
Università di Pisa

Ph.D. Thesis

On the Security of Software Systems and
Services

Gabriele Costa

Supervisor

Pierpaolo Degano

Supervisor

Fabio Martinelli

November 21, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14703383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This work investigates new methods for facing the security issues and threats arising
from the composition of software. This task has been carried out through the formal
modelling of both the software composition scenarios and the security properties,
i.e., policies, to be guaranteed.

Our research moves across three different modalities of software composition
which are of main interest for some of the most sensitive aspects of the modern in-
formation society. They are mobile applications, trust-based composition and service
orchestration.

Mobile applications are programs designed for being deployable on remote plat-
forms. Basically, they are the main channel for the distribution and commercialisa-
tion of software for mobile devices, e.g., smart phones and tablets. Here we study the
security threats that affect the application providers and the hosting platforms. In
particular, we present a programming framework for the development of applications
with a static and dynamic security support. Also, we implemented an enforcement
mechanism for applying fine-grained security controls on the execution of possibly
malicious applications.

In addition to security, trust represents a pragmatic and intuitive way for man-
aging the interactions among systems. Currently, trust is one of the main factors
that human beings keep into account when deciding whether to accept a transac-
tion or not. In our work we investigate the possibility of defining a fully integrated
environment for security policies and trust including a runtime monitor.

Finally, Service-Oriented Computing (SOC) is the leading technology for business
applications distributed over a network. The security issues related to the service
networks are many and multi-faceted. We mainly deal with the static verification
of secure composition plans of web services. Moreover, we introduce the synthesis
of dynamic security checks for protecting the services against illegal invocations.

iv

To Alberto

With or without religion, good people can behave well and bad people can do evil;
but for good people to do evil–that takes religion.

Steven Weinberg

Acknowledgments

I would like to thank my supervisors Pierpaolo Degano and Fabio Martinelli for
continuously stimulating me to work better and harder (respectively!). Several col-
leagues and friends have contributed to the work presented in this thesis with their
comments and suggestions. Among the others, I am in debt with three persons.
Massimo Bartoletti introduced me to the investigation through formal methods and
he is still the archetype of the researcher in my mind. Ilaria Matteucci and Paolo
Mori patiently tolerated my annoying enthusiasm and my attitude to discuss and
debate on pointless details. They are priceless professionals and human beings.

Many people supported me in so many ways that I cannot even remember. They
are just too many to be all listed here and I just mention few of them. Donatella
and Laura, who really contributed to make my dreams come true, Letizia, Silvana,
Vinicio, Marco and Sonia. Finally, I thank Francesca for taking part in all our
adventures, including this one.

I would like to thank Gavin Lowe, Frank Piessens, Antonio Brogi and Fabio
Gadducci for their insightful comments which significantly improved the overall
quality of the present work.

Part of the work presented in this thesis have been done in the scope of EU-funded

project Nessos, EU-funded project Aniketos and EU-funded project Connect.

iv

Contents

Introduction 3
1.1 Motivations and techniques . 3
1.2 Goal and structure of this thesis . 4

Background 9
2.1 Security models . 9

2.1.1 Access Control . 9
2.1.2 Usage Control . 12
2.1.3 History-based security . 13

2.2 Security analysis mechanisms . 14
2.2.1 Type systems . 14
2.2.2 Model checking . 16

2.3 Trace properties specification . 18
2.3.1 Automata-based Specification 18
2.3.2 Process Algebras . 22
2.3.3 Modal and temporal logics . 23

2.4 Composed systems security in the field 24
2.4.1 J2ME security . 25
2.4.2 Web services and grid computing 26

Mobile Application Security and Enforcement on Devices 29
3.1 Extending Java with local policies . 30

3.1.1 Local policies specification . 31
3.1.2 Policy sandbox . 38
3.1.3 Security checks deployment 40

3.2 The Jalapa framework . 43
3.2.1 Framework structure . 43
3.2.2 The Jisel runtime environment 45
3.2.3 Static analysis and verification 47

3.3 On-device monitor inlining . 50
3.3.1 Application monitoring on mobile devices 50
3.3.2 Bytecode in-lining . 53
3.3.3 System implementation . 58

vi CONTENTS

3.4 A centralised monitoring architecture for mobile devices 63
3.4.1 Platform monitoring . 63
3.4.2 Extensible monitoring architecture 65
3.4.3 Parental control: a case study 69

3.5 Discussion . 72

Trust-Driven Secure Composition 73
4.1 Security-by-Contract-with-Trust . 73

4.1.1 Security-by-Contract Paradigm 74
4.1.2 Extending S×C with Trust . 75
4.1.3 Trust management . 79

4.2 Introducing Gate Automata . 80
4.2.1 Gate automata . 81
4.2.2 Automata semantics . 84
4.2.3 Trace validity . 87

4.3 S×C×T through gate automata . 92
4.3.1 Gate Automata and ConSpec 92
4.3.2 Enforcement environment . 95

4.4 Discussion . 98

Secure Service Composition 99
5.1 Security issues in open networks . 99

5.1.1 Open networks . 100
5.1.2 Service structure . 104
5.1.3 Type and effect system . 112
5.1.4 Typing relation . 113

5.2 Modular plans for secure service composition 119
5.2.1 Properties of Plans . 119
5.2.2 The “Buy Something” Case Study 122

5.3 Synthesizing security prerequisites . 131
5.3.1 Security Prerequisite . 131
5.3.2 Partial evaluation of policies 133
5.3.3 A strategy for service orchestration 136

5.4 Discussion . 137

Conclusions 139

Bibliography 145

Appendix 161

List of Figures

2.1 The UCON model. 12
2.2 A simple transition system. 14
2.3 The information flow model. 15
2.4 A Kripke structure and the visit of a model checker. 17
2.5 A usage automaton for a multi-task environment. 20
2.6 An interface automaton for the TCP protocol. 21

3.7 File confinement policy file-confine(f,d). 35
3.8 Application development in Jalapa. 44
3.9 The event graph producing the history expression Hlog. 49
3.10 Runtime monitoring architecture using a customised JVM. 54
3.11 Runtime monitoring architecture using the in-lining approach. 55
3.12 The instrumentation step of a MIDlet. 56
3.13 The in-lining of a single API call in a bytecode sequence 57
3.14 Monitoring overhead performances comparison. 61
3.15 Battery power consumption without and with a running PDP. 63
3.16 Power consumption for loading a local html page. 63
3.17 A schematic representation of the system managing three modules. . 67
3.18 Control screens for phone calls (left) and messages (right). 71

4.19 The Security-by-Contract process. 75
4.20 The extended Security-by-Contract application workflow. 77
4.21 The contract monitoring configurations. 78
4.22 A gate automaton for file access. 81
4.23 A gate automaton for the Chinese Wall policy. 83
4.24 A gate automaton for the ask user policy. 83
4.25 The instantiation of the file access gate automaton. 86
4.26 A file closing policy. 88
4.27 The instantiation of the file closing policy. 91
4.28 The ConSpec preamble, security state (left) and clauses (right). . . . 93
4.29 The conversion of a ConSpec specification into a gate automaton. . . 95
4.30 The enforcement environment based on gate automata. 97

5.31 A travel booking network . 103

viii LIST OF FIGURES

5.32 A trivial usage automaton (self-loops are omitted). 106
5.33 Security policies as usage automata. 106
5.34 A policy saying “never two actions α on the same resource”. 118
5.35 Safe plans for the travel booking network 122
5.36 The “buy something” scenario. 123
5.37 Usage automata. 125
5.38 Services deployment. 126
5.39 A valid plan rooted in service buy. 130
5.40 A policy rejecting unregistered clients. 132
5.41 Prerequisite policy returned by Preq(H,Aψ) 135

List of Tables

2.1 An instance of access matrix for two users and three files. 10
2.2 An AM for the mask rwxr-x--x. 11

3.3 Enforcement mechanism for policies defined through usage automata. 37
3.4 An example of ConSpec security policy. 52

4.5 The trust feedback generated by an application. 80
4.6 Gate automata instantiation. 85

5.7 Definition of Usage Automaton. 105
5.8 The syntax of λreq. 107
5.9 The syntax of guards. 108
5.10 The operational semantics of λreq. 110
5.11 The syntax of history expressions. 112
5.12 The semantics of history expressions. 113
5.13 Types, type environment and typing relation. 114
5.14 The flattening operator. 120
5.15 A possible implementation of buy, pay and certify. 127
5.16 The prerequisite synthesis algorithm 134

2 LIST OF TABLES

Introduction

Security has always been a central issue in all the stages and manifestations of the
human society. The contemporary digital society is not an exception. Nowadays,
computing systems pervade many aspect of our life and we need to provide them
with appropriate mechanisms for facing possible security threats.

In a very general sense, security means guaranteeing that the rules of a system
are respected. Hence, reasoning about security requires a precise understanding of
the entities that are involved in the process. In this work we focus on the security
of composed systems, i.e., the systems arising from the cooperation of many partic-
ipants. Here, we use formal methods for the investigation and enforcement of the
security properties of these systems.

1.1 Motivations and techniques

The interest in the security of software and hardware systems has been continuously
increasing in the last decades. Basically, it grew along with the presence of the
computing devices and the responsibilities we delegate them. Also, many of the
concerns of the experts about the weakness of several systems have been confirmed by
successful attacks. Many authors investigated the techniques and countermeasures
to cope with the existing and potential security flaws and the growing interest in
this topic is also demonstrated by the increasing number of proposals (e.g., see [84]
for a survey on program verification and static analysis tools).

Among the sources of security threats, mobility and compositionality have been
often considered of paramount importance. For instance, consider a monolithic sys-
tem having a stable location and being only accessible to a certain category of users,
i.e., the administrators. Even though such a system can still need protection mech-
anisms, the “degrees of freedom” of the security issues are limited to the behaviour
of two types of entities, i.e., the system and its users.

However, the modern trends in programming and architectural paradigms seem
to move in the opposite direction, i.e., from stable, centralised systems, to mobile,
distributed ones. Mobile and compositional systems are open by design, i.e., an at-
tacker can be a legal participant of the system. Often, there is no way to distinguish
an attacker from a normal component without knowing its actual behaviour.

Composition itself is a multi-faceted concept needing a precise characterisation.

4 INTRODUCTION

We restrict ourselves to a well defined category of composed systems. Indeed, here we
consider general-purpose systems rather that entities having a specific goal. This
means that we make no assumptions on the structure of the entities involved in
compositions and we do not consider networks with a specific purpose, e.g., sensors
networks or radio frequency identification (RFID) devices. Also, we focus on the
security of compositions at the application level. This view comprises both the in-
teraction between applications running on the same device and applications running
on distributed platforms connected through a network.

Discussing the properties – and especially the security ones – of a system needs
to be based on some suitable description of the system and the properties, as well.
Formal methods can be suitably exploited for precisely defining the systems and their
properties. Also and more importantly, formal methods embody the rigorousness of
the mathematical reasoning.

The formal description of the computing agents offers a number of advantages.
Mainly, it creates a mathematical model having well-defined axioms and transfor-
mation rules. Moreover, it is useful for modelling quite complex objects in a very
compact way. If this is done through a formal language, we can focus on certain
aspects of the computation that are relevant for the properties under investigation
hiding irrelevant details. Similarly, the security properties of programs can be spec-
ified and processed using appropriate formalisms. A formal proof that a model
satisfies a property represents the finest type of guarantee that one can have.

