐿𝐿(𝐷𝐷𝐿𝐿𝐷𝐷) = 𝑘𝑘9 exp(𝑘𝑘10𝐷𝐷𝐿𝐿𝐷𝐷)

+ 𝑘𝑘11 exp(𝑘𝑘12𝐷𝐷𝐿𝐿𝐷𝐷) 
𝐿𝐿𝐿𝐿(𝐼𝐼𝑐𝑐ℎ) = 𝑘𝑘13 exp(𝑘𝑘14𝐼𝐼𝑐𝑐ℎ)

+ 𝑘𝑘15 exp (𝑘𝑘16𝐼𝐼𝑐𝑐ℎ) 

𝐼𝐼𝑑𝑑 , 𝐼𝐼𝑐𝑐ℎ 
𝐷𝐷𝐿𝐿𝐷𝐷,𝑅𝑅 

𝐼𝐼𝑑𝑑  
𝐼𝐼𝑐𝑐ℎ 
𝐷𝐷𝐿𝐿𝐷𝐷 
𝑅𝑅 

[53] LFP 

• Calculate the 
effect of each 
factor 

• Accumulate 
results 

• Find maximum 
cycle number to 
EOL 

 Effect of 
multiple 
parameters 
on aging 

− Constant C 
rates used in 
aging 
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Table 1.3.  Summary of cell level degradation models for calendar aging 
Type Major Mathematical Expressions 

Involved Variables Meas. Ref. Tech 
Form 

Calculation 
Process Pros and Cons 

C
alendar D

egradation 

     𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. = 𝛼𝛼 exp �−
𝛽𝛽
𝑅𝑅
� . exp(𝜆𝜆 𝑉𝑉)√𝜕𝜕 V T 

t 
[42] 
[43] 
[44] 

NMC 
LFP 

• Measure storage 
voltage and 
temperature 

• Calculate 
capacity fade in 
time 

 Considers 
both time 
and effect of 
temp 

− Aging 
determined 
in terms of 
voltage only 

C
ycle and Calendar D

egradation 

𝑄𝑄 = 𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓. +  𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. =  𝛼𝛼 𝜕𝜕0.75

+ 𝛽𝛽 𝐴𝐴ℎ0.5 

𝛼𝛼 = (𝑘𝑘1𝑉𝑉 + 𝑘𝑘2) exp �
𝑘𝑘3
𝑅𝑅
� 

𝛽𝛽 =  𝑘𝑘4(𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎 + 𝑘𝑘5)2 + 𝑘𝑘6 𝐷𝐷𝐿𝐿𝐷𝐷
+ 𝑘𝑘7 

 

𝑉𝑉
𝑉𝑉𝑖𝑖𝑎𝑎𝑎𝑎

 

𝐷𝐷𝐿𝐿𝐷𝐷 
Ah 
T 
t [41] NMC 

18650 

• Measure storage 
voltage and 
temperature 

• Find cycling 
average voltage 

• Calculate 
calendar and 
cycle aging 

 Determined 
both 
calendar and 
cycle aging 

− Limited to a 
specific tech 

𝑄𝑄𝑐𝑐𝑖𝑖𝑓𝑓.

= 𝑘𝑘1 exp �
𝑘𝑘2
𝑅𝑅
� . 𝑘𝑘3 exp(𝑘𝑘4𝑆𝑆𝐿𝐿𝐿𝐿)√𝜕𝜕 

if 10 ≤ DOD ≤ 50: 
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐. = (𝑘𝑘5𝐷𝐷𝐿𝐿𝐷𝐷2 + 𝑘𝑘6𝐷𝐷𝐿𝐿𝐷𝐷

+ 𝑘𝑘7 )𝐴𝐴ℎ0.87 
if 10 > DOD and DOD >  50: 
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐.

= (𝑘𝑘8 exp(𝑘𝑘9𝐷𝐷𝐿𝐿𝐷𝐷)
+ 𝑘𝑘10exp (𝑘𝑘11𝐷𝐷𝐿𝐿𝐷𝐷) )𝐴𝐴ℎ0.65 

SOC 
DOD 

Ah 
T 
t 

[56], 
[57] 

LFP 
26650 

• Calculate SOC 
and DOD 

• Use SOC to 
calculate 
calendar aging 

• Determine DOD 
range 

• Use DOD to 
calculate cycle 
aging 

 Considering 
the effect of 
Ah, 
temperature 
and time 

− SOC and C-
rates are kept 
constant 
during 
testing 
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LFP 

• Calculate the 
State of Energy 

• Count number 
of cycles 

• Calculate 
calendar aging 
with SOE 

• Calculate cycle 
aging with 
ΔSOE and N 

 SOE based 
aging 

− Limited to a 
specific tech 

1.4 Module and Pack Level Models 

A single Li-ion battery cell has limited power and capacity. Thus, for the high power 

and energy applications, the cells are connected in series or parallel configurations to form 

battery modules and pack with increased voltage, current, and stored energy capability. 

However, internal differences among the cells of a module or a pack are unavoidable. The 

source of this difference can be either the difference in the cells’ production process or 
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different working conditions such as temperature and loading [66]. Among 20,000 fresh 

cells, measured initial capacity has a normal distribution with a 1.3% deviation. Direct 

current internal resistance result for these cells has the same distribution with 5.8% 

deviation [67]. 

This phenomenon leads to inhomogeneous aging in the connected cells of a module 

or pack. For instance, two parallel-connected cells with a 20% difference in the internal 

resistance experience 40% higher peak currents [68] compared to the case that two cells 

work dependently. These increased current peaks cause extra heat production in the cell. 

Also, the location of the cell inside the module and pack affects its heat dissipation and 

changes the cell temperature [69]. Therefore, boosted current and temperature causes 

expedited aging in these cells, referring to the aging models of the previous section. Based 

on Gogoana et al., a 20% difference in the internal resistance of a pair of parallel cells can 

reduce the cycle life of both cells by 40 % [70]. In the series connected cells, the expediting 

aging factor is temperature, as the currents in series-connected cells are equal. 

Considering this discussion, aging models developed for the cell level are not 

adequate to predict the aging behavior of a module or a pack due to variations inside the 

pack. Pack simulation from the cell model is valid only if the cell-to-cell variations are 

considered [71]. The first step in solving the problem is to calculate/estimate the amount 

of imbalance between the cells to have a quantitative understanding of the different 

working conditions for the cells. “State of Balance” is a concept presented by Wang et al. 

[66] to estimate the cells' imbalance for dynamic equalization adjustment. One major 

imbalance factor is temperature which causes a mismatch on the cell resistance leading to 
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unbalanced currents and different aging behavior. During the discharge of a module with 

parallel cells, cells with higher temperature have higher current extraction until 75% DOD. 

After that, the current falls until 90% DOD and then rises again to the end of discharge. 

This result shows a significant impact of temperature in cells’ performance, reported in 

[72]. The authors indicate a linear relationship between the capacity fade difference and 

the temperature difference between cells. 

To better understand the aging difference in a single cell and the pack Lebel et al. 

[73] explored the parallel-connected cells aging by an electro-thermal model. Incremental 

capacity analysis (ICA) is reported to be a suitable tool for the study of the difference in 

cell and pack capacity fade due to variation in the internal resistance, temperature [74], 

[75]. Kalogiannis et al. [76] report results at different discharge rates and reference authors 

performing ICA for lithium iron phosphate, lithium nickel manganese, and lithium titanate 

oxide technologies. However, reports on these technologies are experimental and not 

formally described with a mathematical equation that can be reproduced for other battery 

packs. 

The next step is to bridge the gap between cell aging models and module/pack 

degradation calculations. In a battery pack with parallel and series cells, the basic approach 

is to neglect the current imbalance in the parallel cells and consider them as a bigger cell 

due to the passive balance control. Then, it is possible to calculate the aging for the series 

cells considering their working condition by updating the cell aging model using the SOC 

and state of health (SOH) information from the pack. At this point, deciding about the pack 

capacity fade from cells’ aging information can follow different methods [77]–[79]. 



38 

The simplest method is to select the most aged cell as the representative of the whole 

pack and calculate the pack capacity fade as follows [80], [81]. This considers exclusively 

serially-connected cells as given by (1-57). 

𝑄𝑄𝑝𝑝 = 𝑚𝑚𝑎𝑎𝜕𝜕 𝑄𝑄𝑐𝑐,𝐿𝐿     𝐿𝐿 = 1:𝑀𝑀 (1-57) 

Here each cell’s capacity fade is 𝑄𝑄𝑐𝑐,𝐿𝐿, and the number of cells is 𝑀𝑀. The disadvantage 

of this method is that it overestimates the pack capacity fade. Taking the average of cells 

capacity fade for the pack degradation estimation is another approach that underestimates 

the total capacity fade. Therefore, authors in [67], [79] suggest using probabilistic aging 

estimation, which finds the probability distribution of cells capacity and presents the whole 

pack capacity by a probability distribution function. However, the results show that 

although the estimation error is improved, this method still underestimates the pack 

degradation, slightly. 

Other module and pack level aging determination methods consider that the battery 

is already deployed in an application. In most cases, these applications are related to 

electric, hybrid electric vehicles, grid, and residential application. In such cases, it is not 

possible to remove the battery from that application and test to determine degradation 

frequently. The aging must be determined while the battery is being utilized, or online. 

Therefore, these methods are used to simplify the aging estimation with minimum 

measurement and test requirements. Note that such studies do not present mathematical 

aging models for simulation purposes and they focus on the estimation methods to be 

implemented in real-life battery applications. 
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The main objective of these methods is to estimate the aging while the battery is 

online. This can be categorized into two groups: experimentally oriented and adaptive 

methods [82]. The experimental methods measure and store the aging related variables and 

calculate the aging in each state of life of the battery using simplified aging models and 

historical logged data. Resistance measurement in different current signals [83], joule 

effect which is the generated heat by the internal resistance [84] and Ah throughput 

counting [85], [86] are some of these approaches. 

Remmlinger et al. [87] proposed a resistance estimation method using a specific 

current signal detection while the battery is working and measuring the voltage for 

resistance calculation. Ah throughput counting method using the aging model presented in 

[51] is another study presented in [88].  As the working condition of a battery, such as 

loading and temperature change during its life, the total Ah count rises the aging estimation 

error. Therefore, Marano et al. [89] suggested using effective Ah counting which defines 

weighting coefficients for each Ah considering the different working conditions. Although 

these methods have low computational burdens and are easy to implement in the battery 

management system, they require large data storing capacity and, they have less accuracy 

due to the accumulated error over time.  

To prevent the bulk measurement of the aging related parameter and data storage 

problem, it is possible to reduce the measurements and computations by sampling a small 

group of the cells [90]. In this method, a new circuit topology of the battery pack is needed 

which separates it into two tests and main groups. The circuit configuration is designed in 

such a way that while the main group is working, the test group cells can be separated by 
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relays and measurements can be performed without disturbing the function of the battery. 

This method simplifies and reduces the computational burden with the cost of slightly 

lowering the accuracy. 

1.5 Probabilistic Degradation Models 

Even with large data sets detailing the battery behavior, online pack and module level 

aging determination generate results with large error margins. It is because such estimation 

methods are deterministic in nature while relying on results obtained through a controlled 

experiment in a lab. It is nearly impossible to replicate the exact application scenario during 

the associated testing procedure. So, the deterministic results obtained will be inherently 

erroneous, because of the inability to predict the load applied on the battery by a specific 

application. Therefore, researchers are moving towards a more probabilistic approach to 

determine degradation. 

These probabilistic-based studies mainly use adaptive methods that calculate the 

parameters sensitive to the aging such as resistance and estimate the life of the battery from 

those calculations. These methods eliminate the need for bulk measurements and 

simulations of the battery performance. For this purpose, they use different algorithms such 

as Kalman filter [91] and its improved versions, observers [92], fuzzy logic [93], artificial 

neural networks [94], and linear least squares [95]. All these methods can target specific 

aging related parameters in the battery. For example, Gholizadeh et al. [96] have used a 

sliding mode type observer (SMO) and Remmlinger et al. [97] employed linear parameter-

varying (LPV) model on series resistance measurements. They have used general 
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measurements that are available in the BMS. In [98], Kalman filter is applied for aging 

estimation by cell capacitance from Randles’ equivalent circuit model and it is shown that 

the aging of the battery has a non-linear relationship with that capacitive property. 

However, these models typically quantify aging but disregard the causes of aging beyond 

the battery parameters.  

1.6 Conclusion 

This chapter classified the models into different scales and analyzed each model by 

presenting its mathematical expression, key variables, required measurements, and 

calculation process. At the material level, the literature is well established through the 

physics-based governing equations based on porous theory. Model order reduction and 

simplifications such as single particle models are widely used to improve the usability of 

these models. However, these models could benefit from probabilistic approaches that 

consider variations in active surfaces, and ratios of electrode-electrolyte volumes.  

At the cell level, findings show that researchers report their aging models with 

varying degrees of disclosure. For example, only a sub-set of researchers presented the cell 

technology and form factor. Also, aging studies are mostly reported based on laboratory 

experiments, but the field is clearly moving towards real application-based data. Increased 

data availability through cloud-based databases will radically increase the resources 

available to generate aging models. 

At the module and pack level, most of the work is focused on identifying variations 

in cell capacities and voltages. However, some methods are developed for the 
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series/parallel combination of the pack studied, which makes it difficult to adopt for other 

packs. Also, at the module and pack level, our findings show a heightened interest in 

probabilistic approaches that can be driven by real application data. However, there are not 

enough studies that reach beyond a single scale and particularly none that tie them 

probabilistically. 

This literature review served the basis for obtaining a solid understanding of battery 

characteristics and aging models used to predict battery degradation. This dissertation 

focuses on developing a probabilistic approach through a hierarchical Bayesian Network 

to evaluate battery degradation. The hierarchical Bayesian Network requires a 

deterministic function that relates battery degradation to intermediate variables, i.e. SOC, 

Ah throughput, C-rate, etc. Later these intermediate variables can be related to external 

causal factors. For the cell level, a suitable function is a modified Arrhenius equation given 

in (1-36). This equation will be utilized in later sections to define the battery capacity 

during Bayesian Network development. 

The summary and qualitative comparison of degradation models and methods in 

different scales are given in Table 1.4.  
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Table 1.4.  Summary of battery degradation models 
Scale Factor Application Target and Purpose Pros and Cons 

Material and Electrode 
Level 

• Cyclable Li loss 
• Resistance rise 
• Effective surface 

loss 
• Loss of active 

materials 

• Electrochemical 
modeling 

• Material 
improvement  

• Cell design  
• New battery 

technology  

• To evaluate and test 
the capabilities of a 
new technology of 
battery before mass 
production 

 Detailed modeling 
 No time-consuming 

experiments 
− Complicated 
− High computational 

burden 

Cell Level 

• Storage temperature 
• Storage SOC 
• Cycling temperature 
• Cycling SOC and 

DOD 
• Cycling current 
• Total Ah and time 

• Battery performance  
• Lab experiments 
• Simulation for 

different conditions 

• Understand the 
system level 
performance of a 
technology 

• Characterize 
different form 
factors 

• Find proper 
applications 

 Simple modeling  
 Easy to implement  
 Low computational 

burden  
− Limited to its 

specific test 
condition 

− Requires extensive 
test data 

Module and Pack 
Level 

• Cells’ manufacturing 
differences 

• Cells’ configurations 
(series, parallel) 

• Temperature 
variations inside 
module and pack 

• Usage pattern 
difference 

• External factors 
variations 

• Cell balancing  
• Temperature 

distribution  
• BMS design 
• On-board 

estimations 
• Real-time 

application 
• Control purposes 

• Design a module or 
pack for an 
application 

• Manage battery in 
real-time 

• Control system 
designing based on 
battery 
characteristics 

 Simple modeling 
 Applicable to real 

cases 
 Simple 

implementation 
 Applicable to any 

technology 
 No time-consuming 

experiments 
 

− Hard to track the 
cell difference  

− Complicated 
temperature 
distribution 

− Accumulated error 
issue 

− Data storage 
problem 

Probabilistic Models • Considers all factors 
from all scales 

• Electrochemical 
modeling 

• Battery performance 
• Temperature 

distribution 

• Develop a non-
deterministic 
degradation model 

 

 Requires less 
testing data 

 Faster 
implementation 
 

− Computationally 
requirement 

− Choice of prior 
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Chapter 2 

 

Comparison of Li-ion Battery Equivalent 
Circuit Modeling Using Impedance 
Analyzer and Bayesian Networks 

 
Abstract 

Energy storage system simulations require a battery model capable of precisely 

predicting the dynamic behavior and characteristics of the battery. There are multiple 

methods available in the contemporary literature on accurate battery modeling. The most 

common method utilized is the semi-empirical equivalent circuit model (ECM) developed 

through time-domain testing. A better alternative can be obtained using a combination of 

time-domain and frequency-domain tests to parameterize ECM components. The 

underlying fitting mechanism for this proposed method is linear least square regression. 

The fitting accuracy can be further improved by applying Bayesian Network (BN) to 

estimate the ECM circuit elements. In this chapter, two systematic approaches to determine 

ECM are discussed. First, the ECM is developed through fitting the time-domain and 

frequency-domain test results carried out on a commercial electric bicycle Li-ion battery 

composed of Samsung ICR18650-22P cells. Later BN method was applied to estimate the 
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ECM circuit elements. In both cases, multiple circuit topologies were used to compare the 

accuracy of the model. The models were developed in MATLAB/ Simulink environment. 

A highly dynamic drive cycle was utilized to validate the ECMs through hardware-in-loop 

testing. It was observed that the appropriate ECM topology used for the linear least square 

regression fitting generated an average error of 3.3% whereas for BN estimation it was 

3.5%.  

2.1 Introduction 

Lithium-ion technologies require advanced battery management systems (BMS) to 

operate safely at maximum performance. These BMS heavily rely on an accurate model of 

the battery [1]. The battery model is also required in the battery simulation of performance 

and aging studies [2]. Battery modeling techniques can be grouped into three broad 

categories: electrochemical, physics-based and ECM. ECM provides a circuit composed of 

a voltage source, signifying open-circuit voltage (OCV) and the battery internal impedance. 

This internal impedance can be determined to utilize time and frequency domain testing 

[3], [4]. The accuracy of ECM typically depends on the number of RC parallel 

combinations [5]. 

Authors in [6], [7] generated an ECM through frequency domain electrochemical 

impedance spectroscopy (EIS) tests. They limited their experimentation to a single cell and 

results were fitted with 2 or 3 RC networks. However, the accuracy of such an ECM model 

is reduced due to a reduction in the number of RC components. Moreover, single cell-based 

ECM is incapable of considering the variability of multiple cells/modules in a battery pack.  



54 

Time-domain hybrid pulse power characterization (HPPC) is used by authors in [8]–

[14] to generate an ECM. Impedance parameters are determined from the voltage response 

during the relaxation period after a constant discharge period. However, the impedance 

determined through HPPC is only valid for constant current loads at a specific state of 

charge (SOC) and temperature. Moreover, the ECM from HPPC is also limited to 1-3 RC 

components. 

Authors in [15]–[17] applied multiple versions of Kalman filters to estimate 

components of ECM. The complexity and processing time to determine the impedances of 

ECM increases with the higher number of RC components. Thus, the authors reduce the 

fitting to the 1RC component. But this reduces the accuracy of ECM severely. 

Authors in [18], [19] used various filters to estimate 3RC based ECM. Developed 

ECM showed improved results compared to single RC based models. An ECM requires 

even higher RC components to model a battery accurately. In [20] both time-domain and 

frequency-domain analyses are performed on multiple Li-ion battery technologies to 

develop an ECM with higher accuracy containing 8RC components. But there was no 

logical explanation of why an 8RC ECM is appropriate for ECM. Also, the advantage 

gained through using a higher order ECM was not tangible, as a comparison with lower 

order models was not presented. Moreover, the determined impedance parameters are non-

uniform and complicated to replicate.  

Another statistical approach that is widely used to estimate the unseen variables 

conditional to the measurements is Bayesian Networks (BN) [21], [22]. In the battery 
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studies, BNs are mostly used for state estimation purposes such as SOC and state of health 

(SOH) of the battery which are unseen variables and difficult to measure [23], [24]. 

However, BN can be used for probabilistic estimation of any problem with limited 

measurements and observations. Therefore, it can be used to estimate the battery 

impedance elements conditional to the measurements of the time and frequency domain 

tests. 

This chapter develops the ECM of a Li-ion battery pack by fitting experimental 

results and estimation through BN. The developed models are compared based on their 

accuracy by quantifying the error variation when considering higher and lower order ECM 

models. A commercial Li-ion battery is used as a test case in this regard. Time-domain 

capacity and hybrid pule power characterization test, and frequency domain 

electrochemical impedance spectroscopy test results are used to develop the models. The 

first set of ECM was developed with fitting the experimental result with a linear least 

square regression by Impedance Analyzer to generate 2RC, 3RC and 8RC models. 

Whereas, the second set of models were developed for 2RC and 3RC with BN estimation. 

The rest of the chapter is organized as follows. Section 2.2 provides an overview of 

the experimental procedure describing the boundary conditions and various scenarios 

utilized to generate a detailed ECM model. Section 2.3 delves into the details and 

technicalities of the experimental procedures. Section 2.4 shows how the ECM model was 

developed using the impedance analyzer through the linear least square regression method. 

Sections 2.5 explains the process of developing the BN for the regression procedure and 

showcases the results obtained. Finally, Section 2.6 illustrates the comparison between the 
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impedance analyzer's linear least square method and BN estimation followed by the 

conclusion.  

2.2 Overview of Experimental Method 

The commercial Li-ion battery pack can either be charged from an outlet or through 

regenerative braking. The battery pack is composed of Samsung ICR18650-22P. The 

details of the battery pack and associated cells are provided in Table 2.1 [25]. 

Table 2.1.  Battery pack and cell details 
Battery or Cell Properties Value 
Nominal Voltage 48 Volts 
Nominal Capacity 8.6 Amp-hours 
Pack Arrangement 13S4P (13 modules of 4 cells 

connected parallelly in a single 
module) 

Maximum Charging Voltage 54.6 Volts 
Minimum Cutoff Voltage 35.75 Volts 
Cell Chemistry Lithium cobalt oxide (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2) 
Cell Nominal Voltage 3.62 Volts 
Cell Nominal Capacity 2.15 Amp-hours 
Cell Minimum Cutoff Voltage 2.75 Volts 
Standard Discharge Current 430 mA (0.2C) 
Maximum Discharge Current 10,000 mA (10C) 
Cell Maximum Charge Voltage 4.20 Volts 
Standard Charge Current 1075 mA (C/2) 
Maximum Charge Current 2150 mA (1C) 

The battery pack used for the testing procedure was at the beginning of life (BOL). 

The time-domain testing consists of capacity and hybrid pulse power characterization 

(HPPC) tests. A National Instrument data acquisition (DAQ) device was used to record 

pack voltage and current. The temperature was measured from 8 different locations within 

the pack. Multiple analog temperature sensors were used to observe the variations within 

the pack. The temperature measurements were also performed with the DAQ device. The 
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locations of the eight sensors are marked in Figure 2.1. Also, three module voltages from 

module 1, 6, and 13 were recorded during time-domain tests. These tests were repeated for 

-10℃, 0℃, and 20℃ to have a proper representation of commercial Li-ion usage 

conditions. 

 

Figure 2.1.  The disassembled commercial Li-ion battery pack. 

The frequency-domain testing method, EIS was performed through a galvanostatic 

control using a battery impedance analyzer. The EIS test was performed with a frequency 

sweep from 2mHz to 1kHz at 100%, 80%, 60%, 40% and 20% SOC. Each of these tests 

was repeated for -10℃, 0℃, and 20℃, in accordance with the time-domain experiments. 

The EIS was performed at multiple SOC to generate more data for developing a proper 

battery impedance model. Note that, although the experiments are performed on the 

commercial Li-ion battery and the model results and validations are based on the dynamic 

load profile data, the developed models are not dependent on any specific application of 

commercial Li-ion battery. 



58 

2.3 Testing Procedure 

The type of tests performed on the commercial Li-ion battery can be classified in 

three main groups: Capacity test to measure the actual capacity of the battery in Ah, HPPC 

test to measure the OCV vs. SOC characteristics of the battery, and EIS with an impedance 

analyzer to determine the internal impedance of the battery. The capacity and HPPC tests 

are time-domain whereas the EIS is frequency-domain. Thus, the capacity and HPPC test 

share a similar set of equipment as opposed to the EIS. The following subsections delve 

into detail about the testing procedures. 

2.3.1 Capacity Test  

The test determines the actual capacity of the battery in Ah while being discharged 

with a constant current. The nominal capacity of the battery (𝑄𝑄𝑖𝑖), provided by the 

manufacturer is an average measurement. The average is determined by testing multiple 

batteries from the production line. Due to minor changes in the manufacturing process, 

each battery cell has a slightly different capacity than the other. The difference in individual 

cells is often negligible. However, when a battery pack is formed with cells with various 

actual capacity, the overall battery capacity can have a major deviation from the 

manufacturer rated nominal capacity. Moreover, the capacity measurement estimates the 

SOC of the battery. A wrong SOC estimation can lead to cycling the battery incorrectly, 

causing performance issues and pre-mature aging. Furthermore, the battery capacity 

changes significantly with the ambient temperature even if determined with manufacturer 

suggested C-rates are used. Thus, it is essential to know the actual capacity of the battery 

at multiple temperatures to develop accurate ECM. 
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The capacity of the battery is dependent upon the discharge current C-rate and 

temperature. A standardized C/3 rate is used in accordance with the manufacturer 

specifications [25]. For the battery in the discussion, a constant current load of 2.87A was 

used to determine actual battery capacity (𝑄𝑄𝑖𝑖).  
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Figure 2.2.  Time-domain test experimental setup. 

The battery was kept inside the ESPEC EPZ-4H thermal chamber. The NHR 9200 

battery tester equipped with 4912 part was used to charge or discharge the battery. Hall 

effect current and voltage sensors measured analog signals and provided the data to the NI 

PXIe-1071 chassis equipped with NI PXIe-8135 processor and NI PXI-6254 data 

acquisition system. The thermal sensor temperature data was also sent through the 

remaining channels of the data acquisition system. The battery tester, data acquisition 

system, and the thermal chamber were in a single LAN network with the lab PC controlling 

the experiment. The lab PC was utilizing NI LabView 2014 to control the connected 
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equipment in real-time. Figure 2.2 depicts the experimental setup used to perform the test. 

The results of the capacity test are given in Table 2.2. 

Table 2.2.  The measured actual capacity of commercial Li-ion battery 
Temperature (℃) Battery Actual Capacity 𝑸𝑸𝒂𝒂 (Ah) 

20 8.359 
0 8.145 

-10 7.671 

It was observed that battery capacity dropped as the temperature was reduced. The 

reduction in temperature reduces the rate of transfer of li-ion from one electrode to another. 

The electrolyte forms crystals, increasing the impedance and impeding the transferring of 

li-ions. The DOD of the battery is calculated according to (2-1) where the SOC 

measurement is based on actual capacity 𝑄𝑄𝑖𝑖.  

𝐷𝐷𝐿𝐿𝐷𝐷(𝜕𝜕) = 100 − 𝑆𝑆𝐿𝐿𝐿𝐿(𝜕𝜕) = 100 − �
𝑄𝑄𝑖𝑖(𝜕𝜕)
𝑄𝑄𝑖𝑖

× 100� ∀𝜕𝜕 (2-1) 

 

Figure 2.3.  Capacity test results 

The result of the capacity test can be observed in Figure 2.3 where the pack voltage 

is plotted against DOD. It is evident from Figure 2.3 that reduction in overall capacity 
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reduces the maximum DOD. Furthermore, due to the increase in internal impedance, the 

pack terminal voltage is reduced.  

2.3.2 Hybrid Pulse Power Characterization Test 

The hybrid pulse power characterization (HPPC) test is designed to observe the 

pulsed response of the battery. The test applies a charge and discharge pulse on a fully 

charged and relaxed battery. This is followed by a constant current discharge and a 

relaxation period. The duration of the relaxation is suggested by the manufacturer. For this 

commercial Li-ion battery, the purpose of conducting HPPC tests was to develop the OCV-

DOD relationship. The measurement of battery terminal voltage, and depleted Ah (𝑄𝑄) at 

the end of each relaxation period is recorded. At no-load condition, the battery terminal 

voltage gives OCV. Ah measurement (𝑄𝑄) is used to generate the DOD of the battery from 

(2-2). Data from the experiment is fitted to an appropriate function using any adept curve 

fitting tool. 

𝐷𝐷𝐿𝐿𝐷𝐷(𝜕𝜕) = 100 − 𝑆𝑆𝐿𝐿𝐿𝐿(𝜕𝜕) = 100 − �
𝑄𝑄(𝜕𝜕)
𝑄𝑄𝑖𝑖

× 100� ∀𝜕𝜕 (2-2) 

HPPC test is utilized by the contemporary authors to generate the ECM circuit 

parameters. However, ECM parameters generated solely through HPPC inherently lacks 

accuracy as the voltage response is highly dependent on the constant load current between 

each set of pulses. 
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Figure 2.4.  The HPPC test load profile and response voltage. 

 

Figure 2.5.  The HPPC test Ah response. 

The experimental setup for HPPC remains the same as the capacity test. Instead of 

constant load current, a custom waveform representing the HPPC characteristics was used. 

Each constant discharge period was designed to deplete 5% of SOC. Since the nominal 

battery capacity is 8.6Ah, the constant discharge needed to deplete 0.43Ah. The constant 

discharge current was selected to be 2.87A (C/3) for 9 minutes followed by 60 minutes of 

relaxation. In the discharge of 9 minutes, 5% of SOC was depleted. The 60 minutes 

relaxation was selected according to the manufacturer’s suggestion [25]. The sample of the 

HPPC test result can be seen in Figure 2.4. Figure 2.4 shows the load current representing 



63 

the HPPC and response voltage. It also shows where the OCV measurements were 

collected. It is noticeable that after each constant discharge the battery terminal voltage 

settles to a lower value corresponding to the lower SOC state.  

Table 2.3.  OCV-DOD data from HPPC test 
Temperature 

20℃ 0℃ -10℃ 
DOD (%) OCV (V) DOD (%) OCV (V) DOD (%) OCV (V) 

0.0000 54.9950 0.0000 53.6810 0.0233 54.1070 
5.3023 53.9280 5.2209 52.9760 5.0930 53.2010 

10.9419 53.1930 10.8256 52.5700 10.5930 52.6970 
16.1860 52.7320 16.1395 52.1010 16.1047 52.2970 
21.6047 52.3310 21.7791 51.4810 21.5465 51.7130 
26.8256 51.7450 27.1163 50.9670 26.7442 51.0630 
32.1628 51.1760 32.6744 50.5130 32.0698 50.5010 
37.3256 50.7270 38.0233 49.8570 37.1977 49.9570 
42.7209 50.2230 43.5000 48.9730 42.5814 49.3300 
47.8837 49.4000 48.6977 48.1960 47.6977 48.5980 
53.3256 48.5610 54.2093 47.6430 52.9651 47.9340 
58.4419 47.9370 59.3605 47.2610 58.1163 47.4320 
63.6977 47.4940 64.9651 46.9750 63.3023 47.0600 
69.1163 47.1810 70.0814 46.7160 68.6860 46.7410 
74.4070 46.9200 75.3488 46.3830 73.9419 46.4020 
80.3488 46.5920 80.8023 45.7440 79.3953 45.9390 
85.6279 45.9840 86.0814 45.1140   

Figure 2.5 depicts the corresponding Ah depletion along with the OCV data point. 

The plateau reached after every successive constant discharge in Figure 2.5 signifies that 

the battery was relaxed without any load, thus allowing to reach the OCV conditions. The 

tabulated results of the entire HPPC test are given in Table 2.3. 

2.3.3 Electrochemical Impedance Spectroscopy Test 

The electrochemical impedance spectroscopy (EIS) test is a powerful tool used in 

electrochemistry to extract data on electrode kinetics and diffusion from an electrochemical 
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process. One of the major application areas for EIS is electrochemical energy storage or 

batteries. The typical DC analysis on battery only reveals information on electrode kinetics 

or mass transport. On the other hand, EIS can obtain both types of data by analyzing the 

battery with AC signals. In the galvanostatic EIS, the battery is subjected to a sweep of 

sinusoidal current (𝐼𝐼) while voltage response (𝐸𝐸) is recorded. The impedance is measured 

from (2-3) and can be explained as complex numbers as (2-4) and (2-5). 

𝑍𝑍𝑖𝑖 =
𝐸𝐸𝑖𝑖
𝐼𝐼𝑖𝑖

=
𝐸𝐸𝑖𝑖 𝑠𝑠𝐿𝐿𝑙𝑙(𝜔𝜔𝜕𝜕 + 𝜑𝜑)
𝐼𝐼𝑖𝑖 𝑠𝑠𝐿𝐿𝑙𝑙(𝜔𝜔𝜕𝜕)

 ∀𝜕𝜕 (2-3) 

𝑍𝑍𝑖𝑖 =
𝐸𝐸𝑖𝑖
𝐼𝐼𝑖𝑖

  (2-4) 

𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖
𝑠𝑠𝐿𝐿𝑙𝑙(𝜔𝜔𝜕𝜕 + 𝜑𝜑)
𝑠𝑠𝐿𝐿𝑙𝑙(𝜔𝜔𝜕𝜕)

= 𝑍𝑍𝑖𝑖(𝑐𝑐𝐿𝐿𝑠𝑠 𝜑𝜑 − 𝑗𝑗𝑠𝑠𝐿𝐿𝑙𝑙 𝜑𝜑) ∀𝜕𝜕 (2-5) 

The complex impedance measured from the EIS experiment is most commonly 

analyzed with the Nyquist plot. An ideal Nyquist plot for a 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 technology is depicted 

in Figure 2.6 is divided into 5 sections according to [2]. Each section of this Nyquist plot 

is attributed to a specific electrochemical kinetic property occurring within the battery. 

These electrochemical kinetic properties are adequate in characterizing this li-ion battery. 

