107,147 research outputs found

    On the Security of Software Systems and Services

    Get PDF
    This work investigates new methods for facing the security issues and threats arising from the composition of software. This task has been carried out through the formal modelling of both the software composition scenarios and the security properties, i.e., policies, to be guaranteed. Our research moves across three different modalities of software composition which are of main interest for some of the most sensitive aspects of the modern information society. They are mobile applications, trust-based composition and service orchestration. Mobile applications are programs designed for being deployable on remote platforms. Basically, they are the main channel for the distribution and commercialisation of software for mobile devices, e.g., smart phones and tablets. Here we study the security threats that affect the application providers and the hosting platforms. In particular, we present a programming framework for the development of applications with a static and dynamic security support. Also, we implemented an enforcement mechanism for applying fine-grained security controls on the execution of possibly malicious applications. In addition to security, trust represents a pragmatic and intuitive way for managing the interactions among systems. Currently, trust is one of the main factors that human beings keep into account when deciding whether to accept a transaction or not. In our work we investigate the possibility of defining a fully integrated environment for security policies and trust including a runtime monitor. Finally, Service-Oriented Computing (SOC) is the leading technology for business applications distributed over a network. The security issues related to the service networks are many and multi-faceted. We mainly deal with the static verification of secure composition plans of web services. Moreover, we introduce the synthesis of dynamic security checks for protecting the services against illegal invocations

    Intruder deducibility constraints with negation. Decidability and application to secured service compositions

    Get PDF
    The problem of finding a mediator to compose secured services has been reduced in our former work to the problem of solving deducibility constraints similar to those employed for cryptographic protocol analysis. We extend in this paper the mediator synthesis procedure by a construction for expressing that some data is not accessible to the mediator. Then we give a decision procedure for verifying that a mediator satisfying this non-disclosure policy can be effectively synthesized. This procedure has been implemented in CL-AtSe, our protocol analysis tool. The procedure extends constraint solving for cryptographic protocol analysis in a significative way as it is able to handle negative deducibility constraints without restriction. In particular it applies to all subterm convergent theories and therefore covers several interesting theories in formal security analysis including encryption, hashing, signature and pairing.Comment: (2012

    Attack-Surface Metrics, OSSTMM and Common Criteria Based Approach to “Composable Security” in Complex Systems

    Get PDF
    In recent studies on Complex Systems and Systems-of-Systems theory, a huge effort has been put to cope with behavioral problems, i.e. the possibility of controlling a desired overall or end-to-end behavior by acting on the individual elements that constitute the system itself. This problem is particularly important in the “SMART” environments, where the huge number of devices, their significant computational capabilities as well as their tight interconnection produce a complex architecture for which it is difficult to predict (and control) a desired behavior; furthermore, if the scenario is allowed to dynamically evolve through the modification of both topology and subsystems composition, then the control problem becomes a real challenge. In this perspective, the purpose of this paper is to cope with a specific class of control problems in complex systems, the “composability of security functionalities”, recently introduced by the European Funded research through the pSHIELD and nSHIELD projects (ARTEMIS-JU programme). In a nutshell, the objective of this research is to define a control framework that, given a target security level for a specific application scenario, is able to i) discover the system elements, ii) quantify the security level of each element as well as its contribution to the security of the overall system, and iii) compute the control action to be applied on such elements to reach the security target. The main innovations proposed by the authors are: i) the definition of a comprehensive methodology to quantify the security of a generic system independently from the technology and the environment and ii) the integration of the derived metrics into a closed-loop scheme that allows real-time control of the system. The solution described in this work moves from the proof-of-concepts performed in the early phase of the pSHIELD research and enrich es it through an innovative metric with a sound foundation, able to potentially cope with any kind of pplication scenarios (railways, automotive, manufacturing, ...)

    2020 Children and young people's workforce strategy : evidence and knowledge management

    Get PDF
    corecore