1.2 Goal and structure of this thesis

Our objective is presenting advancements and contributions resulting from our in-
vestigation on the security aspects of software composition. We progressively fo-
cussed on different aspects of the composition of software and services for construc-
tively reasoning about security. In particular, our work has been structured in three
macro-categories: mobile applications, trust-based composition and service composi-
tion. They represent three different scenarios in which security issues arise from the
composition of two or more agents. Briefly, the results obtained in the first two field
are exploitable in the third area for guaranteeing the security of service compositions
under reasonable assumptions.

For the sake of presentation, we move from the simpler to the more complex
scenario. Informally, the size of a system increases its complexity. In other words,
we consider more complex a system obtained from the composition of a large number
of participants than one obtained from few parties. Moreover, the complexity of the
security analysis is affected by the reliability of the participants to the composition.
This means that, for our purposes, the interaction between two components such
that one trusts the other is simpler than the composition of two agents that do not
trust each other.

It is also important to note that the current trend in network-based, distributed

1.2. GOAL AND STRUCTURE OF THIS THESIS 5

systems consists in moving from communication protocols using simple, plain mes-
sage to complex data structures and even mobile code. Most of the proposed stan-
dards for web service description and interaction are based on XML, e.g., see [12, 53,
41, 40, 11]. Also, a relevant part of the web content is now represented by dynamic
objects, e.g., browser-interpreted functions, implemented with some scripting lan-
guage, e.g., JavaScript. Moreover, emerging technologies, e.g., Java OSGi [144], use
pieces of software that are packaged, delivered and composed by the participants to
a service network.

According to these considerations, the simpler model of interest is represented
by a platform that imports, i.e., installs and runs, an external application. We can
evaluate the security aspects of this kind of composition from two different points of
view: (i) the applications need protection against malicious (parts of) platforms and
(ii) the platform needs protection against malicious applications. For the first aspect,
we proposed an extension of the Java development framework with a special support
for the verification and monitoring of local security policies [24] that the software
designers can include in their programs. Instead, in order to deal with the second
issue, we proposed a monitoring environment that provides security guarantees to a
hosting platform.

A step further consists in investigating the security properties that can be pro-
vided to agents, e.g. programs or devices, that have a limited observability on each
other. This may happen for several reasons, e.g., we have two programs running on
two remote platforms communicating through the network. In many social inter-
actions, the evaluation of suitable side conditions can compensate for the shortage
of formal security guarantees. Also, in automated systems many security critical
decisions are driven by this kind of considerations. In general, we can call trust the
expectation of an agent that a certain interaction will successfully take place even
though a risk of failure exists. Here, we present a proposal for the integration of the
trust-based decisions in the framework originally introduced in [81] for providing
formal security guarantees. Part of this model also consists of a runtime framework
relying on a new class of automata which has been introduced for defining security
and trust policies.

The third and last model is obtained by considering the composition of many, re-
motely deployed pieces of software. Under these assumptions we have many compu-
tational nodes laying on a structured network that communicate though predefined
protocols and that can even exchange and execute remote code. These are the typ-
ical conditions for some of the distributed computing paradigms, e.g., web services
and cloud computing, which are currently receiving major attention by academia and
industries. We present an extension of the model originally introduced by Bartoletti
et al. [23] for dealing with the security properties of the open networks. Moreover,
we investigate the possibility of generalising the standard, call-by-contract invoca-
tion model with new security specifications, namely the security prerequisites. Also,
in this section we show that the security guarantees, obtained through the applica-
tion of the techniques presented in this thesis, are preserved through the arbitrary

6 INTRODUCTION

composition of web services. The compositionality of security is one of the best
properties we can ask to a security model for web services. Indeed, it guarantees
that the scalability and compositionality of the target system are not compromised
by the security mechanisms.

Summing up, the work presented in this thesis aims at addressing a problem,
i.e., guaranteeing the security of composed systems, which is both theoretically
and practically interesting. Moreover, our investigation is aligned with the current
technological trends, e.g., Software-as-a-Service (SaaS). The result of our study is
the definition of an approach to the security of distributed systems which is general
enough to be reasonably applicable to most compositional contexts.

This thesis is organised as follows:

• Chapter 2 presents a survey of some of the existing approaches and tech-
niques for dealing with the security of computer systems. We focus on four
different perspectives which are relevant for a better understanding of this the-
sis: security models (Section 2.1), techniques for static analysis (Section 2.2),
specification of properties (Section 2.3) and some standards for security in the
field (Section 2.4).

• Chapter 3 introduces our work on the security of mobile application. In par-
ticular, we investigated the possibility of creating a development framework for
mobile applications based on local policies (Section 3.1) and its actual imple-
mentation (Section 3.2). Then, we discuss the design a lightweight monitor for
mobile applications (Section 3.3) and the complete architecture of centralised
controller for mobile devices (Section 3.4).

Chapter 3 mainly refers to the work published in [21, 22, 66, 9].

• Chapter 4 describes the work that we carried out on the integration be-
tween security and trust in software composition. We initially introduce our
proposal for a security and trust paradigm, namely Security-by-Contract with
Trust – S×C×T (Section 4.1). Then, we present a new specification formal-
ism, i.e., gate automata (Section 4.2), and we exploit them for defining the
S×C×T runtime enforcement (Section 4.3).

The work presented in Chapter 4 mainly refer to the papers [64, 65, 68].

• Chapter 5 shows our advancements on secure service composition and the
automatic synthesis of security prerequisites. We start by introducing open
networks, i.e., networks where one or more components are not specified at
verification time (Section 5.1). Then, we describe our mechanism for the
verification of modular composition plans (Section 5.2) and we conclude by
presenting our approach to the synthesis of security prerequisites (Section 5.3).

Chapter 5 contains the work published in [61, 63, 62].

1.2. GOAL AND STRUCTURE OF THIS THESIS 7

• Chapter 6 concludes this work presenting some final remarks and introducing
the future directions of research that we consider to be promising for a follow
up of this thesis.

8 INTRODUCTION

Background

The main purpose of this section is to provide the reader with an overview of the
existing techniques and results that are relevant for the understanding of this work.

2.1 Security models

In the last decades, many authors have been working on studying the security issues
arising when a platform executes a program. However, the problem of controlling the
behaviour of the executing code is very traditional. For instance, the correct access
to the resources need for the computation (e.g., CPU time and memory space) is a
classical problem in the design of the operating systems (see [179]). Originally, the
main concern about the programs abusing the shared resources was their exhaustion
and the resulting reduction in the system usability. The only reason for a program
to misbehave (with respect to the usage of the platform facilities and resources) was
an error.

As we delegated more and more responsibilities to the computers, they started
to be appealing for security attacks. Nowadays, it is very difficult, if not even
impossible, to imagine a system that does not handle any resource or information
that someone could be interested in accessing in some illegitimate way. Hence, the
progresses in the design of the modern operating systems also produced a relevant
effort for developing an adequate security support.

2.1.1 Access Control

Access Control [167, 166] is the discipline studying the mechanisms and techniques
for granting that all and only the authorised subjects can access some critical re-
sources. Roughly, the main components of an access control system are: (i) a security
policy and (ii) a security mechanism. The security policy is responsible for deciding
whether a resource can be accessed by a certain subject. Instead, the security mech-
anism represents the physical implementation of the system mediating the access to
the resources according to the policy evaluation.

The security policy provides an high-level view of the access control system. In
other words, the policy represents an abstract model of the access rules. This makes
easier to reason about the access control configuration of a system.

10 BACKGROUND

F1 F2 F3

U1

{ read
write

}

{write} ∅

U2

{ read
write

} { read
write

}

{exec}

Table 2.1: An instance of access matrix for two users and three files.

A traditional system for defining access control policies is through an Access
Matrix [116] (AM). Roughly, an AM has a number of rows, i.e., one for each subject,
and columns, i.e., one for each resource. The content of a cell (i, j) says whether
the subject i can access the resource j. Also, the cells’ content defines the type of
access the subject is allowed to do to the resource. More formally, an AM M is a
matrix such that ∀i, j .M [i, j] = Pi,j where Pi,j is the set of access operations that
the subject (of index) i can perform on the resource (of index) j. The security policy
implemented by a matrix M is a ternary predicate φ taking a subject si, a resource
rj and an access operation o and defined as follows.

φ(si, rj, o)⇐⇒ o ∈M [i, j]

Table 2.1 shows a simple AM M . The meaning of the matrix in terms of access
control policy is very intuitive. For instance, U2 is allowed to read F2 as read ∈
M [2, 2] = {read, write} while U1 cannot, i.e., read 6∈M [1, 2] = {write}.

The policy represented by an AM can be changed through proper commands. Ba-
sically, each command takes some subjects, some resources and some operations and
changes the content of the matrix. Standard commands allow for adding/removing
an access operation in/from a cell, creating/deleting a row or column. Note that the
invocation of these commands can be controlled through the matrix itself. Indeed,
we can use one column of the matrix for restricting the access to its own commands.

Since AMs can be efficiently implemented, it is not surprising that many real-life
systems use them (or their variants). For instance, Unix-based operating systems
associate a 9-bit mask to each file for representing the access rights of the users.
The mask contains three blocks composed by three bits each. Every bit of a block
represents an allowed (1) or denied (0) operation (i.e., read, write and execute). The
blocks define the permissions of the file owner, the file group and all the other users.
The following string represents the mask of a file F that can be read, written and
executed by its owner (rwx), read and executed by the users in its group (r-x) and
just executed by all the others (--x).

rwxr-x--x

2.1. SECURITY MODELS 11

· · · F · · ·
Uowner {read, write, exec}
Ugroup
1 {read, exec}
...

...
Ugroup
k {read, exec}
Uother {exec}

...
...

Table 2.2: An AM for the mask rwxr-x--x.

In this case, the AM results from the composition of the masks of all the files in a
system. For example, the structure of a matrix complying with the previous mask
would be as the one depicted in Table 2.2.

The command used to modify the existing masks is chmod. Basically, it switches
one or more bits in a mask, i.e., it adds/removes allowed operations. Similarly,
chown and chgrp change the owner and the group of a file, respectively. These
commands modify the content of the AM by swapping the cells of the matrix.

Rows and columns are created and removed as well. Whenever a new file is
created, it gets a default mask, i.e., the matrix is extended with a new column.
The opposite happens when a file is deleted. Instead, rows are created (deleted)
whenever a user is registered (cancelled).

According to this model, programs represent special entities for an AM. Indeed,
they are both resources, i.e., executable files, and (agents acting on behalf of the)
users. Typically, when a user starts a program, the application runs with his priv-
ileges, i.e., the accesses requests are evaluated according to the user’s row. This
means that the users should be always aware about the behaviour of the programs.
In general, this is a quite strong assumption. Partly because rarely users are con-
cerned with the security issues (e.g., see [152, 142]). However, the main reason is
that even a superficial understanding of the behaviour of a program may require
technical skills and/or advanced tools.

Another problem with the basic models for access control is the expressiveness
of their policies. As a matter of fact, while understanding the meaning of the policy
expressed through an AM is quite simple, starting from an informal definition of
the desired policy and building a corresponding AM is not straightforward and,
sometimes, even not possible. For instance, one could be interested in implementing
a policy saying “the user U can access only one between the two resources R and
R′”. As the contents of the cells of the AM are independent, i.e., we cannot define

12 BACKGROUND

Subject Att ResourceAtt

Authorizations Obligations Conditions

Rights
Usage

Subject Att ResourceAtt

Authorizations Obligations Conditions

Decision
Usage

Rights

Figure 2.1: The UCON model.

relations among columns and/or rows, this policy is not expressible. Many authors
proposed extensions to the original access control model in order to cope with more
expressive properties. For instance, specification formalisms based on access control
logics have been proposed in [186] and [101].