The EIS reveals these properties accurately. In Figure 2.6, Section 1 is attributed to the 

conductive materials i.e. current collectors, interconnections between cells and wires. At 

higher frequency, these components show inductive properties, thus the inductive 

component is considered in the ECM. The x-axis intercept in section 2 represents the 

cumulative resistive effect of current collectors, the interconnection between cells, 
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electrolyte, active material, and separator, characterized by a resistance. The first semi-

circle, section 3, is related to the solid-electrolyte interface (SEI), portrayed by a parallel 

resistance and constant phase element (CPE). The second semi-circle (section 4) occurs 

due to double-layer capacitance and charge transfer resistance at the electrode. Though 

section 4 is attributed to different properties, due to the semi-circular shape, the ECM 

element is identical to section 3. Finally, section 5, expressed by a 45º line, is due to 

diffusion of lithium ions in the active material of the electrode at very low frequency, 

represented by a Warburg element.  

 
Figure 2.6.  The ideal Nyquist plot for 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 Li-ion battery. 

Temperature and SOC are major proponents that affect the underlying properties that 

dictate the ECM components. Thus, EIS must be repeated multiple times for separate 

temperature and SOC to account for these variations. Results from such tests need to 

accumulate to provide a complete characteristic. 
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Figure 2.7.  Time-domain test experimental setup. 

For the commercial Li-ion battery, the experimental setup for EIS can be explained 

in Figure 2.7. The battery was fully charged up to the manufacturer's recommended voltage 

and kept in the thermal chamber at 20℃. The EIS experiment was solely operated by the 

impedance analyzer Modulab from Solartron Analytical fitted with Pstat 1MS/s and 

accessory HV 100. The Pstat was aided by the HV 100 to accommodate the entire battery 

pack. The current electrode (CE) and the working electrode (WE) connected to the battery 

terminals provided the sinusoidal current signal. The current signal was of 100mA, ranged 

from 2mHz to 1kHz. The reference electrode (RE) measured the sinusoidal voltage 

response. After the experiment was carried out for a specific SOC, the battery terminal was 

switched to battery tester. The battery tester was programmed to discharge the battery 20% 

to reach the next experimental state. A constant 2.87A (C/3) rate was applied to discharge 

the battery. There was a rest period after the discharge to allow the battery to reach the 

steady-state condition. The experiment was repeated until the battery reached 20% SOC. 

After that, the battery was recharged and put on a different temperature to repeat the entire 

procedure. These tests were repeated for 0℃ and -10℃. The results obtained from the EIS 

test can be seen in Figure 2.8, Figure 2.9, and Figure 2.10. Each of the following figures 

shows the measured impedance at different SOC at a specific temperature. 
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Figure 2.8.  The measured impedance by EIS test at 20℃. 

 

Figure 2.9.  The measured impedance by EIS test at 0℃. 

 

Figure 2.10.  The measured impedance by EIS test at -10℃. 
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It is evident from these results that both real and imaginary parts of the internal 

impedance of the battery increases as temperature drops. The impedance increases rapidly 

after the temperature drops below 0℃. The EIS results correspond with the fact that 

impedance increases with the crystallization of the electrolytes occurring below 0℃. 

Comparing the effect of temperature, inductive properties of the battery impedance in high 

frequencies (Section 1 in Figure 2.6) are mostly observed in higher temperatures. However, 

the resistive properties of the battery pack increase with the temperature decrease, i.e. the 

battery shows higher resistances in low temperatures. This increase in the resistance is not 

only observed in the cumulative resistance of the connections, but it is also noticed in the 

semi-circles’ resistances, as the radius of the semi-circles increases with the temperature 

drop. In addition, at higher temperatures, the effect of Li-ion diffusion in the electrode is 

dominant on the battery impedance (Section 5 in Figure 2.6), while in lower temperatures, 

the impact of the SEI and double-layer capacitance and charge transfer resistance are more 

influential, as depicted on Section 3 and 4 in Figure 2.6. Different SOCs’ results show that 

two semi-circles are separate and distinguishable in lower SOCs. However, in higher 

SOCs, only one semi-circle is noticeable in the Nyquist plot. Therefore, the effects of SEI, 

double-layer capacitance, and charge transfer resistance are detectable in lower SOCs. 

2.4 Equivalent Circuit Modeling 

The ECM developed in this chapter utilizes three inputs, initial SOC, load current, 

and ambient temperature. The Model produces battery terminal voltage, present SOC, and 

DOD. The ECM has four parts, SOC and DOD determination, OCV calculation, equivalent 

impedance component, and terminal voltage deduction. At first the initial SOC and load 
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current at time t is taken to determine the SOC and DOD at time 𝜕𝜕 + 1. The SOC and DOD 

values at time 𝜕𝜕 + 1 and temperature are used to determine the equivalent circuit 

component values. Simultaneously, the SOC and DOD at time 𝜕𝜕 + 1 and temperature are 

utilized to calculate the OCV of the battery. Finally, the present OCV and equivalent circuit 

component values are used in the differential equation to produce the terminal voltage of 

the battery. Though the system can produce more results, it is limited to terminal voltage, 

present SOC and DOD to ensure a high level of integrity with external components such 

as residential or vehicular models. The process is visualized in Figure 2.11. The number of 

equivalent circuit components produced depends on the degree of accuracy of the ECM. 

Figure 2.12 shows the ECM developed in this chapter. 

Battery Equivalent Circuit Model
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Load 
Current

Initial SOC

Ambient 
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Component

OCV 
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Terminal 
Voltage 
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Figure 2.11.  Equivalent circuit components 

There are various ways of determining the SOC and DOD of the battery. For this 

chapter, a coulomb counting method was used. For the equivalent circuit components, as 

shown in Figure 2.6, at higher frequencies, the inductive property of the is dominant due 

to the electrically conductive parts in the pack. A lump resistance and inductance represent 

these cumulative resistive and inductive properties. Experimental results revealed that the 
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resistive part has a negative temperature coefficient. The value of this resistance increases 

as temperature drops, unlike a regular resistance. 

A parallel combination of a resistance and constant phase element (CPE) is known 

as Zarc, which models the semi-circles in Figure 2.6. To model this impedance with 

electrical circuit elements, the author in [26] developed a method to approximate them with 

odd numbers of parallel resistance-capacitance (RC) combinations. It was proven that any 

arc in the Nyquist plot that requires a Zarc element in the circuit can be replaced with 3 

consecutive RC elements with considerable accuracy. Thus, this study uses 6 consecutive 

RC elements for two semi-circle/arcs instead of a Zarc for the most precise model. A 

Warburg element is a resistive component which corresponds to a linearly rising line at 45º 

in the Nyquist plot and can be represented by 2 RC circuits in series. 

  

Figure 2.12.  Generated equivalent circuit models 

The most accurate ECM without any significant reduction in processing/calculation 

time model would have 8RC components, 6RC for the first two Zarcs and 2RC for the 
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Warburg element. A simplified model could be designed considering that the Nyquist plots 

have three arcs. In this case, a simplified model would have 3RC components, one for each 

arc. Both circuits, with 8RC and 3RC, were modeled using the experimental data for 

commercial Li-ion battery. Moreover, a further simplified and popular battery model with 

2RC used by researchers in [8, 20], was also modeled based on the experimental results to 

compare. 

Two statistical approaches are used to estimate the OCV and R, L and RC 

components from the HPPC and EIS experimental data: Impedance Analyzer fitting and 

Bayesian model. The significance of both Impedance Analyzer fitting and BN model is the 

capability to produce robust battery models, capable of predicting battery’s characteristics 

with accuracy and precision. These two methods have a different approach to the modeling 

process. The ECM parameter fitting with Impedance Analyzer is based upon deterministic 

least-square regression, while the BN considers a probabilistic approach. 

The application of ECM based on an impedance analyzer is typical for laboratory 

environments where a higher order model is desired as it can provide accurate battery 

characteristics with utmost efficiency. On the other hand, BNs can be applied for both 

laboratory and online applications as it can provide a more accurate lower order model. 

Lower order models can greatly simplify implementation for online applications. 

2.4.1 Impedance Analyzer Fitting 

The OCV was determined by the function of 𝐿𝐿𝐿𝐿𝑉𝑉 = 𝑓𝑓(𝐷𝐷𝐿𝐿𝐷𝐷,𝑅𝑅) developed from the 

HPPC test results. A fifth-order polynomial equation was developed to fit the recorded data 
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from Table 2.3. A linear least square method was used to fit the data to the polynomial 

equation. The values of the coefficients are given in Table 2.4. MATLAB 2016 curve 

fitting tool was used to generate the function. The values of the parameters are given in 

Table 2.4. 

Table 2.4.  OCV-DOD-T function parameters 

Parameters Temperature 
20℃ 0℃ -10℃ 

p1 -1.89E-8 -8.07E-8 -8.24E-8 
p2 2.42E-6 2.08E-5 2.07E-5 
p3 -2.84E-6 2.08E-3 2.06E-3 
p4 -8.52E-3 1.01E-1 1.02E-1 
p5 0.1242 -2.445 -2.649 
p6 54.52 75 80 

The EIS tests and subsequent fittings were performed with Modulab ECS software 

associated with a Solartron impedance analyzer. Modulab ECS employs a linear least 

square linear regression method based on provided initial values to fit the experimentally 

obtained data to ECM. The initial values of the ECM components are obtained from the 

respective EIS Nyquist plot sections that the component belongs to as previously defined 

in Figure 2.6. For example, the initial value of the inductor 𝐿𝐿0 was found from the last data 

point with the maximum frequency 𝑓𝑓𝐿𝐿0 and impedance 𝑍𝑍𝐿𝐿0
′′  using (2-7). Similarly, the x-

axis intercept of the Nyquist plot provides the initial value of 𝑅𝑅0. For the capacitors, the 

impedance and frequencies were selected from the respective arc that the circuit component 

is representing. The capacitor initial values were calculated similarly by (2-8). 

𝐿𝐿0 =
𝑍𝑍𝐿𝐿0
′′

2𝜋𝜋𝑓𝑓𝐿𝐿0
 (2-6) 



73 

𝐿𝐿𝑥𝑥 = −
1

2𝜋𝜋𝑓𝑓𝑍𝑍𝐸𝐸𝑥𝑥
′′  (2-7) 

The determined circuit components are at multiple SOC and temperature. These 

components were fitted to a fourth-order polynomial to obtain 𝐿𝐿𝐿𝐿𝑚𝑚𝑒𝑒𝐿𝐿𝑙𝑙𝑒𝑒𝑙𝑙𝜕𝜕𝑥𝑥 = 𝑓𝑓(𝑆𝑆𝐿𝐿𝐿𝐿,𝑅𝑅). 

The function parameter obtained is given in Table 2.5. 

Table 2.5.  ECM component function parameters 

Components 
Parameters 

p1 p2 p3 p4 p5 
L0 -6.38E-14 1.59E-11 -1.38E-09 4.85E-08 1.38E-06 
R0 -1.98E-09 4.52E-07 -3.61E-05 1.01E-03 1.16E-01 
R1 1.92E-09 -4.61E-07 3.91E-05 -1.36E-03 3.20E-02 
C1 1.18E-09 -3.44E-07 3.39E-05 -1.34E-03 4.28E-02 
R2 -2.17E-09 5.37E-07 -4.47E-05 1.41E-03 6.40E-03 
C2 3.36E-08 -8.57E-06 7.62E-04 -2.72E-02 4.66E-01 
R3 2.73E-09 -6.33E-07 5.35E-05 -2.01E-03 4.65E-02 
C3 2.49E-08 -9.58E-06 1.23E-03 -6.45E-02 2.12E+00 
R4 1.92E-09 -5.89E-07 6.81E-05 -3.49E-03 7.63E-02 
C4 5.21E-06 -1.36E-03 1.21E-01 -3.97E+00 4.50E+01 
R5 5.66E-09 -1.38E-06 1.18E-04 -4.01E-03 5.54E-02 
C5 1.41E-05 -4.03E-03 3.99E-01 -1.57E+01 2.65E+02 
R6 1.15E-08 -2.79E-06 2.34E-04 -7.65E-03 9.16E-02 
C6 -1.31E-04 3.14E-02 -2.51E+00 7.04E+01 1.00E-03 
R7 -4.69E-09 1.06E-06 -7.70E-05 2.21E-03 4.49E-02 
C7 -2.24E-05 6.99E-03 -7.23E-01 2.66E+01 2.85E+02 
R8 1.40E-07 -3.19E-05 2.57E-03 -8.50E-02 1.13E+00 
C8 -1.56E-04 3.91E-02 -3.28E+00 1.01E+02 1.00E-03 

The final step in developing the battery models is using the value of the circuit 

components in the ODE associated with their respective circuits to determine the battery 

terminal voltage given in (2-9). 
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𝑉𝑉𝑏𝑏𝑖𝑖𝑖𝑖 = 𝐿𝐿𝐿𝐿𝑉𝑉 − 𝐿𝐿0
𝑑𝑑𝐼𝐼𝑏𝑏
𝑑𝑑𝜕𝜕

− 𝑅𝑅0𝐼𝐼𝑏𝑏 − 𝑅𝑅1(𝐼𝐼𝑏𝑏 − 𝐿𝐿1
𝑑𝑑𝑉𝑉𝑅𝑅1𝐸𝐸1
𝑑𝑑𝜕𝜕

)⋯− 𝑅𝑅𝑖𝑖(𝐼𝐼𝑏𝑏 − 𝐿𝐿𝑖𝑖
𝑑𝑑𝑉𝑉𝑅𝑅𝑛𝑛𝐸𝐸𝑛𝑛
𝑑𝑑𝜕𝜕

)  (2-8) 

Where, 𝐼𝐼𝑏𝑏 and 𝑉𝑉𝑅𝑅𝑛𝑛𝐸𝐸𝑛𝑛 are the battery current and RC element’s voltage, respectively. 

Modeling battery with the linear least square method with the Modulab software is based 

on expert knowledge from the user, as it needs to suggest a circuit topology for the software 

to fit. Also, variations for this topology are made by painstakingly fixing specific 

parameters to manipulate the circuit correctly, which requires intensive personnel 

involvement. Therefore, machine learning algorithms are explored as an alternative in the 

next section. 

2.4.2 Developing ECM with Bayesian Model 

Bayesian Network (BN) is a probabilistic presentation of process models with a 

directed acyclic graph including nodes and arrows (called edges). In Bayesian modeling, 

all variables can be divided into two groups of “Observations” and “Unobserved” values. 

In Bayes’ theorem, the vector of unobserved variables (𝜽𝜽) including model’s parameters 

and intermediate unseen variables can be calculated conditional to a vector of observations 

(measurements) (y), using joint probabilities as given in (2-10). 

[𝜃𝜃|𝑦𝑦] =
[𝜃𝜃,𝑦𝑦]

[𝑦𝑦] =
[𝑦𝑦|𝜃𝜃][𝜃𝜃]

[𝑦𝑦]  (2-9) 

Where, [𝜽𝜽|𝐲𝐲] is the posterior distribution, [𝐲𝐲|𝜽𝜽] is the likelihood, and [𝜽𝜽] is the prior 

distribution. Here [𝐲𝐲] is the marginal distribution of observations on the unobserved 

variables 𝜽𝜽 as observed in (2-11). This probabilistic expression can include all uncertainties 
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such as sampling, measurement and process uncertainties in the calculation of an 

unobserved variable through the definition of probability distributions’ parameters. 

[𝑦𝑦] = �[𝑦𝑦|𝜃𝜃][𝜃𝜃]𝑑𝑑𝜃𝜃 (2-10) 

To model the battery OCV and impedance from the experiments, the first step is to 

define the observed and unobserved variables and define the graphical structure of the 

Bayesian network as Figure 2.13. Our expert domain knowledge was used to create the 

network structure, other such models exist that may be statistically indistinguishable based 

on the independencies/dependencies entailed by the model. 

The observed variables in HPPC tests are 𝐷𝐷𝐿𝐿𝐷𝐷𝑘𝑘 and 𝐿𝐿𝐿𝐿𝑉𝑉𝑘𝑘 with K measurements. 

For EIS tests, the battery state of charge 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 and battery impedance 𝑍𝑍𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,   𝐿𝐿𝑖𝑖 in I 

observations with J measurements in each observation of impedance. Unobserved variables 

are the estimated R, L and C circuit elements. The estimated depth of discharge and state 

of charge is 𝐷𝐷𝐿𝐿𝐷𝐷������𝑘𝑘 and 𝑆𝑆𝐿𝐿𝐿𝐿������𝐿𝐿 respectively. The parameters are 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝑎𝑎𝑙𝑙𝑑𝑑 𝜂𝜂. The estimated 

real and imaginary parts of the impedance are 𝑍𝑍𝐿𝐿𝑖𝑖′  and 𝑍𝑍𝐿𝐿𝑖𝑖′′ . Based on the network, we can 

write the mathematical expression of the Bayesian network as (2-12). Note that in (2-12), 

the sign between left and right side of the expression is “∝” instead of “=”. This is because 

it is not possible to calculate the marginal distribution of observations for all values of 

unobserved quantities. 
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Figure 2.13.  Bayesian network for the ECM model 
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× [𝛼𝛼] × [𝛽𝛽] × [𝛾𝛾] × [𝜂𝜂][SOC�����i] × [DOD������k] 

(2-11) 

Therefore, the Markov Chain Monte Carlo (MCMC) algorithm is used to calculate 

the posterior distributions and the Metropolis-Hastings method [27] is applied for 

sampling. To apply the MCMC algorithm, full conditionals for all random variables are 

calculated. The PDFs for the variables are chosen based on the requirements of each 
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variable. For instance, R, L, and C elements have “gamma” PDFs as they have positive 

values. The BN model’s outputs for a sample circuit element 𝑅𝑅0 are shown in Figure 2.14. 

For 5000 MCMC samples, the histogram and fitted gamma distribution is depicted in 

Figure 2.14, which proves the successful MCMC sampling. Figure 2.15 presents the 

estimated gamma PDFs of 𝑅𝑅0 in various SOCs and using these distributions, the model 

parameters’ PDFs are estimated, and sample results are shown in Figure 2.16.  

Figure 2.14.  The Bayesian model outputs histogram for 𝑅𝑅0. 

Figure 2.15.  The Bayesian model output gamma PDF for 𝑅𝑅0 at various SOCs. 
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20% SOC 80% SOC 
Mean SD Mean SD 

2R
C

 

𝑅𝑅0 0.1475 0.0035 0.1372 0.0035 
𝐿𝐿0 1.9E-08 2.05E-9 2.8E-08 2.84E-09 
𝑅𝑅1 0.0681 0.0029 0.0444 0.0025 
𝐿𝐿1 0.6456 0.0527 0.1836 0.0172 
𝑅𝑅2 0.1819 0.0086 0.2040 0.0080 
𝐿𝐿2 313.19 18.516 218.73 11.480 

3R
C

 

𝑅𝑅0 0.1311 0.0037 0.1298 0.0032 
𝐿𝐿0 5.7E-07 5.5E-08 3.6E-07 3.5E-08 
𝑅𝑅1 0.0346 0.0026 0.0407 0.0024 
𝐿𝐿1 0.0704 0.0064 0.0875 0.0078 
𝑅𝑅2 0.0577 0.0087 0.0301 0.0054 
𝐿𝐿2 1.6017 0.1639 22.669 2.135 
𝑅𝑅3 0.1722 0.0177 0.1957 0.0197 
𝐿𝐿3 322.87 18.562 263.78 16.203 

After estimating the parameters’ distributions, they are used to generate the ECM 

model and estimate the battery voltage 𝑉𝑉𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖_𝑒𝑒𝑠𝑠𝑖𝑖 for a given experimental current 𝐼𝐼𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖_𝑒𝑒𝑠𝑠𝑖𝑖. 

Table 2.6 presents the circuit elements estimated by the BN model for two SOCs. 
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Figure 2.16.  The Bayesian model output normal PDF of parameters for 𝑅𝑅0. 
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2.5 Impedance Analyzer vs. Bayesian Network Models 

This section compares the ECM developed by the Impedance Analyzer and BN 

models. Three ECMs (8RC, 3RC, and 2RC) were developed with Impedance Analyzer 

with varying accuracy. Whereas for BN, two ECMs (3RC and 2RC) were developed. The 

BN model was limited to 3RC as it was comparable to 8RC models from the Impedance 

Analyzer, albeit demanding more mathematical processing time and resource. However, 

the BN models are more successful in terms of accuracy and precision in estimating the 

internal impedance of the battery. The following discussion elaborates on this in terms of 

fitting accuracy, errors in percentage in real and imaginary parts, and validation under 

typical commercial Li-ion battery load. 

2.5.1 Estimation Accuracy 

Using the Impedance Analyzer, three ECM models with different levels of accuracy 

are developed as 8RC, 3RC and 2RC circuits. These results are compared to ECMs with 

3RC and 2RC developed through BN. The BN development is focused on 3RC and 2RC 

as these are the cases where the impedance analyzer software presents less accurate models, 

as explained below. Figure 2.17 presents the Impedance Analyzer model results for 80% 

SOC. From Figure 2.17, it is evident that the 8RC ECM produces a superior fit as opposed 

to 3RC and 2RC. The 8RC ECM deploys 3RC’s for each arc and 2RC’s for the diffusion 

region. Having multiple RC’s in a single region produces a better fit because each RC pair 

can fit a smaller semi-circle, which can be part of an arc-shaped trajectory. The cumulative 

effect of such multiple RC produces accurate fitting. Since this cannot be obtained through 
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3RC and 2RC circuits in the Impedance Analyzer fitting software, their ECMs are less 

accurate. 

Figure 2.17.  Accuracy of various Impedance Analyzer model at 20℃ and 80% SOC. 

Figure 2.18.  Accuracy of various Impedance Analyzer model at 20℃ and 20% SOC. 

A similar discussion is applicable for the 20% SOC result that has two semi-circles 

in the impedance profile as in Figure 2.18. The R square values of the three models are 

calculated as 0.999, 0.980 and 0.941 for 8RC, 3RC, and 2RC circuits, respectively, 

signifying the accuracy of the fitting. 

However, using BN models results in an even more accurate impedance estimation 

for the same number of RC circuits. The impedance results of 3RC and 2RC ECM models 

from BNs for 80% and 20% SOCs are presented in Figure 2.19 and Figure 2.20. Results 
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show they are clearly more accurate in higher frequencies than 3RC and 2RC ECMs and 

comparable to 8RC ECM from the Impedance Analyzer software. The BN-based 3RC and 

2RC models have R-square equal to 0.993 and 0.982 respectively, which indicates the 

successful impedance estimation with BN models. Comparing the R2 of BN models to the 

Impedance Analyzer models illustrate that the BN approach can achieve higher R-square 

values (better estimation) with a lower number of RC circuits. 

Figure 2.19.  Accuracy of various BN models at 20℃ and 80% SOC. 

Figure 2.20.  Accuracy of various BN models at 20℃ and 20% SOC. 
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2.5.2 Estimation Error Analysis 

To illustrate the error percentage distribution in different models, the error data for 

real and imaginary parts of the battery impedance is modeled by Rayleigh distribution as 

depicted in Figure 2.21 and Figure 2.22, for both Impedance Analyzer and BN models 

respectively. Based on Figure 2.21, for Impedance Analyzer models, the average 

impedance error value for the 8RC circuit is 3.3%, which is about 6 and 8.5 times less than 

the 3RC and 2RC models, respectively. This indicates that the 8RC model error is more 

concentrated around smaller values compared to the 2RC and 3RC models error data, in 

both the real and imaginary parts. However, for the BN models, the 3RC circuit has a 3.5% 

average error and the 2RC circuit has a 4.6%, which are slightly more than the average 

error value for 8RC circuit in Impedance Analyzer model, nonetheless, it is significantly 

lower than that of Impedance Analyzer 3RC and 2RC models. Therefore, BN models can 

reach higher precision with a reduced number of RC circuits. 

Figure 2.21.  The probability distribution of fitting error for real and imaginary parts of 
impedance in Impedance Analyzer models. 
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Figure 2.22.  The probability distribution of estimation error for real and imaginary 
parts of impedance in BN models. 

In addition, it is important to note that the fitting result of the imaginary part has 

higher error values that the real part in all three models of Impedance Analyzer. The 

average error in the real part of battery impedance is almost 5 times less than the average 

imaginary part of the impedance. It shows that the impedance fitting circuits with 

Impedance Analyzer are more successful in modeling the resistive properties of the battery 

impedance than the capacitive properties. However, in the BN models, there is no 

significant difference between real and imaginary parts’ estimation errors. The probability 

density function (PDF) for the Rayleigh distribution of the error data is given by (2-13). 

Where E is the error data and σ is the scale factor of the distribution which can be used to 

calculate the mean and variance of the distribution as shown in (2-14) and (2-15). 
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𝑀𝑀𝑒𝑒𝑎𝑎𝑙𝑙 =  𝜎𝜎�𝜋𝜋
2

s (2-13) 

𝑉𝑉𝑎𝑎𝑟𝑟𝐿𝐿𝑎𝑎𝑙𝑙𝑐𝑐𝑒𝑒 = �2 −
𝜋𝜋
2
� 𝜎𝜎2 (2-14) 

Table 2.7.  Rayleigh distribution parameters of impedance fitting and BN estimation 
Scale 

Factor 
Mean Variance 

𝑍𝑍′ 

2RC 7.774 9.743 25.94 
3RC 4.296 5.385 7.923 
8RC 1.296 1.624 0.721 

BN-2RC 2.294 2.875 2.259 
BN-3RC 1.378 1.727 0.8150 

𝑍𝑍′′ 

2RC 38.92 48.78 650.3 
3RC 28.95 36.28 359.7 
8RC 4.016 5.034 7.629 

BN-2RC 4.975 6.249 17.99 
BN-3RC 4.143 5.196 11.35 

The numerical results of the Rayleigh distribution are presented in Table 2.7. These 

results show that the average value of the error distribution in the 8RC model for both the 

resistive and capacitive parts of the impedance is 1.6% and 5%. This is significantly less 

than the 3RC and 2RC models as observed in Figure 2.21 and Figure 2.22. In addition, the 

variance of the error distribution is higher for the 2RC and 3RC models compared to the 

8RC model. For the BN models, numerical results of the 3RC circuit model are very close 

to the 8RC circuit of Impedance Analyzer which proves the superior accuracy of BN 

models. 
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2.5.3 Drive Cycle Validation 

The battery model was experimentally validated by a custom drive cycle tailored for 

a commercial Li-ion battery, as shown in Figure 2.23. A hardware-in-loop simulation was 

performed with the experimental setup as Figure 2.2 where the battery was the hardware 

and the load is simulated to represent a typical application for commercial Li-ion batteries. 

The drive cycle is almost 5 hours long with a periodic discharge pulse and regenerations. 

The SOC of the battery decreases by 35% throughout the cycle (60% to 25%).  

Figure 2.23.  The experimental load current and battery SOC%. 

It can be seen from Figure 2.24 that the fitting result of 8RC ECM has produced 

acceptable results. Though the testing drive cycle is highly dynamic, the simulated voltage 

has predicted the experimental voltage with the utmost accuracy. For the 8RC model, the 

relative error is less than 1% while the error RMS is 0.6%. It can also be deduced from 

Figure 2.24 that the 8RC ECM overestimates the battery terminal voltage. A similar trend 

can be observed from the 3RC and 2RC models, where the ECM overestimates the battery 

terminal voltage. The 3RC started the drive cycle with slightly more than 1% relative error. 
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Throughout the cycle, the error was increasing. Near the end of the cycle, both 3RC and 

2RC were identical with a higher degree of error. 

 

Figure 2.24.  The experimental validation of 8RC ECM developed with Impedance 
Analyzer fitting. 

This can be observed from an enlarged sub-section of the battery terminal voltage 

produced by each ECMs developed through Impedance Analyzer fitting in Figure 2.25. 

The 8RC ECM estimation is highly accurate as opposed to 3RC and 2RC. For discharging, 

regenerative and idle cases, 8RC ECM can replicate the battery behavior with minimal 

error. Moreover, 2RC and 3RC ECM performance are nearly identical. Thus, no significant 

improvement can be obtained by developing a 3RC ECM over a 2RC through the 

Impedance Analyzer software. However, as shown in Figure 2.26, the battery voltage 

estimations with the BN models have a lower deviation from the experimental results. The 

BN models overestimate the voltage drop on the battery impedance while the models from 

Impedance Analyzer underestimate. In addition, the voltage difference from the 

experimental data in the BN 3RC model is very similar to the Impedance Analyzer 8RC 

circuit. This validation proves that higher accuracy of the model can be reached with a 

reduced number of RC circuits in the BN approach. 
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Figure 2.25.  Accuracy of Impedance Analyzer models 

 

Figure 2.26.  Accuracy of BN models 

2.6 Conclusion 

In this chapter, a commercial Li-ion battery is tested in both time-domain and 

frequency-domain at multiple SOCs and temperature scenarios. The experimental results 

are used to generate ECM models with different accuracy including 2RC, 3RC and 8RC 

elements by two approaches: Impedance Analyzer fitting and Bayesian Networks. The 

accuracy of these ECMs was analyzed in terms of fitting, impedance and battery voltage. 

A custom drive cycle for commercial Li-ion battery was used to validate simulated models. 

These are highlighted observations from the results are discussed in the following sections. 
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Higher temperatures cause higher inductive properties in the battery, while lower 

temperatures increase its resistive properties. Also, the impact of Li-ion diffusion on the 

battery impedance is more observable in higher temperatures, whilst in lower temperatures, 

the effect of SEI, double-layer capacitance, and charge transfer resistance are more 

distinguishable. 

The difference in SEI impedance vs double-layer capacitance and charge transfer 

resistance is detectable in lower SOCs as two semi-circles are separate. 

In developing different ECMs by Impedance Analyzer fitting, it was proved that the 

8RC model is more precise in all frequencies compared to the 2RC and 3RC models. The 

8RC circuit fitting leads to a 3.3% average error in impedance presentation, while the 3RC 

and 2RC models are at 20.8% and 29.3%. These errors are particularly relevant to the 

imaginary part of impedance (capacitive properties). 

Bayesian Network approach leads to a higher accuracy with a reduced number of RC 

circuits. Impedance estimation with 3RC BN has a similar error percentage (3.5%) with 

the Impedance Analyzer 8RC model. Even the BN 2RC model has a significantly lower 

error percentage (4.6%) compared to the Impedance Analyzer 2RC model.  

The battery terminal voltage validation with the developed ECM models through the 

Impedance Analyzer and BNs show that the normalized RMS error (NRMSE) percentage 

for 8RC, 3RC, and 2RC Impedance Analyzer models are 0.6, 1.3 and 1.4 respectively. 

These results indicate that despite having higher impedance fitting errors in the 2RC and 

3RC models, the terminal voltage is not very sensitive to model impedance precision. In 
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addition, the BN 3RC and 2RC models are more precise in the voltage calculation 

compared to the 3RC and 2RC Impedance Analyzer models.  

Although the implementation of the BN approach is more complicated than the 

Impedance Analyzer modeling approach, it can estimate the battery’s dynamic behavior 

with a lower number of elements (lower degrees of freedom) due to the merit of Bayesian 

statistics. 
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Chapter 3 

 

Residential Battery Degradation in Smart 
Home Using Hierarchical Bayesian Network 

 
Abstract 

The battery energy storage is crucial in enabling a smart home to participate in 

multiple grid services while maintaining desired operational requirements from end-users. 

The major challenge for a battery energy storage system is degradation as it reduces the 

available capacity and power. In this chapter, a detailed hierarchical Bayesian Network 

(BN) is developed to evaluate the capacity fade degradation of a residential battery energy 

storage in a smart home environment. The BN utilizes a stochastic method to relate the 

causal factors of residential battery degradation. Experimental results of lithium iron 

phosphate batteries were used to train the BN. The capacity fade was evaluated for several 

cases, originated from a smart home energy management system (SHEMS). The cases 

show that the capacity fade of the residential battery system relies heavily on SHEMS 

architecture, load characteristics, user preferences, and geographical location. The case 

studies revealed that performing grid services reduces the capacity fade by 3% more. 

Furthermore, geographical location with higher temperature and solar irradiance can have 



93 

up to 5% more capacity fade with similar load patterns while reducing electricity 

consumption by 40%.  

3.1 Introduction 

The smart home is an essential part of the smart grid, which provides the end-user 

with reliable, secure and efficient energy while reducing emissions and electricity bills [1], 

[2]. A smart home integrates several flexible loads, controllable devices, renewable energy 

sources, and battery energy storage, allowing demand side management through a smart 

home management system (SHMS) [3]. Due to the falling cost of lithium-ion batteries, it 

is the most popular choice for a residential battery energy storage system [4]. The 

residential energy storage battery is supported by renewable energy sources and flexible 

loads that enable SHEMS to perform several grid services, i.e. capacity support, peak 

shaving, energy arbitrage, PV curtailment reduction, and voltage support while honoring 

end-user operational preferences [1]. Thus, allowing the end-user to participate in the 

electricity market to offset the electricity bill. The major concern in this regard is battery 

degradation and associated degradation cost, accounting for the usage of the battery. 

Past relevant works showed a similar concept while working on vehicle-to-grid 

(V2G), where a stationary vehicle battery was used to perform ancillary services. However, 

it was observed in multiple cases that participating in grid services reduces battery life 

significantly [5]–[7]. Authors in [8] and [9] showed that revenue earned through grid 

services was nullified by battery degradation cost. Therefore, it is critically important to 

consider battery degradation while incorporating the battery in a smart home. 
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There are two main approaches to determine battery degradation: data-based 

prognostics and model-based studies [10]. The data-based prognostics use a set of data for 

training. Afterward, the remaining usable life or battery state of health of the battery is 

predicted by using the present measurement data. This sort of approach is most suitable for 

online applications due to their design, characteristics, and calculation load [11]. 

Contemporary researchers use various data-based prognostics, i.e. Kalman Filters [12] and 

relevance vector machine [13]. On the other hand, the model-based research predicts 

battery degradation from mathematical expressions, obtained by fitting extensive 

experimental battery performance data, i.e. solid electrolyte interface (SEI) growth [14], 

cyclable lithium loss [15], internal impedance growth determined through electrochemical 

impedance spectroscopy (EIS) fitted to an equivalent circuit model [16] and Arrhenius 

equation-based models supported by extensive experimental research [17]. 

Past works on residential battery energy storage systems use some of these 

techniques to incorporate battery degradation. In most cases, battery degradation is 

ignored, due to the complex nature of batteries [18]–[21]. Other researchers consider 

battery capacity fade modeled through empirical studies [4]. Abdulla et al. [18] proposed 

a method to determine a total number of kWh until the end of life (EoL) using rain-flow 

counting of battery cycles, based on nominal battery cycle life and SOC. Mamun et al. [22] 

utilized SEI growth on the electrode to evaluate the capacity fade and applied a $/kWh 

degradation factor of the battery in the optimization problem. Cai et al. [23] determined the 

capacity fade with both SEI formation and active material loss or loss of cyclable lithium. 

