4,448 research outputs found

    2008 Progress Report on Brain Research

    Get PDF
    Highlights new research on various disorders, nervous system injuries, neuroethics, neuroimmunology, pain, sense and body function, stem cells and neurogenesis, and thought and memory. Includes essays on arts and cognition and on deep brain stimulation

    Studies on the impact of assistive communication devices on the quality of life of patients with amyotrophic lateral sclerosis

    Get PDF
    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2016Amyotrophic Lateral Sclerosis (ALS) is a progressive neuromuscular disease with rapid and generalized degeneration of motor neurons. Patients with ALS experiment a relentless decline in functions that affect performance of most activities of daily living (ADL), such as speaking, eating, walking or writing. For this reason, dependence on caregivers grows as the disease progresses. Management of the respiratory system is one of the main concerns of medical support, since respiratory failure is the most common cause of death in ALS. Due to increasing muscle weakness, most patients experience dramatic decrease of speech intelligibility and difficulties in using upper limbs (UL) for writing. There is growing evidence that mild cognitive impairment is common in ALS, but most patients are self-conscious of their difficulties in communicating and, in very severe stages, locked-in syndrome can occur. When no other resources than speech and writing are used to assist communication, patients are deprived of expressing needs or feelings, making decisions and keeping social relationships. Further, caregivers feel increased dependence due to difficulties in communication with others and get frustrated about difficulties in understanding partners’ needs. Support for communication is then very important to improve quality of life of both patients and caregivers; however, this has been poorly investigated in ALS. Assistive communication devices (ACD) can support patients by providing a diversity of tools for communication, as they progressively lose speech. ALS, in common with other degenerative conditions, introduces an additional challenge for the field of ACD: as the disease progresses, technologies must adapt to different conditions of the user. In early stages, patients may need speech synthesis in a mobile device, if dysarthria is one of the initial symptoms, or keyboard modifications, as weakness in UL increases. When upper limbs’ dysfunction is high, different input technologies may be adapted to capture voluntary control (for example, eye-tracking devices). Despite the enormous advances in the field of Assistive Technologies, in the last decade, difficulties in clinical support for the use of assistive communication devices (ACD) persist. Among the main reasons for these difficulties are lack of assessment tools to evaluate communication needs and determine proper input devices and to indicate changes over disease progression, and absence of clinical evidence that ACD has relevant impact on the quality of life of affected patients. For this set of reasons, support with communication tools is delayed to stages where patients are severely disabled. Often in these stages, patients face additional clinical complications and increased dependence on their caregivers’ decisions, which increase the difficulty in adaptation to new communication tools. This thesis addresses the role of assistive technologies in the quality of life of early-affected patients with ALS. Also, it includes the study of assessment tools that can improve longitudinal evaluation of communication needs of patients with ALS. We longitudinally evaluated a group of 30 patients with bulbar-onset ALS and 17 caregivers, during 2 to 29 months. Patients were assessed during their regular clinical appointments, in the Hospital de Santa Maria-Centro Hospitalar Lisboa_Norte. Evaluation of patients was based on validated instruments for assessing the Quality of Life (QoL) of patients and caregivers, and on methodologies for recording communication and measuring its performance (including speech, handwriting and typing). We tested the impact of early support with ACD on the QoL of patients with ALS, using a randomized, prospective, longitudinal design. Patients were able to learn and improve their skills to use communication tools based on electronic assistive devices. We found a positive impact of ACD in psychological and wellbeing domains of quality of life in patients, as well as in the support and psychological domains in caregivers. We also studied performance of communication (words per minute) using UL. Performance in handwriting may decline faster than performance in typing, supporting the idea that the use of touchscreen-based ACD supports communication for longer than handwriting. From longitudinal recordings of speech and typing activity we could observe that ACD can support tools to detect early markers of bulbar and UL dysfunction in ALS. Methodologies that were used in this research for recording and assessing function in communication can be replicated in the home environment and form part of the original contributions of this research. Implementation of remote monitoring tools in daily use of ACD, based on these methodologies, is discussed. Considering those patients who receive late support for the use of ACD, lack of time or daily support to learn how to control complex input devices may hinder its use. We developed a novel device to explore the detection and control of various residual movements, based on sensors of accelerometry, electromyography and force, as input signals for communication. The aim of this input device was to develop a tool to explore new communication channels in patients with generalized muscle weakness. This research contributed with novel tools from the Engineering field to the study of assistive communication in patients with ALS. Methodologies that were developed in this work can be further applied to the study of the impact of ACD in other neurodegenerative diseases that affect speech and motor control of UL

    Detecting Bulbar Involvement in Patients with Amyotrophic Lateral Sclerosis Based on Phonatory and Time-Frequency Features