2.1.2 Usage Control

Recently, usage control received major attention from the security community (e.g.,
see [151, 188, 189, 158]). Usage control generalises access control by allowing for the
specification of properties declaring how a subject can use a critical resource. Usage
control represents a continuous and unified model for dealing with the access to the
resources of a system and their usage. In particular, usage control can be adopted for
modelling (and dealing with) many scenarios of interest like access control, digital
right management (DRM), separation of duty (SoD) and so on.

The model presented in [151] extends access control with Authorizations, oBli-
gations and Conditions (ABC). These three factors drive the Usage Decisions. Au-
thorizations, obligations and conditions are defined according to the other entities
in the model. They are: rights, i.e., the set of usage operations that a subject can
invoke on a resource, and attributes, i.e., properties fully qualifying the subjects and
resources. Some attributes can change due to the subject activity, i.e., they are
mutable, while others never change, i.e., they are immutable.

Authorizations are predicates that evaluate whether, according to the involved
attributes, an subject can request some rights on a resource. Obligations are pred-
icates defining the requirements that a subject has to fulfil before a certain usage.
Finally, conditions are predicates describing properties on the contextual and the
environmental in which the usages takes place. The full view of the UCON compo-
nents and their relations is shown in Figure 2.1.

In particular, Figure 2.1 shows the original model proposed in [151] (left) and
the one presented by Zhang [188] (right). The two diagram represent the same
model. Nevertheless, the model by Zhang emphasizes the usage decision process by

2.1. SECURITY MODELS 13

putting it at the center of the schema. This structure provided a reference for the
design of the usage control systems. For instance, a Policy Decision Point (PDP) is a
centralised agent deciding whether a certain request to use a resource is legal or not.
Many implementations of the PDP include modules for the access and evaluation of
the propositions dealing with authorizations, obligations and conditions.

2.1.3 History-based security

More recently history-based security has been a major proposal. Basically, the
history-based approach to security consists in deciding which behaviours are le-
gal or not according to the execution history. Execution histories represent the past
behaviour of a target in terms of security-relevant operations. History-based mech-
anisms have been shown to be applicable for dealing with access control as well as
usage control in many cases.

The current formalization of the history-based approach was proposed by Abadi
and Fournet [2]. However, the idea of fully characterising the legality of the be-
haviour of a program after the evaluation of the states it generates is quite tradi-
tional. For instance, Alpen and Schneider [8] analyse in terms of execution history
the two important categories of safety and liveness properties [114].

The history-based approach relies on a suitable representation of the history of
a target. For instance, a transition system is a model of computation consisting of
states and transitions. Roughly, a state is a possible configuration of the system
while a transition is a move from a source state to a target one. The history of a
transition system can be represented as the sequence of its transitions, the sequence
of the states it visits or their alternating combination. For example, consider the
transition system graphically represented in Figure 2.2. It is simple to verify that
the histories 012120, abcbd and 0a1b2c1b2d0 are three possible representations for
the same computation starting from state 0.

Summing up, in history-based approaches we always have (i) a model of compu-
tation using (ii) execution traces that may respect or violate a (iii) security specifi-
cation.

History-based security has been proposed as a generalisation of stack inspection.
Stack inspection is an approach to security often used by procedural programming
frameworks. Indeed, during the computation these systems use a call stack to keep
trace of the current sequence of invocations. Assuming that every security-relevant
behaviour is performed by some precisely known procedure, the call stack can be
used to decide whether the last invocation has sufficient privileges to proceed.

The main motivation to the extension of this model is that the call stack is only
a fragment of the total execution history. As a matter of fact, when a procedure
terminates, the corresponding entry is removed from the call stack and does not
affect the security evaluation any more. However, in some cases the information
about the previous method invocations can affect the system security. In particular,
stack inspection cannot help when the execution of some trusted code depends on

14 BACKGROUND

0

1

2

a

b c

d

Figure 2.2: A simple transition system.

the result of untrusted methods [91].

2.2 Security analysis mechanisms

Below we present the approaches to the verification of security properties that are
relevant for this work.

2.2.1 Type systems

A type system is a set of axioms and deduction rules which infer the classes of values
that a program handles without executing it. Well typed programs enjoy several
“desirable” properties, e.g., memory and control flow safety. Not surprisingly, many
modern programming languages have strong type systems.

In general, the structure of a typing judgement is:

Γ ⊢ p : τ

where Γ is a type environment, p is the typed program and τ is its type. The type
environment contains the type assertions that are collected and used during the
typing process. Often, type assertions are simply the result of a previous typing,
i.e., bindings between a part of the program and its type.

Type axioms are simple, direct type judgements. Typically they apply to some
atomic instructions or expressions having a base type. For instance, constants can
be easily associated to their domain as in the following case (note that here Γ is

2.2. SECURITY ANALYSIS MECHANISMS 15

u

L

H

v v’

P

u’

Figure 2.3: The information flow model.

immaterial).
Γ ⊢ 3 : int

An inference rule composes the results of the typing process carried out on pieces
of a program, i.e., the rule premises, to type the program itself, i.e., the rule con-
clusion. High-order types, e.g., those denoting functions and data structures, are
obtained in this way. For instance, the following rule types a constant function.

Γ ∪ {x 7→ int} ⊢ 0 : int

Γ ⊢ fun(int x) = 0 : int→ int

The arrow type int → int denotes a transformation from the (explicitly typed)
input x to the constant 0.

Several authors proposed security frameworks using type systems and their ex-
tensions. David Walker [182] proposed a certifying compiler for the verification and
enforcement of safety properties. The compiler of [182] generalises the concept of
type safety by allowing the developers to type check their programs against arbitrary
policies. Also, the compilation procedure includes an instrumentation step which is
responsible for adding security dynamic checks to the program code.

Volpano et al. [181] introduce a type system for proving properties of programs
written in a sequential imperative language. Then, in [174] they also extend their
approach to a concurrent computational model. Their approach mainly deals with
information flow [32, 76, 77]. Briefly, information flow takes place when an observer
which should only know a low (L) level information can infer the high (H) level
data handle by a program. Figure 2.3 schematically depicts this scenario. The type
system of [181] can deal with explicit flow as well as implicit flow [1]. Roughly, an
information flow is said to be explicit when it consists of the direct migration of data
stored in high variables to low variables. For example, an explicit flow is caused by
the assignment of (expressions containing) high variables to low variables. Instead,

16 BACKGROUND

implicit flow happens when an observable difference in the low output is caused by
some high values.

Type and effect systems [140] represent a refinement of the classical type systems.
They enrich types with special annotations. The annotations represent side effects
that programs generates during their execution. These annotations can be suitably
used for representing the execution traces of programs necessary for implementing
history-based security mechanisms.

For instance, Skalka et al. [172, 173] presented a type and effect system for the
extraction of (over-approximations of) the execution histories of programs. Also,
their type system is used to evaluate security predicates defined over the histories in
order to statically check whether they are satisfied by the current implementation.

A similar approach has been proposed by Bartoletti et al. [24, 25] for the extrac-
tion of history expressions from the programs source code. Briefly, history expres-
sions denote sets of execution histories instrumented with policy framing operators.
A policy framing defines the local scope of a policy over a part of the execution.
When a program enters a policy scope, its history is valid if and only if the policy
is respected until the closure of the framing. In their model, security policies are
expressed through usage automata (see Section 2.3). History expressions annotated
with policy framing can be statically evaluated for checking their validity before the
execution and used to produce an optimised runtime monitor that only checks the
policies which have not passed the verification step.

2.2.2 Model checking

The model checking [57] was originally proposed in the ’80s [56] as a fully auto-
matic approach to program verification. The main statement of the model checking
problem is a quite simple question: is it true that a certain model M satisfies a
specification ϕ? In symbols

M |= ϕ

The model M represents an actual system, e.g., a program. Traditionally, M is
defined through a finite-state transition system, e.g., a Kripke structure. Roughly,
a Kripke structure consists of a set of edges and a set of labelled states. A label is
a list of atomic propositions that are true in a certain state.

Instead, the specification ϕ expresses a temporal properties that must be verified
over M . Typically, ϕ is written in some temporal logic, e.g., LTL or CTL∗ (see
Section 2.3).

In practice, the verification of ϕ is an exhaustive visit of the states ofM starting
from an initial state. Each step evaluates ϕ against the atomic propositions of
the current state s and iterates once for each state that is reachable from s. The
iteration consists in solving the model checking problem starting from the new state
and evaluating a new property obtained after unfolding the temporal operators of
ϕ according to the executed transition. We write M, s |= ϕ to emphasise that the

2.2. SECURITY ANALYSIS MECHANISMS 17

p, q p,¬q

¬p,¬q¬p, q

s1

s3 s4

s2 s1

s3

s4s2

?

|= AXAX(p ∨ q)

?

|= AX(p ∨ q)

6|= (p ∨ q)

Figure 2.4: A Kripke structure and the visit of a model checker.

model checking algorithm is evaluating ϕ on the state s of M .
In general, the procedure is inductively defined by declaring the semantics of

the connectives of the used temporal logic. For instance, consider the CTL AXϕ
operator meaning that ϕ must hold in all the states reachable from the current one
with a single step. The corresponding rule is:

M, s |= AXϕ ⇐⇒ for all states s′ such that s→ s′ : M, s′ |= ϕ

An example can better clarify the behaviour of the model checking approach.

Example 2.1 Consider the Kripke structureM depicted in Figure 2.4 (left side). It
has four states, i.e., s1, s2, s3 and s4, that are labelled with the atomic propositions
p and q (we used their negation to label the states where they do not hold). Now,
we want to verify whether the formula AXAX(p ∨ q) is valid on M starting from
the state s1, i.e., we ask whether M, s1 |= AXAX(p ∨ q). According to the rule
introduced above, the formula is satisfied if and only if the sub-formula AX(p ∨ q)
is valid in the states that are reachable with a single move from s1, i.e., only s3. We
apply again the rule to s3 and AX(p∨q). Both s2 and s4 are pointed by a transition
rooted in s3. However, we can easily check that s2 |= (p∨ q) (as p holds in s2), while
s4 6|= (p ∨ q). The right side of Figure 2.4 schematically represents the procedure
described above.

The previous example outlines an important aspect of the model checking ap-
proach. The output of a model checker can be either true, i.e., the model complies
with the given specification, or a counterexample. A counterexample is a path in
the model that violates the specification. Needless to say, counterexamples are very
useful for correcting design errors.

The main limitation to the practical application is that the model checking prob-
lem is computationally hard [169]. For instance, solving the model checking problem

18 BACKGROUND

for a LTL specification is exponential in size of the formula (and also linear in the
size of the model). Hence, many authors worked on making the model checking
problem tractable. Some of the major proposals are symbolic model checking [47]
and bounded model checking [37]. Briefly, the first exploits an abstract representa-
tion of groups of states for reducing the search space, while the second bounds the
length of the visited path to a maximum value.

Model checking is not the only approach being proposed for the formal verifi-
cation of the program properties. Other techniques can be applied for the same
purposes. Among them, we list some of the most important.

• Automatic theorem proving. It consists of a logical framework that, starting
from a given logical formula, verifies its validity. Theorem provers have been
successfully applied to software and hardware verification (e.g., see [153, 15]).