Afterward, the determined capacity fade is related to the SOC and battery power by fitting. 
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Riffonneau et al. [24] determined capacity fade in terms of SOC only, but the capacity fade 

was determined only during discharge. 

The model-based approach of battery degradation modeling relies on deterministic 

mathematical equations and assumes factors affecting degradation remain constant 

throughout the cycling process. However, neither the degradation phenomena are 

deterministic, nor the factors remain constant during the lifetime of the battery. In a smart 

home, the capacity fade of the battery depends on the type of household loads, user 

preferences, availability of renewable sources, weather and temperature variation, 

participation in the electricity market and electricity price. Most of these factors need to be 

explained with probability distributions as they inherently contain a level of uncertainty. 

Also, the capacity fade of the battery has a causal relationship to the external factors. Thus, 

deterministic methods are not reliable in evaluating capacity fade for a battery. 

Bayesian Network is a data-driven method that allows the incorporation of 

uncertainty in the measurement of data and process, estimates the hidden processes, 

provides probability distribution instead of point value estimation and shows the causal 

relationship between different processes for battery capacity fade evaluation. Therefore, 

Bayesian models can provide a more insightful and accurate evaluation of battery capacity 

fade. The battery degradation can be analyzed in terms of capacity fade and power 

capability. This chapter solely focuses on exploring the capacity fade of the battery as a 

manifestation of degradation. The contributions of this chapter, as opposed to the state of 

the art, are listed below. 
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• A more reliable, secure and accurate probabilistic battery capacity degradation 

method through hierarchical BN is discussed, contrasting the contemporary 

deterministic approach. 

• A BN and associated probability distribution-based equation are developed 

utilizing prior lab-based experimental results for a residential battery energy 

storage system. 

• Associating battery capacity fade with external environmental factors rather than 

solely implicating battery parameters. 

The rest of the chapter is organized as follows. Section 3.2 describes the SHEMS 

simulation which generates different scenarios for the BN. In section 3.3, a detailed 

explanation of the development of the BN is discussed. Section 3.4 provides the results and 

discussion on capacity fade and associated causal factors obtained from the BN for multiple 

scenarios followed by the conclusion. The nomenclature used in this chapter is given in 

Table 3.1. 

Table 3.1.  List of nomenclatures 

Terms Description 

𝑃𝑃𝑖𝑖𝑆𝑆  Inflexible load power consumption at t (kW) 

𝑃𝑃𝑖𝑖𝐵𝐵𝑓𝑓,𝑃𝑃𝑖𝑖𝐵𝐵𝑠𝑠 Battery power used for residential loads and sold to the 
grid at t (kW) 

𝑃𝑃𝑖𝑖𝐵𝐵𝑐𝑐ℎ ,𝑃𝑃𝑖𝑖𝐵𝐵𝑑𝑑𝑐𝑐ℎ  Battery charge and discharge power at t (kW) 



97 

𝜂𝜂𝑐𝑐ℎ𝐵𝐵  , 𝜂𝜂𝑑𝑑𝑐𝑐ℎ𝐵𝐵  Battery charging and discharging efficiency 

𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝐵𝐵𝑐𝑐ℎ  ,𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝐵𝐵𝑑𝑑𝑐𝑐ℎ Battery maximum charging and discharging power (kW) 

𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓,𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑠𝑠 
EV battery power used for residential loads and sold to 
the grid at t (kW) 

𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑐𝑐ℎ  ,𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑑𝑑𝑐𝑐ℎ EV battery charge and discharge power at t (kW) 

𝜂𝜂𝑐𝑐ℎ𝑆𝑆𝐸𝐸  , 𝜂𝜂𝑑𝑑𝑐𝑐ℎ𝑆𝑆𝐸𝐸  EV battery charging and discharging efficiency 

𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝑆𝑆𝐸𝐸𝑐𝑐ℎ ,𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝑆𝑆𝐸𝐸𝑑𝑑𝑐𝑐ℎ EV battery maximum charging and discharging power 
(kW) 

𝑢𝑢𝑖𝑖𝑆𝑆𝐸𝐸  Variable to prevent simultaneous EV battery charge and 
discharge 

∆𝜕𝜕 The time interval between data measurements 

𝐿𝐿𝑎𝑎𝑒𝑒 Battery rated capacity (Ah) 

𝐼𝐼𝑐𝑐ℎ , 𝐼𝐼𝑑𝑑𝑐𝑐ℎ Battery charging and discharging current (A) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵𝐿𝐿𝑖𝑖 The initial state of charge of the battery 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵  Battery state of charge at t 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵𝑓𝑓𝐿𝐿𝑖𝑖 , 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵𝑓𝑓𝑖𝑖𝑥𝑥  Battery minimum and maximum state of charge at t 

𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝,𝑦𝑦𝑖𝑖

𝑓𝑓𝑝𝑝, 𝑧𝑧𝑖𝑖
𝑓𝑓𝑝𝑝 Phase control variables for phase p and load l at t 

𝑃𝑃𝑅𝑅𝑓𝑓𝑝𝑝,𝑃𝑃𝐷𝐷𝑓𝑓𝑝𝑝,𝑈𝑈𝑃𝑃𝑓𝑓  Cycles required, time delay, and user preference for 
phase j and load i 
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𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸  ,𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑃𝑃𝑟𝑟𝑖𝑖 PV power capacity and total power produced at t (kW) 

𝜂𝜂2,𝐴𝐴 PV panel efficiency and area 

𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑓𝑓 ,𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑠𝑠 PV power used for residential loads and sold to the grid 
at t (kW) 

𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟  Power purchased from the grid at t (kW) 

𝑃𝑃𝑖𝑖𝑠𝑠  Power sold from residence to the grid at t (kW) 

𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓 EV power used for residential loads at t (kW) 

𝑃𝑃𝐿𝐿𝑖𝑖  Total load power limit at t (kW) 

𝑃𝑃𝑖𝑖𝑠𝑠𝑓𝑓𝑏𝑏 Maximum power sold to the grid at t (kW) 

𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟𝑓𝑓𝑏𝑏 Minimum power sold to the grid at t (kW) 

𝑢𝑢𝑖𝑖𝐺𝐺𝑟𝑟 Variable to prevent simultaneous power consumption 
and grid services at t 

𝐿𝐿𝑖𝑖𝑃𝑃 Price of electricity at t 

𝑞𝑞𝐿𝐿𝑖𝑖  Capacity fade percentage of a battery cell at observation i 
and measurement j 

𝑅𝑅𝑟𝑟𝑖𝑖𝑖𝑖  The internal temperature of residence at observation i 
and measurement m (℃) 

𝑅𝑅𝑓𝑓𝑖𝑖𝑖𝑖  Ambient temperature at observation i and measurement d 
(℃) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖  Solar irradiation GHI at observation i and measurement c 
(W/m2) 
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𝜆𝜆𝐿𝐿 Estimation of capacity fade percentage at observation i 

𝑅𝑅𝑟𝑟𝚤𝚤� Estimation of internal temperature of residence at 
observation i 

𝐴𝐴ℎ𝐿𝐿  Estimation of A-h at observation i 

𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 Estimation of average SOC at observation i 

𝐼𝐼𝑐𝑐𝐿𝐿  Estimation of C-rate for observation i 

𝑉𝑉𝑖𝑖𝐿𝐿 Estimation of battery voltage at observation i 

𝛼𝛼,𝛽𝛽,𝐸𝐸𝑖𝑖, 𝜂𝜂1, 𝜁𝜁, 𝜖𝜖  Battery aging parameters 

𝑅𝑅𝑓𝑓𝚤𝚤
�  Estimation of ambient temp. at observation i 

𝑆𝑆𝑖𝑖𝚤𝚤�  Estimation of irradiance at observation i 

𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤�  Estimation of solar power at observation i 

𝑃𝑃𝑏𝑏𝚤𝚤�  Estimation of battery power at observation i 

𝑘𝑘1𝑖𝑖 , … ,𝑘𝑘11𝑖𝑖  Contribution coefficients of capacity fade for a service i 

𝑃𝑃𝑎𝑎𝑟𝑟 Grid power consumed 

𝑃𝑃𝑒𝑒𝑎𝑎𝑒𝑒 EV power used 

𝑃𝑃𝑤𝑤𝑓𝑓 Washing machine power consumption 
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𝑃𝑃𝑑𝑑𝑤𝑤 Dishwasher power consumption 

𝑃𝑃𝑑𝑑𝑟𝑟𝑐𝑐 Clothes dryer power consumption 

𝑃𝑃𝑖𝑖𝑐𝑐  HVAC power consumption 

𝑃𝑃𝑒𝑒𝑤𝑤ℎ Electric water heater power consumption 

𝑃𝑃𝑒𝑒𝑎𝑎𝐸𝐸  EV charging power provided 

𝑃𝑃𝑆𝑆 Inflexible load power consumption 

𝑃𝑃𝑎𝑎𝑠𝑠 Power used for grid services 

3.2 Smart Home Energy Management System 

A smart home energy management system (SHEMS) has the capability to schedule 

various types of household loads that helps to minimize the electricity bills without 

compromising user comfort. SHEMS system communicates with different household loads 

in real-time, while taking input from the user through, and receives day ahead prices [25]. 

It can develop an optimized load schedule for the household loads utilizing day ahead 

prices available. This optimization can curtail electricity usage and increases energy 

utilization efficiency [26]. The inclusion of a residential battery, plug-in hybrid/electric 

vehicle and renewable source such as solar photovoltaic (PV) enables SHEMS to perform 

grid services. Therefore, SHEMS is essential for successful demand-side load 

management. In this SHEMS simulation, a discrete linear load and generation model is 

used, as the overall system operation is considered in discrete time with a finite horizon, T, 



101 

and equal time interval, Δt. The SHEMS simulation comprises various types of loads, a 

residential battery, an electric vehicle (EV) and PV panels. The following assumptions 

were considered: the smart meter receives day-ahead electricity price while having the 

capability to log consumption statistics, the weather forecast is available from the data 

center and each load can communicate with the meter. 

3.2.1 Load Models 

Multiple types of loads with varying characteristics are included in the SHEMS 

model to have an accurate representation of the general household setup. The household 

loads according to demand flexibility can be divided into two broad categories, inflexible 

and flexible loads. Inflexible loads do not follow any schedule and depend on highly 

stochastic usage patterns of the residents [3]. On the other hand, as the name suggests, 

flexible loads can be scheduled. According to the unique properties, the flexible loads are 

divided again into three categories, interruptible, uninterruptible, and thermostatically 

controlled loads. These various types of loads are described in detail in the following parts. 

3.2.1.1 Inflexible Loads 

As mentioned previously, inflexible loads are highly dependent on the behavior of 

the resident and the smart home energy management system has to provide power to these 

loads. For example, television and laptop. Such type of loads is modeled by an aggregate 

base loads [27] as seen in Figure 3.1. Figure 3.1 shows a typical residential inflexible loads 

profile. 
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Figure 3.1.  Inflexible load profile [27]. 

3.2.1.2 Uninterruptible Loads 

Uninterruptible loads can be scheduled but must continue operating once started, i.e., 

washing machine, dishwasher, and cloth dryer, LU = {WM, DW, CD} are modeled using 

single and multi-phase operations. The rated power requirements for the washing machine, 

dishwasher and dryer are 2kW, 2.2kW, and 1kW, respectively. Each uninterruptible load, 

𝑙𝑙 is operated through multiple phases, 𝑒𝑒 with three binary variables. Binary variable 𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝 is 

high when a load 𝑙𝑙 is operating in phase 𝑒𝑒 at time interval 𝜕𝜕. Similarly, 𝑦𝑦𝑖𝑖
𝑓𝑓𝑝𝑝 is high when 

the operation of that specific load has done operating in that time interval. Also, 𝑧𝑧𝑖𝑖
𝑓𝑓𝑝𝑝 ensures 

the same load is barred from operating for a certain time interval 𝜕𝜕. 

The uninterruptible load must operate a predefined period of cycles whenever it starts 

it operates as scheduled as ensured by (3-1). Like the clothes dryer needs to operate a 

certain period for the cloths to be dried to the user’s preference. Furthermore, (3-2) ensures 
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a phase load either must be on or off. Also, once a phase started, it must continue 

uninterrupted sequential operation through (3-3) and when a phase is completed, it cannot 

start again by (3-4). Finally, the next phase can only start operating if the previous phase 

is done is devised by (3-5).  Multiphase operation expands on the single phase by including 

another binary operator. This operator enables a prefixed delay during operation as defined 

by (3-6). However, the delay can only be introduced if the previous phase is completed as 

given by (3-7). Finally, there could be certain periods in a day when the user may not want 

the uninterruptible loads to be scheduled by the energy management system, i.e. operation 

of loud washing machine or dryer during sleeping hours. These preferences can also be 

included in the model by introducing another binary variable 𝑈𝑈𝑃𝑃𝑖𝑖𝑓𝑓 , which is high for period 

t when the operation is desired and low when not preferred. This variable is related to xt
lp 

to control the start of a phase as given by (3-8). 

�𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝

𝑇𝑇

𝑖𝑖=1

= 𝑃𝑃𝑅𝑅𝑓𝑓𝑝𝑝 ,∀𝑙𝑙,𝑒𝑒 (3-1) 

𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝 + 𝑦𝑦𝑖𝑖

𝑓𝑓𝑝𝑝 ≤ 1 ,∀𝑙𝑙,𝑒𝑒, 𝜕𝜕 (3-2) 

𝜕𝜕𝑖𝑖−1
𝑓𝑓𝑝𝑝 − 𝜕𝜕𝑖𝑖

𝑓𝑓𝑝𝑝 ≤ 𝑦𝑦𝑖𝑖
𝑓𝑓𝑝𝑝 ,∀𝑙𝑙, 𝑒𝑒, 𝜕𝜕: 𝜕𝜕 > 1 (3-3) 

𝑦𝑦𝑖𝑖−1
𝑓𝑓𝑝𝑝 ≤ 𝑦𝑦𝑖𝑖

𝑓𝑓𝑝𝑝 ,∀𝑙𝑙, 𝑒𝑒, 𝜕𝜕: 𝜕𝜕 > 1 (3-4) 

𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝 ≤ 𝑦𝑦𝑖𝑖

𝑓𝑓(𝑝𝑝−1) ,∀𝑙𝑙,𝑒𝑒, 𝜕𝜕: 𝑗𝑗 > 1 (3-5) 
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�𝑧𝑧𝑖𝑖
𝑓𝑓𝑝𝑝

𝑇𝑇

𝑖𝑖=1

= 𝑃𝑃𝐷𝐷𝑓𝑓𝑝𝑝 ,∀𝑙𝑙,𝑒𝑒 (3-6) 

𝑧𝑧𝑖𝑖
𝑓𝑓𝑝𝑝 = 𝑦𝑦𝑖𝑖

𝑓𝑓(𝑝𝑝−1) − �𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝 + 𝑦𝑦𝑖𝑖

𝑓𝑓𝑝𝑝� ,∀𝑙𝑙, 𝑒𝑒, 𝜕𝜕: 𝜕𝜕 > 1 (3-7) 

𝜕𝜕𝑖𝑖
𝑓𝑓𝑝𝑝 ≤ 𝑈𝑈𝑃𝑃𝑖𝑖𝑓𝑓  ,∀𝑙𝑙,𝑒𝑒, 𝜕𝜕 (3-8) 

3.2.1.3 Interruptible Loads 

Interruptible loads can be interrupted without sacrificing consumer comfort, 

consume power during the low-price period, i.e. electric vehicles (EVs) and battery energy 

storage. The interruptible loads, LI = {B, EV}, can either be load or power supply 

depending on their charging and discharging cycle. The power produced can either be used 

to provide grid services or to supply the loads.  

3.2.1.3.1 Battery Energy Storage System Load 

The battery energy storage is modeled with (3-9) to (3-14). These mathematical 

solely focus on the operations of the battery energy storage system with the energy 

management system and residential loads.  

𝑃𝑃𝑖𝑖𝐵𝐵𝑓𝑓 + 𝑃𝑃𝑖𝑖𝐵𝐵𝑠𝑠 = 𝜂𝜂𝑑𝑑𝑐𝑐ℎ𝐵𝐵 𝑃𝑃𝑖𝑖𝐵𝐵𝑑𝑑𝑐𝑐ℎ  ,∀𝜕𝜕 (3-9) 

0 ≤ 𝑃𝑃𝑖𝑖𝐵𝐵𝑑𝑑𝑐𝑐ℎ ≤ 𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝐵𝐵𝑑𝑑𝑐𝑐ℎ(1 − 𝑢𝑢𝑖𝑖𝐵𝐵) ,∀𝜕𝜕 (3-10) 

0 ≤ 𝑃𝑃𝑖𝑖𝐵𝐵𝑐𝑐ℎ ≤ 𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝐵𝐵𝑐𝑐ℎ (𝑢𝑢𝑖𝑖𝐵𝐵) ,∀𝜕𝜕 (3-11) 
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𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖+1𝐵𝐵 = 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵 +
∆𝜕𝜕 ∙ (𝜂𝜂𝑐𝑐ℎ𝐵𝐵 𝐼𝐼𝑐𝑐ℎ − 𝜂𝜂𝑑𝑑𝑐𝑐ℎ𝐵𝐵 𝐼𝐼𝑑𝑑𝑐𝑐ℎ)

100𝐿𝐿𝑎𝑎𝑒𝑒
 , 𝜕𝜕 ≥ 1 (3-12) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵𝑓𝑓𝐿𝐿𝑖𝑖 ≤ 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵 ≤ 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵𝑓𝑓𝑖𝑖𝑥𝑥 ,∀𝜕𝜕 (3-13) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵 = 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝐵𝐵𝐿𝐿𝑖𝑖 , 𝜕𝜕 = 𝜕𝜕𝑖𝑖 (3-14) 

Equation (3-9) is the power balance equation, describing the summation of battery 

power sold and used for the residential load is provided from the total power the battery 

can discharge. The power balance equation is subject to constraints given by (3-10) to (3-

14). Here, (3-9) shows that total power discharged from the battery is the summation of the 

power distributed to residential loads and the power used for grid services. Here, (3-10) 

and (3-11) limits the total power that can be used to charge or discharge the battery. Also, 

utB, a binary variable, which ensures that charging and discharging does not occur 

simultaneously as shown in (3-10) and (3-11). The state of charge (SOC) of the battery is 

measured with coulomb counting as given by (3-12). The maximum and minimum SOC 

ranges are given to prevent overcharge and over-discharge in (3-13). Moreover, SHEMS 

opts to charge the battery completely at the end of the day as given by (3-14). 

The residential battery is modeled according to the specification of Tesla Powerwall 

2 [28]. The battery is rated at 270Ah with a nominal voltage rating of 50V, giving the 

13.5kW total power. The charge and discharge power are limited to 5kW as per the 

specifications. The battery is considered fully charged at the start of the day with 100% 

initial SOC. 
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3.2.1.3.2 Electric Vehicle Load 

The electric vehicle is modeled as a mobile battery energy storage system, which can 

provide power to other residential loads and the grid if necessary. However, the model of 

EV is designed with a condition that at the end of the day, the battery is fully charged, 

giving full range to the next day’s drive. Also, since this is a mobile load, availability for 

interaction with the energy management system was included in the model. Two variables 

𝑅𝑅𝑑𝑑 𝑎𝑎𝑙𝑙𝑑𝑑 𝑅𝑅𝑖𝑖 defines when the battery leaves and arrives at the residence respectively. The 

EV is available to the system between the period 𝑅𝑅𝑖𝑖 𝑎𝑎𝑙𝑙𝑑𝑑 𝑅𝑅𝑑𝑑. The model is explained by (3-

15) to (3-20). 

𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓 + 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑠𝑠 = 𝜂𝜂𝑑𝑑𝑐𝑐ℎ𝑆𝑆𝐸𝐸 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑑𝑑𝑐𝑐ℎ  ,∀𝜕𝜕𝜖𝜖[𝑅𝑅𝑖𝑖,𝑅𝑅𝑑𝑑] (3-15) 

0 ≤ 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑑𝑑𝑐𝑐ℎ ≤ 𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝑆𝑆𝐸𝐸𝑑𝑑𝑐𝑐ℎ(1 − 𝑢𝑢𝑖𝑖𝑆𝑆𝐸𝐸) ,∀𝜕𝜕𝜖𝜖[𝑅𝑅𝑖𝑖,𝑅𝑅𝑑𝑑] (3-16) 

0 ≤ 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑐𝑐ℎ ≤ 𝑅𝑅𝑓𝑓𝑖𝑖𝑥𝑥𝑆𝑆𝐸𝐸𝑐𝑐ℎ(𝑢𝑢𝑖𝑖𝑆𝑆𝐸𝐸) ,∀𝜕𝜕𝜖𝜖[𝑅𝑅𝑖𝑖,𝑅𝑅𝑑𝑑] (3-17) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖+1𝑆𝑆𝐸𝐸 = 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝐸𝐸 +
∆𝜕𝜕 ∙ (𝜂𝜂𝑐𝑐ℎ𝑆𝑆𝐸𝐸𝐼𝐼𝑐𝑐ℎ − 𝜂𝜂𝑑𝑑𝑐𝑐ℎ𝑆𝑆𝐸𝐸 𝐼𝐼𝑑𝑑𝑐𝑐ℎ)

100𝐿𝐿𝑎𝑎𝑒𝑒
 ,∀𝜕𝜕𝜖𝜖[𝑅𝑅𝑖𝑖,𝑅𝑅𝑑𝑑] (3-18) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓𝐿𝐿𝑖𝑖 ≤ 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝐸𝐸 ≤ 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓𝑖𝑖𝑥𝑥  ,∀𝜕𝜕𝜖𝜖[𝑅𝑅𝑖𝑖,𝑅𝑅𝑑𝑑] (3-19) 

𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝐸𝐸 = 𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓𝑖𝑖𝑥𝑥  , 𝜕𝜕 = 𝑅𝑅𝑑𝑑  (3-20) 

The model for the EV is identical to battery energy storage in the residence. It is 

considered that the EV battery is rated at 16kW. This battery can be discharged to a 

minimum of 4.8kW, while the battery returns to the residence with 8kW. The charging and 

discharging rate of the EV were fixed at 3.3kW. 
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3.2.1.4 Thermostatically Controlled Loads 

Thermostatically controlled load models are air conditioner and electric water heater, 

LT = {AC, EWH}. The model output is temperature, guided by constraints and user-defined 

temperature ranges. The model for the HVAC system is explained with (3-21) to (3-23). 

𝑅𝑅𝑖𝑖𝐿𝐿𝑖𝑖 = �1 −
𝛥𝛥𝜕𝜕

100𝑀𝑀𝑖𝑖𝐿𝐿𝑖𝑖𝑅𝑅𝑒𝑒𝑒𝑒
�𝑅𝑅𝑖𝑖−1𝐿𝐿𝑖𝑖 +

𝛥𝛥𝜕𝜕
100𝑀𝑀𝑖𝑖𝐿𝐿𝑖𝑖𝑅𝑅𝑒𝑒𝑒𝑒

∙ 𝑅𝑅𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖

+
𝐿𝐿𝐿𝐿𝑃𝑃 ∙ 𝑃𝑃𝐴𝐴𝐸𝐸𝛥𝛥𝜕𝜕

2.77 × 10−4𝑀𝑀𝑖𝑖𝐿𝐿𝑖𝑖
∙ 𝑢𝑢𝑖𝑖𝐴𝐴𝐸𝐸  

,∀𝜕𝜕 (3-21) 

𝑅𝑅𝑖𝑖𝑓𝑓𝑏𝑏 ≤ 𝑅𝑅𝑖𝑖𝐿𝐿𝑖𝑖 ≤ 𝑅𝑅𝑖𝑖𝑓𝑓𝑏𝑏 ,∀𝜕𝜕 (3-22) 

𝑃𝑃𝑖𝑖𝐴𝐴𝐸𝐸 = 𝑃𝑃𝐴𝐴𝐸𝐸 ∙ 𝑢𝑢𝑖𝑖𝐴𝐴𝐸𝐸 ,∀𝜕𝜕 (3-23) 

In (3-21), the internal temperature of the residence at time 𝜕𝜕 is generated from the air 

mass, 𝑀𝑀𝑖𝑖, thermal capacitance, 𝐿𝐿𝑖𝑖, equal thermal resistance, 𝑅𝑅𝑒𝑒𝑒𝑒, performance coefficient, 

𝐿𝐿𝐿𝐿𝑃𝑃, AC rated power, 𝑃𝑃𝐴𝐴𝐸𝐸 , and external temperature, 𝑅𝑅𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖. The values of these parameters 

are obtained from [29]. The constraint (3-22) shows the user preferred lower, 𝑅𝑅𝑖𝑖𝑓𝑓𝑏𝑏, and 

upper, 𝑅𝑅𝑖𝑖𝑓𝑓𝑏𝑏 bound of the temperature. Finally, the total power consumed by the HVAC is 

given by (3-23). The rated power for the HVAC was 2kW. 

The electric water heater is modeled similar to the HVAC system. The major 

difference is that the temperature of the hot water is dependent on the hot water usage 

pattern of the resident. The expressions (3-24) to (3-26) is utilized to define the electric 

water heater. 
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𝑅𝑅𝑖𝑖𝑆𝑆𝐸𝐸𝐸𝐸 = 𝑅𝑅𝑖𝑖−1𝑆𝑆𝐸𝐸𝐸𝐸 + (𝛼𝛼 ∙ 𝑢𝑢𝑖𝑖𝑆𝑆𝐸𝐸𝐸𝐸 − 𝛽𝛽 ∙ 𝐻𝐻𝐻𝐻𝑈𝑈𝑖𝑖 − 𝛾𝛾)𝛥𝛥𝜕𝜕 ,∀𝜕𝜕 (3-24) 

𝑅𝑅𝑖𝑖
𝑆𝑆𝐸𝐸𝐸𝐸,𝑓𝑓𝑏𝑏 ≤ 𝑅𝑅𝑖𝑖𝑆𝑆𝐸𝐸𝐸𝐸 ≤ 𝑅𝑅𝑖𝑖

𝑆𝑆𝐸𝐸𝐸𝐸,𝑓𝑓𝑏𝑏 ,∀𝜕𝜕 (3-25) 

𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑆𝑆𝐸𝐸𝐸𝐸 ∙ 𝑢𝑢𝑖𝑖𝑆𝑆𝐸𝐸𝐸𝐸 ,∀𝜕𝜕 (3-26) 

The hot water temperature at time 𝜕𝜕 is a function of the hot water usage, 𝐻𝐻𝐻𝐻𝑈𝑈𝑖𝑖. A 

common hot water usage pattern for residential users was obtained from [30] as shown in 

Figure 3.2. Here, (3-24) is the temperature limit constraints according to user preferences. 

Total power is obtained from (3-26). The rater maximum power for the electric water heater 

was 4kW. 

 

Figure 3.2.  Hot water usage pattern in a residence [30]. 

3.2.2 PV Generation Model 

The SHESM is considered to be equipped with PV solar panels with MPPT, that can 

produce maximum energy, limited by the solar power production capacity. The PV is the 
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local power source besides the power from the grid that can either resource the residential 

load or sell power back to the grid. Here, (3-27) calculates the total solar power production 

capacity, giving the total power produced by the PV panels as shown in (3-28). The 

efficiency, 𝜂𝜂2, and area of the PV panel A is considered to be 0.2 and 45m2 respectively. 

The other restrictions ensure the PV power is either used for residential loads or sold to the 

grid. 

𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸 = 𝜂𝜂2𝑆𝑆𝑖𝑖𝐴𝐴�1 − 0.005(𝑅𝑅𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖 − 25)� ,∀𝜕𝜕 (3-27) 

0 ≤ 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑃𝑃𝑟𝑟𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸  ,∀𝜕𝜕 (3-28) 

𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑓𝑓 + 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑠𝑠 = 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑃𝑃𝑟𝑟𝑖𝑖 ,∀𝜕𝜕 (3-29) 

�0 ≤ 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑓𝑓

0 ≤ 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑠𝑠
 ,∀𝜕𝜕 (3-30) 

3.2.3 Problem Formulation 

Since load models contain both continuous and discrete variables, the problem is set 

up as mixed-integer linear programming (MILP). The MILP problem is formulated with 

(3-31) to (3-35). The objective function is given in (3-31), designed to minimize the 

electricity cost of the residence. The total power sold back to the grid is given by (3-32), 

which is the sum of all the power sold by PV, EV and battery. The balancing equation (3-

33), is subject to (3-34) to (3-36) and previously explained constraints. Here, (3-34) 

enforces that the total load is non-negative, whereas (3-35) and (3-36) ensures the residence 

is not performing grid services and consuming electricity from the grid simultaneously. 
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𝑚𝑚𝐿𝐿𝑙𝑙𝐿𝐿𝑚𝑚𝐿𝐿𝑧𝑧𝑒𝑒 �(𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟 − 𝑃𝑃𝑖𝑖𝑠𝑠)𝐿𝐿𝑖𝑖𝑃𝑃∆𝜕𝜕
𝑇𝑇

𝑖𝑖=1

 ,∀𝜕𝜕 (3-31) 

𝑃𝑃𝑖𝑖𝑠𝑠 = 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑠𝑠 + 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑠𝑠 + 𝑃𝑃𝑖𝑖𝐵𝐵𝑠𝑠 ,∀𝜕𝜕 (3-32) 

𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟 + 𝑃𝑃𝑖𝑖𝑃𝑃𝐸𝐸𝑓𝑓 + 𝑃𝑃𝑖𝑖𝑆𝑆𝐸𝐸𝑓𝑓 + 𝑃𝑃𝑖𝑖𝐵𝐵𝑓𝑓 = �𝑃𝑃𝑖𝑖
𝐿𝐿,𝑐𝑐ℎ

𝐿𝐿∈𝐿𝐿𝐼𝐼

+ � 𝑃𝑃𝑖𝑖𝐿𝐿
𝐿𝐿∈𝐿𝐿𝑈𝑈

+ �𝑃𝑃𝑖𝑖𝐿𝐿
𝐿𝐿∈𝐿𝐿𝑇𝑇

+ 𝑃𝑃𝑖𝑖𝑆𝑆  ,∀𝜕𝜕 (3-33) 

0 ≤�𝑃𝑃𝑖𝑖
𝐿𝐿,𝑐𝑐ℎ

𝐿𝐿∈𝐿𝐿𝐼𝐼

+ � 𝑃𝑃𝑖𝑖𝐿𝐿
𝐿𝐿∈𝐿𝐿𝑈𝑈

+ �𝑃𝑃𝑖𝑖𝐿𝐿
𝐿𝐿∈𝐿𝐿𝑇𝑇

+ 𝑃𝑃𝑖𝑖𝑆𝑆 ≤ 𝑃𝑃𝐿𝐿𝑖𝑖  ,∀𝜕𝜕 (3-34) 

0 ≤ 𝑃𝑃𝑖𝑖𝑠𝑠 ≤ 𝑃𝑃𝑖𝑖𝑠𝑠𝑓𝑓𝑏𝑏(1 − 𝑢𝑢𝑖𝑖𝐺𝐺𝑟𝑟) ,∀𝜕𝜕 (3-35) 

0 ≤ 𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟 ≤ 𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟𝑓𝑓𝑏𝑏𝑢𝑢𝑖𝑖𝐺𝐺𝑟𝑟 ,∀𝜕𝜕 (3-36) 

The day ahead real-time (RT) electricity price used for billing is used as the price of 

electricity in (3-31). A common residential day ahead RT price profile as seen in Figure 

3.3 was used to formulate the problem. 

 

Figure 3.3.  The utilized day ahead RT price profile. 
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This SHEMS model is generated in MATLAB 2018 environment. The SHEMS 

model is developed with the YALMIP tool, which is used as an algebraic modeling 

language (AML) to solve the MILP problem. The grid power consumed by the residence, 

total PV power produced, and load profiles obtained from the SHEMS problem for an 

optimized condition are most important in this analysis. These quantities are used to 

determine the battery degradation using Bayesian Networks. 

3.3 Hierarchical Bayesian Network for Battery Degradation 
Estimation 

Bayesian Network is a probabilistic method of representing a process through a direct 

acyclic graph (DAG) and parameters to determine a joint probability distribution of 

network random variables. The DAG constitutes of nodes and edges. These nodes are 

random variables, connected to parent through edges. BN can classify the variables 

according to several properties. In this problem, the variables are either observations or 

unobserved variables. Observations are measurements, a single instance of a stochastic 

process. Unobserved variables are modeled as random variables because their 

characteristics are controlled by a probability distribution. Thus, unobserved variables are 

characterized by a probability distribution. According to Bayes’ theorem, the probability 

distribution of an unobserved variable, 𝑋𝑋, conditional of the observation, 𝑌𝑌, known as the 

posterior distribution, 𝑃𝑃(𝑋𝑋|𝑌𝑌), is given in (3-37), where observations and unobserved 

variables are vectors [31]. Here, (3-37) gives the probability of unobserved random 

variable 𝑋𝑋, given than observation 𝑌𝑌 is available. 
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𝑃𝑃(𝑋𝑋|𝑌𝑌) = 𝑃𝑃(𝑌𝑌|𝑋𝑋)𝑃𝑃(𝑋𝑋) 𝑃𝑃(𝑌𝑌)⁄  (3-37) 

𝑃𝑃(𝑌𝑌) = �𝑃𝑃(𝑌𝑌|𝑋𝑋)𝑃𝑃(𝑋𝑋) 𝑑𝑑𝑋𝑋 (3-38) 

Here, 𝑃𝑃(𝑌𝑌|𝑋𝑋) is known as likelihood, 𝑃𝑃(𝑋𝑋) is prior and 𝑃𝑃(𝑌𝑌) is marginal 

distribution. Marginal distribution can be determined analytically using (3-38). BN 

satisfies Markov condition, which requires that every variable is independent of the effect 

of non-descendants [32]. Therefore, this problem is solved with Markov Chain Monte 

Carlo (MCMC) sampling.  

The factors influencing battery degradation or capacity fade, in this case, are 

temperature, SOC, C-rate and ampere-hour throughput. Except for the temperature, all 

other variables are the function of daily operations of the battery and user preferences, all 

highly stochastic processes. Moreover, SOC and amp-hour throughput are conditional on 

C-rate, while C-rate is conditional on battery power itself. Thus, hierarchal BN is 

appropriate to evaluate battery capacity fade. 