    Get PDF
    The term bulbar involvement is employed in ALS to refer to deterioration of motor neurons within the corticobulbar area of the brainstem, which results in speech and swallowing dysfunctions. One of the primary symptoms is a deterioration of the voice. Early detection is crucial for improving the quality of life and lifespan of ALS patients suffering from bulbar involvement. The main objective, and the principal contribution, of this research, was to design a new methodology, based on the phonatory-subsystem and time-frequency characteristics for detecting bulbar involvement automatically. This study focused on providing a set of 50 phonatory-subsystem and time-frequency features to detect this deficiency in males and females through the utterance of the five Spanish vowels. Multivariant Analysis of Variance was then used to select the statistically significant features, and the most common supervised classifications models were analyzed. A set of statistically significant features was obtained for males and females to capture this dysfunction. To date, the accuracy obtained (98.01% for females and 96.10% for males employing a random forest) outperformed the models in the literature. Adding time-frequency features to more classical phonatory-subsystem features increases the prediction capabilities of the machine-learning models for detecting bulbar involvement. Studying men and women separately gives greater success. The proposed method can be deployed in any kind of recording device (i.e., smartphone)

    EYECOM: an innovative approach for computer interaction

    Get PDF
    The world is innovating rapidly, and there is a need for continuous interaction with the technology. Sadly, there do not exist promising options for paralyzed people to interact with the machines i.e., laptops, smartphones, and tabs. A few commercial solutions such as Google Glasses are costly and cannot be afforded by every paralyzed person for such interaction. Towards this end, the thesis proposes a retina-controlled device called EYECOM. The proposed device is constructed from off-the-shelf cost-effective yet robust IoT devices (i.e., Arduino microcontrollers, Xbee wireless sensors, IR diodes, and accelerometer). The device can easily be mounted on to the glasses; the paralyzed person using this device can interact with the machine using simple head movement and eye blinks. The IR detector is located in front of the eye to illuminate the eye region. As a result of illumination, the eye reflects IR light which includes electrical signals and as the eyelids close, the reflected light over eye surface is disrupted, and such change in reflected value is recorded. Further to enable cursor movement onto the computer screen for the paralyzed person a device named accelerometer is used. The accelerometer is a small device, with the size of phalanges, a human thumb bone. The device operates on the principle of axis-based motion sensing and it can be worn as a ring by a paralyzed person. A microcontroller processes the inputs from the IR sensors, accelerometer and transmits them wirelessly via Xbee wireless sensor (i.e., a radio) to another microcontroller attached to the computer. With the help of a proposed algorithm, the microcontroller attached to the computer, on receiving the signals moves cursor onto the computer screen and facilitate performing actions, as simple as opening a document to operating a word-to-speech software. EYECOM has features which can help paralyzed persons to continue their contributions towards the technological world and become an active part of the society. Resultantly, they will be able to perform number of tasks without depending upon others from as simple as reading a newspaper on the computer to activate word-to-voice software

    Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates

    Full text link
    What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    A computational model of the relationship between speech intelligibility and speech acoustics

    Get PDF
    abstract: Speech intelligibility measures how much a speaker can be understood by a listener. Traditional measures of intelligibility, such as word accuracy, are not sufficient to reveal the reasons of intelligibility degradation. This dissertation investigates the underlying sources of intelligibility degradations from both perspectives of the speaker and the listener. Segmental phoneme errors and suprasegmental lexical boundary errors are developed to reveal the perceptual strategies of the listener. A comprehensive set of automated acoustic measures are developed to quantify variations in the acoustic signal from three perceptual aspects, including articulation, prosody, and vocal quality. The developed measures have been validated on a dysarthric speech dataset with various severity degrees. Multiple regression analysis is employed to show the developed measures could predict perceptual ratings reliably. The relationship between the acoustic measures and the listening errors is investigated to show the interaction between speech production and perception. The hypothesize is that the segmental phoneme errors are mainly caused by the imprecise articulation, while the sprasegmental lexical boundary errors are due to the unreliable phonemic information as well as the abnormal rhythm and prosody patterns. To test the hypothesis, within-speaker variations are simulated in different speaking modes. Significant changes have been detected in both the acoustic signals and the listening errors. Results of the regression analysis support the hypothesis by showing that changes in the articulation-related acoustic features are important in predicting changes in listening phoneme errors, while changes in both of the articulation- and prosody-related features are important in predicting changes in lexical boundary errors. Moreover, significant correlation has been achieved in the cross-validation experiment, which indicates that it is possible to predict intelligibility variations from acoustic signal.Dissertation/ThesisDoctoral Dissertation Speech and Hearing Science 201
    • …
    corecore