• Abstract interpretation. It is based on a sound approximation of the computa-
tion of a program. In several works, e.g., [135, 139], it has be used for program
verification and in particular for control and data flow analysis.

• Protocol verification. It automatically verifies whether a security protocol can
be violated. For instance, the resistance of the protocol can be verified by
modelling an intruder with various capabilities [126, 127].

2.3 Trace properties specification

As we said above, in history-based security the formalisms used for the specification
of histories properties play a central role. In this section we present some of the
most used specification formalisms for defining properties of execution traces.

2.3.1 Automata-based Specification

Many authors propose variants of finite state automata [5] for the specification of the
properties of the execution histories. A finite state automaton is a reader accepting
the sequences of symbols belonging to a certain language. Intuitively the sequences
accepted (or rejected) by an automaton are the legal ones.

The languages accepted by finite state automata are called regular as they co-
incide with the languages of regular expressions. Regular languages have several
properties of interest, e.g., they are closed under union, intersection and comple-
mentation. These properties often correspond to desirable properties for security
properties, e.g., conjunction, disjunction and negation, which finite state automata
enjoy.

One of the major automata-theoretic proposals appeared in [8] and was then
extended in [168]. In particular, Schneider’s security automata [168] have been
presented as a formalism for defining security monitors. Briefly, the security monitor

2.3. TRACE PROPERTIES SPECIFICATION 19

simulates the transitions of the Schneider’s automaton by stimulating it with the
observed execution trace. If the automaton transits to a final state, the monitor
halts its target.

Interestingly, the class of properties that security automata can express is that of
safety properties. Roughly, safety properties are those saying that the computation
never reaches a dangerous state. This class of properties is of primary importance,
e.g., for the dynamic monitoring of the usage control policies.

Then, Ligatti et al. [30, 123] studied the possibility of enforcing a wider class
of security policies, namely edit properties, through special automata, namely edit
automata. Edit automata are defined through special functions that evaluates the
execution of a target action by action. For each action these functions can decide
to allow it, to interrupt the execution (truncation), to void the action (suppression)
or to add an extra one (insertion). We will provide the reader with further details
about edit automata in Section 4.2.

Bartoletti et al. [25, 24] advocated usage automata as a formalism for defining
security policies having a local scope over the histories of programs. Roughly, the
definition of usage automaton do not differ very much from that of Schneider’s
automaton. They both have a set of states, an input alphabet and a set of labelled
transitions. However, usage automata have a number of features that make them
suitable for many aspects of resources usage analysis. In particular, their transitions
are labelled with parametric actions rather then plain symbols. In this way, they
can model in an intuitive way the invocation of functions and methods over security-
relevant resources.

Also, resources can be represented using variables and their complement, e.g., x
and x̄ respectively. Variables are useful for having equality and difference checks on
the resources appearing in the automaton transitions. Indeed, two actions referring
to the same variables must be instantiated on the same resources. Instead, the
complement means that the action is evaluated for any resource, but the one that
is complemented.

Being parametric over actual resources, each usage automaton represents a class
of possible security automata, i.e., one for each possible instantiation of its resources.
Evaluating a usage automaton against an execution trace amounts to say that the
automaton is instantiated over all the possible bindings between its variables and
the actual resource appearing in the trace. Then, the policy is verified if none
of the instantiations reaches a final, offending state. Moreover, in [27] they have
been extended to deal with the dynamic creation of resources. This aspect is quite
important especially for the modern programming languages that often exploit the
instantiations of classes, i.e., objects, of resources.

Another useful property is that usage automata only contain transitions for the
actions of interest. All the other actions cause an automaton to loop on its current
state. In this way, a policy designer can focus only on the actions that are considered
to be critical. We propose the following example to better explain the structure and

20 BACKGROUND

20 1
release(x, y)

lock(x̄, y), lock(x, ȳ)

lock(x, y)

Figure 2.5: A usage automaton for a multi-task environment.

behaviour of usage automata.

Example 2.2 Imagine a multi-task system where a finite set of resources must be
shared among the running processes. Each process is an agent performing some
computation possibly involving the access to one or more resources. In order to
avoid conflicts a process must lock a resource before its usage and then release it.
We want to apply the following policy: “a process can only access one resource at a
time and the access to a resource is mutually exclusive”. Assuming to have, among
the others, two actions lock(P, r) and release(P, r) meaning that a process P locks
or releases a resource r, the resulting automaton is shown in Figure 2.5.

Consider now an environment with two processes, i.e., P and Q, and two re-
sources, i.e., r and r′. In this case the usage automaton denotes all the security
automata arising from the instantiations of its parameters. Excluding the inconsis-
tent ones, e.g., x 7→ P and y 7→ Q, the automaton instantiations are:

1. x 7→ P , y 7→ r;

2. x 7→ Q, y 7→ r;

3. x 7→ P , y 7→ r′;

4. x 7→ Q, y 7→ r′.

If P locks r the first automaton moves to state 1, while the others loop on state
0. Then, if Q tries to lock r, the second automaton moves to state 1, the third and
the fourth loop on 0, and the first one reaches the final state 2 raising a security
error.

Interface automata [71] have been presented as a formalisms for describing be-
havioural interfaces. Originally, they were proposed for defining the temporal inter-
face of a software component in terms of the methods that it exposes and invokes.

Basically, an interface automaton is defined through (i) a set of states, (ii) an
alphabet of symbols and (iii) a set of labelled transitions. The alphabet is the union
of three, disjoint sets of input, output and internal symbols. Input symbols repre-
sent interface methods that can be invoked from outside, output symbols denote the
methods that the automaton can invoke and internal symbols are the private meth-
ods. Transitions can be labelled with any element of the alphabet. The following
example shows a behavioural interface defined through an interface automaton.

2.3. TRACE PROPERTIES SPECIFICATION 21

Example 2.3 Consider the interface automaton of Figure 2.6. It represents the
interface of a manager for TCP communications using UDP primitives. Briefly, its
method interface is denoted through the external frame. Incoming arrows are the
module methods while outgoing ones are the methods it invokes. Interface actions
labelling the transitions are annotate with ? if they refer to own methods and !
if they are external invocations. Internal operations, i.e., actions that cannot be
triggered by or to the automaton, are annotated with ;.

send? UDPsend!

timeout;

UDPack?

UDPrecv?

send recv

UDPack!

recv!

UDPsend UDPack UDPack UDPrecv

Figure 2.6: An interface automaton for the TCP protocol.

Starting from the initial state, the manager can either send a message (horizon-
tal path) or receive a UDP packet (vertical path). In the first case, it sends the
message using the sending facility provided by the UDP protocol and waits for a
UDP acknowledgement before returning to the initial state. If an internal timeout
is produced before the expected acknowledgement, the automaton repeats the send-
ing action. Instead, if a UDP packet is received, the automaton answers with an
acknowledgement and invokes the TCP receive method.

The trace semantics of interface automata is given it terms of execution frag-
ments. Basically, an execution fragment is an alternating sequence s0α1s1 · · ·αnsn

22 BACKGROUND

of states and symbols representing a computation that starts from state s0 and ter-
minates in state sn. During the computation, the automaton touches the states and
executes the methods appearing in the fragment.

Even though they were not proposed for defining execution properties, interface
automata can be exploited for this purpose. Also, interface automata have a number
of properties, especially related to compositional aspects. For instance, they can be
sequentially composed through their input/output interfaces. In Section 4.2.2 we
propose an application of interface automata to the security issues.

2.3.2 Process Algebras

In the last decade, the impact of process algebras for the formal specification have
been constantly growing in the security community. Similarly to finite state au-
tomata, process algebras offer an operational representation of the expected be-
haviour of a program. Usually, the agents of a process algebra are defined through a
simple syntax that is able to focus on some relevant aspects of the computation. For
instance, consider the syntax of the calculus of communicating systems (CCS) [136]
given below.

P,Q ::= 0 | α.P | P +Q | P | Q | P [f] | P \ L

A process can be the inactive one (0), an agent with an action prefix (α.P), a
nondeterministic choice between two processes (P + Q), a parallel composition of
two agents (P | Q), an relabelling of an agent (P [f] where f is a substitution function
over the actions of P) or a restriction (P \ L where L is a set of actions). Clearly
the CCS mainly focuses on certain aspects of the computation. In particular, it can
be easily applied for defining concurrent agents, communicating and synchronising
through special actions. As a matter of fact, prefixes can be output as well as input
actions, e.g., a and ā, or even the silent action τ .

The semantics of a process algebra is often defined in terms of a labelled transition
system (LTS). An LTS has a set of states representing possible configurations of a
process. The computation causes state changes according to a set transitions, each of
them being labelled with an action. Inference rules are used to define the behaviour
of the transitions. For instance, consider the following rule for parallel composition
of CCS processes.

P
a
−→ P ′ Q

ā
−→ Q′

P | Q
τ
−→ P ′ | Q′

It states that two concurrent processes can synchronise on a proper pair of input
and output actions to perform a silent transition. Needless to say, LTSs fit with the
history-based security model and have been largely exploited for this purpose.

The π-calculus [137] was proposed as an extension to the CCS for dealing with
processes that can exchange messages rather that simply synchronising. Interest-
ingly, it turned out that the π-calculus is a universal model of computation, i.e., it

2.3. TRACE PROPERTIES SPECIFICATION 23

is Turing-complete. Hence, it offers the richest expressive power for the operational
specification of processes.

An interesting extension of the π-calculus has been proposed by Abadi and Gor-
don [3]. Their spi-calculus extends the π-calculus with facilities useful for modelling
cryptographic protocols. For instance, they can model encryption keys generation
and exchange. In this way they can apply formal verification techniques for checking
the protocol resistance, e.g., against private key disclosure.

A very peculiar feature of process algebras is the number of simulation relations
which have been introduced in the literature. Roughly, a simulation is the rela-
tion occurring between two agents such that the first can reproduce the behaviour
of the second. The behaviour is considered in terms of actions produced by the
computation. For instance, the simulation relations can differ for their assumptions
on the observable actions. When two processes simulate each other it is called a
bisimulation and the two agents are said bisimilar. Saying that a process simulates
another one has important consequences, e.g., in terms of components substitutabil-
ity. This reasoning is used, for example, in action refinement [162] for moving from
an abstract model of process toward its implementation.

In [130] the authors combine simulation and partial model checking [10] to au-
tomatically synthesise program controllers. More in detail, starting from a system
specification and a security policy they find a controller that guarantees the policy
compliance on the interaction with any possible malicious component. Their con-
trollers are maximal in the sense that for each other controller enforcing the same
security policy theirs is more general (with respect to a simulation relation).

Process algebras have been also used as the basis for defining languages for the
specification of security properties. For example, the policy specification language
(PSLang) [86] has been presented for specifying security policies for reference mon-
itors. PSLang uses a Java-like syntax for defining an event-driven computational
model. In the style of process algebras, a PSLang policy declares a set of events
on which it can synchronise its computation. When one of these events is received,
the PSLang process updates its security state, possibly leading to raising a security
error.

2.3.3 Modal and temporal logics

Modal logics extend standard logics, e.g., propositional, first-order logic, with modal-
ity operators. Modalities apply a special context to a logical formula. For instance,
we can have modalities dealing with possibility and necessity, rights and duties,
knowledge and belief. Modalities proved to be particularly good at modelling sev-
eral properties of computing systems.