3.3.1 Network Development 

The proposed detailed hierarchical Bayesian Network can be seen in Figure 3.4. The 

following parts will divulge the details of forming this BN. The first step when developing 

BN is to define the variables with nodes and interdependencies with arrows. The 

measurement of the capacity fade percentage of a battery cell contains errors, in terms of 

measurement and the process. The errors give rise to uncertainty. So, the estimation of 

capacity fade percentage is considered with errors. The estimation has a probabilistic 



113 

relation with actual measurement. The probabilistic nature of capacity fade estimation 

allows for consideration of operational variation that cannot be achieved by any 

deterministic model generated from lab-based experiments. 

Moving down the network in Figure 3.4, a top tier node has a subsequent node only 

when higher tier variables is dependent on the lower tier variable. For example, the capacity 

fade estimation has a probabilistic relationship with total amp-hour throughput, C-rate, 

average state of charge, and temperature estimations [13], [33], [34]. This probabilistic 

relation aids in considering the variations in subsequent nodes down the network. Here it 

was considered that the battery would face the internal temperature of the residence. Most 

batteries are either equipped with thermal management units or, placed inside the 

residence. Further down the network in Figure 3.4, it can be seen that Ah and SOC has a 

conditional dependency on 𝐼𝐼𝑐𝑐 as both the amp-hour throughput and average state of charge 

is a function of the battery current. The C-rate is a method of measuring the battery current 

without the limitation of the battery capacity. 

The C-rate enables the possibility of relating the power of the battery by considering 

the voltage. The battery power is obtained from an aggregated average function consisting 

of several contributing factors. These contributing factors are associated with their 

respective powers in the residential power pool which has a possibility of contributing 

towards the capacity fade of the battery. The solar PV power generation has a probabilistic 

relation to battery power. Solar PV generation is highly susceptible to the change of 

ambient conditions, which can be explained properly by a probabilistic relationship.  
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Figure 3.4.  Developed BN for estimating degradation for residential battery energy 
storage systems. 
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Except for PV, other components in the power pool are considered to have a 

deterministic connection to their respective contribution factors. Like the capacity fade, the 

temperature and solar irradiations are related to their respective measurement 

probabilistically. The aging and PV solar parameters explain the relationships of capacity 

fade and PV power estimation to their subsequent variables. 

The BN in Figure 3.4, developed with these random variables, observation data, and 

parameters, has three parts to it. First is data, containing the measurements, then the process 

based on the conditional dependencies and lastly the parameters. The process section 

contains both aging and residential variables. The solid lines represent probabilistic 

dependency whereas the dashed lines are for deterministic properties. In this problem, there 

are, 𝐿𝐿 = 1, …𝑑𝑑, the number of observations. Each observation contains multiple 

measurements. Here, J, M, D and C number of measurements are taken at each observation 

for, 𝑞𝑞𝐿𝐿𝑖𝑖,𝑅𝑅𝑟𝑟𝑖𝑖𝑖𝑖 ,𝑅𝑅𝑓𝑓𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑙𝑙𝑑𝑑 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 respectively. 

3.3.2 Mathematical Expressions 

The mathematical expression from the network, are derived considering all the 

variables, data and parameters can be observed in (3-39). Equation (3-40) to (3-43) are 

associated functions used in (3-39). The equation are formed by using the previously 

explained Bayes’ rule. Probabilities are denoted with, "[  ]", unobserved variables are 

presented on the left of, " | ", observed variables to the right.  Since the marginal distribution 

is ignored, "∝" is used instead of equality. To solve this problem through MCMC 10,000 

samples of the posterior are taken. These samples are estimated through distribution fitting. 
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Thus, the probability distribution function (PDF) of each variable is based on their 

properties. 

In this system, 𝑞𝑞, 𝜆𝜆,𝐴𝐴ℎ,𝑉𝑉𝑖𝑖,𝑃𝑃𝑝𝑝𝑎𝑎� , 𝑆𝑆𝑖𝑖� , 𝐼𝐼𝑐𝑐 and all the parameters must be greater or equal 

to zero, thus gamma PDF represents these variables. A beta PDF is appropriate for this 

𝑆𝑆𝐿𝐿𝐿𝐿 as it has a range from 0 to 1. A normal PDF describes both the temperatures and 

battery power, as these are real numbers. The final step in the mathematical formulation is 

forming full conditionals to apply MCMC. Full conditional equations for 

𝜆𝜆,𝑅𝑅𝑓𝑓� ,𝑅𝑅𝑟𝑟� ,𝑃𝑃𝑝𝑝𝑎𝑎� , 𝑆𝑆𝑖𝑖�  𝑎𝑎𝑙𝑙𝑑𝑑 𝐼𝐼𝑐𝑐 are given in (4-44) to (4-54). Here, [𝜆𝜆| ∙] defines the conditional 

dependence of capacity fade with all the associated variables. Also, G, B, and N refer to 

the type of distribution used to explain a specific variable. 

�𝝀𝝀,𝑻𝑻𝒓𝒓�,𝑨𝑨𝑨𝑨,𝑺𝑺𝑺𝑺𝑪𝑪, 𝑰𝑰𝒄𝒄,𝑽𝑽𝒐𝒐,𝑷𝑷𝒃𝒃� ,𝒌𝒌𝟏𝟏, … ,𝒌𝒌𝟏𝟏𝟏𝟏,𝑷𝑷𝒑𝒑𝒑𝒑� ,𝑺𝑺𝒃𝒃� ,𝑻𝑻𝒎𝒎� ,𝛼𝛼,𝛽𝛽,𝐸𝐸𝑖𝑖 , 𝜂𝜂, 𝜁𝜁, 𝜖𝜖,𝐴𝐴, 𝜂𝜂2
  | 𝒒𝒒,𝑻𝑻𝒓𝒓,𝑻𝑻𝒎𝒎,𝑺𝑺𝒃𝒃

� 

∝  ���𝑞𝑞𝐿𝐿𝑖𝑖|𝜆𝜆𝐿𝐿�
𝐽𝐽

𝑖𝑖=1

𝑁𝑁

𝐿𝐿=1

[𝜆𝜆𝐿𝐿|𝐹𝐹𝐿𝐿]��𝑅𝑅𝑟𝑟𝐿𝐿𝑓𝑓|𝑅𝑅𝑟𝑟𝚤𝚤��
𝑀𝑀

𝑓𝑓=1

�𝑅𝑅𝑟𝑟𝚤𝚤���𝐴𝐴ℎ𝐿𝐿�𝐼𝐼𝑐𝑐𝑖𝑖��𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿�𝐼𝐼𝑐𝑐𝑖𝑖� 

× �𝐼𝐼𝑐𝑐𝑖𝑖�𝑌𝑌𝐿𝐿��𝑉𝑉𝑖𝑖𝐿𝐿��𝑃𝑃𝑏𝑏𝚤𝚤� |𝐺𝐺𝐿𝐿��𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤� |𝐻𝐻𝐿𝐿���𝑆𝑆𝑖𝑖𝐿𝐿𝑐𝑐|𝑆𝑆𝑖𝑖𝚤𝚤��
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𝑐𝑐=1

�𝑆𝑆𝑖𝑖𝚤𝚤����𝑅𝑅𝑓𝑓𝐿𝐿𝑑𝑑|𝑅𝑅𝑓𝑓𝚤𝚤
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𝑑𝑑=1

�𝑅𝑅𝑓𝑓𝚤𝚤
� � 

× [𝛼𝛼][𝛽𝛽][𝐸𝐸𝑖𝑖][𝜂𝜂1][𝜁𝜁][𝜖𝜖]�𝑘𝑘1𝑖𝑖�… �𝑘𝑘11𝑖𝑖�[𝐴𝐴][𝜂𝜂2] 

(3-39) 

𝐹𝐹𝐿𝐿 = (𝛼𝛼𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛽𝛽)𝑒𝑒�−�𝑆𝑆𝑎𝑎−𝜂𝜂1𝑆𝑆𝑖𝑖𝑖𝑖� 𝑅𝑅𝑇𝑇𝑟𝑟𝚤𝚤�� � × 𝐴𝐴ℎ𝐿𝐿
𝜁𝜁 + 𝜖𝜖 (3-40) 

𝐺𝐺𝐿𝐿 =  𝑘𝑘1𝑖𝑖𝑃𝑃𝑎𝑎𝑟𝑟 + 𝑘𝑘2𝑖𝑖𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤� + 𝑘𝑘3𝑖𝑖𝑃𝑃𝑒𝑒𝑎𝑎𝑒𝑒 + 𝑘𝑘4𝑖𝑖𝑃𝑃𝑤𝑤𝑓𝑓 + 𝑘𝑘5𝑖𝑖𝑃𝑃𝑑𝑑𝑤𝑤 + 𝑘𝑘6𝑖𝑖𝑃𝑃𝑑𝑑𝑟𝑟𝑐𝑐 + 𝑘𝑘7𝑖𝑖𝑃𝑃𝑖𝑖𝑐𝑐  

+𝑘𝑘8𝑖𝑖𝑃𝑃𝑒𝑒𝑤𝑤ℎ + 𝑘𝑘9𝑖𝑖𝑃𝑃𝑒𝑒𝑎𝑎𝐸𝐸 + 𝑘𝑘10𝑖𝑖𝑃𝑃𝑆𝑆 + 𝑘𝑘11𝑖𝑖𝑃𝑃𝑎𝑎𝑠𝑠 
(3-41) 
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𝑌𝑌𝐿𝐿 = 𝑃𝑃𝑏𝑏𝚤𝚤� 𝑉𝑉𝑖𝑖𝑖𝑖�  (3-42) 

𝐻𝐻𝐿𝐿 = 𝜂𝜂2𝑆𝑆𝑖𝑖𝚤𝚤�𝐴𝐴 �1 − 0.005�𝑅𝑅𝑓𝑓𝚤𝚤
� − 298�� (3-43) 

[𝜆𝜆| ∙] ∝��𝑮𝑮�𝑞𝑞𝐿𝐿𝑖𝑖|𝜆𝜆𝐿𝐿�
𝐽𝐽

𝑖𝑖=1

𝑁𝑁

𝐿𝐿=1

𝑮𝑮[𝜆𝜆𝐿𝐿|𝐹𝐹𝐿𝐿] (3-44) 

�𝑅𝑅𝑓𝑓� | ∙� ∝�𝑮𝑮�𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤� |𝐻𝐻𝐿𝐿�
𝑁𝑁

𝐿𝐿=1

𝑵𝑵�𝑅𝑅𝑓𝑓𝚤𝚤
� ��𝑵𝑵�𝑅𝑅𝑓𝑓𝐿𝐿𝑑𝑑|𝑅𝑅𝑓𝑓𝚤𝚤

� �
𝐷𝐷

𝑑𝑑=1

 (3-45) 

�𝑃𝑃𝑝𝑝𝑎𝑎� | ∙� ∝�𝑵𝑵�𝑃𝑃𝑏𝑏𝚤𝚤� |𝐺𝐺𝐿𝐿�𝑮𝑮�𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤� |𝐻𝐻𝐿𝐿�
𝑁𝑁

𝐿𝐿=1

 (3-46) 

�𝑆𝑆𝑖𝑖� | ∙� ∝�𝑮𝑮�𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤� |𝐻𝐻𝐿𝐿�𝑮𝑮�𝑆𝑆𝑖𝑖𝚤𝚤��
𝑁𝑁

𝐿𝐿=1

�𝑮𝑮�𝑆𝑆𝑖𝑖𝐿𝐿𝑐𝑐|𝑆𝑆𝑖𝑖𝚤𝚤��
𝐸𝐸

𝑐𝑐=1

 (3-47) 

[𝐼𝐼𝐸𝐸| ∙] ∝�𝑮𝑮[𝜆𝜆𝐿𝐿|𝐹𝐹𝐿𝐿]
𝑁𝑁

𝐿𝐿=1

𝑮𝑮�𝐼𝐼𝑐𝑐𝑖𝑖�𝑌𝑌𝐿𝐿�𝑮𝑮�𝐴𝐴ℎ𝐿𝐿�𝐼𝐼𝑐𝑐𝑖𝑖�𝑩𝑩�𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿�𝐼𝐼𝑐𝑐𝑖𝑖� (3-48) 

�𝑃𝑃𝑏𝑏�| ∙� ∝��𝑃𝑃𝑏𝑏𝚤𝚤� |𝐺𝐺𝐿𝐿�
𝑁𝑁

𝐿𝐿=1

× �𝐼𝐼𝑐𝑐𝑖𝑖�𝑌𝑌𝐿𝐿� (3-49) 

[𝑉𝑉𝑖𝑖| ∙] ∝��𝐼𝐼𝑐𝑐𝑖𝑖�𝑌𝑌𝐿𝐿� × �𝑉𝑉𝑖𝑖𝑖𝑖�
𝑁𝑁

𝐿𝐿=1

 (3-50) 
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[𝑘𝑘𝑖𝑖| ∙] ∝��𝑃𝑃𝑏𝑏𝚤𝚤� |𝐺𝐺𝐿𝐿� × �𝑘𝑘𝑖𝑖𝑖𝑖�
𝑁𝑁

𝐿𝐿=1

      ;𝑙𝑙 = 1,2,3 … … … ,11 (3-51) 

�𝑅𝑅𝑟𝑟� | ∙� ∝�𝑮𝑮[𝜆𝜆𝐿𝐿|𝐹𝐹𝐿𝐿]
𝑁𝑁

𝐿𝐿=1

× 𝑵𝑵�𝑅𝑅𝑟𝑟𝚤𝚤�� × �𝑵𝑵�𝑅𝑅𝑟𝑟𝐿𝐿𝑓𝑓|𝑅𝑅𝑟𝑟𝚤𝚤��
𝑀𝑀

𝑓𝑓=1

 (3-52) 

[𝐴𝐴ℎ| ∙] ∝�[𝜆𝜆𝐿𝐿|𝐹𝐹𝐿𝐿]
𝑁𝑁

𝐿𝐿=1

× �𝐴𝐴ℎ𝐿𝐿�𝐼𝐼𝑐𝑐𝑖𝑖� (3-53) 

[𝑆𝑆𝐿𝐿𝐿𝐿| ∙] ∝�[𝜆𝜆𝐿𝐿|𝐹𝐹𝐿𝐿]
𝑁𝑁

𝐿𝐿=1

× �𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿�𝐼𝐼𝑐𝑐𝑖𝑖� (3-54) 

The MCMC solving process starts with an initial value 𝑣𝑣(1), for all variables and 

parameters. These initial values are calculated deterministically from observations. At any 

given iteration, a proposal value 𝑣𝑣(𝑃𝑃), is proposed based on the current value and 

distribution properties of the variable given by (3-55). The standard deviation of the 

proposal should be smaller or equal to the priors to ensure successful sampling. Metropolis-

Hasting criteria in (3-56) determine which sample of the posterior to keep. 

𝑣𝑣(∗) ~𝑑𝑑(𝑣𝑣(𝑟𝑟),𝜎𝜎𝑖𝑖) (3-55) 

𝑅𝑅 = 𝑚𝑚𝐿𝐿𝑙𝑙 �1,
�𝑣𝑣(𝑃𝑃)� ⋅�
�𝑣𝑣(𝑟𝑟)� ⋅�

×
�𝑣𝑣(𝑟𝑟)�𝑣𝑣(𝑃𝑃)�
�𝑣𝑣(𝑃𝑃)�𝑣𝑣(𝑟𝑟)�

� (3-56) 

In the problem under discussion, the initial values are calculated from SHEMS 

simulation results, i.e. 𝑅𝑅� ,𝑃𝑃�𝑝𝑝𝑎𝑎, �̂�𝑆𝑖𝑖.  Initial values of aging parameters differ according to the 
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type of battery chemistry. Thus, different researchers present various values. For this 

problem, multiple sources [34]–[36] are used to obtain the appropriate initial values of 

aging parameters. The contribution coefficients are initiated based on the residential source 

and loads contribution towards battery degradation and their probability of charging and 

discharging. The initial value of battery power estimation is obtained from (3-41), whereas 

the initial value of capacity fade estimation is from (3-40). Battery voltage is initiated with 

the nominal voltage of a TESLA Power Wall 2. The other variables, 𝜆𝜆,𝐴𝐴ℎ, 𝑆𝑆𝐿𝐿𝐿𝐿 𝑎𝑎𝑙𝑙𝑑𝑑 𝐼𝐼𝑐𝑐 are 

initiated with a calculation based on battery power and voltage initial values. 

3.3.3 Training and Evaluation of BN through Testing 

The modeled BN was trained with experimental results of A123 ANR26650, 2.3Ah, 

lithium-iron-phosphate (LFP) cells, obtained from [35]. Groot et al. [35] performed 

multiple time and frequency based experiments with several sets of ANR26650 in order to 

generate a detailed deterministic battery model. Results of capacity fade, SOC and 

temperature were obtained from 1C rate tests that are used to train the BN model. 

ANR26650 are the most popular for residential or vehicular application for their extensive 

safety features. The purpose of training the BN is to obtain the PDF of parameters 

𝛼𝛼,𝛽𝛽,𝐸𝐸𝑖𝑖, 𝜂𝜂, 𝜁𝜁, accounting for the uncertainty in the measurement of data and process. To 

train the model, 80% of the data were randomly selected, the rest were kept for testing the 

model. 
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Figure 3.5.  Training of modeled Bayesian Network. 

The accuracy of the training procedure can be seen in the error bar plot Figure 3.5. 

In Figure 3.5, the mean of the PDF for 𝜆𝜆, and error bar with twice the standard deviation is 

plotted along with respective observations. The purpose of testing is to observe if the 

trained BN can predict the remaining 20% data. Figure 3.6 shows a similar plot where the 

remaining observations are estimated with obtained parameters.  

 

Figure 3.6.  Testing of modeled Bayesian Network. 

The normalized root mean square difference percentage (NRMSDP) between the 

mean of PDF and its observations are determined for the aging variables. NRMSDP for 
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both testing and training phase are in Table 3.2. The smaller value of error and high 

accuracy of fitting for the aging variable validates the success of the training process. 

Table 3.2.  NRMSDP Values from Training and Testing 

Variables Training Testing 

Capacity Fade, 𝜆𝜆 1.79% 1.28% 
Ah Throughput, 𝐴𝐴ℎ 1.35% 1.07% 
State of Charge, 𝑆𝑆𝐿𝐿𝐿𝐿 0.82% 0.30% 
Temperature, 𝑅𝑅 0.16% 0.07% 
C-rates. 𝐼𝐼𝑐𝑐 0.98% 0.78% 

The results of the optimization problem are used as an input to the BN model. The 

power requirements of the residential loads while being optimized is used as an input to 

the BN. These variables are part of the residential parameter sections of Figure 3.4. 

3.4 Case Study: Evaluate Degradation of The Battery 

In the case study section, first, the effect of grid services performed by the SHEMS 

on battery capacity is explored. Second, the capacity fade due to varying EV schedule is 

shown. Lastly, capacity fade due to changing weather, in terms of ambient temperature and 

solar irradiation due to variation in location is discussed. Capacity fade is evaluated for a 

service life of ten years. 

3.4.1 Effect of Grid Services on Capacity Fade 

This case consists of two identical scenarios. In both scenarios, power consumption 

from the grid, 𝑃𝑃𝑖𝑖𝐺𝐺𝑟𝑟, was limited to 5.5kW. The EV leaves the residence at 7 am and comes 

back at 5 pm, with 50% SOC remaining. Real-time utility (RTU) price structure was used 

[3]. The solar irradiance and ambient temperature for both cases remained exactly the same. 
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The major difference was the energy management system could perform grid services in 

the second scenario. The capacity fade PDFs can be seen in Figure 3.7 for both scenarios. 

It can be seen here that the capacity fade of the battery is higher when grid services are not 

performed. The center of the distribution when the grid services are performed is about 

9.29%, whereas for not performing grid services the value goes up to 12.14%. 

 

Figure 3.7.  Effect of grid services on the capacity fade. 

This higher aging is caused by the presence of the solar PV system. When the 

SHEMS is prevented from performing grid services, the objective function focusing on 

reducing electricity bill increases self-consumption from the renewable source. The power 

from the PV is stored in the battery and discharged to loads as per requirement. Reducing 

the power intake from the grid leads to a reduction in the overall electricity bill. The battery 

Ah-throughput increases to 30.5kAh from 21.55kAh when grid services are not performed. 

It can be further confirmed by observing the distributions of the PV power used for 

charging the battery for each case in Figure 3.8. It is obtained from the distribution of power 

contributed towards battery capacity fade from the PV, 𝑘𝑘2𝑖𝑖𝑃𝑃𝑝𝑝𝑎𝑎𝚤𝚤� . It can be seen, not 
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performing grid services causes the solar PV to charge the battery with a higher power to 

increase self-consumption. 

 

Figure 3.8.  An increase in PV power used to charge the battery. 

3.4.2 Effect of EV Schedule on Capacity Fade 

This case deals with changing the schedule of the EV. Initially, it was assumed that 

the EV is absent during the first 10 hours of the day and comes back with 50% SOC 

remaining. A set of 4 scenarios were created to represent the effect of EV schedule on the 

capacity fade. This set considers that EV departs the house at a random time, from 7 am to 

10 am, while returning at 5 pm. Other parameters of SHEMS remained like the base case 

with no grid services being performed. The battery has a higher capacity fade with the 

delayed departure of EV from the residence. If the EV is available longer in the power pool 

of the residence, it has a higher probability to either charge or discharge from the battery. 

This excess cycling of the battery caused by the presence of the EV causes a higher capacity 

fade. The PDFs of the capacity fade can be observed in Figure 3.9. 
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Figure 3.9.  Effect of EV schedule on capacity fade. 

The center of the PDF is increasing with a delayed departure in Figure 3.10. The 

mean of capacity fade can change almost 3% with delayed departure. It can be further 

confirmed that the battery has higher Ah cycling due to the presence of the EV. It shows 

that with delayed departure the battery has more Ah being cycled through it, subsequently 

producing a higher capacity fade. The Ah throughput can be reduced by 42% if the EV 

departs the residence earlier, reducing the capacity fade by almost 3%. 

 

Figure 3.10.  Capacity fade increases with EV departure time and Ah. 
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3.4.3 Impact of Weather and Location on Capacity Fade 

The location of the residence has a major effect on the capacity fade of the battery. 

The change in location affects ambient temperature and solar irradiation. The power drawn 

by the HVAC is directly related to the ambient temperature. HVAC acts as a load to the 

battery contributing towards the capacity fade. To explore the effect of the temperature 

change, the hourly temperature data for five different climates, Anchorage (AK), Denver 

(CO), New York (NY), Los Angeles (LA), Phoenix (AZ) in 2018 were collected. The 

locations were selected in order of their increasing mean of the normal PDF. The capacity 

fade was estimated for these locations, keeping other parameters of SHEMS as the base 

case with no grid services being performed. 

 

Figure 3.11.  Effect of the ambient temperature of various locations on the 
capacity fade. 

These varying normal PDFs of ambient temperature lead to variations in the capacity 

fade. The capacity fade PDF for variations in ambient temperature can be observed in 

Figure 3.11. Here the capacity fade ranges from 11% to 14%. It is evident that Anchorage 

has the lowest capacity fade contributed by a temperature distribution with the lowest 
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mean. Whereas, Phoenix has the highest capacity fade, caused by a temperature PDF with 

a much higher mean. 

Increased capacity fade with increasing temperature, even though the battery remains 

inside the residence or under controlled thermal conditions, can be explained with the PDF 

of the Ah throughput. Figure 3.12 shows the PDF of the Ah throughput of the battery. With 

higher ambient temperature the Ah throughput is higher. It is because, at higher ambient 

temperature, the HVAC requires more power to maintain the internal temperature of the 

residence in accordance with the user’s preference. This higher power requirement causes 

increased load on the battery. Thus, increasing the capacity fade in the process. 

 

Figure 3.12.  Increase in the Ah throughput for higher ambient temperature. 

The solar irradiation is more abundant as the SHEMS moves from Anchorage to 

Phoenix. This results in higher power generation from solar PV in Phoenix as opposed to 

Anchorage. This higher PV power production leads to a significant increase in self-

consumption, as no grid services were being performed while exploring the effect of 

changed solar irradiation. A significantly large portion of PV power generated is used to 

charge the battery when higher solar irradiation is available. The contribution coefficient 
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of PV power towards the capacity fade increases with abundant solar irradiation, as seen 

in Figure 3.13. This higher contribution from the PV power causes the capacity fade to 

increase. Figure 3.14 shows the effect of solar irradiation on the capacity fade, ranging 

from 9% to 14%. 

 

Figure 3.13.  Increase in contribution to capacity fade for increased solar 
irradiance. 

 

Figure 3.14.  Effect of capacity fade for increased solar irradiance 

 It is evident that higher solar irradiation leads to significantly higher capacity fade 

for the battery. Anchorage has the lowest capacity fade as it is associated with the lowest 



128 

average yearly solar irradiance. Whereas, Phoenix has the highest capacity fade brought 

about by the abundant solar irradiance available. 

3.5 Conclusion 

A smart home energy management system simulation is utilized to provide the initial 

values and priors for BN. These results are used to design a BN for residential battery 

energy storage. The BN relates batteries' immediate variables to external variables, i.e. 

solar irradiation, ambient temperature. 

Afterward, the capability of the BN was exercised with multiple case scenarios. 

These case scenarios revealed some interesting results. It was revealed that utilizing the 

residential battery for grid services causes a reduction in the capacity fade of the battery, 

as the battery will not be charged more often from the PV panel. Moreover, the capacity 

fade was increased with a longer presence of EV at the residence. Though the battery was 

not subject to the ambient temperature directly, the capacity fade was higher for higher 

temperature climates. Finally, increased solar irradiance resulted in a higher capacity fade.  

The overall results reveal that a probabilistic approach of evaluation of battery 

capacity fade through hierarchical BN is a promising solution in different cycling 

conditions. The excellence of this method lies in the capability of utilizing real-life load, 

source and environmental data, relating it probabilistically to account for the real world 

variations on previously generated experimental priors, through developed BN. Evaluated 

degradation can be a powerful tool for SHEMS. The optimization can utilize the evaluated 

battery degradation information in order to adapt to account for aging. 
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Chapter 4 

 

Low-cost Hardware-in-the-Loop Lithium-
Ion Battery Degradation System for 
Residential Energy Storage 

 
Abstract 

Residential energy storage systems are utilizing Li-ion batteries due to longer service 

life and lower maintenance. However, the degradation of Li-ion batteries causes loss of 

capacity and loss of power. This aging phenomenon needs to be characterized by 

residential energy storage systems to ensure reliable service. In this chapter, a low-cost 

hardware-in-the-loop (HIL) system is developed to perform aging tests on a Li-ion battery. 

The HIL utilizes residential loads simulation and a Raspberry Pi 3 based hardware. 

Raspberry-Pi communicates and controls the peripheral devices to cycle the battery 

according to the residential load profile obtained from the simulation. The initial test results 

reveal that the low-cost hardware is capable of cycling the battery according to the load 

profiles with considerable accuracy.  
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4.1 Introduction 

Degradation of Li-ion batteries needs to be validated, irrespective of how it is 

incorporated in studies involving residential applications. The most common methods for 

such validation are hardware-in-the-loop (HIL) simulation. HIL mostly popular for 

prototyping and system modeling for avionics is slowly emerging in battery degradation 

studies [1]–[3]. HIL enables the use of actual hardware, which is of research interest, 

simulating the rest of the system. This ensures that the battery produces accurate 

degradation results as opposed to any analytical or experimental models while reducing the 

cost by simulating other parts of the system. 

Generally, HIL systems for battery degradation testing are developed using dSPACE, 

National Instruments and other platforms that are very costly and sophisticated [4]. For 

example, Authors in [5] used an HIL setup with NHR battery tester and NI DAQ 

equipment, which can produce a battery equivalent circuit model (ECM) with errors less 

than 0.01%. However, the setup is only able to test one unit, either a cell, a module, or a 

pack of battery. To have conclusive results about battery degradation, experiments must be 

repeated on multiple cells. Which would prolong the degradation studies to inordinately. 

In such conditions, a low-cost system needs to be adopted where multiple cells can be 

tested simultaneously. 

This chapter describes such a low-cost HIL system based on a Raspberry-Pi, capable 

of performing battery degradation tests. The residential loads are simulated in an 

optimization problem, are part of the simulation which produces the load profiles for the 

battery. Raspberry-Pi based HIL system cycles the LG INR18650 MJ1 cells repeatedly 
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according to the residential load profiles to degrade the battery. Serial peripheral interface 

(SPI) is utilized by the Raspberry-Pi to communicate with the configurable power supply 

and electronic load through ADCs and digital potentiometer. 

The rest of the chapter is organized as follows. Section 4.2 provides an overview of 

the entire HIL system used for residential energy storage degradation. The description of 

the optimization problem that contains the residential loads and produces the battery load 

profile is described in section 4.3. Section 4.4 divulges the details of schematics and 

operations of the MiniLab HIL system. In section 4.5, the preliminary results are discussed 

and utilized to assess the performance MiniLab’s performance as a HIL simulation system, 

followed by the conclusion.  

4.2 Overview of the HIL Simulation 

The simulation section of the HIL consists of an optimization problem with typical 

residential loads and control algorithms for the Raspberry Pi. The following flowchart in 

Figure 4.1 provides a top-level overview of the entire process. 

The HIL simulation starts with selecting the appropriate application, in this case, li-

ion batteries as residential energy storage. The next step involves deciding the type of load 

that is part of the residential load. Once the loads are selected and their parameters are well 

defined, an optimization problem is set up and solved to obtain the load profile or the effect 

of the loads, grid, renewable energy sources on the battery. This load profile is scaled down 

and translated to battery current suitable to the desired size, in this case, a single cell. The 

battery current is then provided to the Raspberry-Pi. The Raspberry-Pi has an algorithm 
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that checks the state of charge (SOC) of the battery which needs to be tested. The algorithm 

is designed to start with a fully charged battery. Once the battery is fully charged, it is 

cycled repeatedly until total Ah throughput reaches a pre-specified value 

 

Figure 4.1.  Overview of the HIL simulation. 

4.3 Residential Load Problem Formulation 

It is assumed the residential loads are connected to a smart home energy management 

system (SHEMS), which communicates and controls different household loads in real-time 

while taking input from the user through human machine interfaces (HMI). Furthermore, 

it is also assumed that the SHEMS receives day ahead prices [6]. It develops an optimized 
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load schedule for the household loads utilizing day ahead prices available. These 

optimizations conserve electricity usage and increase energy utilization efficiency [7]–[9]. 

In this residential load simulation, a discrete linear load and generation model is used, as 

the overall system operation is considered in discrete time with a finite horizon, T, and 

equal time interval, Δt. Some assumptions were considered such as the smart meter 

receives day-ahead electricity price while having the capability to log consumption 

statistics, the weather forecast is available from the data center, and each load can 

communicate with the meter. 

The load models utilized to develop the optimization problem were obtained from 

[10]. The residential battery was sized according to the specifications of Tesla Powerwall 

2 [11]. Several scenarios were developed with residential loads. These scenarios include 

the capability to perform grid services, EV schedule, the effect of solar irradiation, and 

weather conditions. The residential energy storage is modeled according to the 

specifications of Tesla Powerwall 2, with a configuration of 74P6S, and nominal voltage 

50V. The load profile is translated accordingly to match a single cell. Sample battery load 

profile when the residential battery is performing grid services and when it is prohibited 

can be seen in Figure 4.2 and Figure 4.3, respectively. 

In both figures, battery discharge is positive while the negative represents charging. 

These two scenarios are identical in all aspects except the grid-tie capabilities. For the grid 

service prohibited scenario, the residence is not allowed to perform any grid services. This 

is a common case where the residence is prohibited from the utility service provider, due 

to lack of infrastructure or legal bindings. On the other hand, the full capability of 
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residential energy storage is explored where the utility considers the residence as prosumer 

and can utilize the services for a financial incentive. Furthermore, the solar irradiance, EV 

schedule, and weather conditions are identical in both cases. The solar irradiance for these 

two cases shown in Figure 4.4 is typical for the USA. 

 

Figure 4.2.  Single cell load profile while grid services are prohibited. 

 

Figure 4.3.  Single cell load profile while grid services are performed. 

It is evident from these figures that the battery is cycled extensively while grid 

services are not performed. When the grid services are not performed. The energy 

generated by the solar PV is stored in the battery. This causes the battery to be cycled 

repeatedly as opposed to the grid service scenario, in which extra PV energy is sold back 
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to the grid. Total Ah cycled throughout the entire day for no grid service and grid service 

case are 7.9Ah and 5.6Ah respectively. 

 

Figure 4.4.  Solar irradiance in both case scenarios. 

4.4 Schematic and Operation of MINILAB HIL System 

The “MiniLab” system is developed in-house as the low-cost alternative HIL 

simulation system. It is based on a Raspberry Pi 3-model B process with power supply, 

DC/DC converter, and electronic load. The Raspberry Pi uses a serial peripheral interface 

(SPI) communication protocol through a digital potentiometer to control the DC/DC 

converter and electronic load. The battery current feedback from the hall effect sensor is 

sent through ADC back to the Raspberry Pi. The Python program running on the processors 

contain two simple PI controller to control the charging and discharging current. A total of 

23 MiniLab’s are developed to run multiple scenarios of degradation simultaneously. The 

details of the construction are elaborated in the following section. 

Figure 4.5 shows the entire schematic of the HIL simulation system used to perform 

degradation tests. Individual MiniLab’s are named “FishX”, to give homage to the 

originating idea of aging of fishes in a school of fish. The major components of the setup 
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are shown in the figure. The workstation contains the MATLAB simulation of the 

residential load and Python program for the MiniLab. The optimized and scaled load 

profile is provided to the Raspberry Pi along with the hardware control instructions in the 

form of the Python program through the ethernet switch. The ethernet switch is connected 

to all the MiniLabs and allows bi-directional communication. 

Workstation 
MATLAB & 

Python

Ethernet
 switch

RaspberryPi Power 
Supply

Digital
potentiometer

ADC

DC/DC
converter

Electronic 
Load

Battery 
CellSensor

Fish1

Fish2

Fish n

 

Figure 4.5.  Schematic of MiniLab HIL simulation system. 

The Raspberry Pi uses SPI to communicate two individual digital potentiometers, 

one is dedicated to the DC/DC converter and the other to the electronic load. The current 

measurement from the sensor is feedback to the processor through ADC. The programmed 

PI controlled in both charging and discharging cases uses battery current profile and 

feedback to control the respective digital pots. The digital pot converts the digital signals 

from the processor to resistance values. The resistive output of the digital pot is converted 

to a corresponding voltage value. This voltage is used to control the DC/DC converter, 

maintaining a required charging current. Similarly, the electronic load controls the 

discharging current according to the input of the digital pot. 



141 

The power supply is N2Power XL125-12 CS, a fixed supply with high power density 

[12]. The specification of this power supply is suitable for a single cell MiniLab setup with 

a small footprint. The power supply provides power to the DC/DC converter. The converter 

is PTH12040W from Texas Instruments [13]. The output range of the DC/DC converter is 

0.8V-5.5V and up to 50A with proper heat sinks, perfectly suitable to test single cells or 

modules of multiple cells in parallel. The electronic load discharges the battery according 

to the battery load current. It is also controlled according to a digital pot. The digital pot 

operates couple of MOSFET’s as variable resistance connected to an Intel D34017-001 

Aluminum/Copper CPU Heatsink. 

Besides the major components, a manual battery disconnect switch is placed in the 

setup, to prevent any accidental charge or discharge of the battery. Moreover, several diode 

switches, i.e. diode to prevent current flowing back to the DC/DC converter, MOSFET to 

enable output of the battery are included in the system for protection and proper operation. 

Furthermore, fuses rated 10A is used throughout the system to prevent excessive current 

flowing to or from the battery. Since this system initially is designed to test single cells 

only, the 10A range of the fuse will allow testing at higher C-rate. The entire setup of the 

MiniLab HIL simulation system can be seen in Figure 4.6. Total 23 MiniLab’s are stacked 

in 3x4 setup on a custom made structure.  
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Figure 4.6.  MiniLab HIL simulation system. 

 

Figure 4.7.  Fish1 MiniLab HIL system. 

Figure 4.7 shows Fish12 MiniLab. It can be seen from that the entire setup is placed 

on a plexiglass board with dimensions of 3ft x 1ft. There are four major parts of the 

MiniLab; the processing unit, power supply, electronic load, and the battery. The power 
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supply, heat sink fan and the processing unit is powered from a dedicated wall outlet. The 

yellow wire from the Raspberry Pi 3 connects each MiniLab to the local ethernet switch. 

Figure 4.8 shows the details of the processing unit on Fish8. This figure shows the 

major parts described in Figure 4.5 along with several other components. Specifically, 

connector ports for the power supply, battery, and bandwidth selector for ICs. The figure 

also shows the analog input and load connector terminals. The analog input terminals 

transfer the analog data from external sensors to the ADC. Currently, the current 

measurement from a hall effect sensor is provided to the processes through these analog 

channels. There are three extra analog channels made available to be used with any future 

experiments.  

 

Figure 4.8.  MiniLab HIL simulation system. 
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4.5 Initial Results & the Effectivity of MiniLab as HIL System 

MiniLab HIL system is capable of distributed testing which means that it is possible 

to perform multiple degradation testing of multiple scenarios simultaneously. Since the 

MiniLab is newly developed, before starting to perform 24-hour long testing as suggested 

by the simulation, the efficacy of this HIL system needs to be tested. Thus, only two cases 

from prior work [10] were used. These two cases originate from the residence capability 

of performing grid services, as seen in Figure 4.2 and Figure 4.3. 

The result of HIL can be observed in Figure 4.9 when residential energy storage can 

perform grid services. The experimental result follows the optimized battery load profile. 

However, the experimental result is marred with noise. The normalized root mean square 

difference percentage (NRMSDP) in this case is 2.74%. While for the case where no grid 

services were performed the NRMSDP is 3.27%. 

 

Figure 4.9.  Results of HIL while grid services are performed. 

The total Ah cycled throughout the entire day while performing grid service 

according to the experimental data is 5.5Ah. The experimental data has a 2% variation in 

terms of total Ah throughput in a single day. For the no grid service scenario, the difference 
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is only 1%. The small NRMSDP and closely matching total Ah cycling indicates that the 

MiniLab HIL system can successfully perform degradation testing. However, the accuracy 

of the experimental result can be further improved by applying a tighter PI controller for 

the DC/DC converter, or including a low pass filter to reduce noise. 

The batteries utilized for these aging tests are LG INR18650 MJ1. According to the 

battery’s specification sheet [14], the life cycle of the battery is 400 cycles, where each 

cycle consists of one complete discharge and charging procedure at rated condition. With 

the rated capacity of 3.2Ah, the total Ah throughput until the end of life (EoL) is 2720Ah. 

The battery capacity will fade by 20% at EoL. Thus, to reach EoL, the battery must be 

continuously cycled for 345 days with no grid service and 486 days with grid service 

performed scenario. It was observed from a prior detailed hierarchical Bayesian Network 

(BN) estimation that variation of capacity fade in different scenarios is about 5%. Thus, to 

validate the prior BN estimation, the capacity fade has through HIL degradation must be 

more than 5%. Given the uncertainties introduced by manufacturing and experimental 

processes, to observe any trend the batteries should be cycled until 10% capacity fade is 

observed. This would require continuous cycling of batteries for about 173 days with no 

grid service and 243 days with the grid service profile. 

4.6 Conclusion 

Li-ion batteries are being introduced in various applications due to their inherent 

qualities. Residential energy storage is one such case. However, to make the Li-ion 

powered residential energy storage reliable and sustainable, the degradation issue needs to 
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be addressed. This chapter divulges the details of the low-cost HIL simulation system that 

is used to perform capacity fade degradation tests on Li-ion batteries used in residential 

energy storage. This low-cost system is developed with the aim to reduce cost while having 

the capability to perform aging tests on multiple cells in various degradation scenarios 

simultaneously. The overview and the schematic of the Raspberry Pi 3 based HIL were 

discussed in detail. it was shown that the results of the HIL simulation closely matches the 

battery load profile provided by the residential load profile optimization. The low-cost HIL 

system was developed to run aging tests and validate prior BN estimation. A discussion on 

the time required to obtain results comparable to BN estimation was also included. Further 

experimental work is required to generate more data to analyze battery degradation. These 

degradation data then can be utilized to validate prior research work. 
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Conclusions 
This dissertation is an accumulation of my research work that was conducted in four 

different stages. The first stage was focused on mostly literature review, to obtain a firm 

understanding of battery characteristics, degradation process and the experimental 

procedures involved to asses those procedures. The majority of the second stage consisted 

of battery characterization experimentations and associated data analysis utilizing various 

methods. A detailed hierarchical Bayesian Network was proposed to evaluate the 

degradation of lithium-ion residential energy storage systems in the third stage. The fourth 

stage discusses a low-cost hardware-in-the-loop simulation process that is being used to 

validate the results of the degradation estimation of stage three. The following parts 

summarize the highlighted findings of different stages in my research. 

• State 1: A detailed literature review about Li-ion battery characterization and 

degradation processes was performed in this stage. Deterministic empirical 

methods obtained through rigorous experimental procedures are more than 

capable to predict the instantaneous performance of the battery. However, it 

was realized that a deterministic method to address the battery aging 

phenomenon is inadequate. Thus, a probabilistic approach utilizing well-

defined deterministic aging mechanics can provide an improved 

understanding of the degradation process. The literature review aided in 

choosing the modified Arrhenius equation, the most appropriate battery 

degradation method for our scale of operations. 
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• Stage 2: Multiple types of extensive characterization experimentations in 

both time and frequency domain were performed on Li-ion batteries in this 

stage. The experimentations revealed that frequency domain electrochemical 

impedance spectroscopy (EIS) can determine the battery internal impedance 

than any time-domain tests. However, improved regression methods, i.e. 

Bayesian Network based regression can improve the EIS impedance 

characterization. This stage also served as a precursor for stage 4, as it 

provided the technical knowledge required to develop and perform real-time 

hardware-in-the-loop (HIL) experiments, which is essential in battery 

degradation tests. Furthermore, the foundation of Energy Storage Systems 

and Sustainability (E3S) Lab at Michigan Technological University was 

established through this process.  

• Stage 3: A detailed hierarchical Bayesian Network (BN) to evaluate 

degradation for li-ion residential energy storage was proposed in this stage. 

The BN was developed anticipating the possible uncertainties of process and 

measurements. The modified Arrhenius equation presented the means to 

relate battery degradation to external causal factors such as grid connectivity, 

solar irradiance and weather conditions. The estimation process was solved 

with the Markov Chain Monte Carlo technique and the Metropolis-Hastings 

algorithm. The estimation revealed that the battery degradation was higher 

when the residential energy storage is prohibited to perform grid services. It 

was also revealed that lower ambient temperature increases the capacity fade, 
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although the residential battery is generally placed inside the household 

generally. Finally, it was also realized that higher solar irradiance causes 

higher degradation throughout the lifetime of the battery. 

• Stage 4: This stage was dedicated to developing a hardware-in-the-loop 

(HIL), multi-unit, low-cost, reliable, and sustainable li-ion battery 

degradation testing facility for the E3S lab. The Raspberry Pi based MiniLab 

HIL system was developed in-house, initially to evaluate the capacity fade 

estimations proposed by the BN in stage 3. Several MiniLabs are being used 

simultaneously to perform aging tests for various scenarios on multiple cells, 

promising improved data sets to validate the BN proposals. The preliminary 

results reveal that MiniLab is capable of performing HIL with the utmost 

accuracy for prolonged periods of testing.   
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Contributions 
Following a detailed review of various Li-ion aging characterization methods used 

in contemporary research, I realized that the probabilistic approach with the aid of a 

generally utilized deterministic model would be able to evaluate the aging process and 

relate to external causal factors. To improve my understanding and have a well-rounded 

knowledge of battery characteristics, aging, and testing procedure involved, I started my 

research with the experimental side. I developed the procedure and perform time and 

frequency domain tests to characterize Li-ion batteries. Different regression methods were 

used to analyze the experimentally obtained data to generate 8RC battery model, capable 

of predicting instantaneous battery performance with less than 1% error. The results were 

improved further by Bayesian Network regression methods. As a consequence of these 

experimental studies, the foundation of Energy Storage Systems and Sustainability (E3S) 

Lab at Michigan Technological University was established. Later on, I improved on the 

knowledge of Bayesian Network based regression, to develop a detailed hierarchical 

Bayesian Network (BN) to evaluate the degradation of Li-ion residential energy storage 

system. The BN is generated considering the most perceivable uncertainties of process and 

measurements. The BN utilizes a well-established modified Arrhenius equation to relate 

battery degradation to external causal factors. I used Markov Chain Monte Carlo and 

Metropolis-Hastings ratio to solve the BN and generate posterior probability distributions 

about capacity fade and several other interesting observations. Furthermore, I worked in 

establishing the low-cost hardware-in-the-loop (HIL) battery aging testing facility, 

MiniLab, to validate BN estimations. The preliminary results show that MiniLab is capable 
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of performing degradation testing for an extended period with the utmost accuracy. 

Throughout working with the BN, it was realized that though I have limited this dissertation 

to a specific application and technology of Li-ion, this probabilistic approach can be 

modified and adopted by any application or technology, conditional on available training 

data. Overall, this generates a new avenue for analyzing battery degradation analysis. 
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Future Work 
This dissertation proposes a probabilistic approach to determine Li-ion battery 

degradation through a detailed hierarchical Bayesian Network (BN) for residential energy 

storage systems. The BN explores the effects of grid services, solar irradiation, EV 

schedule and weather conditions on battery aging. However, there are some shortcomings 

that could be worked upon to improve this research further, which are listed as follows. 

• The aging tests with the MiniLab should continue in order to ascertain the 

estimations generated by BN. It would be interesting to observe the capacity 

fade from MiniLab testing and their location on the posterior probability 

distributions of capacity fade given by BN trained by experimental results. 

• The degradation experiment should be performed on the aged batteries as 

well. The results of the capacity fade from aged batteries can be used to train 

another BN to estimate degradation for second life use. These tests and 

estimations through multiple life and relationship with the causality factors 

will provide a better understanding of how to utilize batteries through 

multiple life cycles. 

• The proposed model does not include the effect of calendar aging. The Li-ion 

battery also degrades while it is not being cycled, especially when it is left at 

fully charged conditions, albeit at a very slow pace as opposed to the cycle 

aging. The calendar aging can be included with another dedicated node in the 

existing BN. The calendar aging node should have another hierarchical model 
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that may involve utilizing some node from calendar degradation, i.e. state of 

charge (SOC). Afterward, the aging from both nodes can be aggregated into 

another node which provides the probability distribution of total capacity 

fade. 

• The research focuses on capacity fade only while disregarding power fade. 

In the aging process capacity fade and power fade occurs simultaneous, thus 

battery power fade needs to be included while analyzing battery degradation. 

A node can be included in the existing BN for relating the determined 

capacity fade with power fade. The BN can be trained by experimental results 

to relate power and capacity fade with dedicated parameters. 

• The BN should include the effect of cost for the individual operation of the 

battery. This requires multiple nodes to be inserted in the BN and a significant 

amount of actual billing data for individual loads. This modification can aid 

to do a cost-volume-profit or break-even analysis. The prosumer or the utility 

can use such analysis to judge what services to be performed by the 

residential energy storage. 

• Rather than using a single node, the grid services can be divided into common 

services performed by the residential energy storage. Combined with the 

involvement of cost per load or service, the utilities can use this method to 

choose what services to perform in order to make a profit. 
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	Abstract
	Batteries continue to infiltrate in innovative applications with the technological advancements led by Li-ion chemistry in the past decade. Residential energy storage is one such example, made possible by increasing efficiency and decreasing the cost of solar PV. Residential energy storage, charged by rooftop solar PV is tied to the grid, provides household loads. This multi-operation role has a significant effect on battery degradation. These contributing factors especially solar irradiation and weather conditions are highly variable and can only be explained with probabilistic analysis. However, the effect of such external factors on battery degradation is approached in recent literature with mostly deterministic and some limited stochastic processes. Thus, a probabilistic degradation analysis of Li-ion batteries in residential energy storage is required to evaluate aging and relate to the external causal factors. The literature review revealed modified Arrhenius degradation model for Li-ion battery cells. Though originating from an empirical deterministic method, the modified Arrhenius equation relates battery degradation with all the major properties, i.e. state of charge, C-rate, temperature, and total amp-hour throughput.
	These battery properties are correlated with external factors while evaluation of capacity fade of residential Li-ion battery using a proposed detailed hierarchical Bayesian Network (BN), a hierarchical probabilistic framework suitable to analyze battery degradation stochastically. The BN is developed considering all the uncertainties of the process including, solar irradiance, grid services, weather conditions, and EV schedule. It also includes hidden intermediate variables such as battery power and power generated byxiiisolar PV. Markov Chain Monte-Carlo analysis with Metropolis-Hastings algorithm is used to estimate capacity fade along with several other interesting posterior probability distributions from the BN. Various informative and promising results were obtained from multiple case scenarios that were developed to explore the effect of the aforementioned external factors on the battery. Furthermore, the methodologies involved to perform several characterizations and aging test that is essential to evaluate the estimation proposed by the hierarchical BN is explored. These experiments were conducted with conventional and low-cost hardware-in-the-loop systems that were developed and utilized to quantify the quality of estimation of degradation.
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	Analysis of Battery Degradation Models at Various Scales
	Abstract
	Due to the increasing interest in the Li-ion battery aging studies among researchers, there are numerous battery degradation models presented in the literature. However, they are either focused on a single technology, form factor or scale. This can be challenging for researchers that typically have to bridge multiple technologies and are interested in crossing multiple scales, from material-level to cell, module, and pack level. Moreover, most of the research is concentrated on a deterministic analysis of battery degradation in all the form factors. Though, recent investigations have found that modeling probabilistically produces improved degradation estimations. This chapter explores both deterministic and probabilistic models presented for Li-ion battery degradation in different scales from the material level to the application level. In each scale, the main aging variables are summarized, the mathematical presentation of models are analyzed, and the merits and disadvantages of each scale are discussed. This review aims at bringing together methods and results for multiple technologies, form factors for the most common Li-ion battery technologies. This review leads to the selection of the most appropriate Li-ion battery degradation model to be used in this dissertation.

	1.1 Introduction
	As batteries are integrated into more applications than ever before, from portable to transportation, residential, and grid; defining battery degradation remains a challenging factor for manufacturers and users. The battery of choice of this growing industry is Li-ion due to available high energy density, but limited lifetime [1]. Up until recently, batteries were focused on performing single tasks. However, the trend is changing as batteries are being designed to perform multiple operations [2]–[4]. An example is residential energy storage systems, capable of participating in the ancillary services for the grid, besides providing backup for the residence. As each task has a different priority, degradation cost and economical cost or benefit, all these factors need to be considered when scheduling the tasks during the life of the battery.
	It can become even more relevant when batteries are repurposed for second life in residential applications. For example, in transportation, due to the high power and energy demands, the battery end of life is reached when the capacity degrades to 80% of the original capacity. Therefore, there is still available capacity that can be repurposed as a second life in less demanding applications such as residential energy storage [5]. In this second life, the battery starts from a degraded point due to its first life and will degrade even faster. Therefore, modeling and identifying the causes of degradation is highly relevant. However, approaches are spread out at different scales due to the dichotomy of aging taking place at the material level, but decision making and control taking place at the system level [6].
	Other challenges add to this scenario, namely considering different Li-based technologies, form factors and cycling characteristics that affect the degradation observed. Other available review papers [7]–[9] focus either on a single application, single technology, a single scale while considering a deterministic approach. However, most researchers must bridge scales, technologies and consider a probabilistic approach to address multiple degradation phenomena. The objective of this chapter is to analyze the current approaches to battery degradation or aging modeling in each scale and its application across Li-ion technologies. This review will help the researchers to identify the main degradation factors and variables in each scale. This will also cover mathematical aging models, their strengths and weaknesses to be able to simulate the models for their own purpose. Figure 1.1 provides the graphical illustration of this chapter’s perspective, which starts the discussion at the material level and gradually moves upwards towards the application level. This rest of the chapter is organized as follows. Section 1.2 explains the aging in the material and electrode level and presents the related models in this scale. Afterward, section 1.3 scales up the aging models to the cell level. Section 1.4 explores how to use the aging models in the module, pack, and application level. Finally, section 1.5 discusses the probabilistic approach to model battery degradation modeling followed by the conclusion.
	Figure 1.1.  The trend of the aging models' analyses in this chapter.

	1.2 Material and Electrode Level Models
	Before discussing the degradation phenomenon inside the battery cell, a brief overview of the Li-ion battery cell’s performance will be helpful. A Li-ion battery cell is composed of a negative electrode, positive electrode, separator in between electrodes, and electrolyte permeating throughout the battery as shown in Figure 1.2. During discharge, Li ions de-intercalate from the negative electrode, passing through the electrolyte, and intercalate in the positive electrode. At the same time, electrons travel in the same direction through the external circuit. The opposite reactions take place during the charging process.
	Material scale models are based on the phenomenological approach developed by Doyle [10] to mathematically describe the movement of ions in the battery. This model was based on Newman’s porous electrode theory [11]. However, it did not include a thermal model, which was added to the porous electrode model [12].
	Figure 1.2.  Li-ion cell schematic
	Inside a Li-ion battery cell, aging starts in the electrodes/ electrolyte interface. The degradation in the positive and negative electrodes follows different mechanisms [13]. The negative electrode is commonly carbon-based and is made of graphite, titanate or silicon [14]. The major source of aging in the negative electrode is the formation of a resistive layer between the electrode and electrolyte surface due to the side reactions named solid electrolyte interface (SEI) [15]. The SEI is normally formed during the initial battery cycling and protects the electrode from corrosion and the electrolyte from reduction [16], [17]. However, in the long term, SEI’s thickness and shape continue to grow and penetrate the porous structure of the negative electrode. It leads to (i) loss of the effective surface of the electrode (ii) increased resistance against Li-ions penetration and (iii) loss of cyclable lithium [18]–[20]. Note that the electrolyte materials define the SEI shape and properties [21]. Studies show that the high temperatures enhance the aging associated with SEI formation [22]–[24], and low temperatures lead to Li plating due to the lower rate of lithium diffusion which reduces the cyclable lithium [25]. Another aging factor in the negative electrode can be the mechanical or electrical contact loss between the anode active materials and connecting parts due to the cycling [26]. Most of the aging models in the material and electrode level focus on the aging in the negative electrode/electrolyte interface as they believe that side reactions, and as a result of SEI formation, are more likely in the negative electrode due to its potential [27], [28].
	Aging in the positive electrode happens slightly differently than in the negative electrode. The SEI formation in the positive electrode is dependent on the material used in the electrode but it cannot be detected easily [29]. Experiments show that the rise of impedance in the negative electrode due to cycling is higher than the positive electrode [30]. This indicates that the main SEI formation takes place on the negative electrode surface. Although the first stage of aging in the Li-ion cell is the SEI formation and cyclable Li loss in the negative electrode, the second stage in the battery cell aging is the loss of active materials in the positive electrode. This causes the cathode to be more intercalated at the end of each discharge [24]. The cathode active material loss can be the result of structural disordering, phase transitions and metal dissolution [31]. The positive electrode aging is not limited to the active materials loss; it also can be caused by the inactive components’ degradation as binder decomposition, corrosion of the current collector and oxidation of the conductive agents [32]. Literature in the positive electrode aging mainly focuses on the experimentally oriented studies and does not present mathematical modeling of the aging in the cathode. Figure 1.3 summarizes the aging causes in the positive and negative electrodes.
	Figure 1.3.  Degradation factors in the negative and positive electrodes
	There are two popular methods to model electrode level battery degradation, Pseudo-2D Models (P2D), and Single Particle Model (SPM). The P2D is a physics-based electrode level model based on the conservation of species in electrode and electrolyte. Whereas, the SPM is another simplified form of P2D which excludes conservation of species in the electrolyte. These are discussed in detail in the following parts.
	1.2.1 Pseudo-2D Models
	  These models are based on the porous electrode models by Doyle and expand them by including diffusion in the electrolytes and electrode as well as Butler-Volmer kinetics. These non-linear set of partial differential equations are one of the most used physics-based models. Conservation of charge in the electrode or solid phase is given in (1-1) with the boundary conditions in (1-2). Similarly, the conservation of charge in the electrolyte is given by (1-3) with boundary conditions of (1-4) and (1-5). To complete the system, the conservation of lithium species in the electrode is represented by (1-6) along with boundary conditions in (1-7) and (1-8). Conservation of lithium species in the electrolyte is given by (1-9) with boundary condition (1-10). Finally, the dynamic performance is characterized by the Butler-Volmer kinetics (1-11) and surface potential by (1-12).
	𝜕𝜕𝑥𝜎𝑒𝑓𝑓𝜕𝜕𝑥𝜙𝑠=𝑗𝐿𝑖
	−𝜎−𝑒𝑓𝑓𝜕𝜕𝑥𝜙𝑠𝑥=0=𝜎+𝑒𝑓𝑓𝜕𝜕𝑥𝜙𝑠𝑥=𝐿=𝐼𝐴
	𝜕𝜕𝑥𝜅𝑒𝑓𝑓𝜕𝜕𝑥𝜙𝑒+𝜕𝜕𝑥𝜅𝐷𝑒𝑓𝑓𝜕𝜕𝑥𝑙𝑛𝑐𝑒=−𝑗𝐿𝑖
	𝜕𝜕𝑥𝜙𝑠𝑥=𝐿−=𝜕𝜕𝑥𝜙𝑠𝑥=𝐿++𝐿𝑠𝑒𝑝=0
	𝜕𝜕𝑥𝜙𝑒𝑥=0=𝜕𝜕𝑥𝜙𝑒𝑥=𝐿=0
	𝜕𝑐𝑠𝜕𝑡=𝐷𝑠𝑟2𝜕𝜕𝑟(𝑟2𝜕𝑐𝑠𝜕𝑟)
	𝜕𝜕𝑟𝑐𝑠𝑟=0=0
	𝐷𝑠 𝜕𝜕𝑟𝑐𝑠𝑟=𝑅𝑠=𝑗𝐿𝑖𝑎𝑠𝐹
	𝜕(𝜀𝑒𝑐𝑒)𝜕𝑡=𝜕𝜕𝑥𝐷𝑒𝑒𝑓𝑓𝜕𝜕𝑥𝑐𝑒+1−𝑡+0𝐹𝑗𝐿𝑖
	𝜕𝜕𝑥𝑐𝑒𝑥=0=𝜕𝜕𝑥𝑐𝑒𝑥=𝐿=0
	𝑗𝐿𝑖=𝑎𝑠𝑖0𝑒𝑥𝑝𝛼𝑠𝐹 𝑅𝑇𝜂−𝑒𝑥𝑝𝛼𝑐𝐹 𝑅𝑇𝜂
	𝜂=𝜙𝑠−𝜙𝑒−𝑈
	Here the solid and electrolyte potentials are 𝜙𝑠 and 𝜙𝑒, respectively. The lithium concentrations in the solid and electrolyte phases are represented with 𝑐𝑠 and 𝑐𝑒, correspondingly. The electronic conductivity 𝜎𝑒𝑓𝑓, ionic conductivity 𝜅𝑒𝑓𝑓, and the electrolyte diffusion coefficient 𝐷𝑒𝑒𝑓𝑓 are corrected by the Bruggeman factor [33]. The solid and electrolyte phase volume fractions are defined by 𝜀𝑠 and 𝜀𝑒, respectively. Here, 𝑗𝐿𝑖 represents the Li-ion current density, 𝑖0 is the exchange current density. Also, 𝐹, 𝑅 and 𝑇 are the Faraday’s constant, the universal gas constant, and the temperature, respectively. The negative and positive electrodes transfer coefficients are 𝛼𝑠 and 𝛼𝑐, respectively. 
	However, these equations do not capture the degradation phenomena completely as presented in Figure 1.3. As discussed, SEI formation and lithium plating are two dominant aging causes. They both modify the electrode film resistance, increasing it as the layers grow. This layer formation will affect the Butler-Volmer kinetics equation that represents the rate of Li-ion intercalation in the electrode (1-13). The exponential terms are modified with 𝑅𝑓𝑖𝑙𝑚 to characterize SEI formation and lithium plating. The included 𝑅𝑓𝑖𝑙𝑚 is composed of both SEI and lithium plating as shown in (1-14).
	 The loss of active surface due to fracture increases the overall active area whilst the isolation of particles decreases the area. These changes will affect the differential equations representing phenomena in the solid, which are the conservation of charge in the solid (1-1) and the conservation of species in the solid (1-6). Modifications to these equations are linked to changes in the area A and 𝑎𝑠 is given in (1-15), that will be affected by the number of cycles N. Material parameter 𝑘 [34] dependent on particle size, state-of-charge, and its variations are obtained empirically for both fracture and isolation as given by (1-16) and (1-17), respectively.
	Mechanical stress that affects the electrode volume [35] can be considered through the modification of the Butler-Volmer kinetics equation through the inclusion of the mean stress 𝜎𝑚𝑒𝑎𝑛 and the partial molar volume of lithium in the electrode Ω as shown in (1-18).
	Randall et al. [36] suggest that computationally-heavy models such as P2D represent a burden for the battery management systems (BMS) capabilities. Therefore, they have presented an incremental model for SEI resistance and capacity fade calculations with simplifying assumptions as quasi-equilibrium state for cell and neglecting local electrolyte and electrode surface concentration variations, uniform intercalation and side reactions current density in anode surface and equal anode and cathode charge transfer coefficients. These simplifications account for less than 1% error, based on the results.

	1.2.2 Single Particle Models
	The Single Particle Models (SPM) presented in [10], [33], [37], [38] characterizes each electrode as a single particle. It represents a simplification of the P2D model by including the conservation of species in the electrode, but not in the electrolyte. By disregarding the lithium concentration distribution and the potential distribution in the electrolyte, the SPM can be prone to error at high currents [39]. The governing equations include the diffusion of lithium in the electrodes as (1-19) with boundary conditions (1-20) and (1-21), along with the modified Butler-Volmer equation (1-22). The latter can describe SEI growth by including the increased resistance. An increased resistance component is included to account for SEI growth to modify the Butler-Volmer equation.
	𝜕𝑐𝑠𝜕𝑡=𝐷𝑠𝑟2𝜕𝜕𝑟(𝑟2𝜕𝑐𝑠𝜕𝑟)
	𝜕𝜕𝑟𝑐𝑠𝑟=0=0
	𝐷𝑠 𝜕𝜕𝑟𝑐𝑠𝑟=𝑅𝑠=𝑗𝐿𝑖𝑎𝑠𝐹
	𝑗𝐿𝑖=𝑎𝑠𝑖0𝑒𝑥𝑝𝛼𝑠𝐹 𝑅𝑇𝜂−𝑅𝑆𝐸𝐼𝑎𝑠 𝑗𝐿𝑖−𝑒𝑥𝑝𝛼𝑐𝐹 𝑅𝑇𝜂−𝑅𝑆𝐸𝐼𝑎𝑠 𝑗𝐿𝑖
	Safari et al. [40] have considered the side reactions kinetic equation as the index for SEI formation rate as shown in (1-23).
	𝑖𝑠= −𝐹𝑘𝑓,𝑠𝑐𝐸𝐶𝑒𝑥𝑝−𝛽𝑠𝐹𝑅𝑇𝛷1−𝑅𝑆𝐸𝐼𝐼
	Where, 𝑘𝑓,𝑠 and 𝑐𝐸𝐶 refer to rate constant of side reactions and solvent concentration in the SEI film, respectively. Also, 𝛽𝑠 is the charge transfer coefficient for the side reactions and 𝐼 is electrode total current. It is possible to calculate the side reactions current density by its dependency to total applied current, temperature, and the SEI layer thickness 𝛿, through the Arrhenius equation as shown in (1-24) [41].
	Here, 𝛽0 is temperature independent pre-factor and 𝜆 is the limiting coefficient. Due to the weak relationship of 𝑒−𝜆𝛿 to the temperature, λ can be defined by the inverse Arrhenius equation as given by (1-25). Also, 𝜆0 is constant. The growth rate of the SEI in (1-24) can be calculated with (1-26) [42]. Where, 𝑀𝑆𝐸𝐼 stands for the SEI molecular weight and 𝜌𝑆𝐸𝐼 is its density.
	Tanim et al. [43] have developed another reduced-order non-linear physic-based SPM and combined it with the degradation calculations as given by (1-27) and (1-28), which simplifies and reduces the model computations. The capacity fade is quantified by the percentage loss of the lithium 𝑐𝑠 in the negative electrode. Here, 𝑆𝑛 is the negative electrode’ active surface. To find the power fade, the rate of rise of the SEI resistance is calculated by (1-28).
	𝑑𝑐𝑠𝑑𝑡=𝑆𝑛𝑖𝑠
	𝑑𝑅𝑆𝐸𝐼𝑑𝑡=−1𝜅𝑆𝐸𝐼𝑆𝑛𝑖𝑠𝑀𝑆𝐸𝐼2𝐹𝜌𝑆𝐸𝐼

	1.2.3 Summarizing Degradation Models at Material & Electrode Level
	Graphical illustration of the discussed battery performance and degradation models in this scale is presented in Figure 1.4. The current and temperature are the input variables for the models. Open circuit voltage (OCV) as a function of SOC is obtained from the experiments and the electrochemical properties, that are defined for each battery chemistry and materials. The outputs of these models are battery voltage, capacity, and power losses. In each iteration of the simulation, lithium current density is used to calculate the side reactions current and as a result the aging variables. Afterward, the SEI resistance and lithium concentration in the negative electrode are updated for the next simulation step.
	Figure 1.4.  The basic idea of material and electrode level degradation models.
	In summary, the material and electrode level capacity and power fade models are simulated by first, calculating the side reactions current. Afterward, obtaining the SEI film thickness followed by SEI resistance growth for power fade analysis. Finally, calculating the cyclable lithium loss for the capacity fade analysis. These models have high accuracy due to their detailed inside-the-cell dynamic equations without requiring bulk experimental measurements. However, there are complicated differential equations to be solved in each iteration and therefore, high computational load is involved. Fan [44] quantified the RMS error during model order reduction and observed nearly error increasing 35 times as the model is reduced from a 5th order to a 1st order model. Table 1.1 presents a summary of both P2D and SPM models.
	Table 1.1.  Summary of material and electrode level degradation models
	Type
	Major Mathematical Expressions Involved
	Variables
	Meas.
	Ref.
	Calculation Process
	Pros and Cons


	1.3 Cell Level Models
	Degradation models in the material and electrode level include the governing electro-chemical differential equations to simulate both the real-time performance and aging of the battery, as observed in the previous section. These equations are solved simultaneously and after each iteration, the parameters related to the aging such as cyclable lithium loss and SEI resistance are updated. The material and electrode level models are mostly physics-based model to understand the internal functions of the cell and used in performance analysis of newer battery chemistry. However, in the cell level aging models, the battery cell is considered as an electrical equivalent circuit with time-variant elements. This approach is taken to use these models with in-conjunction with other engineering studies, i.e. control architecture development for the BMS. Scaling up from the material level to the cell level is changing the view from the electrochemical reactions inside the cell to the electrically measurable variable as voltage, impedance, ampere-hour (Ah) on the cell terminals. Thus, allowing the battery models to be analyzed and utilized with physically measurable quantities.
	The battery degradation phenomena occur in both the storage and utilization modes. The aging associated with the storage period, “calendar aging” is dependent on the storage temperature, state of charge (SOC), and time as shown in (1-29) [46]–[48]. As the SOC of the battery and its terminal voltage are directly related, some literature has translated the battery SOC to its storage voltage [49], [50]. For the aging caused by the battery utilization, “cycle aging”, the effectual factors are ambient temperature, SOC, depth of discharge (DOD), charge/discharge current and number of cycles as given (1-30) [51]–[53].
	Here, 𝑄𝑐𝑎𝑙. and 𝑄𝑐𝑦𝑐. refer to the percentage calendar and cycle capacity fade respectively. The calculation trend from the mentioned aging factor to the capacity and power losses is shown in Figure 1.5.
	Figure 1.5.  Degradation factors in the cell level models
	Studies on the cell level aging modeling are empirically oriented and present fitted mathematical models to the data derived from extensive experimental data. These data are generated through both accelerated and non-accelerated testing methods for various battery technologies. Non-accelerated testing methods provide better results than accelerated testing. Regardless of the testing procedure, empirical models obtained through testing produces a considerable accurate result for a specific technology of battery. These results are deterministic in nature, providing a fixed value of capacity and power fade, as opposed to probabilistic answers, defined by a probability density function. Usually, these experimental data are fitted either with Arrhenius-like [49] or polynomial equation [53]. These two most popular cell level models are discussed here in detail. The choice of mathematical model depended on the chemistry of the battery technology and the accuracy of the fitting. 
	1.3.1 Arrhenius Kinetic Based Models
	Generally, most of the battery aging models obtained through empirical methods use the Arrhenius equation. Arrhenius equation dictates the relationship between the rate constant of a chemical reaction to major factors i.e. temperature, activation energy. Different researchers use this equation to relate the capacity and power fade of the battery with ambient temperature and time. Some variations and modifications are also performed in the base equation to accommodate the effect of SOC and Ah throughput. The rate constant k is defined by the Arrhenius equations as (1-31). Here, 𝐴 is a pre-exponential factor, 𝐸𝑎 is activation energy.
	Empirically obtained models require extensive testing, which demands substantial time and resources. These tests are performed under accelerated aging conditions with elevated temperatures. Note that the higher temperature has a significant effect on the battery aging acceleration [53], as batteries as significantly affected by exothermic conditions. So, Bloom et al. [54] tested 18650 cells in temperatures above 40°C to investigate the calendar and cycle life of the battery. They used the general Arrhenius equation to fit the experimental data (1-32).
	Here, 𝐵 is a pre-exponential factor, t is time, and z is the power factor. The numerical values of these parameters for different test conditions are presented in [54]. Authors in [54] explain the battery capacity fade and power fade in both the calendar and cycle aging with a power law of time. Although the time is a reasonable variable in the calendar aging evaluation, the capacity fade due to the cycling is more dependent on the total Ampere-hour (Ah) throughput of the battery. In addition, in constant current charge and discharge cycles, the Ah throughput is directly related to the time. Therefore, authors in [55] altered the time to Ah in the Arrhenius equation to be able to study the effect of different C-rates on battery degradation. Based on their model, the pre-exponential factor and activation energy are a function of C-rate and the power factor is a constant value as given in (1-33). Ah in (1-33) can be calculated according to (1-34). In (1-33), 𝐶 is the rated capacity of the battery cell and 𝑁 is the number of cycles. Numerical data for 𝐵 provided in [55] are adopted from fitting an exponential function of C-rate as given in (1-35) [56].
	This model in (1-33) includes the effect of temperature, DOD, C-rate and number of cycles. However, it is not considering the impact of SOC. Authors in [57] present a similar model relating the pre-exponential factor 𝐵 to the SOC of the battery during cycling as shown in (1-36).
	Where, values for 𝛼, 𝛽, 𝜂, and 𝑧 can be found from [57]. These models are helpful to evaluate the battery health condition. However, they are valid only in identical repetitive conditions. Han et al. [8] have employed accumulated damage theory and modeled the battery degradation in each cycle which can be different from the previous cycling conditions. They have presented a discrete capacity fade model as shown in (1-37), (1-38), and (1-39). These equations calculate the capacity loss associated with each cycle. A cumulative of capacity fade for every cycle provides the aggregate capacity fade. The parameters used are generated from tests and it is a practical model that should be calibrated to avoid accumulated error due to the difference in the test and real-world conditions.
	Another practical model that can be used for real-world battery degradation simulations is presented by Lam et al. [58] considering the effect of SOC, DOD, temperature and Ah throughput. Authors referred to [59] to calculate the average SOC, 𝑆𝑂𝐶𝑎𝑣𝑔 and its standard deviation, 𝑆𝑂𝐶𝑑𝑒𝑣 from the SOC profile of the battery after a cycling as given in (1-40) and (1-41).
	Following Millner’s work from [59], the capacity fade is calculated by the multiplication of exponentials of 𝑆𝑂𝐶𝑎𝑣𝑔 and 𝑆𝑂𝐶𝑑𝑒𝑣. However, Lam’s experimental results fitting shows an empirical function. By including the temperature effect, the capacity fade model is concluded as shown in (1-42). Where, 𝑘1, 𝑘2, 𝑘3, 𝑎𝑛𝑑 𝑘4 are calculated from fitting the experimental results.
	Arrhenius equation is used widely by different authors because of its considerable accuracy in defining capacity fade. This equation states that C-rate and temperature affect the capacity fade exponentially, while SOC is a pre-exponential factor. But this assumption is limited by battery technology and experimental conditions.