For instance, the Hennessy-Milner logic [98] uses two special modalities, i.e., uni-
versal and existential quantifiers, for reasoning about the transitions that a process,
e.g., a CCS agent, can perform. The two modalities are also annotated with actions
that restrict the evaluation of a property on the transition with the right label only.

24 BACKGROUND

The modal operators are [a], namely “box”, and 〈a〉, namely “diamond”. Both
quantify a certain formula. The former states that each computation that starts
with an a transition must respect the quantified formula, while the latter requires
that at least one such computation exists.

Another major proposal is the modal µ-calculus [113]. Basically, the syntax of the
µ-calculus comprises the two modalities described above, i.e., box and diamond, and
two operators for least and greatest fixed point, i.e., µ and ν respectively. However,
the extreme expressiveness of the µ-calculus impacts on its usability. Indeed, the
satisfiability problem for the µ-calculus is EXPTIME-complete [183]

Probably temporal logics [128] are the most used technique for the specification
of the temporal properties of programs and, often, also for usage control [188].
Temporal logics are a category of modal logics where modalities refer to the temporal
context of a formula. Among them, linear temporal logic (LTL) [157] is one of the
most used. Basically, LTL uses the temporal operators X, F, G and U for defining
temporal properties. Respectively, they mean that a formula ϕ must hold in the
next state (Xϕ), eventually in the future (Fϕ), globally during the computation (Gϕ)
or until a second formula ψ is verified (ϕUψ).

Also, the LTL syntax has been extended with the operators of the computation
tree logic (CTL) [55] for dealing with the properties of branching computations. The
logics obtained in this way is called CTL∗.

2.4 Composed systems security in the field

The continuous evolution of the telecommunication technology is a common factor
of many recent changes of the computing environments. For instance, in conjunction
with the advancements in the miniaturization of the hardware components, it made
possible the revolution of mobile devices that we are currently experiencing. These
conditions influenced the current trend for mobile applications. Usually, mobile
applications are low-cost (or even free) pieces of software which have been designed
and developed for being easily distributed and deployed on possibly resource-limited
platforms. This very successful paradigm caused the creation of a number of digital
marketplaces dedicated to the commercialization of the mobile applications.

On the other hand, new distributed computational paradigms deeply influenced
the design of the web-based systems. In this field, terms like Service Oriented
Computing, Grid Computing and Cloud Computing are becoming more and more
common. Roughly, they allow complex services and tasks to arise from the compo-
sition and the efforts of many, distributed components. The sub-components can be
the result of other, arbitrary complex compositions.

These two worlds, i.e., mobile applications and distributed systems, also integrate
each other. Indeed, mobile devices represent a continuous access point to the world
of services and remote business applications that, on the other way round, provide
the users of the devices with their advanced computational capability.

2.4. COMPOSED SYSTEMS SECURITY IN THE FIELD 25

This complex scenario offers several opportunities of security attacks. As it
involves so many different aspects and conditions, providing the proper protection
mechanisms is both crucial and extremely hard. Here we briefly survey on the state-
of-the-art technologies and models for dealing with the security of these applications.

2.4.1 J2ME security

Java [16, 124] is the leading technology for the portability of software. Using Java,
the software developers can compile their applications into an intermediate language,
namely bytecode, which can be executed on every platform running the proper in-
terpreter, i.e., the Java virtual machine (JVM). The success of the Java framework
for mobile devices, i.e., the Java micro edition (J2ME), is mainly due to this fea-
ture allowing the execution of the same application on many, totally heterogeneous
platforms.

Optimized versions of the JVM, e.g., the KVM [177, 105, 178], are present on
most of the existing devices. However, the increased capabilities of the new genera-
tion devices make it possible to use some almost fully featured versions of the Java
runtime.

Java exploit several static mechanisms for verifying the correctness of programs.
Basically, Java is a strongly typed language. Typing a Java program, its developer
is provided with a proof that several errors, e.g., stack overflow and cast exception,
will not happen at execution time. Moreover, some proposals exist for the static
verification of other security properties, e.g., JIF [103] for information flow properties
(see Section 2.2.1). In this scope, JML [118, 48] received major attention. Roughly,
JML allows one to specify properties that must be respected by the methods of a class
directly within the comment lines. At compile-time the properties are automatically
checked against the real implementation.

The effectiveness of these techniques is seriously compromised under the mobility
assumptions that we are considering. Indeed, here we assume that (i) the user
receives the application through (from) some unreliable channel (repository) and (ii)
rarely users and providers have different security requirements. As a consequence,
often the guarantees that the developers obtain from the static techniques are not
extended to the software user.

Nevertheless, dynamic techniques can be suitably applied to the Java programs
after their deployment. Among them, stack inspection [86, 91] is probably the most
used. The stack inspection model works as follows. When the execution enters the
scope of a method, i.e., after an invocation, a new entry for it is pushed on the
method stack. Each method has a set of access privileges. When the program tries
to access a resource requiring certain privileges, the access is granted if and only if
the current stack is compatible. In other words, the permission depends on whether
every method in the stack has the needed privileges.

Other solutions aim at extending the validity of the static checks performed at
development time to the platform of the code consumer. In particular, the idea

26 BACKGROUND

is to mark the code with annotations describing the kind of checks performed at
compilation time. This process is carried out by a preverifier [178]. The preverifier
checks some properties of the compiled application, e.g., control-flow safety, and
annotates the class files with additional information. These annotations are used
by the client’s virtual machine for implementing a fast check on the properties that
have been verified by the code provider.

The integrity of the code (possibly with annotations) is guaranteed through
package certification. Briefly, the software releasers acquire a certificate from one of
the Certification Authorities (CAs) accepted by the (manufacturer of the) platform
their software must run on. Then, they use the certificate information to sign their
software. At deploy-time, the platform checks the signature integrity, i.e., whether
the content of the package changed after its compilation, and assigns the application
to a security domain. Often, the security domain only depends on the identity of
the CA releasing the certificate.

Even though J2ME is becoming an obsolete technology for mobile applications,
the number of deployment paradigms using mobile applications is growing, e.g., see
[94, 54, 13]. Many of these systems use Java or Java-like development frameworks.
From the security perspective, they often rely on traditional approaches, e.g., code
signature and stack inspection [93]. Hence, the reasoning on the security of J2ME
can, in most cases, be applied to other, similar contexts.

2.4.2 Web services and grid computing

Nowadays, Service-Oriented Computing (SOC) [150, 148, 149, 147] is a consoli-
dated paradigm for designing and implementing indefinitely complex systems is a
constructive, compositional and distributed manner. The success of the web services
drastically changed the way we understand the web-based applications and software
in general. Such a rapid change in the web-based software development paradigms
can offer new opportunities as well as new threats. Naively, one could think that
the main risk factor for the web services is the unreliable network, i.e., the Internet,
that they use for communications and compositions. However, it has been pointed
out [147] that the main concerns about security are at application level.

Several new standards have been introduced for dealing with the different se-
curity issues involved in service composition. The foundational standard that has
been defined by the web services community is WS-Security [40]. Basically, WS-
Security extends the Simple Object Access Protocol (SOAP) with security-related
technologies, e.g., cryptographic primitives. Mainly, WS-Security provides the ser-
vice designer with facilities for dealing with the integrity and confidentiality of com-
munications and sessions. Other standards are built upon WS-Security. Among
them, we cite WS-Policy and WS-Trust. Briefly, WS-Policy defines an XML-based
language for declaring security requirements over the service sessions. For instance,
a WS-Policy specification can require messages to be encrypted with a certain tech-
nique or key size. Instead, WS-Trust is used for managing trust relations which can

2.4. COMPOSED SYSTEMS SECURITY IN THE FIELD 27

subsist among services.
Business processes offer a representation of service compositions that can be

exploited for security purposes. For instance, control flow and data flow analysis
can be performed once a business process has been defined. Roughly, control flow
describes how the computation is carried out, which platforms execute it and in
which order. Similarly, data flow gives a representation of the way information
and data structures move within the service composition. The standard way for
modelling web services business processes is the business process execution language
(WS-BPEL or BPEL4WS) [12, 107].

Even though a significant efforts have been done to cope with the security of
web services, the definition and development of their security specifications is still a
work in progress. Consequently, also the formal security techniques for web services
suffered from this absence of suitable specification methods.

Grid computing [90] (and also its descendant, cloud computing) is one of the
main technologies for highly distributed computing systems. Roughly, it aims at
holistically organising a group of nodes, namely a virtual organisation, sharing their
resources for achieving a goal which is too hard or costly for a single node. The
security issues affecting the computational grid, e.g., see [89], are somehow similar
to those seen for the web services. However, as they rely on resource-sharing, some
authors, e.g., see [106, 112], outlined that introducing usage control mechanisms
for the grid is a priority task and presented their proposals. To the best of our
knowledge, the grid community did not propose any standard for the application-
level security issues. Indeed, most of the work about security has been dedicated to
the problem of establishing secure communications at network level.

28 BACKGROUND

Mobile Application Security and
Enforcement on Devices

In this chapter we present our work and results about the security of mobile applica-
tions. A mobile application is a program which is developed in an environment and
deployed in a different one. The actual deployment happens only after a transmis-
sion step during which the code producer sends the application to the code consumer.
From the security perspective, several threats can affect this process. Here we focus
on a very precise aspect: which precautions can help the code producer (consumer)
to protect the resources of his application (platform)?

Clearly, the possible attacks and countermeasures change with the chosen ob-
server, i.e., producer and consumer. For instance, a code consumer could be inter-
ested in preventing the applications from stealing private data, while the producer
could require protection against the presence of other, malicious software running
on a compromised platform.

For dealing with the security issues, we often need to start from some assump-
tions. Most of them concerns the trusted computing base (TCB) [115], i.e., the
(small) set of software and hardware components which we assume to work as ex-
pected. Hence, these elements are assumed to never fail or misbehave. We briefly
present the assumptions on the TCB that we used in this chapter.

We start in Section 3.1 by considering the point of view of the code producer.
In particular, we present an extension of the Java programming language [93] for
annotating the source code with security policies. In this case, the software developer
assumes that the program interpreter, i.e., the Java Virtual Machine, is part of the
TCB. Instead, other components, e.g., programs and libraries, may perform some
security violations. Then, in Section 3.2 we present an implementation of this model
based on a secure compiler including a verification process and the instrumentation
step, called inlining.

In Section 3.3 we move on the other side, i.e., we study a mechanism for pro-
tecting the code consumer. We assume a realistic applicative context, i.e., mobile
devices, where an application can be imported in a platform and executed. The code
consumer can deploy a security controller, belonging to the TCB, for executing the
(untrusted) applications in a safe way. Again, we exploit an inlining-based approach
to instrument the applications with security controls. Finally, in Section 3.4 we ex-

30 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

tend this model in order to create a security environment involving all the activities
taking place on mobile devices.

3.1 Extending Java with local policies

Two main aspects of security are particularly relevant and sensitive during the ap-
plication development process: (i) the design of security policies and (ii) their ap-
plication. Designing a security policy may require a precise knowledge of many
technical issues. Moreover, once it has been defined, applying a security policy is
still a sensitive operation. Nevertheless, both these issues can be simplified through
a modular reasoning.

Object-oriented programming represents a perfect context for dealing with the
security of a program in a compositional way. As a matter of fact, classes are
software compounds consisting of operations, i.e. methods, sharing some data, i.e.
fields. In general, classes are designed in order to contain all and only the information
regarding a precise aspect of the computation. Also, reasoning about the security
of a single class is much easier than doing it for a whole program, i.e. a group of
many classes.

Some authors proposed to integrate the source code of the Object-oriented lan-
guages with special annotations (also) for security requirements. For instance, [118]
introduces the Java Modelling Language (JML) for defining method requirements
within the code comments. These special annotations can be preprocessed for veri-
fying whether they are actually satisfied by the program implementation they refer
to [88].

A similar approach, namely Chalice, has been proposed by [119]. Chalice can
deal with the requirements of objects and methods. Moreover, it can be suitably
applied for verifying that concurrently executing objects, i.e. threads, do not violate
the specifications.

These proposals outline the growing interest for providing the software designer
and developers with automatic mechanisms for verifying the correctness of their
applications. Such mechanisms must support the software creation process without
forcing the developers and designer to acquire many new technical skills.

In the following we present the design of an extension to the Java language, so to
enhance its security mechanism with local policies [21]. Local policies are orthogonal
to Java code and their specification is produced, together with the application code,
during the development process. Policies are defined through usage automata, i.e., a
special category of security automata, where the input alphabet of security-relevant
events coincides with the set of the controlled Java methods. These methods can be
Java APIs as well as members of the classes composing the application.

3.1. EXTENDING JAVA WITH LOCAL POLICIES 31

3.1.1 Local policies specification

We are interested in specifying and enforcing safety policies of method traces, i.e.
the sequences of run-time method calls. We define policies through usage automata
featuring facilities to deal with method parameters in order to adapt them to the
Java framework. The first step consists in defining a mapping between observable
method invocations and the input alphabet of a usage automaton. Then we must
define a proper syntax for declaring the structure of a usage automaton directly
inside the Java source code. Finally, we instantiate these definitions into actual
usage automata.

A motivating example. Consider a trusted component NaiveBackup that offers
static methods for backing up and recovering files. Assume that the file resource
can be accessed through the following interface:

public File(String name, String dir);

public String read();

public void write(String text);

public String getName();

public String getDir();

The constructor takes as parameters the name of the file and the directory where
it is located. A new file is created when no file with the given name exists in the
given directory. The meaning of the other methods is as expected. In the class
NaiveBackup, the method backup(src) copies the file src into a file with the same
name, located in the directory /bkp. The method recover(dst) copies the backed
up data to the file dst. As a näıve attempt to optimise the access to backup files,
the last backed up file is kept open.

class NaiveBackup {

static File last;

public static backup(File src) {

if(src.getName() != last.getName())

last = new File(src.getName(), "/bkp");

last.write(src.read());

}

public static recover(File dst) {

if(dst.getName() != last.getName())

last = new File(dst.getName(), "/bkp");

dst.write(last.read());

}

}

32 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

Consider now a malicious Plugin class, trying to spoof NaiveBackup so to obtain
a copy of a secret passwords file. The method m() of Plugin first creates a file called
passwd in the directory /tmp, and then uses NaiveBackup to recover the content of
the backed up password file (i.e., /bkp/passwd).

class Plugin {

public void m() {

File g = new File("passwd","/tmp");

NaiveBackup.recover(g);

}

}

Clearly, this attack only takes place if the last argument of the backup method
was a file called passwd. However, it is important to note that this kind of behaviour
cannot be detected though stack inspection [93]. Indeed, when the method recover

is invoked, the stack contains no references to backup and vice versa. Instead, as
our approach is history-based, we can identify this security violation.

Aliases and events. As mentioned above, our policies constrain the sequence of
run-time method calls. Clearly, any policy language needs some facilities to abstract
from the (possibly infinite) actual parameters occurring in the programs executions.
To do that, one could use method signatures as a basic building block to specify
policies. However, this may lead to unnecessarily verbose specifications; so, we
provided our policy language with a further indirection level, which helps in keeping
simple the writing of policies.

We call aliases our abstractions of the security-relevant methods. Let m be a
method of class C, a signature for such a method has the form

(y : C).m(C1 y1, . . . , Cn yn) : C′

where y is the target object, yi are the parameters (having type Ci, for i ∈ {1 . . . n})
and C′ is the return type.

An alias ev(x1, . . . , xk) for m is defined as:

ev(x1, . . . , xk) := (y : C).m(C1 y1, . . . , Cn yn)

where ev is an identifier and {x1, . . . , xk} ⊆ {y, y1, . . . , yn}. This set inclusion may
be strict, when some parameters in the method signature are irrelevant for the policy
of interest. Note that here we ignore the returning value of methods. However, this
model can be easily extended to also consider them. A solution could be using a
second alias with only one parameter for gaining the visibility of the results of the
method invocations.

3.1. EXTENDING JAVA WITH LOCAL POLICIES 33

Example 3.4 Consider the following aliases:

read(f) := (f:File).read()

write(f) := (f:File).write(String t)

new(f,d) := (f:File).<init>(String n, String d)

The first item means that read(f) is an alias for the method read of the class File.
The only parameter of the alias is the target object of the method, that is the object
f of type java.io.File (we avoid to use fully qualified class names when there is
no risk of ambiguity). Similarly, the alias write corresponds the the invocation of
the method write. Just note that the alias does not refer to the parameter t that
instead is neglected. Finally, the last alias associates the name new to the method
<init>, i.e., the default constructor, of the class File. Again, the alias ignore one
parameter (namely d) of the method.

Note also that aliasing is not an injective function from method signatures to
aliases. For instance, if multiple methods were provided to write a file, they could
be abstracted to a single alias write(f), so simplifying the definition of the usage
automaton.

As a method call is the concrete counterpart of a method signature (the formal
parameters in the latter are concretized into actual parameters in the former), an
event is the concrete counterpart of an alias. Summing up, we have a mapping from
method calls to events, and – by lifting this to sequences – a mapping from method
traces to event traces. For instance, applying the aliases of Example 3.4, the method
trace:

g.<init>("passwd","/etc") f.read() g.write("secret")

is abstracted into the event trace:

new(g,"/etc") read(f) write(g)

Usage automata definition. We extend the standard structure of usage au-
tomata by adding guards to the automata transitions. As usual, variables rep-
resent universally quantified resources. Instead, guards express conditions among
resources. Hence, a usage automaton is specified in plain text as follows:

name : name of the usage automaton
aliases: list of aliases A
states : set Q of states
start : initial state ı ∈ Q
final : final (offending) states F ⊆ Q \ {ı}
trans : set of labelled transitions T ⊆ Q× E ×G×Q

34 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

The first item is just a string, to be used when referencing the usage automaton
(e.g. in the definition of sandboxes, see below). The second item lists the aliases
(separated by newlines) relevant for the policy. The remaining four items define the
operative part of the usage automaton, i.e. its finite set of states Q (separated by
spaces), the initial state ı, the set of final states F , and the set of edges or transitions
T . The formal parameters of a usage automaton are the variables occurring in its
edges.

To define an edge from state q to state q’ we use the following syntax:

q -- label --> q’ when guard

The label is a (possibly, partial) concretization of an alias defined in the aliases

item. Concretizing an alias ev(x1, . . . , xk) results in a label of the form ev(Z1, . . . , Zk),
where each Zi can be either:

• S, for a static object S. Static objects comprise strings (e.g. "/tmp"), final
static fields (e.g. User.guest), and values of enum types.

• x, for some variable x. This means that the parameter at position i is univer-
sally quantified over any object.

• ∗, a wildcard that stands for any object.

A guard represents a condition among resources, defined by the following syntax:

guard ::= true | Y != Z | guard and guard

where Y and Z are either static objects or variables. The guard when true can
be omitted. For the sake of minimality, we introduced only two logical operators:
inequality between resources and conjunction. Several other operators do not need
to be explicitly declared as they are implicitly defined in the syntax of policies.
For instance, we only use inequality (i.e. !=) as equality is implicitly defined by the
syntax of labels and we can abbreviate X != X (for some X) with false. Also, we do
not need to introduce an or operator as we can simulate its behaviour by replicating
a transition and guarding its instances with the guards under disjunction.

Note that policies can only control methods known at static time. Indeed, the
definition of a policy must be done before the first execution of its target. In the
case of dynamically loaded code, where methods are only discovered at run-time, it
is still possible to specify and enforce interesting classes of policies. For instance,
system resources – which are accessed through the JVM libraries only – can always
be protected by policies. We can also refer to the methods of interfaces and abstract
classes. In this way, whenever a new class implementing a known abstract method
is loaded at run-time we can control its invocations.

Thus, the policies must be attached to an application source code when the
compilation process starts. A suitable solution consists in extending the syntax of

3.1. EXTENDING JAVA WITH LOCAL POLICIES 35

q1

q2

q0
new(f,"/tmp")

new(f,d) when d!="/tmp"

read(f)

write(f)

Figure 3.7: File confinement policy file-confine(f,d).

the Java Modelling Language (JML [118, 48]). JML is an extension of the standard
Java comments offering a rich syntax for the specification of properties that the code
must satisfy. Hence, using this technique the security policies would be integrated
inside the code structure among others specifications (e.g., functional requirements).

Example 3.5 The comment below specifies the file confinement policy of Figure 3.7.

*@

@ name : file-confine

@ aliases: read(f) := (f:File).read()

@ write(f) := (f:File).write(String t)

@ new(f,d) := (f:File).<init>(String n, String d)

@ states : q0 q1 q2

@ start : q0

@ final : q2

@ trans : q0 -- new(f,"/tmp") --> q1

@ q0 -- new(f,d) --> q2 when d != "/tmp"

@ q0 -- read(f) --> q2

@ q0 -- write(f) --> q2

@*\

The first part introduces the needed aliases. Then, the set of states Q = {q0, q1, q2},
the initial state q0 and the set of final states F = {q2} are declared. The automaton
transitions close the definition.

Briefly, the policy file− confine says that a program cannot access files created
by others and can only create files in the "/tmp" directory.

Policy instantiation and enforcement. In the general case, each usage au-
tomaton admits an infinite number of possible instantiations (one for each valid
combination of resources that can be mapped into its parameters). Moreover, dif-
ferent instantiations may share part of the resources they talk about or two different

36 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

instances may converge to the same state at run-time. Hence, we need to define an
instantiation strategy that prevents unnecessary instances of the usage automaton
from being created and optimizes the existing instances avoiding resources waste.

Our instantiation mechanism for usage automata uses configurations having the
form:

Q = {σ0 7→ Q0, . . . , σk 7→ Qk}

where, for each i ∈ {0..k}, σi is a mapping from the parameters the automaton U
to actual objects, while Qi contains a subset of the states of U . Intuitively, each σi
singles out a possible instantiation of U into a finite state automaton AU(σi), while
Qi represents the states reachable by AU(σi) upon the method trace seen so far.

The configuration Q of the mechanism is updated whenever a method is invoked
at run-time. The formal specification is in Table 3.3, where with R(Q) we denote
the set of objects occurring in Q. The number of instantiations recorded by the
mechanism grows as new objects are discovered at run-time. The distinguished
objects #1, . . . ,#p represent the objects before they actually appear in the trace.

The procedure of Table 3.3 shows how a sequence of method invocations is vali-
dated or rejected according to a usage automaton U . Roughly, step 1 represents the
initialization of the usage automaton state. At this stage, the configuration consists
of a single mapping pairing each parameter of U to a corresponding dummy resource
#i.