	1.3.2 Polynomial Based Models
	Although the temperature dependency in most of the aging models is indicated by the Arrhenius law, Omar et al. [60] claim that the Li-ion cells’ characteristic is not completely exponential. Therefore, a polynomial function is used for calculating the number of cycles before the battery reached the end of life (EOL). These polynomial functions are developed from fitting results from extensive testing. Function for determining the number of cycles 𝐶𝐿 for the effect of temperature on the battery is given by (1-43).
	Similarly, they use the experimental data to fit exponential functions to include the effects of discharge current 𝐼𝑑, DOD, and charge current 𝐼𝑐ℎ as given by (1-44), (1-45), and (1-46), respectively.
	Here, parameters 𝑘1 to 𝑘16 are concluded from the fittings and can be found in [60]. Considering these equations as the core of the model, the authors evaluate the effect of each factor in each cycling and calculate the maximum number of cycling in different conditions.
	Not all the aging models focus on the cycle aging, some studies explore the calendar aging specifically. Ecker et al. [49] suggest that the calendar aging is the square root of time while it is affected by the temperature and voltage which can be calculated by the experimental data fitting method used by [61], [62] for supercapacitor aging calculations. However, the calendar aging does not always change by the square root of the time. Different tests show that it may have a linear dependency to time or even a combination of both [52]. Considering both perspectives, battery calendar aging can be fitted to (1-47).
	Where, 𝑘1 and 𝑘2 can represent the effect of the temperature and the SOC or voltage by an exponential function, polynomial function, or combination of both. Marongui et al. [50] considers capacity fade is dependent on the square root of time at 𝑘1=0, and defined an exponential fitting function for 𝑘2 as given by (1-48). Here, 𝑉 stands for battery storage voltage, 𝑇 is the temperature. The parameters 𝛼, 𝛽, 𝑎𝑛𝑑 𝜆 can be obtained from experimental data fitting.
	To present a more comprehensive study, authors in [48] considers both the calendar and cycle degradation to model total capacity fade 𝑄. The calendar life part is based on the battery storage voltage 𝑉, temperature 𝑇, and storage time 𝑡. The cycle life consists of the effect of the average voltage 𝑉𝑎𝑣𝑔, DOD and total Ah throughput. The parameters 𝑘1 to 𝑘7 are obtained through fitting to experimental tests in both storage and cycling modes. The equations for this model are given by (1-49), (1-50) and (1-51).
	Similarly, in [63], [64], Zabala et al. have modeled the calendar capacity fade of the battery cell by the storage SOC, temperature, and time. The cycling capacity fade was modeled by DOD, and Ah while keeping the C-rate, and SOC level constant. This model is given by (1-52), (1-53), and (1-54); it is derived for different DOD limits from the experimental results.
	Here, 𝑘1 to 𝑘11 are fitted to best match the experimental data. In [65], an energy based aging model is presented that considers calendar and cycle aging. A new term as “state of energy (SOE)” is defined which is very similar to SOC. Total capacity fade in this model is the sum of the calendar and cycle aging. Here the calendar life is a function of 𝑆𝑂𝐸 and temperature as given by (1-55).
	Here, 𝑄𝑐𝑎𝑙.0 is the nominal calendar capacity fade in the condition with 𝑆𝑂𝐸0 and 𝑇0. The parameters 𝑘1 and 𝑘2 are fitting parameters. For the cycle aging, different cycles’ accumulated capacity fade is considered. For each cycle, a polynomial function of change of SOE as expressed by (1-56) calculates the capacity fade. Also, parameter 𝑘3 to 𝑘5 are obtained through fitting experimental results.

	1.3.3 Summarizing Degradation Models at Cell Level
	Figure 1.6 summarizes the cell level degradation models like previous material and electrode level. It describes the essence of most of the models available in the current literature. The current and temperature are the input variables in the cell level models. OCV and circuit elements (R, L, and C) are obtained from the experiments as functions of SOC and temperature. SOC from the performance model is used besides the current and temperature to calculate the degradation and update the capacity. Degradation models will modify the battery performance model by varying the battery internal impedance parameters and capacity, which will result in a variation of the battery terminal voltage.
	As observed, cell level degradation models rely on the experimental results and therefore, they are valid only for the specific battery technology and defined test conditions. Although these models are easy to simulate and reduce the computational load, they are less accurate compared to the material level models. One way to improve the accuracy of these models is to recalibrate the model parameters for any specific condition. To compare the mathematical models in cell level studies considering only cycle aging, they are presented in Table 1.2 with their references. The research work solely based on calendar aging and calendar aging combined with cycle aging are discussed in Table 1.3. These tables contain the key variables, required measurements, technologies, form factor, calculation process, and pro-cons of using each model are illustrated for a better understanding of these models.
	Figure 1.6.  The basic idea of cell level degradation models
	Table 1.2.  Summary of cell level degradation models
	Major Mathematical Expressions Involved
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	Tech & Form
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	Table 1.3.  Summary of cell level degradation models for calendar aging
	Type
	Major Mathematical Expressions Involved
	Variables
	Meas.
	Ref.
	Tech Form
	Calculation Process
	Pros and Cons


	1.4 Module and Pack Level Models
	A single Li-ion battery cell has limited power and capacity. Thus, for the high power and energy applications, the cells are connected in series or parallel configurations to form battery modules and pack with increased voltage, current, and stored energy capability. However, internal differences among the cells of a module or a pack are unavoidable. The source of this difference can be either the difference in the cells’ production process or different working conditions such as temperature and loading [66]. Among 20,000 fresh cells, measured initial capacity has a normal distribution with a 1.3% deviation. Direct current internal resistance result for these cells has the same distribution with 5.8% deviation [67].
	This phenomenon leads to inhomogeneous aging in the connected cells of a module or pack. For instance, two parallel-connected cells with a 20% difference in the internal resistance experience 40% higher peak currents [68] compared to the case that two cells work dependently. These increased current peaks cause extra heat production in the cell. Also, the location of the cell inside the module and pack affects its heat dissipation and changes the cell temperature [69]. Therefore, boosted current and temperature causes expedited aging in these cells, referring to the aging models of the previous section. Based on Gogoana et al., a 20% difference in the internal resistance of a pair of parallel cells can reduce the cycle life of both cells by 40 % [70]. In the series connected cells, the expediting aging factor is temperature, as the currents in series-connected cells are equal.
	Considering this discussion, aging models developed for the cell level are not adequate to predict the aging behavior of a module or a pack due to variations inside the pack. Pack simulation from the cell model is valid only if the cell-to-cell variations are considered [71]. The first step in solving the problem is to calculate/estimate the amount of imbalance between the cells to have a quantitative understanding of the different working conditions for the cells. “State of Balance” is a concept presented by Wang et al. [66] to estimate the cells' imbalance for dynamic equalization adjustment. One major imbalance factor is temperature which causes a mismatch on the cell resistance leading to unbalanced currents and different aging behavior. During the discharge of a module with parallel cells, cells with higher temperature have higher current extraction until 75% DOD. After that, the current falls until 90% DOD and then rises again to the end of discharge. This result shows a significant impact of temperature in cells’ performance, reported in [72]. The authors indicate a linear relationship between the capacity fade difference and the temperature difference between cells.
	To better understand the aging difference in a single cell and the pack Lebel et al. [73] explored the parallel-connected cells aging by an electro-thermal model. Incremental capacity analysis (ICA) is reported to be a suitable tool for the study of the difference in cell and pack capacity fade due to variation in the internal resistance, temperature [74], [75]. Kalogiannis et al. [76] report results at different discharge rates and reference authors performing ICA for lithium iron phosphate, lithium nickel manganese, and lithium titanate oxide technologies. However, reports on these technologies are experimental and not formally described with a mathematical equation that can be reproduced for other battery packs.
	The next step is to bridge the gap between cell aging models and module/pack degradation calculations. In a battery pack with parallel and series cells, the basic approach is to neglect the current imbalance in the parallel cells and consider them as a bigger cell due to the passive balance control. Then, it is possible to calculate the aging for the series cells considering their working condition by updating the cell aging model using the SOC and state of health (SOH) information from the pack. At this point, deciding about the pack capacity fade from cells’ aging information can follow different methods [77]–[79].
	The simplest method is to select the most aged cell as the representative of the whole pack and calculate the pack capacity fade as follows [80], [81]. This considers exclusively serially-connected cells as given by (1-57).
	Here each cell’s capacity fade is 𝑄𝑐,𝑖, and the number of cells is 𝑀. The disadvantage of this method is that it overestimates the pack capacity fade. Taking the average of cells capacity fade for the pack degradation estimation is another approach that underestimates the total capacity fade. Therefore, authors in [67], [79] suggest using probabilistic aging estimation, which finds the probability distribution of cells capacity and presents the whole pack capacity by a probability distribution function. However, the results show that although the estimation error is improved, this method still underestimates the pack degradation, slightly.
	Other module and pack level aging determination methods consider that the battery is already deployed in an application. In most cases, these applications are related to electric, hybrid electric vehicles, grid, and residential application. In such cases, it is not possible to remove the battery from that application and test to determine degradation frequently. The aging must be determined while the battery is being utilized, or online. Therefore, these methods are used to simplify the aging estimation with minimum measurement and test requirements. Note that such studies do not present mathematical aging models for simulation purposes and they focus on the estimation methods to be implemented in real-life battery applications.
	The main objective of these methods is to estimate the aging while the battery is online. This can be categorized into two groups: experimentally oriented and adaptive methods [82]. The experimental methods measure and store the aging related variables and calculate the aging in each state of life of the battery using simplified aging models and historical logged data. Resistance measurement in different current signals [83], joule effect which is the generated heat by the internal resistance [84] and Ah throughput counting [85], [86] are some of these approaches.
	Remmlinger et al. [87] proposed a resistance estimation method using a specific current signal detection while the battery is working and measuring the voltage for resistance calculation. Ah throughput counting method using the aging model presented in [51] is another study presented in [88].  As the working condition of a battery, such as loading and temperature change during its life, the total Ah count rises the aging estimation error. Therefore, Marano et al. [89] suggested using effective Ah counting which defines weighting coefficients for each Ah considering the different working conditions. Although these methods have low computational burdens and are easy to implement in the battery management system, they require large data storing capacity and, they have less accuracy due to the accumulated error over time. 
	To prevent the bulk measurement of the aging related parameter and data storage problem, it is possible to reduce the measurements and computations by sampling a small group of the cells [90]. In this method, a new circuit topology of the battery pack is needed which separates it into two tests and main groups. The circuit configuration is designed in such a way that while the main group is working, the test group cells can be separated by relays and measurements can be performed without disturbing the function of the battery. This method simplifies and reduces the computational burden with the cost of slightly lowering the accuracy.

	1.5 Probabilistic Degradation Models
	Even with large data sets detailing the battery behavior, online pack and module level aging determination generate results with large error margins. It is because such estimation methods are deterministic in nature while relying on results obtained through a controlled experiment in a lab. It is nearly impossible to replicate the exact application scenario during the associated testing procedure. So, the deterministic results obtained will be inherently erroneous, because of the inability to predict the load applied on the battery by a specific application. Therefore, researchers are moving towards a more probabilistic approach to determine degradation.
	These probabilistic-based studies mainly use adaptive methods that calculate the parameters sensitive to the aging such as resistance and estimate the life of the battery from those calculations. These methods eliminate the need for bulk measurements and simulations of the battery performance. For this purpose, they use different algorithms such as Kalman filter [91] and its improved versions, observers [92], fuzzy logic [93], artificial neural networks [94], and linear least squares [95]. All these methods can target specific aging related parameters in the battery. For example, Gholizadeh et al. [96] have used a sliding mode type observer (SMO) and Remmlinger et al. [97] employed linear parameter-varying (LPV) model on series resistance measurements. They have used general measurements that are available in the BMS. In [98], Kalman filter is applied for aging estimation by cell capacitance from Randles’ equivalent circuit model and it is shown that the aging of the battery has a non-linear relationship with that capacitive property. However, these models typically quantify aging but disregard the causes of aging beyond the battery parameters. 

	1.6 Conclusion
	This chapter classified the models into different scales and analyzed each model by presenting its mathematical expression, key variables, required measurements, and calculation process. At the material level, the literature is well established through the physics-based governing equations based on porous theory. Model order reduction and simplifications such as single particle models are widely used to improve the usability of these models. However, these models could benefit from probabilistic approaches that consider variations in active surfaces, and ratios of electrode-electrolyte volumes. 
	At the cell level, findings show that researchers report their aging models with varying degrees of disclosure. For example, only a sub-set of researchers presented the cell technology and form factor. Also, aging studies are mostly reported based on laboratory experiments, but the field is clearly moving towards real application-based data. Increased data availability through cloud-based databases will radically increase the resources available to generate aging models.
	At the module and pack level, most of the work is focused on identifying variations in cell capacities and voltages. However, some methods are developed for the series/parallel combination of the pack studied, which makes it difficult to adopt for other packs. Also, at the module and pack level, our findings show a heightened interest in probabilistic approaches that can be driven by real application data. However, there are not enough studies that reach beyond a single scale and particularly none that tie them probabilistically.
	This literature review served the basis for obtaining a solid understanding of battery characteristics and aging models used to predict battery degradation. This dissertation focuses on developing a probabilistic approach through a hierarchical Bayesian Network to evaluate battery degradation. The hierarchical Bayesian Network requires a deterministic function that relates battery degradation to intermediate variables, i.e. SOC, Ah throughput, C-rate, etc. Later these intermediate variables can be related to external causal factors. For the cell level, a suitable function is a modified Arrhenius equation given in (1-36). This equation will be utilized in later sections to define the battery capacity during Bayesian Network development.
	The summary and qualitative comparison of degradation models and methods in different scales are given in Table 1.4.
	Table 1.4.  Summary of battery degradation models
	Scale
	Factor
	Application
	Target and Purpose
	Pros and Cons
	Material and Electrode Level
	Cell Level
	Module and Pack Level
	Probabilistic Models
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	Comparison of Li-ion Battery Equivalent Circuit Modeling Using Impedance Analyzer and Bayesian Networks
	Abstract
	Energy storage system simulations require a battery model capable of precisely predicting the dynamic behavior and characteristics of the battery. There are multiple methods available in the contemporary literature on accurate battery modeling. The most common method utilized is the semi-empirical equivalent circuit model (ECM) developed through time-domain testing. A better alternative can be obtained using a combination of time-domain and frequency-domain tests to parameterize ECM components. The underlying fitting mechanism for this proposed method is linear least square regression. The fitting accuracy can be further improved by applying Bayesian Network (BN) to estimate the ECM circuit elements. In this chapter, two systematic approaches to determine ECM are discussed. First, the ECM is developed through fitting the time-domain and frequency-domain test results carried out on a commercial electric bicycle Li-ion battery composed of Samsung ICR18650-22P cells. Later BN method was applied to estimate the ECM circuit elements. In both cases, multiple circuit topologies were used to compare the accuracy of the model. The models were developed in MATLAB/ Simulink environment. A highly dynamic drive cycle was utilized to validate the ECMs through hardware-in-loop testing. It was observed that the appropriate ECM topology used for the linear least square regression fitting generated an average error of 3.3% whereas for BN estimation it was 3.5%. 

	2.1 Introduction
	Lithium-ion technologies require advanced battery management systems (BMS) to operate safely at maximum performance. These BMS heavily rely on an accurate model of the battery [1]. The battery model is also required in the battery simulation of performance and aging studies [2]. Battery modeling techniques can be grouped into three broad categories: electrochemical, physics-based and ECM. ECM provides a circuit composed of a voltage source, signifying open-circuit voltage (OCV) and the battery internal impedance. This internal impedance can be determined to utilize time and frequency domain testing [3], [4]. The accuracy of ECM typically depends on the number of RC parallel combinations [5].
	Authors in [6], [7] generated an ECM through frequency domain electrochemical impedance spectroscopy (EIS) tests. They limited their experimentation to a single cell and results were fitted with 2 or 3 RC networks. However, the accuracy of such an ECM model is reduced due to a reduction in the number of RC components. Moreover, single cell-based ECM is incapable of considering the variability of multiple cells/modules in a battery pack. 
	Time-domain hybrid pulse power characterization (HPPC) is used by authors in [8]–[14] to generate an ECM. Impedance parameters are determined from the voltage response during the relaxation period after a constant discharge period. However, the impedance determined through HPPC is only valid for constant current loads at a specific state of charge (SOC) and temperature. Moreover, the ECM from HPPC is also limited to 1-3 RC components.
	Authors in [15]–[17] applied multiple versions of Kalman filters to estimate components of ECM. The complexity and processing time to determine the impedances of ECM increases with the higher number of RC components. Thus, the authors reduce the fitting to the 1RC component. But this reduces the accuracy of ECM severely.
	Authors in [18], [19] used various filters to estimate 3RC based ECM. Developed ECM showed improved results compared to single RC based models. An ECM requires even higher RC components to model a battery accurately. In [20] both time-domain and frequency-domain analyses are performed on multiple Li-ion battery technologies to develop an ECM with higher accuracy containing 8RC components. But there was no logical explanation of why an 8RC ECM is appropriate for ECM. Also, the advantage gained through using a higher order ECM was not tangible, as a comparison with lower order models was not presented. Moreover, the determined impedance parameters are non-uniform and complicated to replicate. 
	Another statistical approach that is widely used to estimate the unseen variables conditional to the measurements is Bayesian Networks (BN) [21], [22]. In the battery studies, BNs are mostly used for state estimation purposes such as SOC and state of health (SOH) of the battery which are unseen variables and difficult to measure [23], [24]. However, BN can be used for probabilistic estimation of any problem with limited measurements and observations. Therefore, it can be used to estimate the battery impedance elements conditional to the measurements of the time and frequency domain tests.
	This chapter develops the ECM of a Li-ion battery pack by fitting experimental results and estimation through BN. The developed models are compared based on their accuracy by quantifying the error variation when considering higher and lower order ECM models. A commercial Li-ion battery is used as a test case in this regard. Time-domain capacity and hybrid pule power characterization test, and frequency domain electrochemical impedance spectroscopy test results are used to develop the models. The first set of ECM was developed with fitting the experimental result with a linear least square regression by Impedance Analyzer to generate 2RC, 3RC and 8RC models. Whereas, the second set of models were developed for 2RC and 3RC with BN estimation.
	The rest of the chapter is organized as follows. Section 2.2 provides an overview of the experimental procedure describing the boundary conditions and various scenarios utilized to generate a detailed ECM model. Section 2.3 delves into the details and technicalities of the experimental procedures. Section 2.4 shows how the ECM model was developed using the impedance analyzer through the linear least square regression method. Sections 2.5 explains the process of developing the BN for the regression procedure and showcases the results obtained. Finally, Section 2.6 illustrates the comparison between the impedance analyzer's linear least square method and BN estimation followed by the conclusion. 

	2.2 Overview of Experimental Method
	The commercial Li-ion battery pack can either be charged from an outlet or through regenerative braking. The battery pack is composed of Samsung ICR18650-22P. The details of the battery pack and associated cells are provided in Table 2.1 [25].
	Table 2.1.  Battery pack and cell details
	The battery pack used for the testing procedure was at the beginning of life (BOL). The time-domain testing consists of capacity and hybrid pulse power characterization (HPPC) tests. A National Instrument data acquisition (DAQ) device was used to record pack voltage and current. The temperature was measured from 8 different locations within the pack. Multiple analog temperature sensors were used to observe the variations within the pack. The temperature measurements were also performed with the DAQ device. The locations of the eight sensors are marked in Figure 2.1. Also, three module voltages from module 1, 6, and 13 were recorded during time-domain tests. These tests were repeated for -10℃, 0℃, and 20℃ to have a proper representation of commercial Li-ion usage conditions.
	Figure 2.1.  The disassembled commercial Li-ion battery pack.
	The frequency-domain testing method, EIS was performed through a galvanostatic control using a battery impedance analyzer. The EIS test was performed with a frequency sweep from 2mHz to 1kHz at 100%, 80%, 60%, 40% and 20% SOC. Each of these tests was repeated for -10℃, 0℃, and 20℃, in accordance with the time-domain experiments. The EIS was performed at multiple SOC to generate more data for developing a proper battery impedance model. Note that, although the experiments are performed on the commercial Li-ion battery and the model results and validations are based on the dynamic load profile data, the developed models are not dependent on any specific application of commercial Li-ion battery.

	2.3 Testing Procedure
	The type of tests performed on the commercial Li-ion battery can be classified in three main groups: Capacity test to measure the actual capacity of the battery in Ah, HPPC test to measure the OCV vs. SOC characteristics of the battery, and EIS with an impedance analyzer to determine the internal impedance of the battery. The capacity and HPPC tests are time-domain whereas the EIS is frequency-domain. Thus, the capacity and HPPC test share a similar set of equipment as opposed to the EIS. The following subsections delve into detail about the testing procedures.
	2.3.1 Capacity Test 
	The test determines the actual capacity of the battery in Ah while being discharged with a constant current. The nominal capacity of the battery 𝑄𝑛, provided by the manufacturer is an average measurement. The average is determined by testing multiple batteries from the production line. Due to minor changes in the manufacturing process, each battery cell has a slightly different capacity than the other. The difference in individual cells is often negligible. However, when a battery pack is formed with cells with various actual capacity, the overall battery capacity can have a major deviation from the manufacturer rated nominal capacity. Moreover, the capacity measurement estimates the SOC of the battery. A wrong SOC estimation can lead to cycling the battery incorrectly, causing performance issues and pre-mature aging. Furthermore, the battery capacity changes significantly with the ambient temperature even if determined with manufacturer suggested C-rates are used. Thus, it is essential to know the actual capacity of the battery at multiple temperatures to develop accurate ECM.
	The capacity of the battery is dependent upon the discharge current C-rate and temperature. A standardized C/3 rate is used in accordance with the manufacturer specifications [25]. For the battery in the discussion, a constant current load of 2.87A was used to determine actual battery capacity 𝑄𝑎. 
	Figure 2.2.  Time-domain test experimental setup.
	The battery was kept inside the ESPEC EPZ-4H thermal chamber. The NHR 9200 battery tester equipped with 4912 part was used to charge or discharge the battery. Hall effect current and voltage sensors measured analog signals and provided the data to the NI PXIe-1071 chassis equipped with NI PXIe-8135 processor and NI PXI-6254 data acquisition system. The thermal sensor temperature data was also sent through the remaining channels of the data acquisition system. The battery tester, data acquisition system, and the thermal chamber were in a single LAN network with the lab PC controlling the experiment. The lab PC was utilizing NI LabView 2014 to control the connected equipment in real-time. Figure 2.2 depicts the experimental setup used to perform the test. The results of the capacity test are given in Table 2.2.
	Table 2.2.  The measured actual capacity of commercial Li-ion battery
	It was observed that battery capacity dropped as the temperature was reduced. The reduction in temperature reduces the rate of transfer of li-ion from one electrode to another. The electrolyte forms crystals, increasing the impedance and impeding the transferring of li-ions. The DOD of the battery is calculated according to (2-1) where the SOC measurement is based on actual capacity 𝑄𝑎. 
	Figure 2.3.  Capacity test results
	The result of the capacity test can be observed in Figure 2.3 where the pack voltage is plotted against DOD. It is evident from Figure 2.3 that reduction in overall capacity reduces the maximum DOD. Furthermore, due to the increase in internal impedance, the pack terminal voltage is reduced. 

	2.3.2 Hybrid Pulse Power Characterization Test
	The hybrid pulse power characterization (HPPC) test is designed to observe the pulsed response of the battery. The test applies a charge and discharge pulse on a fully charged and relaxed battery. This is followed by a constant current discharge and a relaxation period. The duration of the relaxation is suggested by the manufacturer. For this commercial Li-ion battery, the purpose of conducting HPPC tests was to develop the OCV-DOD relationship. The measurement of battery terminal voltage, and depleted Ah 𝑄 at the end of each relaxation period is recorded. At no-load condition, the battery terminal voltage gives OCV. Ah measurement 𝑄 is used to generate the DOD of the battery from (2-2). Data from the experiment is fitted to an appropriate function using any adept curve fitting tool.
	HPPC test is utilized by the contemporary authors to generate the ECM circuit parameters. However, ECM parameters generated solely through HPPC inherently lacks accuracy as the voltage response is highly dependent on the constant load current between each set of pulses.
	Figure 2.4.  The HPPC test load profile and response voltage.
	The experimental setup for HPPC remains the same as the capacity test. Instead of constant load current, a custom waveform representing the HPPC characteristics was used. Each constant discharge period was designed to deplete 5% of SOC. Since the nominal battery capacity is 8.6Ah, the constant discharge needed to deplete 0.43Ah. The constant discharge current was selected to be 2.87A (C/3) for 9 minutes followed by 60 minutes of relaxation. In the discharge of 9 minutes, 5% of SOC was depleted. The 60 minutes relaxation was selected according to the manufacturer’s suggestion [25]. The sample of the HPPC test result can be seen in Figure 2.4. Figure 2.4 shows the load current representing the HPPC and response voltage. It also shows where the OCV measurements were collected. It is noticeable that after each constant discharge the battery terminal voltage settles to a lower value corresponding to the lower SOC state. 
	Table 2.3.  OCV-DOD data from HPPC test
	Figure 2.5 depicts the corresponding Ah depletion along with the OCV data point. The plateau reached after every successive constant discharge in Figure 2.5 signifies that the battery was relaxed without any load, thus allowing to reach the OCV conditions. The tabulated results of the entire HPPC test are given in Table 2.3.

	2.3.3 Electrochemical Impedance Spectroscopy Test
	The electrochemical impedance spectroscopy (EIS) test is a powerful tool used in electrochemistry to extract data on electrode kinetics and diffusion from an electrochemical process. One of the major application areas for EIS is electrochemical energy storage or batteries. The typical DC analysis on battery only reveals information on electrode kinetics or mass transport. On the other hand, EIS can obtain both types of data by analyzing the battery with AC signals. In the galvanostatic EIS, the battery is subjected to a sweep of sinusoidal current (𝐼) while voltage response 𝐸 is recorded. The impedance is measured from (2-3) and can be explained as complex numbers as (2-4) and (2-5).
	The complex impedance measured from the EIS experiment is most commonly analyzed with the Nyquist plot. An ideal Nyquist plot for a 𝐿𝑖𝐶𝑜𝑂2 technology is depicted in Figure 2.6 is divided into 5 sections according to [2]. Each section of this Nyquist plot is attributed to a specific electrochemical kinetic property occurring within the battery. These electrochemical kinetic properties are adequate in characterizing this li-ion battery. The EIS reveals these properties accurately. In Figure 2.6, Section 1 is attributed to the conductive materials i.e. current collectors, interconnections between cells and wires. At higher frequency, these components show inductive properties, thus the inductive component is considered in the ECM. The x-axis intercept in section 2 represents the cumulative resistive effect of current collectors, the interconnection between cells, electrolyte, active material, and separator, characterized by a resistance. The first semi-circle, section 3, is related to the solid-electrolyte interface (SEI), portrayed by a parallel resistance and constant phase element (CPE). The second semi-circle (section 4) occurs due to double-layer capacitance and charge transfer resistance at the electrode. Though section 4 is attributed to different properties, due to the semi-circular shape, the ECM element is identical to section 3. Finally, section 5, expressed by a 45º line, is due to diffusion of lithium ions in the active material of the electrode at very low frequency, represented by a Warburg element. 
	Figure 2.6.  The ideal Nyquist plot for 𝐿𝑖𝐶𝑜𝑂2 Li-ion battery.
	Temperature and SOC are major proponents that affect the underlying properties that dictate the ECM components. Thus, EIS must be repeated multiple times for separate temperature and SOC to account for these variations. Results from such tests need to accumulate to provide a complete characteristic.
	For the commercial Li-ion battery, the experimental setup for EIS can be explained in Figure 2.7. The battery was fully charged up to the manufacturer's recommended voltage and kept in the thermal chamber at 20℃. The EIS experiment was solely operated by the impedance analyzer Modulab from Solartron Analytical fitted with Pstat 1MS/s and accessory HV 100. The Pstat was aided by the HV 100 to accommodate the entire battery pack. The current electrode (CE) and the working electrode (WE) connected to the battery terminals provided the sinusoidal current signal. The current signal was of 100mA, ranged from 2mHz to 1kHz. The reference electrode (RE) measured the sinusoidal voltage response. After the experiment was carried out for a specific SOC, the battery terminal was switched to battery tester. The battery tester was programmed to discharge the battery 20% to reach the next experimental state. A constant 2.87A (C/3) rate was applied to discharge the battery. There was a rest period after the discharge to allow the battery to reach the steady-state condition. The experiment was repeated until the battery reached 20% SOC. After that, the battery was recharged and put on a different temperature to repeat the entire procedure. These tests were repeated for 0℃ and -10℃. The results obtained from the EIS test can be seen in Figure 2.8, Figure 2.9, and Figure 2.10. Each of the following figures shows the measured impedance at different SOC at a specific temperature.
	Figure 2.8.  The measured impedance by EIS test at 20℃.
	Figure 2.9.  The measured impedance by EIS test at 0℃.
	Figure 2.10.  The measured impedance by EIS test at -10℃.
	It is evident from these results that both real and imaginary parts of the internal impedance of the battery increases as temperature drops. The impedance increases rapidly after the temperature drops below 0℃. The EIS results correspond with the fact that impedance increases with the crystallization of the electrolytes occurring below 0℃. Comparing the effect of temperature, inductive properties of the battery impedance in high frequencies (Section 1 in Figure 2.6) are mostly observed in higher temperatures. However, the resistive properties of the battery pack increase with the temperature decrease, i.e. the battery shows higher resistances in low temperatures. This increase in the resistance is not only observed in the cumulative resistance of the connections, but it is also noticed in the semi-circles’ resistances, as the radius of the semi-circles increases with the temperature drop. In addition, at higher temperatures, the effect of Li-ion diffusion in the electrode is dominant on the battery impedance (Section 5 in Figure 2.6), while in lower temperatures, the impact of the SEI and double-layer capacitance and charge transfer resistance are more influential, as depicted on Section 3 and 4 in Figure 2.6. Different SOCs’ results show that two semi-circles are separate and distinguishable in lower SOCs. However, in higher SOCs, only one semi-circle is noticeable in the Nyquist plot. Therefore, the effects of SEI, double-layer capacitance, and charge transfer resistance are detectable in lower SOCs.