Step 2 is the main loop processing the methods trace η. For each invocation
o.m(o1, . . . , on) a corresponding event is produced by through the defined aliases (a).
Then, the current configuration Q is extended by instantiating the new mappings
according to the freshly discovered resources appearing in the method invocation
(b). Subsequently, the procedure select all the transitions of U that are compatible
with the method under analysis and performs a corresponding update of the existing
configurations (c).

Finally, step 3 verifies that no final state has been reached and returns true.
Otherwise, if a violation occurred, returns false.

Example 3.6 Consider again the policy file-confine(f,d) of Figure 3.7 and the
following methods trace:

η = g.<init>("data", "/tmp") h.read()

Applying the aliases defined by the policy, this trace is turned into the events trace:

η′ = new(g,"/tmp") read(h)

The initial configuration of the monitor is:

Q = {{f 7→ #1, d 7→ #2} 7→ {q0}}

The first event of the trace under evaluation, i.e. new(g,"/tmp"), carries two re-
sources, namely the object g and the static string "/tmp". Moreover, the event is
compatible with one of the transitions rooted in q0. Hence, the new configuration
after the event is:

3.1. EXTENDING JAVA WITH LOCAL POLICIES 37

Input: a usage automaton U and a method calls trace η.
Output: true if η complies with the policy defined by U , false otherwise.

1. Q := { σ 7→ {q0} | ∀x : σ(x) ∈ {#1, . . . ,#p} }, where q0 is the initial state
of U , #1, . . . ,#p are distinguished objects, p is the number of parameters
of U

2. while η = o.m(o1, ..., on) η
′ is not empty, do:

(a) let ev(o′1, . . . , o
′
k) be the event abstracting from o.m(o1, . . . , on)

(b) for all j such that o′j 6∈ R(Q), extend Q as follows. For all σ occurring
in Q and for all mappings σ′ from the parameters of U to R(Q) ∪
{o′1, . . . , o

′
k} ∪ {#1, . . . ,#p} such that, for all x, either σ′(x) = σ(x)

or σ(x) = #j :
Q := Q [σ′ 7→ Q(σ)]

(c) let step(q) be the set of states q′ such that there exists an edge from
q to q′ with label ev(x1, ..., xk) and guard g, where ev(x1, ..., xk)σi =
ev(o′1, ..., o

′
k) and gσi is true. Let step′(q) = if step(q) =

∅ then {q} else step(q). Then, for all (σi 7→ Qi) ∈ Q, update Q
as:

Q := Q [σi 7→
⋃

q∈Qi
step′(q)]

3. if Qi contains no final state for all (σi 7→ Qi) ∈ Q, then return true else
false.

Table 3.3: Enforcement mechanism for policies defined through usage automata.

Q′ = Q ∪ {{f 7→ g, d 7→ "/tmp"} 7→ {q1}}

When the event read(h) is fired, the configuration update is applied to both the
elements of Q′. Since the event under analysis is compatible with a transition from
the state q0 and introduces a new resource h, the monitor state evolves in the
following way.

Q′′ = Q′ ∪ {{f 7→ h, d 7→ #2} 7→ {q2}}

As q2 is final, the monitor detects a security violation and stops the execution.

Some optimization of the algorithm, omitted for brevity in Table 3.3, are possible.
For instance, there is no need to allocate in step (b) a new instance AU(σ), unless
AU(σ) can take a transition in step (c). Also, when an object o is garbage-collected,
we can discard all the instantiations AU(σ) with o ∈ ran(σ); it suffices to record the
states of Q(σ) in a special σ† for disposed objects.

38 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

3.1.2 Policy sandbox

The possibility to define the local scope of a policy inside the normal sequence
of instructions coding an application is a fundamental part of our framework. In
general, a programmer should be able to apply a security policy to an arbitrary
block of code that he wants to secure.

Here we survey the possible techniques for extending Java in order to integrate
our security policies in the program instructions flow. We explain the solution we
opt for and we show how it can be easily applied with no substantial changes to the
normal structure of a program.

Native block abstractions. The Java libraries offer a convenient abstraction
for blocks of executable code, that is the java.lang.Runnable interface. Mainly,
a Runnable object consists of a run() method that simply contains a bunch of
instructions. Typically, Runnable objects are used by Java Threads for defining the
sequence of instructions that are scheduled during a parallel computation. However,
Runnable objects are also used for many other purposes, e.g. for graphical events
handling.

Another useful abstraction is provided by the java.lang.reflect package. This
package contains the classes used for reflection in Java, that is the dynamic access
to classes and data structure performed by a running application. In particular the
instances of the classMethod represent concrete methods. The standard way to force
the execution of a Method object is through the method invoke in the following
way:

Object result = M.invoke(target, arg1, ..., argN);

That is intended to behave like

Object result = target.m(arg1, ..., argN);

where m is the method that the object M represents.
There are several reasons why we prefer the former approach to the latter. Us-

ability issues are predominant. Indeed, the Runnable representation is suitable not
only for methods but also for common blocks of code. Moreover, the reflection mech-
anism requires a certain level of comprehension and awareness of the inner structure
of the Java framework that is not required to every developer. Also the approach
compatibility has been considered. Indeed, the Runnable interface is part of Java
since the 1.0 version of the framework while the reflection package has been added
later (version 1.2).

Example 3.7 Consider now the following fragment of Java code.

try {

File src = new File("private", "/etc");

3.1. EXTENDING JAVA WITH LOCAL POLICIES 39

File dst = new File("public", "/tmp");

// flush private data to public location

String data = src.read();

dst.write(data);

} catch(Exception e) {...}

The code for wrapping these instructions inside a Runnable object is:

new Runnable() {

public void run() {

try {

File src = new File("private", "/etc");

File dst = new File("public", "/tmp");

// flush private data to public location

String data = src.read();

dst.write(data);

} catch(Exception e) {...}

}

}

The sandbox method. We use the method sandbox to define the scope of a
security policy. This signature of sandbox is:

public static void sandbox(String P, Runnable C)

throws SecurityException

where the string P is the name identifying the usage policy (see Section 3.1.1) to
apply on the execution of the code wrapped by C. Intuitively, executing a piece of
code inside a sandbox can raise a SecurityException. If a violation of the policy
is discovered, the sandbox interrupt the execution and throws the exception.

According to the procedure of Table 3.3, our monitor intercepts the method
invocations during the execution of run(). If an invocation appears among the
aliases defined by the policy, it is converted into a corresponding event and used to
update the state of the monitor.

More policies can be easily composed by nesting the invocations to the sandbox
method. A policy is activated when the execution enters the scope of a sandbox
referring to it and deactivated when the block is left.

Example 3.8 Applying the sandbox method to the code of Example 3.7 we obtain

sandbox("policy-name", new Runnable() {

public void run() {

try {

40 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

File src = new File("private", "/etc");

File dst = new File("public", "/tmp");

// flush private data to public location

String data = src.read();

dst.write(data);

} catch(Exception e) {...}

}

});

where policy-name is the identifier of a previously declared policy.

3.1.3 Security checks deployment

The last step for having a complete monitoring environment is the deployment of
the instructions responsible for triggering the invocations to the security monitor.

Several mechanisms can be used to implement this operation. From a mere
functional point of view, many of them are almost equivalent for our purposes. For
instance, we could insert local security checks [36, 34] before each security-relevant
method invocation. Local checks verify a security predicate and, if it is violated, halt
the execution. However, local checks poorly integrate with the structure of the Java
programs. In fact, we used security proxies that better fit with the object-oriented
environment.

Security proxies. The approach used here exploits dynamically generated proxies
for wrapping method calls. This mechanism is also implemented by JavaCloak [161]
for extending the standard Java reflection support and improving the code mobility
and re-usability.

Basically, a special class loader replaces the Java default one1. According to the
Java specification [93], the JVM loads a new class when it is used for the first time
during an execution. Thus, a special class loader can operate on the loaded classes
and replace the security-relevant ones, i.e., those declaring some methods monitored
by some of the declared policies, with proper proxies.

A dynamic proxy class is a class that implements a set of interfaces defined at
runtime. The proxy class in used to encapsulate a concrete object and to create a
further abstraction layer. Assuming that each security-relevant class implements a
public interface, we load a proxy instead of the watched classes. We can see the
working principle in the code below.

1Note that, since Java allows for having multiple class loaders, organised according to a specific
hierarchy, we can still access to the standard class loader.

3.1. EXTENDING JAVA WITH LOCAL POLICIES 41

public class SecurityProxy implements InvocationHandler {

private Object target;

...

public Object invoke(Object proxy, Method M, Object[] args)

throws Throwable

{

Object result;

if(check(target, M, args)) // monitor invocation

result = M.invoke(target, args); // method invocation

else

throw new SecurityException(M.toString());

}

}

A proxy keeps a reference to the wrapped object target. When a method m of the
original class is invoked, the wrapping proxy is delegated to satisfy the invocation.
This is done through the method invoke of the InvocationHandler interface. The
invoke parameters are: the target of the invocation, i.e. the proxy itself, the Method
instance M representing the concrete method m and the arguments of the invocation.

Before dispatching the call to the actual class, the proxy updates the state of
the security monitor through the function check. If the policy check succeeds, i.e. it
returns true, the proxy complete the execution by performing the original invocation
to m using its representation M. Otherwise, if an active policy is violated and the check
fails, the proxy throws a security exception.

Since this technique exploits the Java object orientation, if offers some advan-
tages. Firstly, the substitutability of proxies is guaranteed by the Java specification.
Hence, we can use proxies instead of the classes they wrap exploiting a native feature
of the language. In other words, if we have a proxy P for the class C we can write
the following code

boolean b = p instanceof C;

C c = (C) p;

where p is an instance of P.
Another advantage of this approach is that it has a very limited impact on the

original structure of a monitored program. Indeed, it suffices to include the special
class loader for dynamically generating the proxies in a program. This means that
the overhead due to the policy monitoring in terms of program dimensions is always
a fixed amount.

However, the approach based on proxies has some limitations. Mainly, a proxy
is usable and effective only if applied to a class implementing one or more interfaces.
The shared interfaces are necessary for guaranteeing the substitutability properties
of the proxy. This makes the approach not applicable to classes that implement no

42 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

interfaces. Also final classes, that are quite common among the Java APIs, can
not be wrapped in this way.

These limitations make this technique not general enough for our purposes. In-
deed, the security requirements of a program can involve each kind of classes or
methods. Hence, we opt for a more general mechanism that is applicable to every
Java program.

Bytecode instrumentation. A different way to force security checks in Java
applications is through bytecode rewriting. A similar approach has been used by
Kava [184, 185] for adding behavioural reflection to Java programs. Roughly, Kava
allows for specifying some supplementary operations to execute just before and after
accessing the members, e.g. methods and fields, of a class. The Kava instrumentation
process ensures that these new pieces of code are correctly inserted in the instructions
flow.

Example 3.9 Consider the following class.

class C {

...

public D m(...) {

// body of m

}

}

The syntax for specifying the policy check code to be instrumented is the following.

class MetaC implements IMetaObject {

...

public void beforeExecuteMethod(IExecutionContext c) {

if(!check(c.getBase(), c.getMethod(), c.getParameters()))

throw new SecurityException(...);

}

}

Finally, the xml-based binding specification below drives the instrumentation process

<binding>

<class>

<classname>C</classname>

<metaclass>MetaC</metaclass>

<intercept>

<execute>

<method>m</method><parameters>*</parameters>

</execute>

</intercept>

3.2. THE JALAPA FRAMEWORK 43

</class>

</binding>

Since we aim at creating an automatic instrumentation tailored for security con-
trols, the Kava specification model is not satisfactory for our purposes. Indeed, our
security framework always performs the same operations before a security-relevant
invocation, that is an authorization request to the program monitor. Hence, speci-
fying security checks using Kava would lead to long, repetitive descriptions for each
method of each class where we want to insert a policy check.