	2.4 Equivalent Circuit Modeling
	The ECM developed in this chapter utilizes three inputs, initial SOC, load current, and ambient temperature. The Model produces battery terminal voltage, present SOC, and DOD. The ECM has four parts, SOC and DOD determination, OCV calculation, equivalent impedance component, and terminal voltage deduction. At first the initial SOC and load current at time t is taken to determine the SOC and DOD at time 𝑡+1. The SOC and DOD values at time 𝑡+1 and temperature are used to determine the equivalent circuit component values. Simultaneously, the SOC and DOD at time 𝑡+1 and temperature are utilized to calculate the OCV of the battery. Finally, the present OCV and equivalent circuit component values are used in the differential equation to produce the terminal voltage of the battery. Though the system can produce more results, it is limited to terminal voltage, present SOC and DOD to ensure a high level of integrity with external components such as residential or vehicular models. The process is visualized in Figure 2.11. The number of equivalent circuit components produced depends on the degree of accuracy of the ECM. Figure 2.12 shows the ECM developed in this chapter.
	Figure 2.11.  Equivalent circuit components
	There are various ways of determining the SOC and DOD of the battery. For this chapter, a coulomb counting method was used. For the equivalent circuit components, as shown in Figure 2.6, at higher frequencies, the inductive property of the is dominant due to the electrically conductive parts in the pack. A lump resistance and inductance represent these cumulative resistive and inductive properties. Experimental results revealed that the resistive part has a negative temperature coefficient. The value of this resistance increases as temperature drops, unlike a regular resistance.
	A parallel combination of a resistance and constant phase element (CPE) is known as Zarc, which models the semi-circles in Figure 2.6. To model this impedance with electrical circuit elements, the author in [26] developed a method to approximate them with odd numbers of parallel resistance-capacitance (RC) combinations. It was proven that any arc in the Nyquist plot that requires a Zarc element in the circuit can be replaced with 3 consecutive RC elements with considerable accuracy. Thus, this study uses 6 consecutive RC elements for two semi-circle/arcs instead of a Zarc for the most precise model. A Warburg element is a resistive component which corresponds to a linearly rising line at 45º in the Nyquist plot and can be represented by 2 RC circuits in series.
	Figure 2.12.  Generated equivalent circuit models
	The most accurate ECM without any significant reduction in processing/calculation time model would have 8RC components, 6RC for the first two Zarcs and 2RC for the Warburg element. A simplified model could be designed considering that the Nyquist plots have three arcs. In this case, a simplified model would have 3RC components, one for each arc. Both circuits, with 8RC and 3RC, were modeled using the experimental data for commercial Li-ion battery. Moreover, a further simplified and popular battery model with 2RC used by researchers in [8, 20], was also modeled based on the experimental results to compare.
	Two statistical approaches are used to estimate the OCV and R, L and RC components from the HPPC and EIS experimental data: Impedance Analyzer fitting and Bayesian model. The significance of both Impedance Analyzer fitting and BN model is the capability to produce robust battery models, capable of predicting battery’s characteristics with accuracy and precision. These two methods have a different approach to the modeling process. The ECM parameter fitting with Impedance Analyzer is based upon deterministic least-square regression, while the BN considers a probabilistic approach.
	The application of ECM based on an impedance analyzer is typical for laboratory environments where a higher order model is desired as it can provide accurate battery characteristics with utmost efficiency. On the other hand, BNs can be applied for both laboratory and online applications as it can provide a more accurate lower order model. Lower order models can greatly simplify implementation for online applications.
	2.4.1 Impedance Analyzer Fitting
	The OCV was determined by the function of 𝑂𝐶𝑉=𝑓𝐷𝑂𝐷,𝑇 developed from the HPPC test results. A fifth-order polynomial equation was developed to fit the recorded data from Table 2.3. A linear least square method was used to fit the data to the polynomial equation. The values of the coefficients are given in Table 2.4. MATLAB 2016 curve fitting tool was used to generate the function. The values of the parameters are given in Table 2.4.
	Table 2.4.  OCV-DOD-T function parameters
	The EIS tests and subsequent fittings were performed with Modulab ECS software associated with a Solartron impedance analyzer. Modulab ECS employs a linear least square linear regression method based on provided initial values to fit the experimentally obtained data to ECM. The initial values of the ECM components are obtained from the respective EIS Nyquist plot sections that the component belongs to as previously defined in Figure 2.6. For example, the initial value of the inductor 𝐿0 was found from the last data point with the maximum frequency 𝑓𝐿0 and impedance 𝑍𝐿0′′ using (2-7). Similarly, the x-axis intercept of the Nyquist plot provides the initial value of 𝑅0. For the capacitors, the impedance and frequencies were selected from the respective arc that the circuit component is representing. The capacitor initial values were calculated similarly by (2-8).
	The determined circuit components are at multiple SOC and temperature. These components were fitted to a fourth-order polynomial to obtain 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑥=𝑓(𝑆𝑂𝐶,𝑇). The function parameter obtained is given in Table 2.5.
	Table 2.5.  ECM component function parameters
	The final step in developing the battery models is using the value of the circuit components in the ODE associated with their respective circuits to determine the battery terminal voltage given in (2-9).
	𝑉𝑏𝑎𝑡=𝑂𝐶𝑉−𝐿0𝑑𝐼𝑏𝑑𝑡−𝑅0𝐼𝑏−𝑅1(𝐼𝑏−𝐶1𝑑𝑉𝑅1𝐶1𝑑𝑡)⋯−𝑅𝑛(𝐼𝑏−𝐶𝑛𝑑𝑉𝑅𝑛𝐶𝑛𝑑𝑡) 
	Where, 𝐼𝑏 and 𝑉𝑅𝑛𝐶𝑛 are the battery current and RC element’s voltage, respectively. Modeling battery with the linear least square method with the Modulab software is based on expert knowledge from the user, as it needs to suggest a circuit topology for the software to fit. Also, variations for this topology are made by painstakingly fixing specific parameters to manipulate the circuit correctly, which requires intensive personnel involvement. Therefore, machine learning algorithms are explored as an alternative in the next section.

	2.4.2 Developing ECM with Bayesian Model
	Bayesian Network (BN) is a probabilistic presentation of process models with a directed acyclic graph including nodes and arrows (called edges). In Bayesian modeling, all variables can be divided into two groups of “Observations” and “Unobserved” values. In Bayes’ theorem, the vector of unobserved variables (𝜽) including model’s parameters and intermediate unseen variables can be calculated conditional to a vector of observations (measurements) (y), using joint probabilities as given in (2-10).
	𝜃|𝑦=𝜃,𝑦𝑦=𝑦|𝜃[𝜃]𝑦
	Where, 𝜽|𝐲 is the posterior distribution, 𝐲|𝜽 is the likelihood, and 𝜽 is the prior distribution. Here 𝐲 is the marginal distribution of observations on the unobserved variables 𝜽 as observed in (2-11). This probabilistic expression can include all uncertainties such as sampling, measurement and process uncertainties in the calculation of an unobserved variable through the definition of probability distributions’ parameters.
	𝑦=𝑦𝜃𝜃𝑑𝜃
	To model the battery OCV and impedance from the experiments, the first step is to define the observed and unobserved variables and define the graphical structure of the Bayesian network as Figure 2.13. Our expert domain knowledge was used to create the network structure, other such models exist that may be statistically indistinguishable based on the independencies/dependencies entailed by the model.
	The observed variables in HPPC tests are 𝐷𝑂𝐷𝑘 and 𝑂𝐶𝑉𝑘 with K measurements. For EIS tests, the battery state of charge 𝑆𝑂𝐶𝑖 and battery impedance 𝑍𝑏𝑎𝑡𝑡,   𝑖𝑗 in I observations with J measurements in each observation of impedance. Unobserved variables are the estimated R, L and C circuit elements. The estimated depth of discharge and state of charge is 𝐷𝑂𝐷𝑘 and 𝑆𝑂𝐶𝑖 respectively. The parameters are 𝛼, 𝛽, 𝛾, 𝑎𝑛𝑑 𝜂. The estimated real and imaginary parts of the impedance are 𝑍𝑖𝑗′ and 𝑍𝑖𝑗′′. Based on the network, we can write the mathematical expression of the Bayesian network as (2-12). Note that in (2-12), the sign between left and right side of the expression is “∝” instead of “=”. This is because it is not possible to calculate the marginal distribution of observations for all values of unobserved quantities.
	Figure 2.13.  Bayesian network for the ECM model
	Therefore, the Markov Chain Monte Carlo (MCMC) algorithm is used to calculate the posterior distributions and the Metropolis-Hastings method [27] is applied for sampling. To apply the MCMC algorithm, full conditionals for all random variables are calculated. The PDFs for the variables are chosen based on the requirements of each variable. For instance, R, L, and C elements have “gamma” PDFs as they have positive values. The BN model’s outputs for a sample circuit element 𝑅0 are shown in Figure 2.14. For 5000 MCMC samples, the histogram and fitted gamma distribution is depicted in Figure 2.14, which proves the successful MCMC sampling. Figure 2.15 presents the estimated gamma PDFs of 𝑅0 in various SOCs and using these distributions, the model parameters’ PDFs are estimated, and sample results are shown in Figure 2.16. 
	Figure 2.14.  The Bayesian model outputs histogram for 𝑅0. 
	Figure 2.15.  The Bayesian model output gamma PDF for 𝑅0 at various SOCs.
	Figure 2.16.  The Bayesian model output normal PDF of parameters for 𝑅0.
	Table 2.6.  BN 2RC and 3RC model Data at 20℃
	After estimating the parameters’ distributions, they are used to generate the ECM model and estimate the battery voltage 𝑉𝑏𝑎𝑡𝑡_𝑒𝑠𝑡 for a given experimental current 𝐼𝑏𝑎𝑡𝑡_𝑒𝑠𝑡. Table 2.6 presents the circuit elements estimated by the BN model for two SOCs.


	2.5 Impedance Analyzer vs. Bayesian Network Models
	This section compares the ECM developed by the Impedance Analyzer and BN models. Three ECMs (8RC, 3RC, and 2RC) were developed with Impedance Analyzer with varying accuracy. Whereas for BN, two ECMs (3RC and 2RC) were developed. The BN model was limited to 3RC as it was comparable to 8RC models from the Impedance Analyzer, albeit demanding more mathematical processing time and resource. However, the BN models are more successful in terms of accuracy and precision in estimating the internal impedance of the battery. The following discussion elaborates on this in terms of fitting accuracy, errors in percentage in real and imaginary parts, and validation under typical commercial Li-ion battery load.
	2.5.1 Estimation Accuracy
	Using the Impedance Analyzer, three ECM models with different levels of accuracy are developed as 8RC, 3RC and 2RC circuits. These results are compared to ECMs with 3RC and 2RC developed through BN. The BN development is focused on 3RC and 2RC as these are the cases where the impedance analyzer software presents less accurate models, as explained below. Figure 2.17 presents the Impedance Analyzer model results for 80% SOC. From Figure 2.17, it is evident that the 8RC ECM produces a superior fit as opposed to 3RC and 2RC. The 8RC ECM deploys 3RC’s for each arc and 2RC’s for the diffusion region. Having multiple RC’s in a single region produces a better fit because each RC pair can fit a smaller semi-circle, which can be part of an arc-shaped trajectory. The cumulative effect of such multiple RC produces accurate fitting. Since this cannot be obtained through 3RC and 2RC circuits in the Impedance Analyzer fitting software, their ECMs are less accurate.
	Figure 2.17.  Accuracy of various Impedance Analyzer model at 20℃ and 80% SOC.
	A similar discussion is applicable for the 20% SOC result that has two semi-circles in the impedance profile as in Figure 2.18. The R square values of the three models are calculated as 0.999, 0.980 and 0.941 for 8RC, 3RC, and 2RC circuits, respectively, signifying the accuracy of the fitting.
	However, using BN models results in an even more accurate impedance estimation for the same number of RC circuits. The impedance results of 3RC and 2RC ECM models from BNs for 80% and 20% SOCs are presented in Figure 2.19 and Figure 2.20. Results show they are clearly more accurate in higher frequencies than 3RC and 2RC ECMs and comparable to 8RC ECM from the Impedance Analyzer software. The BN-based 3RC and 2RC models have R-square equal to 0.993 and 0.982 respectively, which indicates the successful impedance estimation with BN models. Comparing the R2 of BN models to the Impedance Analyzer models illustrate that the BN approach can achieve higher R-square values (better estimation) with a lower number of RC circuits.
	Figure 2.19.  Accuracy of various BN models at 20℃ and 80% SOC. 
	Figure 2.20.  Accuracy of various BN models at 20℃ and 20% SOC.

	2.5.2 Estimation Error Analysis
	To illustrate the error percentage distribution in different models, the error data for real and imaginary parts of the battery impedance is modeled by Rayleigh distribution as depicted in Figure 2.21 and Figure 2.22, for both Impedance Analyzer and BN models respectively. Based on Figure 2.21, for Impedance Analyzer models, the average impedance error value for the 8RC circuit is 3.3%, which is about 6 and 8.5 times less than the 3RC and 2RC models, respectively. This indicates that the 8RC model error is more concentrated around smaller values compared to the 2RC and 3RC models error data, in both the real and imaginary parts. However, for the BN models, the 3RC circuit has a 3.5% average error and the 2RC circuit has a 4.6%, which are slightly more than the average error value for 8RC circuit in Impedance Analyzer model, nonetheless, it is significantly lower than that of Impedance Analyzer 3RC and 2RC models. Therefore, BN models can reach higher precision with a reduced number of RC circuits.
	Figure 2.21.  The probability distribution of fitting error for real and imaginary parts of impedance in Impedance Analyzer models.
	Figure 2.22.  The probability distribution of estimation error for real and imaginary parts of impedance in BN models.
	In addition, it is important to note that the fitting result of the imaginary part has higher error values that the real part in all three models of Impedance Analyzer. The average error in the real part of battery impedance is almost 5 times less than the average imaginary part of the impedance. It shows that the impedance fitting circuits with Impedance Analyzer are more successful in modeling the resistive properties of the battery impedance than the capacitive properties. However, in the BN models, there is no significant difference between real and imaginary parts’ estimation errors. The probability density function (PDF) for the Rayleigh distribution of the error data is given by (2-13). Where E is the error data and σ is the scale factor of the distribution which can be used to calculate the mean and variance of the distribution as shown in (2-14) and (2-15).
	Table 2.7.  Rayleigh distribution parameters of impedance fitting and BN estimation
	The numerical results of the Rayleigh distribution are presented in Table 2.7. These results show that the average value of the error distribution in the 8RC model for both the resistive and capacitive parts of the impedance is 1.6% and 5%. This is significantly less than the 3RC and 2RC models as observed in Figure 2.21 and Figure 2.22. In addition, the variance of the error distribution is higher for the 2RC and 3RC models compared to the 8RC model. For the BN models, numerical results of the 3RC circuit model are very close to the 8RC circuit of Impedance Analyzer which proves the superior accuracy of BN models.

	2.5.3 Drive Cycle Validation
	The battery model was experimentally validated by a custom drive cycle tailored for a commercial Li-ion battery, as shown in Figure 2.23. A hardware-in-loop simulation was performed with the experimental setup as Figure 2.2 where the battery was the hardware and the load is simulated to represent a typical application for commercial Li-ion batteries. The drive cycle is almost 5 hours long with a periodic discharge pulse and regenerations. The SOC of the battery decreases by 35% throughout the cycle (60% to 25%). 
	Figure 2.23.  The experimental load current and battery SOC%.
	It can be seen from Figure 2.24 that the fitting result of 8RC ECM has produced acceptable results. Though the testing drive cycle is highly dynamic, the simulated voltage has predicted the experimental voltage with the utmost accuracy. For the 8RC model, the relative error is less than 1% while the error RMS is 0.6%. It can also be deduced from Figure 2.24 that the 8RC ECM overestimates the battery terminal voltage. A similar trend can be observed from the 3RC and 2RC models, where the ECM overestimates the battery terminal voltage. The 3RC started the drive cycle with slightly more than 1% relative error. Throughout the cycle, the error was increasing. Near the end of the cycle, both 3RC and 2RC were identical with a higher degree of error.
	Figure 2.24.  The experimental validation of 8RC ECM developed with Impedance Analyzer fitting.
	This can be observed from an enlarged sub-section of the battery terminal voltage produced by each ECMs developed through Impedance Analyzer fitting in Figure 2.25. The 8RC ECM estimation is highly accurate as opposed to 3RC and 2RC. For discharging, regenerative and idle cases, 8RC ECM can replicate the battery behavior with minimal error. Moreover, 2RC and 3RC ECM performance are nearly identical. Thus, no significant improvement can be obtained by developing a 3RC ECM over a 2RC through the Impedance Analyzer software. However, as shown in Figure 2.26, the battery voltage estimations with the BN models have a lower deviation from the experimental results. The BN models overestimate the voltage drop on the battery impedance while the models from Impedance Analyzer underestimate. In addition, the voltage difference from the experimental data in the BN 3RC model is very similar to the Impedance Analyzer 8RC circuit. This validation proves that higher accuracy of the model can be reached with a reduced number of RC circuits in the BN approach.


	2.6 Conclusion
	In this chapter, a commercial Li-ion battery is tested in both time-domain and frequency-domain at multiple SOCs and temperature scenarios. The experimental results are used to generate ECM models with different accuracy including 2RC, 3RC and 8RC elements by two approaches: Impedance Analyzer fitting and Bayesian Networks. The accuracy of these ECMs was analyzed in terms of fitting, impedance and battery voltage. A custom drive cycle for commercial Li-ion battery was used to validate simulated models. These are highlighted observations from the results are discussed in the following sections.
	Higher temperatures cause higher inductive properties in the battery, while lower temperatures increase its resistive properties. Also, the impact of Li-ion diffusion on the battery impedance is more observable in higher temperatures, whilst in lower temperatures, the effect of SEI, double-layer capacitance, and charge transfer resistance are more distinguishable.
	The difference in SEI impedance vs double-layer capacitance and charge transfer resistance is detectable in lower SOCs as two semi-circles are separate.
	In developing different ECMs by Impedance Analyzer fitting, it was proved that the 8RC model is more precise in all frequencies compared to the 2RC and 3RC models. The 8RC circuit fitting leads to a 3.3% average error in impedance presentation, while the 3RC and 2RC models are at 20.8% and 29.3%. These errors are particularly relevant to the imaginary part of impedance (capacitive properties).
	Bayesian Network approach leads to a higher accuracy with a reduced number of RC circuits. Impedance estimation with 3RC BN has a similar error percentage (3.5%) with the Impedance Analyzer 8RC model. Even the BN 2RC model has a significantly lower error percentage (4.6%) compared to the Impedance Analyzer 2RC model. 
	The battery terminal voltage validation with the developed ECM models through the Impedance Analyzer and BNs show that the normalized RMS error (NRMSE) percentage for 8RC, 3RC, and 2RC Impedance Analyzer models are 0.6, 1.3 and 1.4 respectively. These results indicate that despite having higher impedance fitting errors in the 2RC and 3RC models, the terminal voltage is not very sensitive to model impedance precision. In addition, the BN 3RC and 2RC models are more precise in the voltage calculation compared to the 3RC and 2RC Impedance Analyzer models. 
	Although the implementation of the BN approach is more complicated than the Impedance Analyzer modeling approach, it can estimate the battery’s dynamic behavior with a lower number of elements (lower degrees of freedom) due to the merit of Bayesian statistics.
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	Residential Battery Degradation in Smart Home Using Hierarchical Bayesian Network
	Abstract
	The battery energy storage is crucial in enabling a smart home to participate in multiple grid services while maintaining desired operational requirements from end-users. The major challenge for a battery energy storage system is degradation as it reduces the available capacity and power. In this chapter, a detailed hierarchical Bayesian Network (BN) is developed to evaluate the capacity fade degradation of a residential battery energy storage in a smart home environment. The BN utilizes a stochastic method to relate the causal factors of residential battery degradation. Experimental results of lithium iron phosphate batteries were used to train the BN. The capacity fade was evaluated for several cases, originated from a smart home energy management system (SHEMS). The cases show that the capacity fade of the residential battery system relies heavily on SHEMS architecture, load characteristics, user preferences, and geographical location. The case studies revealed that performing grid services reduces the capacity fade by 3% more. Furthermore, geographical location with higher temperature and solar irradiance can have up to 5% more capacity fade with similar load patterns while reducing electricity consumption by 40%. 

	3.1 Introduction
	The smart home is an essential part of the smart grid, which provides the end-user with reliable, secure and efficient energy while reducing emissions and electricity bills [1], [2]. A smart home integrates several flexible loads, controllable devices, renewable energy sources, and battery energy storage, allowing demand side management through a smart home management system (SHMS) [3]. Due to the falling cost of lithium-ion batteries, it is the most popular choice for a residential battery energy storage system [4]. The residential energy storage battery is supported by renewable energy sources and flexible loads that enable SHEMS to perform several grid services, i.e. capacity support, peak shaving, energy arbitrage, PV curtailment reduction, and voltage support while honoring end-user operational preferences [1]. Thus, allowing the end-user to participate in the electricity market to offset the electricity bill. The major concern in this regard is battery degradation and associated degradation cost, accounting for the usage of the battery.
	Past relevant works showed a similar concept while working on vehicle-to-grid (V2G), where a stationary vehicle battery was used to perform ancillary services. However, it was observed in multiple cases that participating in grid services reduces battery life significantly [5]–[7]. Authors in [8] and [9] showed that revenue earned through grid services was nullified by battery degradation cost. Therefore, it is critically important to consider battery degradation while incorporating the battery in a smart home.
	There are two main approaches to determine battery degradation: data-based prognostics and model-based studies [10]. The data-based prognostics use a set of data for training. Afterward, the remaining usable life or battery state of health of the battery is predicted by using the present measurement data. This sort of approach is most suitable for online applications due to their design, characteristics, and calculation load [11]. Contemporary researchers use various data-based prognostics, i.e. Kalman Filters [12] and relevance vector machine [13]. On the other hand, the model-based research predicts battery degradation from mathematical expressions, obtained by fitting extensive experimental battery performance data, i.e. solid electrolyte interface (SEI) growth [14], cyclable lithium loss [15], internal impedance growth determined through electrochemical impedance spectroscopy (EIS) fitted to an equivalent circuit model [16] and Arrhenius equation-based models supported by extensive experimental research [17].
	Past works on residential battery energy storage systems use some of these techniques to incorporate battery degradation. In most cases, battery degradation is ignored, due to the complex nature of batteries [18]–[21]. Other researchers consider battery capacity fade modeled through empirical studies [4]. Abdulla et al. [18] proposed a method to determine a total number of kWh until the end of life (EoL) using rain-flow counting of battery cycles, based on nominal battery cycle life and SOC. Mamun et al. [22] utilized SEI growth on the electrode to evaluate the capacity fade and applied a $/kWh degradation factor of the battery in the optimization problem. Cai et al. [23] determined the capacity fade with both SEI formation and active material loss or loss of cyclable lithium. Afterward, the determined capacity fade is related to the SOC and battery power by fitting. Riffonneau et al. [24] determined capacity fade in terms of SOC only, but the capacity fade was determined only during discharge.
	The model-based approach of battery degradation modeling relies on deterministic mathematical equations and assumes factors affecting degradation remain constant throughout the cycling process. However, neither the degradation phenomena are deterministic, nor the factors remain constant during the lifetime of the battery. In a smart home, the capacity fade of the battery depends on the type of household loads, user preferences, availability of renewable sources, weather and temperature variation, participation in the electricity market and electricity price. Most of these factors need to be explained with probability distributions as they inherently contain a level of uncertainty. Also, the capacity fade of the battery has a causal relationship to the external factors. Thus, deterministic methods are not reliable in evaluating capacity fade for a battery.
	Bayesian Network is a data-driven method that allows the incorporation of uncertainty in the measurement of data and process, estimates the hidden processes, provides probability distribution instead of point value estimation and shows the causal relationship between different processes for battery capacity fade evaluation. Therefore, Bayesian models can provide a more insightful and accurate evaluation of battery capacity fade. The battery degradation can be analyzed in terms of capacity fade and power capability. This chapter solely focuses on exploring the capacity fade of the battery as a manifestation of degradation. The contributions of this chapter, as opposed to the state of the art, are listed below.
	 A more reliable, secure and accurate probabilistic battery capacity degradation method through hierarchical BN is discussed, contrasting the contemporary deterministic approach.
	 A BN and associated probability distribution-based equation are developed utilizing prior lab-based experimental results for a residential battery energy storage system.
	 Associating battery capacity fade with external environmental factors rather than solely implicating battery parameters.
	The rest of the chapter is organized as follows. Section 3.2 describes the SHEMS simulation which generates different scenarios for the BN. In section 3.3, a detailed explanation of the development of the BN is discussed. Section 3.4 provides the results and discussion on capacity fade and associated causal factors obtained from the BN for multiple scenarios followed by the conclusion. The nomenclature used in this chapter is given in Table 3.1.
	Table 3.1.  List of nomenclatures

	3.2 Smart Home Energy Management System
	A smart home energy management system (SHEMS) has the capability to schedule various types of household loads that helps to minimize the electricity bills without compromising user comfort. SHEMS system communicates with different household loads in real-time, while taking input from the user through, and receives day ahead prices [25]. It can develop an optimized load schedule for the household loads utilizing day ahead prices available. This optimization can curtail electricity usage and increases energy utilization efficiency [26]. The inclusion of a residential battery, plug-in hybrid/electric vehicle and renewable source such as solar photovoltaic (PV) enables SHEMS to perform grid services. Therefore, SHEMS is essential for successful demand-side load management. In this SHEMS simulation, a discrete linear load and generation model is used, as the overall system operation is considered in discrete time with a finite horizon, T, and equal time interval, Δt. The SHEMS simulation comprises various types of loads, a residential battery, an electric vehicle (EV) and PV panels. The following assumptions were considered: the smart meter receives day-ahead electricity price while having the capability to log consumption statistics, the weather forecast is available from the data center and each load can communicate with the meter.
	3.2.1 Load Models
	Multiple types of loads with varying characteristics are included in the SHEMS model to have an accurate representation of the general household setup. The household loads according to demand flexibility can be divided into two broad categories, inflexible and flexible loads. Inflexible loads do not follow any schedule and depend on highly stochastic usage patterns of the residents [3]. On the other hand, as the name suggests, flexible loads can be scheduled. According to the unique properties, the flexible loads are divided again into three categories, interruptible, uninterruptible, and thermostatically controlled loads. These various types of loads are described in detail in the following parts.
	3.2.1.1 Inflexible Loads
	As mentioned previously, inflexible loads are highly dependent on the behavior of the resident and the smart home energy management system has to provide power to these loads. For example, television and laptop. Such type of loads is modeled by an aggregate base loads [27] as seen in Figure 3.1. Figure 3.1 shows a typical residential inflexible loads profile.

	3.2.1.2 Uninterruptible Loads
	Uninterruptible loads can be scheduled but must continue operating once started, i.e., washing machine, dishwasher, and cloth dryer, LU=WM,DW,CD are modeled using single and multi-phase operations. The rated power requirements for the washing machine, dishwasher and dryer are 2kW, 2.2kW, and 1kW, respectively. Each uninterruptible load, 𝑙 is operated through multiple phases, 𝑝 with three binary variables. Binary variable 𝑥𝑡𝑙𝑝 is high when a load 𝑙 is operating in phase 𝑝 at time interval 𝑡. Similarly, 𝑦𝑡𝑙𝑝 is high when the operation of that specific load has done operating in that time interval. Also, 𝑧𝑡𝑙𝑝 ensures the same load is barred from operating for a certain time interval 𝑡.
	The uninterruptible load must operate a predefined period of cycles whenever it starts it operates as scheduled as ensured by (3-1). Like the clothes dryer needs to operate a certain period for the cloths to be dried to the user’s preference. Furthermore, (3-2) ensures a phase load either must be on or off. Also, once a phase started, it must continue uninterrupted sequential operation through (3-3) and when a phase is completed, it cannot start again by (3-4). Finally, the next phase can only start operating if the previous phase is done is devised by (3-5).  Multiphase operation expands on the single phase by including another binary operator. This operator enables a prefixed delay during operation as defined by (3-6). However, the delay can only be introduced if the previous phase is completed as given by (3-7). Finally, there could be certain periods in a day when the user may not want the uninterruptible loads to be scheduled by the energy management system, i.e. operation of loud washing machine or dryer during sleeping hours. These preferences can also be included in the model by introducing another binary variable 𝑈𝑃𝑡𝑙, which is high for period t when the operation is desired and low when not preferred. This variable is related to xtlp to control the start of a phase as given by (3-8).

	3.2.1.3 Interruptible Loads
	Interruptible loads can be interrupted without sacrificing consumer comfort, consume power during the low-price period, i.e. electric vehicles (EVs) and battery energy storage. The interruptible loads, LI=B,EV, can either be load or power supply depending on their charging and discharging cycle. The power produced can either be used to provide grid services or to supply the loads. 
	3.2.1.3.1 Battery Energy Storage System Load
	The battery energy storage is modeled with (3-9) to (3-14). These mathematical solely focus on the operations of the battery energy storage system with the energy management system and residential loads. 
	Equation (3-9) is the power balance equation, describing the summation of battery power sold and used for the residential load is provided from the total power the battery can discharge. The power balance equation is subject to constraints given by (3-10) to (3-14). Here, (3-9) shows that total power discharged from the battery is the summation of the power distributed to residential loads and the power used for grid services. Here, (3-10) and (3-11) limits the total power that can be used to charge or discharge the battery. Also, utB, a binary variable, which ensures that charging and discharging does not occur simultaneously as shown in (3-10) and (3-11). The state of charge (SOC) of the battery is measured with coulomb counting as given by (3-12). The maximum and minimum SOC ranges are given to prevent overcharge and over-discharge in (3-13). Moreover, SHEMS opts to charge the battery completely at the end of the day as given by (3-14).
	The residential battery is modeled according to the specification of Tesla Powerwall 2 [28]. The battery is rated at 270Ah with a nominal voltage rating of 50V, giving the 13.5kW total power. The charge and discharge power are limited to 5kW as per the specifications. The battery is considered fully charged at the start of the day with 100% initial SOC.

	3.2.1.3.2 Electric Vehicle Load
	The electric vehicle is modeled as a mobile battery energy storage system, which can provide power to other residential loads and the grid if necessary. However, the model of EV is designed with a condition that at the end of the day, the battery is fully charged, giving full range to the next day’s drive. Also, since this is a mobile load, availability for interaction with the energy management system was included in the model. Two variables 𝑇𝑑 𝑎𝑛𝑑 𝑇𝑎 defines when the battery leaves and arrives at the residence respectively. The EV is available to the system between the period 𝑇𝑎 𝑎𝑛𝑑 𝑇𝑑. The model is explained by (3-15) to (3-20).
	The model for the EV is identical to battery energy storage in the residence. It is considered that the EV battery is rated at 16kW. This battery can be discharged to a minimum of 4.8kW, while the battery returns to the residence with 8kW. The charging and discharging rate of the EV were fixed at 3.3kW.


	3.2.1.4 Thermostatically Controlled Loads
	Thermostatically controlled load models are air conditioner and electric water heater, LT=AC,EWH. The model output is temperature, guided by constraints and user-defined temperature ranges. The model for the HVAC system is explained with (3-21) to (3-23).
	In (3-21), the internal temperature of the residence at time 𝑡 is generated from the air mass, 𝑀𝑎, thermal capacitance, 𝐶𝑎, equal thermal resistance, 𝑅𝑒𝑞, performance coefficient, 𝐶𝑂𝑃, AC rated power, 𝑃𝐴𝐶, and external temperature, 𝑇𝑡𝑜𝑢𝑡. The values of these parameters are obtained from [29]. The constraint (3-22) shows the user preferred lower, 𝑇𝑡𝑙𝑏, and upper, 𝑇𝑡𝑢𝑏 bound of the temperature. Finally, the total power consumed by the HVAC is given by (3-23). The rated power for the HVAC was 2kW.
	The electric water heater is modeled similar to the HVAC system. The major difference is that the temperature of the hot water is dependent on the hot water usage pattern of the resident. The expressions (3-24) to (3-26) is utilized to define the electric water heater.
	The hot water temperature at time 𝑡 is a function of the hot water usage, 𝐻𝑊𝑈𝑡. A common hot water usage pattern for residential users was obtained from [30] as shown in Figure 3.2. Here, (3-24) is the temperature limit constraints according to user preferences. Total power is obtained from (3-26). The rater maximum power for the electric water heater was 4kW.
	Figure 3.2.  Hot water usage pattern in a residence [30].


	3.2.2 PV Generation Model
	The SHESM is considered to be equipped with PV solar panels with MPPT, that can produce maximum energy, limited by the solar power production capacity. The PV is the local power source besides the power from the grid that can either resource the residential load or sell power back to the grid. Here, (3-27) calculates the total solar power production capacity, giving the total power produced by the PV panels as shown in (3-28). The efficiency, 𝜂2, and area of the PV panel A is considered to be 0.2 and 45m2 respectively. The other restrictions ensure the PV power is either used for residential loads or sold to the grid.

	3.2.3 Problem Formulation
	Since load models contain both continuous and discrete variables, the problem is set up as mixed-integer linear programming (MILP). The MILP problem is formulated with (3-31) to (3-35). The objective function is given in (3-31), designed to minimize the electricity cost of the residence. The total power sold back to the grid is given by (3-32), which is the sum of all the power sold by PV, EV and battery. The balancing equation (3-33), is subject to (3-34) to (3-36) and previously explained constraints. Here, (3-34) enforces that the total load is non-negative, whereas (3-35) and (3-36) ensures the residence is not performing grid services and consuming electricity from the grid simultaneously.
	The day ahead real-time (RT) electricity price used for billing is used as the price of electricity in (3-31). A common residential day ahead RT price profile as seen in Figure 3.3 was used to formulate the problem.
	This SHEMS model is generated in MATLAB 2018 environment. The SHEMS model is developed with the YALMIP tool, which is used as an algebraic modeling language (AML) to solve the MILP problem. The grid power consumed by the residence, total PV power produced, and load profiles obtained from the SHEMS problem for an optimized condition are most important in this analysis. These quantities are used to determine the battery degradation using Bayesian Networks.


	3.3 Hierarchical Bayesian Network for Battery Degradation Estimation
	Bayesian Network is a probabilistic method of representing a process through a direct acyclic graph (DAG) and parameters to determine a joint probability distribution of network random variables. The DAG constitutes of nodes and edges. These nodes are random variables, connected to parent through edges. BN can classify the variables according to several properties. In this problem, the variables are either observations or unobserved variables. Observations are measurements, a single instance of a stochastic process. Unobserved variables are modeled as random variables because their characteristics are controlled by a probability distribution. Thus, unobserved variables are characterized by a probability distribution. According to Bayes’ theorem, the probability distribution of an unobserved variable, 𝑋, conditional of the observation, 𝑌, known as the posterior distribution, 𝑃𝑋|𝑌, is given in (3-37), where observations and unobserved variables are vectors [31]. Here, (3-37) gives the probability of unobserved random variable 𝑋, given than observation 𝑌 is available.
	Here, 𝑃𝑌|𝑋 is known as likelihood, 𝑃(𝑋) is prior and 𝑃(𝑌) is marginal distribution. Marginal distribution can be determined analytically using (3-38). BN satisfies Markov condition, which requires that every variable is independent of the effect of non-descendants [32]. Therefore, this problem is solved with Markov Chain Monte Carlo (MCMC) sampling. 
	The factors influencing battery degradation or capacity fade, in this case, are temperature, SOC, C-rate and ampere-hour throughput. Except for the temperature, all other variables are the function of daily operations of the battery and user preferences, all highly stochastic processes. Moreover, SOC and amp-hour throughput are conditional on C-rate, while C-rate is conditional on battery power itself. Thus, hierarchal BN is appropriate to evaluate battery capacity fade.
	3.3.1 Network Development
	The proposed detailed hierarchical Bayesian Network can be seen in Figure 3.4. The following parts will divulge the details of forming this BN. The first step when developing BN is to define the variables with nodes and interdependencies with arrows. The measurement of the capacity fade percentage of a battery cell contains errors, in terms of measurement and the process. The errors give rise to uncertainty. So, the estimation of capacity fade percentage is considered with errors. The estimation has a probabilistic relation with actual measurement. The probabilistic nature of capacity fade estimation allows for consideration of operational variation that cannot be achieved by any deterministic model generated from lab-based experiments.
	Moving down the network in Figure 3.4, a top tier node has a subsequent node only when higher tier variables is dependent on the lower tier variable. For example, the capacity fade estimation has a probabilistic relationship with total amp-hour throughput, C-rate, average state of charge, and temperature estimations [13], [33], [34]. This probabilistic relation aids in considering the variations in subsequent nodes down the network. Here it was considered that the battery would face the internal temperature of the residence. Most batteries are either equipped with thermal management units or, placed inside the residence. Further down the network in Figure 3.4, it can be seen that Ah and SOC has a conditional dependency on 𝐼𝑐 as both the amp-hour throughput and average state of charge is a function of the battery current. The C-rate is a method of measuring the battery current without the limitation of the battery capacity.
	The C-rate enables the possibility of relating the power of the battery by considering the voltage. The battery power is obtained from an aggregated average function consisting of several contributing factors. These contributing factors are associated with their respective powers in the residential power pool which has a possibility of contributing towards the capacity fade of the battery. The solar PV power generation has a probabilistic relation to battery power. Solar PV generation is highly susceptible to the change of ambient conditions, which can be explained properly by a probabilistic relationship. 
	Except for PV, other components in the power pool are considered to have a deterministic connection to their respective contribution factors. Like the capacity fade, the temperature and solar irradiations are related to their respective measurement probabilistically. The aging and PV solar parameters explain the relationships of capacity fade and PV power estimation to their subsequent variables.
	The BN in Figure 3.4, developed with these random variables, observation data, and parameters, has three parts to it. First is data, containing the measurements, then the process based on the conditional dependencies and lastly the parameters. The process section contains both aging and residential variables. The solid lines represent probabilistic dependency whereas the dashed lines are for deterministic properties. In this problem, there are, 𝑖=1,…𝑁, the number of observations. Each observation contains multiple measurements. Here, J, M, D and C number of measurements are taken at each observation for, 𝑞𝑖𝑗, 𝑇𝑟𝑖𝑚, 𝑇𝑚𝑖𝑑, 𝑎𝑛𝑑 𝑆𝑡𝑖𝑐 respectively.

	3.3.2 Mathematical Expressions
	The mathematical expression from the network, are derived considering all the variables, data and parameters can be observed in (3-39). Equation (3-40) to (3-43) are associated functions used in (3-39). The equation are formed by using the previously explained Bayes’ rule. Probabilities are denoted with, "[  ]", unobserved variables are presented on the left of, " | ", observed variables to the right.  Since the marginal distribution is ignored, "∝" is used instead of equality. To solve this problem through MCMC 10,000 samples of the posterior are taken. These samples are estimated through distribution fitting. Thus, the probability distribution function (PDF) of each variable is based on their properties.
	In this system, 𝑞, 𝜆, 𝐴ℎ,𝑉𝑜, 𝑃𝑝𝑣, 𝑆𝑡, 𝐼𝑐 and all the parameters must be greater or equal to zero, thus gamma PDF represents these variables. A beta PDF is appropriate for this 𝑆𝑂𝐶 as it has a range from 0 to 1. A normal PDF describes both the temperatures and battery power, as these are real numbers. The final step in the mathematical formulation is forming full conditionals to apply MCMC. Full conditional equations for 𝜆, 𝑇𝑚,𝑇𝑟, 𝑃𝑝𝑣, 𝑆𝑡 𝑎𝑛𝑑 𝐼𝑐 are given in (4-44) to (4-54). Here, 𝜆|∙ defines the conditional dependence of capacity fade with all the associated variables. Also, G, B, and N refer to the type of distribution used to explain a specific variable.
	The MCMC solving process starts with an initial value 𝑣1, for all variables and parameters. These initial values are calculated deterministically from observations. At any given iteration, a proposal value 𝑣𝑃, is proposed based on the current value and distribution properties of the variable given by (3-55). The standard deviation of the proposal should be smaller or equal to the priors to ensure successful sampling. Metropolis-Hasting criteria in (3-56) determine which sample of the posterior to keep.
	In the problem under discussion, the initial values are calculated from SHEMS simulation results, i.e. 𝑇, 𝑃𝑝𝑣, 𝑆𝑡.  Initial values of aging parameters differ according to the type of battery chemistry. Thus, different researchers present various values. For this problem, multiple sources [34]–[36] are used to obtain the appropriate initial values of aging parameters. The contribution coefficients are initiated based on the residential source and loads contribution towards battery degradation and their probability of charging and discharging. The initial value of battery power estimation is obtained from (3-41), whereas the initial value of capacity fade estimation is from (3-40). Battery voltage is initiated with the nominal voltage of a TESLA Power Wall 2. The other variables, 𝜆, 𝐴ℎ, 𝑆𝑂𝐶 𝑎𝑛𝑑 𝐼𝑐 are initiated with a calculation based on battery power and voltage initial values.

	3.3.3 Training and Evaluation of BN through Testing
	The modeled BN was trained with experimental results of A123 ANR26650, 2.3Ah, lithium-iron-phosphate (LFP) cells, obtained from [35]. Groot et al. [35] performed multiple time and frequency based experiments with several sets of ANR26650 in order to generate a detailed deterministic battery model. Results of capacity fade, SOC and temperature were obtained from 1C rate tests that are used to train the BN model. ANR26650 are the most popular for residential or vehicular application for their extensive safety features. The purpose of training the BN is to obtain the PDF of parameters 𝛼, 𝛽, 𝐸𝑎,𝜂,𝜁, accounting for the uncertainty in the measurement of data and process. To train the model, 80% of the data were randomly selected, the rest were kept for testing the model.
	The accuracy of the training procedure can be seen in the error bar plot Figure 3.5. In Figure 3.5, the mean of the PDF for 𝜆, and error bar with twice the standard deviation is plotted along with respective observations. The purpose of testing is to observe if the trained BN can predict the remaining 20% data. Figure 3.6 shows a similar plot where the remaining observations are estimated with obtained parameters. 
	The normalized root mean square difference percentage (NRMSDP) between the mean of PDF and its observations are determined for the aging variables. NRMSDP for both testing and training phase are in Table 3.2. The smaller value of error and high accuracy of fitting for the aging variable validates the success of the training process.
	Table 3.2.  NRMSDP Values from Training and Testing
	The results of the optimization problem are used as an input to the BN model. The power requirements of the residential loads while being optimized is used as an input to the BN. These variables are part of the residential parameter sections of Figure 3.4.


	3.4 Case Study: Evaluate Degradation of The Battery
	In the case study section, first, the effect of grid services performed by the SHEMS on battery capacity is explored. Second, the capacity fade due to varying EV schedule is shown. Lastly, capacity fade due to changing weather, in terms of ambient temperature and solar irradiation due to variation in location is discussed. Capacity fade is evaluated for a service life of ten years.
	3.4.1 Effect of Grid Services on Capacity Fade
	This case consists of two identical scenarios. In both scenarios, power consumption from the grid, 𝑃𝑡𝐺𝑟, was limited to 5.5kW. The EV leaves the residence at 7 am and comes back at 5 pm, with 50% SOC remaining. Real-time utility (RTU) price structure was used [3]. The solar irradiance and ambient temperature for both cases remained exactly the same. The major difference was the energy management system could perform grid services in the second scenario. The capacity fade PDFs can be seen in Figure 3.7 for both scenarios. It can be seen here that the capacity fade of the battery is higher when grid services are not performed. The center of the distribution when the grid services are performed is about 9.29%, whereas for not performing grid services the value goes up to 12.14%.
	This higher aging is caused by the presence of the solar PV system. When the SHEMS is prevented from performing grid services, the objective function focusing on reducing electricity bill increases self-consumption from the renewable source. The power from the PV is stored in the battery and discharged to loads as per requirement. Reducing the power intake from the grid leads to a reduction in the overall electricity bill. The battery Ah-throughput increases to 30.5kAh from 21.55kAh when grid services are not performed.
	It can be further confirmed by observing the distributions of the PV power used for charging the battery for each case in Figure 3.8. It is obtained from the distribution of power contributed towards battery capacity fade from the PV, 𝑘2𝑖𝑃𝑝𝑣𝑖. It can be seen, not performing grid services causes the solar PV to charge the battery with a higher power to increase self-consumption.

	3.4.2 Effect of EV Schedule on Capacity Fade
	This case deals with changing the schedule of the EV. Initially, it was assumed that the EV is absent during the first 10 hours of the day and comes back with 50% SOC remaining. A set of 4 scenarios were created to represent the effect of EV schedule on the capacity fade. This set considers that EV departs the house at a random time, from 7 am to 10 am, while returning at 5 pm. Other parameters of SHEMS remained like the base case with no grid services being performed. The battery has a higher capacity fade with the delayed departure of EV from the residence. If the EV is available longer in the power pool of the residence, it has a higher probability to either charge or discharge from the battery. This excess cycling of the battery caused by the presence of the EV causes a higher capacity fade. The PDFs of the capacity fade can be observed in Figure 3.9.
	The center of the PDF is increasing with a delayed departure in Figure 3.10. The mean of capacity fade can change almost 3% with delayed departure. It can be further confirmed that the battery has higher Ah cycling due to the presence of the EV. It shows that with delayed departure the battery has more Ah being cycled through it, subsequently producing a higher capacity fade. The Ah throughput can be reduced by 42% if the EV departs the residence earlier, reducing the capacity fade by almost 3%.

	3.4.3 Impact of Weather and Location on Capacity Fade
	The location of the residence has a major effect on the capacity fade of the battery. The change in location affects ambient temperature and solar irradiation. The power drawn by the HVAC is directly related to the ambient temperature. HVAC acts as a load to the battery contributing towards the capacity fade. To explore the effect of the temperature change, the hourly temperature data for five different climates, Anchorage (AK), Denver (CO), New York (NY), Los Angeles (LA), Phoenix (AZ) in 2018 were collected. The locations were selected in order of their increasing mean of the normal PDF. The capacity fade was estimated for these locations, keeping other parameters of SHEMS as the base case with no grid services being performed.
	These varying normal PDFs of ambient temperature lead to variations in the capacity fade. The capacity fade PDF for variations in ambient temperature can be observed in Figure 3.11. Here the capacity fade ranges from 11% to 14%. It is evident that Anchorage has the lowest capacity fade contributed by a temperature distribution with the lowest mean. Whereas, Phoenix has the highest capacity fade, caused by a temperature PDF with a much higher mean.
	Increased capacity fade with increasing temperature, even though the battery remains inside the residence or under controlled thermal conditions, can be explained with the PDF of the Ah throughput. Figure 3.12 shows the PDF of the Ah throughput of the battery. With higher ambient temperature the Ah throughput is higher. It is because, at higher ambient temperature, the HVAC requires more power to maintain the internal temperature of the residence in accordance with the user’s preference. This higher power requirement causes increased load on the battery. Thus, increasing the capacity fade in the process.
	The solar irradiation is more abundant as the SHEMS moves from Anchorage to Phoenix. This results in higher power generation from solar PV in Phoenix as opposed to Anchorage. This higher PV power production leads to a significant increase in self-consumption, as no grid services were being performed while exploring the effect of changed solar irradiation. A significantly large portion of PV power generated is used to charge the battery when higher solar irradiation is available. The contribution coefficient of PV power towards the capacity fade increases with abundant solar irradiation, as seen in Figure 3.13. This higher contribution from the PV power causes the capacity fade to increase. Figure 3.14 shows the effect of solar irradiation on the capacity fade, ranging from 9% to 14%.
	 It is evident that higher solar irradiation leads to significantly higher capacity fade for the battery. Anchorage has the lowest capacity fade as it is associated with the lowest average yearly solar irradiance. Whereas, Phoenix has the highest capacity fade brought about by the abundant solar irradiance available.


	3.5 Conclusion
	A smart home energy management system simulation is utilized to provide the initial values and priors for BN. These results are used to design a BN for residential battery energy storage. The BN relates batteries' immediate variables to external variables, i.e. solar irradiation, ambient temperature.
	Afterward, the capability of the BN was exercised with multiple case scenarios. These case scenarios revealed some interesting results. It was revealed that utilizing the residential battery for grid services causes a reduction in the capacity fade of the battery, as the battery will not be charged more often from the PV panel. Moreover, the capacity fade was increased with a longer presence of EV at the residence. Though the battery was not subject to the ambient temperature directly, the capacity fade was higher for higher temperature climates. Finally, increased solar irradiance resulted in a higher capacity fade. 
	The overall results reveal that a probabilistic approach of evaluation of battery capacity fade through hierarchical BN is a promising solution in different cycling conditions. The excellence of this method lies in the capability of utilizing real-life load, source and environmental data, relating it probabilistically to account for the real world variations on previously generated experimental priors, through developed BN. Evaluated degradation can be a powerful tool for SHEMS. The optimization can utilize the evaluated battery degradation information in order to adapt to account for aging.
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	Low-cost Hardware-in-the-Loop Lithium-Ion Battery Degradation System for Residential Energy Storage
	Abstract
	Residential energy storage systems are utilizing Li-ion batteries due to longer service life and lower maintenance. However, the degradation of Li-ion batteries causes loss of capacity and loss of power. This aging phenomenon needs to be characterized by residential energy storage systems to ensure reliable service. In this chapter, a low-cost hardware-in-the-loop (HIL) system is developed to perform aging tests on a Li-ion battery. The HIL utilizes residential loads simulation and a Raspberry Pi 3 based hardware. Raspberry-Pi communicates and controls the peripheral devices to cycle the battery according to the residential load profile obtained from the simulation. The initial test results reveal that the low-cost hardware is capable of cycling the battery according to the load profiles with considerable accuracy.

	4.1 Introduction
	Degradation of Li-ion batteries needs to be validated, irrespective of how it is incorporated in studies involving residential applications. The most common methods for such validation are hardware-in-the-loop (HIL) simulation. HIL mostly popular for prototyping and system modeling for avionics is slowly emerging in battery degradation studies [1]–[3]. HIL enables the use of actual hardware, which is of research interest, simulating the rest of the system. This ensures that the battery produces accurate degradation results as opposed to any analytical or experimental models while reducing the cost by simulating other parts of the system.
	Generally, HIL systems for battery degradation testing are developed using dSPACE, National Instruments and other platforms that are very costly and sophisticated [4]. For example, Authors in [5] used an HIL setup with NHR battery tester and NI DAQ equipment, which can produce a battery equivalent circuit model (ECM) with errors less than 0.01%. However, the setup is only able to test one unit, either a cell, a module, or a pack of battery. To have conclusive results about battery degradation, experiments must be repeated on multiple cells. Which would prolong the degradation studies to inordinately. In such conditions, a low-cost system needs to be adopted where multiple cells can be tested simultaneously.
	This chapter describes such a low-cost HIL system based on a Raspberry-Pi, capable of performing battery degradation tests. The residential loads are simulated in an optimization problem, are part of the simulation which produces the load profiles for the battery. Raspberry-Pi based HIL system cycles the LG INR18650 MJ1 cells repeatedly according to the residential load profiles to degrade the battery. Serial peripheral interface (SPI) is utilized by the Raspberry-Pi to communicate with the configurable power supply and electronic load through ADCs and digital potentiometer.
	The rest of the chapter is organized as follows. Section 4.2 provides an overview of the entire HIL system used for residential energy storage degradation. The description of the optimization problem that contains the residential loads and produces the battery load profile is described in section 4.3. Section 4.4 divulges the details of schematics and operations of the MiniLab HIL system. In section 4.5, the preliminary results are discussed and utilized to assess the performance MiniLab’s performance as a HIL simulation system, followed by the conclusion. 

	4.2 Overview of the HIL Simulation
	The simulation section of the HIL consists of an optimization problem with typical residential loads and control algorithms for the Raspberry Pi. The following flowchart in Figure 4.1 provides a top-level overview of the entire process.
	The HIL simulation starts with selecting the appropriate application, in this case, li-ion batteries as residential energy storage. The next step involves deciding the type of load that is part of the residential load. Once the loads are selected and their parameters are well defined, an optimization problem is set up and solved to obtain the load profile or the effect of the loads, grid, renewable energy sources on the battery. This load profile is scaled down and translated to battery current suitable to the desired size, in this case, a single cell. The battery current is then provided to the Raspberry-Pi. The Raspberry-Pi has an algorithm that checks the state of charge (SOC) of the battery which needs to be tested. The algorithm is designed to start with a fully charged battery. Once the battery is fully charged, it is cycled repeatedly until total Ah throughput reaches a pre-specified value

	4.3 Residential Load Problem Formulation
	It is assumed the residential loads are connected to a smart home energy management system (SHEMS), which communicates and controls different household loads in real-time while taking input from the user through human machine interfaces (HMI). Furthermore, it is also assumed that the SHEMS receives day ahead prices [6]. It develops an optimized load schedule for the household loads utilizing day ahead prices available. These optimizations conserve electricity usage and increase energy utilization efficiency [7]–[9]. In this residential load simulation, a discrete linear load and generation model is used, as the overall system operation is considered in discrete time with a finite horizon, T, and equal time interval, Δt. Some assumptions were considered such as the smart meter receives day-ahead electricity price while having the capability to log consumption statistics, the weather forecast is available from the data center, and each load can communicate with the meter.
	The load models utilized to develop the optimization problem were obtained from [10]. The residential battery was sized according to the specifications of Tesla Powerwall 2 [11]. Several scenarios were developed with residential loads. These scenarios include the capability to perform grid services, EV schedule, the effect of solar irradiation, and weather conditions. The residential energy storage is modeled according to the specifications of Tesla Powerwall 2, with a configuration of 74P6S, and nominal voltage 50V. The load profile is translated accordingly to match a single cell. Sample battery load profile when the residential battery is performing grid services and when it is prohibited can be seen in Figure 4.2 and Figure 4.3, respectively.
	In both figures, battery discharge is positive while the negative represents charging. These two scenarios are identical in all aspects except the grid-tie capabilities. For the grid service prohibited scenario, the residence is not allowed to perform any grid services. This is a common case where the residence is prohibited from the utility service provider, due to lack of infrastructure or legal bindings. On the other hand, the full capability of residential energy storage is explored where the utility considers the residence as prosumer and can utilize the services for a financial incentive. Furthermore, the solar irradiance, EV schedule, and weather conditions are identical in both cases. The solar irradiance for these two cases shown in Figure 4.4 is typical for the USA.
	It is evident from these figures that the battery is cycled extensively while grid services are not performed. When the grid services are not performed. The energy generated by the solar PV is stored in the battery. This causes the battery to be cycled repeatedly as opposed to the grid service scenario, in which extra PV energy is sold back to the grid. Total Ah cycled throughout the entire day for no grid service and grid service case are 7.9Ah and 5.6Ah respectively.

	4.4 Schematic and Operation of MINILAB HIL System
	The “MiniLab” system is developed in-house as the low-cost alternative HIL simulation system. It is based on a Raspberry Pi 3-model B process with power supply, DC/DC converter, and electronic load. The Raspberry Pi uses a serial peripheral interface (SPI) communication protocol through a digital potentiometer to control the DC/DC converter and electronic load. The battery current feedback from the hall effect sensor is sent through ADC back to the Raspberry Pi. The Python program running on the processors contain two simple PI controller to control the charging and discharging current. A total of 23 MiniLab’s are developed to run multiple scenarios of degradation simultaneously. The details of the construction are elaborated in the following section.
	Figure 4.5 shows the entire schematic of the HIL simulation system used to perform degradation tests. Individual MiniLab’s are named “FishX”, to give homage to the originating idea of aging of fishes in a school of fish. The major components of the setup are shown in the figure. The workstation contains the MATLAB simulation of the residential load and Python program for the MiniLab. The optimized and scaled load profile is provided to the Raspberry Pi along with the hardware control instructions in the form of the Python program through the ethernet switch. The ethernet switch is connected to all the MiniLabs and allows bi-directional communication.
	The Raspberry Pi uses SPI to communicate two individual digital potentiometers, one is dedicated to the DC/DC converter and the other to the electronic load. The current measurement from the sensor is feedback to the processor through ADC. The programmed PI controlled in both charging and discharging cases uses battery current profile and feedback to control the respective digital pots. The digital pot converts the digital signals from the processor to resistance values. The resistive output of the digital pot is converted to a corresponding voltage value. This voltage is used to control the DC/DC converter, maintaining a required charging current. Similarly, the electronic load controls the discharging current according to the input of the digital pot.
	The power supply is N2Power XL125-12 CS, a fixed supply with high power density [12]. The specification of this power supply is suitable for a single cell MiniLab setup with a small footprint. The power supply provides power to the DC/DC converter. The converter is PTH12040W from Texas Instruments [13]. The output range of the DC/DC converter is 0.8V-5.5V and up to 50A with proper heat sinks, perfectly suitable to test single cells or modules of multiple cells in parallel. The electronic load discharges the battery according to the battery load current. It is also controlled according to a digital pot. The digital pot operates couple of MOSFET’s as variable resistance connected to an Intel D34017-001 Aluminum/Copper CPU Heatsink.
	Besides the major components, a manual battery disconnect switch is placed in the setup, to prevent any accidental charge or discharge of the battery. Moreover, several diode switches, i.e. diode to prevent current flowing back to the DC/DC converter, MOSFET to enable output of the battery are included in the system for protection and proper operation. Furthermore, fuses rated 10A is used throughout the system to prevent excessive current flowing to or from the battery. Since this system initially is designed to test single cells only, the 10A range of the fuse will allow testing at higher C-rate. The entire setup of the MiniLab HIL simulation system can be seen in Figure 4.6. Total 23 MiniLab’s are stacked in 3x4 setup on a custom made structure. 
	Figure 4.7 shows Fish12 MiniLab. It can be seen from that the entire setup is placed on a plexiglass board with dimensions of 3ft x 1ft. There are four major parts of the MiniLab; the processing unit, power supply, electronic load, and the battery. The power supply, heat sink fan and the processing unit is powered from a dedicated wall outlet. The yellow wire from the Raspberry Pi 3 connects each MiniLab to the local ethernet switch.
	Figure 4.8 shows the details of the processing unit on Fish8. This figure shows the major parts described in Figure 4.5 along with several other components. Specifically, connector ports for the power supply, battery, and bandwidth selector for ICs. The figure also shows the analog input and load connector terminals. The analog input terminals transfer the analog data from external sensors to the ADC. Currently, the current measurement from a hall effect sensor is provided to the processes through these analog channels. There are three extra analog channels made available to be used with any future experiments. 

	4.5 Initial Results & the Effectivity of MiniLab as HIL System
	MiniLab HIL system is capable of distributed testing which means that it is possible to perform multiple degradation testing of multiple scenarios simultaneously. Since the MiniLab is newly developed, before starting to perform 24-hour long testing as suggested by the simulation, the efficacy of this HIL system needs to be tested. Thus, only two cases from prior work [10] were used. These two cases originate from the residence capability of performing grid services, as seen in Figure 4.2 and Figure 4.3.
	The result of HIL can be observed in Figure 4.9 when residential energy storage can perform grid services. The experimental result follows the optimized battery load profile. However, the experimental result is marred with noise. The normalized root mean square difference percentage (NRMSDP) in this case is 2.74%. While for the case where no grid services were performed the NRMSDP is 3.27%.
	The total Ah cycled throughout the entire day while performing grid service according to the experimental data is 5.5Ah. The experimental data has a 2% variation in terms of total Ah throughput in a single day. For the no grid service scenario, the difference is only 1%. The small NRMSDP and closely matching total Ah cycling indicates that the MiniLab HIL system can successfully perform degradation testing. However, the accuracy of the experimental result can be further improved by applying a tighter PI controller for the DC/DC converter, or including a low pass filter to reduce noise.
	The batteries utilized for these aging tests are LG INR18650 MJ1. According to the battery’s specification sheet [14], the life cycle of the battery is 400 cycles, where each cycle consists of one complete discharge and charging procedure at rated condition. With the rated capacity of 3.2Ah, the total Ah throughput until the end of life (EoL) is 2720Ah. The battery capacity will fade by 20% at EoL. Thus, to reach EoL, the battery must be continuously cycled for 345 days with no grid service and 486 days with grid service performed scenario. It was observed from a prior detailed hierarchical Bayesian Network (BN) estimation that variation of capacity fade in different scenarios is about 5%. Thus, to validate the prior BN estimation, the capacity fade has through HIL degradation must be more than 5%. Given the uncertainties introduced by manufacturing and experimental processes, to observe any trend the batteries should be cycled until 10% capacity fade is observed. This would require continuous cycling of batteries for about 173 days with no grid service and 243 days with the grid service profile.

	4.6 Conclusion
	Li-ion batteries are being introduced in various applications due to their inherent qualities. Residential energy storage is one such case. However, to make the Li-ion powered residential energy storage reliable and sustainable, the degradation issue needs to be addressed. This chapter divulges the details of the low-cost HIL simulation system that is used to perform capacity fade degradation tests on Li-ion batteries used in residential energy storage. This low-cost system is developed with the aim to reduce cost while having the capability to perform aging tests on multiple cells in various degradation scenarios simultaneously. The overview and the schematic of the Raspberry Pi 3 based HIL were discussed in detail. it was shown that the results of the HIL simulation closely matches the battery load profile provided by the residential load profile optimization. The low-cost HIL system was developed to run aging tests and validate prior BN estimation. A discussion on the time required to obtain results comparable to BN estimation was also included. Further experimental work is required to generate more data to analyze battery degradation. These degradation data then can be utilized to validate prior research work.
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	Conclusions
	This dissertation is an accumulation of my research work that was conducted in four different stages. The first stage was focused on mostly literature review, to obtain a firm understanding of battery characteristics, degradation process and the experimental procedures involved to asses those procedures. The majority of the second stage consisted of battery characterization experimentations and associated data analysis utilizing various methods. A detailed hierarchical Bayesian Network was proposed to evaluate the degradation of lithium-ion residential energy storage systems in the third stage. The fourth stage discusses a low-cost hardware-in-the-loop simulation process that is being used to validate the results of the degradation estimation of stage three. The following parts summarize the highlighted findings of different stages in my research.
	 State 1: A detailed literature review about Li-ion battery characterization and degradation processes was performed in this stage. Deterministic empirical methods obtained through rigorous experimental procedures are more than capable to predict the instantaneous performance of the battery. However, it was realized that a deterministic method to address the battery aging phenomenon is inadequate. Thus, a probabilistic approach utilizing well-defined deterministic aging mechanics can provide an improved understanding of the degradation process. The literature review aided in choosing the modified Arrhenius equation, the most appropriate battery degradation method for our scale of operations.
	 Stage 2: Multiple types of extensive characterization experimentations in both time and frequency domain were performed on Li-ion batteries in this stage. The experimentations revealed that frequency domain electrochemical impedance spectroscopy (EIS) can determine the battery internal impedance than any time-domain tests. However, improved regression methods, i.e. Bayesian Network based regression can improve the EIS impedance characterization. This stage also served as a precursor for stage 4, as it provided the technical knowledge required to develop and perform real-time hardware-in-the-loop (HIL) experiments, which is essential in battery degradation tests. Furthermore, the foundation of Energy Storage Systems and Sustainability (E3S) Lab at Michigan Technological University was established through this process. 
	 Stage 3: A detailed hierarchical Bayesian Network (BN) to evaluate degradation for li-ion residential energy storage was proposed in this stage. The BN was developed anticipating the possible uncertainties of process and measurements. The modified Arrhenius equation presented the means to relate battery degradation to external causal factors such as grid connectivity, solar irradiance and weather conditions. The estimation process was solved with the Markov Chain Monte Carlo technique and the Metropolis-Hastings algorithm. The estimation revealed that the battery degradation was higher when the residential energy storage is prohibited to perform grid services. It was also revealed that lower ambient temperature increases the capacity fade, although the residential battery is generally placed inside the household generally. Finally, it was also realized that higher solar irradiance causes higher degradation throughout the lifetime of the battery.
	 Stage 4: This stage was dedicated to developing a hardware-in-the-loop (HIL), multi-unit, low-cost, reliable, and sustainable li-ion battery degradation testing facility for the E3S lab. The Raspberry Pi based MiniLab HIL system was developed in-house, initially to evaluate the capacity fade estimations proposed by the BN in stage 3. Several MiniLabs are being used simultaneously to perform aging tests for various scenarios on multiple cells, promising improved data sets to validate the BN proposals. The preliminary results reveal that MiniLab is capable of performing HIL with the utmost accuracy for prolonged periods of testing.  


	Contributions
	Following a detailed review of various Li-ion aging characterization methods used in contemporary research, I realized that the probabilistic approach with the aid of a generally utilized deterministic model would be able to evaluate the aging process and relate to external causal factors. To improve my understanding and have a well-rounded knowledge of battery characteristics, aging, and testing procedure involved, I started my research with the experimental side. I developed the procedure and perform time and frequency domain tests to characterize Li-ion batteries. Different regression methods were used to analyze the experimentally obtained data to generate 8RC battery model, capable of predicting instantaneous battery performance with less than 1% error. The results were improved further by Bayesian Network regression methods. As a consequence of these experimental studies, the foundation of Energy Storage Systems and Sustainability (E3S) Lab at Michigan Technological University was established. Later on, I improved on the knowledge of Bayesian Network based regression, to develop a detailed hierarchical Bayesian Network (BN) to evaluate the degradation of Li-ion residential energy storage system. The BN is generated considering the most perceivable uncertainties of process and measurements. The BN utilizes a well-established modified Arrhenius equation to relate battery degradation to external causal factors. I used Markov Chain Monte Carlo and Metropolis-Hastings ratio to solve the BN and generate posterior probability distributions about capacity fade and several other interesting observations. Furthermore, I worked in establishing the low-cost hardware-in-the-loop (HIL) battery aging testing facility, MiniLab, to validate BN estimations. The preliminary results show that MiniLab is capable of performing degradation testing for an extended period with the utmost accuracy. Throughout working with the BN, it was realized that though I have limited this dissertation to a specific application and technology of Li-ion, this probabilistic approach can be modified and adopted by any application or technology, conditional on available training data. Overall, this generates a new avenue for analyzing battery degradation analysis.

	Future Work
	This dissertation proposes a probabilistic approach to determine Li-ion battery degradation through a detailed hierarchical Bayesian Network (BN) for residential energy storage systems. The BN explores the effects of grid services, solar irradiation, EV schedule and weather conditions on battery aging. However, there are some shortcomings that could be worked upon to improve this research further, which are listed as follows.
	 The aging tests with the MiniLab should continue in order to ascertain the estimations generated by BN. It would be interesting to observe the capacity fade from MiniLab testing and their location on the posterior probability distributions of capacity fade given by BN trained by experimental results.
	 The degradation experiment should be performed on the aged batteries as well. The results of the capacity fade from aged batteries can be used to train another BN to estimate degradation for second life use. These tests and estimations through multiple life and relationship with the causality factors will provide a better understanding of how to utilize batteries through multiple life cycles.
	 The proposed model does not include the effect of calendar aging. The Li-ion battery also degrades while it is not being cycled, especially when it is left at fully charged conditions, albeit at a very slow pace as opposed to the cycle aging. The calendar aging can be included with another dedicated node in the existing BN. The calendar aging node should have another hierarchical model that may involve utilizing some node from calendar degradation, i.e. state of charge (SOC). Afterward, the aging from both nodes can be aggregated into another node which provides the probability distribution of total capacity fade.
	 The research focuses on capacity fade only while disregarding power fade. In the aging process capacity fade and power fade occurs simultaneous, thus battery power fade needs to be included while analyzing battery degradation. A node can be included in the existing BN for relating the determined capacity fade with power fade. The BN can be trained by experimental results to relate power and capacity fade with dedicated parameters.
	 The BN should include the effect of cost for the individual operation of the battery. This requires multiple nodes to be inserted in the BN and a significant amount of actual billing data for individual loads. This modification can aid to do a cost-volume-profit or break-even analysis. The prosumer or the utility can use such analysis to judge what services to be performed by the residential energy storage.
	 Rather than using a single node, the grid services can be divided into common services performed by the residential energy storage. Combined with the involvement of cost per load or service, the utilities can use this method to choose what services to perform in order to make a profit.
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