Another serious issue posed by Kava derives from its applicability. As a matter
of fact, some classes that we want to monitor can not be rewritten. For instance, this
is the case of the classes using the Java Native Interface. Native methods are used
in Java for accessing to routines and programs developed using other programming
languages, e.g. C/C++. As they do not have a Java implementation, native methods
cannot be rewritten. Many of the JRE libraries make use of native methods for
accessing some functionality of the underlying platform. Needless to say that several
of these methods can be involved in the monitoring process.

3.2 The Jalapa framework

The goal of this section is to present the Jalapa framework [22, 102]. The Jalapa
project aims at enriching the standard Java application development with the sup-
port for specifying, verifying and enforcing local policies.

3.2.1 Framework structure

The Jalapa framework arises from the cooperation of few components. These com-
ponents affect different stages of the life-cycle of a Java application, i.e. development,
deployment and execution. We can distinguish four main parts composing the sys-
tem.

• a bytecode rewriter, called Jisel, that modifies the application intermediate
language by adding the facilities needed for dynamically enforcing local usage
policies to Java programs.

• a static analyser of Java bytecode, that constructs an abstraction, namely a
history expression [28], of the behaviour of a program.

• the LocUsT model checker [29] that reduces the infinite-state system given by
the history expression to a finite one, and checks it against a set of policies.

• an Eclipse plugin that combines the previous items into a developer environ-
ment, with facilities for writing policies, sandboxing code, running the static
analyses and compiling secured applications.

44 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

aload 0
iload 7
invokevirtual
goto 9
if0 4
 ...

Secure
Execution

class foo {
 int x;
 int y;
 public
 int m() {
 ...

aload 0
iload 7

goto 9
if0 4
 ...

checkpolicy

Bytecode Instrumented bytecode

Source code

Usage
Policies

Model (Control Flow Graph) Active Policies

Java Compiler
(javac)

Bytecode Instrumentator
(jisel)

Model Checker
(locust)

Standard
Execution

(java)

Static
Analyser

Figure 3.8: Application development in Jalapa.

Figure 3.8 is a graphic representation of the different steps during the life of an
application in which the Jalapa components operate.

Basically, the application is coded using sandboxes for bounding the scope of local
policies according to the syntax presented is Section 3.1. Moreover, the application
developer specifies the structure of the usage policies referred to by the sandboxes.

The compiler output, i.e. the bytecode, is then used for both the static analysis
and the instrumentation. From the one hand, the static analysis produces a suitable
model of the application behaviour that can be model checked against the set of
usage policies. The result of this process is a list of policies that have not passed
the verification step and need to be actually enforced. On the other hand, the
instrumentation modifies the bytecode by adding the runtime support for enabling
the monitoring of local policies. The final step consists in executing the instrumented
application deactivating the policies that do not appear in the model checker output.

3.2. THE JALAPA FRAMEWORK 45

3.2.2 The Jisel runtime environment

The first step towards implementing the Jisel runtime environment consists in in-
tercepting the security-relevant operations of the program in hand, so to promptly
block them before they violate a policy.

We use bytecode rewriting for inserting security checks before method invocations.
However, differently from [185], we do not include the new code in the body of
guarded methods. In fact, we use wrapping classes for encapsulating these methods
in a secure context.

Bytecode instrumentation. The first step is detecting the set M of all the
methods appearing in the aliases declarations of the policies. We inspect the byte-
code, starting from the methods used in the aliases, and we then compute a sort of
transitive closure, through a visit of the inheritance graph. Indeed, aliases can refer
to abstract and interface methods and we need to find all the existing implementa-
tions.

We create a wrapper for each security-relevant class, i.e. a class declaring one or
more security-relevant method. A wrapper WC for the class C declares exactly the
same methods of C, implements all the interfaces of C and extends the superclass
of C. This means that WC can replace C in any context. Indeed, it admits the same
operations of C. The wrapper class WC has a single field, which will be assigned upon
instantiation of C.

A method m of WC can be either monitored or not. If the corresponding method
m of C does not belong to M, then WC.m simply calls C.m. Otherwise, WC.m calls the
check method that controls whether C.m can be actually executed without violating
the active policies. A further step substitutes (the references to) the newly created
classes for (the references to) the classes in the original program.

The instrumented code is deployed and linked to the Jisel runtime support, which
contains the resources needed by the execution monitor. Note that our instrumenta-
tion produces a stand-alone application, requiring no custom JVM and no external
components other than the Jisel library. The Jisel preprocessor takes as input the
file containing the needed policies, the directory where the class files are located,
and the directory where the instrumented class files will be written.

The check and sandbox methods are provided by the static class PolicyPool.
The PolicyPool class implements the enforcement mechanism in Table 3.3 and con-
trols the whole execution monitoring process.

Runtime monitoring. The resources handled by the PolicyPool are: the defi-
nitions table of the instrumented policies, a stack containing the references to the
active policies and a set of policy automata. Whenever the execution flow enters a
sandbox, the corresponding policy is retrieved from the definitions table and instan-
tiated to the initial configuration automaton. A reference to the policy is pushed on
the stack and its automaton added to the set of existing ones. Symmetrically, when

46 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

a sandbox is left, the policy on the top of the stack is removed and all its automata
deleted. The code implementing the sandbox is:

public static void sandbox(String policy, Runnable code)

throws Throwable

{

Throwable ex = null;

try {

activate(policy);

code.run();

}

catch(Throwable e) {ex = e;}

finally {

deactivate(policy);

if(ex != null) throw ex;

}

}

where the activate and deactivate work as previously explained in Section 3.1.
Policy automata have a configuration representing their state as described in

Section 3.1.1. These configurations contain references to the resources involved
in the monitoring process. In order to avoid interferences with the Java garbage
collector we use weak references [80]. As a matter of fact, standard references would
prevent the garbage collector from disposing unused objects only pointed by the
PolicyPool data structures, so potentially leading to memory exhaustion. An object
only pointed by weak references is considered unreachable, so it may be disposed
by the garbage collector. When the PolicyPool notices that a resource has been
garbage collected, it destroys the policy instances that are no more necessary.

The method check has the same syntax given in Section 3.1.2. The only dif-
ference resides in its usage: since it is a static member of the PolicyPool class it
is invoked with the instruction PolicyPool.check(...). The result of check() is
true if and only if no policy automaton reaches an offending state. If so, the method
invocation is authorized and the wrapper forwards it to the actual class; otherwise,
a SecurityException is thrown.

Executing secured applications. As we said above, an application instrumented
with our method is a standalone program that needs no external components for
monitoring. Working on the application bytecode, rather than on its source code,
the instrumentation routine can also be applied to Java libraries and JAR archives
in general. However, note that, without sandboxes inside the program code, we can
only apply policies with a global scope.

To run the instrumented program, one must supply the set of policies to be
enforced, besides the inputs of the original program. Policies can belong to two

3.2. THE JALAPA FRAMEWORK 47

different categories: global and local. If a policy is declared global its scope is
applied to the whole execution even if no corresponding sandbox invocation exists.
In this case, the PolicyPool instantiates the global policy before starting the program
execution. Instead, the policies of the second type, i.e. local, behave in the standard
way according to the position of the sandboxes. Finally, the policies that are not in
one of the two groups are ignored by the runtime monitor.

We use the JVM system properties for declaring the two lists of policies in the
command line syntax as follows.

java [-Dcheck.global=<pols>] [-Dcheck.local=<pols>] <app> [par1 ... parN]

where <pols> is a list of names and <app> is the application name.

3.2.3 Static analysis and verification

While the run-time enforcement mechanisms of Jisel ensure that policies are never
violated at run-time, they perform checks at each method invocation, imposing some
overhead on the code running inside a sandbox. In order to mitigate this overhead,
we verify programs to detect those policies that are always respected in all the
possible executions of the sandboxed code.

Verification of usage policies. For those policies that may fail, our technique
finds (an over-approximation of) the set of method calls that may lead to violations.
By exploiting this information, the run-time enforcement can be optimized, since
it is now safe to skip some run-time checks. Note that, in the most general case,
the Java source code could be unavailable, yet one might still want to optimize its
execution. To this aim, we perform our verification on the Java bytecode.

Our verification technique consists of two phases, briefly described below.

• first, we extract from the bytecode a control flow graph (CFG), and we trans-
form it into a history expression

• then, we model-check the history expression against the usage policies enforced
by the sandboxes used in the program.

The syntax of history expressions resembles that of the basic process algebra
(BPA) [33]. Basically, an history expression H can be empty (ε), a variable (h),
an action (α(r̄) where r̄ is a finite vector of resources), a non-deterministic choice
(H + H ′), a sequence (H · H ′), a policy framing (ϕ[H]), a recursion (µh.H) or a
resource creation (νr.H). We refer the interested reader to [28].

We now show an example where the verification technique can be exploited to
remove unneeded checks.

Example 3.10 Consider the following code fragment:

48 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

PolicyPool.sandbox("file-confine", new Runnable() {

public void run() {

File f = new File("log", "/tmp");

String s = f.read();

buffer.add(s);

for(int i = 0; i < buffer.size(); i++)

f.write(buffer.get(i));

}

});

Roughly, this block creates a new file object, with path log/tmp, and writes into it
the content of the buffer data structure. In doing that, the procedure also rewrites
the previous file content after the new one. The static analyser extracts the control
flow graph, and transforms it into the following history expression:

Hlog = new(f, "/tmp") · read(f) · µh. (write(f) · h+ ε)

where ·, + and µ are the operators presented above and the events new, read and
write are those defined by the aliases of the policy file-confine (see Section 3.1.1).
Intuitively, Hlog represents all the traces creating a new file f in the "/tmp" directory,
reading its content and then repeatedly writing on it.

We then check Hlog against the "file-confine" policy using the model checker
of Jalapa, and discover that no possible trace violates the policy. Therefore, we
can safely remove the sandbox, and directly execute the code, so improving its
performance.

The static analyser. The control flow graph (CFG) of a program is a static-time
data structure that represents all the possible run-time control flows. In particular,
we are interested in constructing a CFG the paths of which describe the possible
sequences of method calls. This construction is the basis of many interprocedural
analyses, and a large amount of algorithms have been developed, with different
tradeoffs between complexity and precision [96, 141]. The approximation provided
by CFGs is safe, in the sense that each actual execution flow is represented by
a path in the CFG. Yet, some paths may exist which do not correspond to any
actual execution. A typical source of approximation is dynamic dispatching. When
a program invokes a method on an object o, the run-time environment chooses
among the various implementations of that method. The decision is not based on
the declared type of o, but on the actual class o belongs to, which is unpredictable
at static time. To be safe, CFGs over-approximate the set of methods that can be
invoked at each program point. Similarly, CFGs approximate the data flow, e.g.,
by relating object creation (new) to the location of their uses (method invocations).
For each method invocation occurring in the program, say m(x), the CFG defines a
set of all the possible sources of the object denoted by x, i.e. which new could have

3.2. THE JALAPA FRAMEWORK 49

new(f, "/tmp") read(f) write(f)

Figure 3.9: The event graph producing the history expression Hlog.

created x. Again, this is a safe approximation in the sense that this is a superset of
the actual run-time behaviour.

For each policy for which the original program defines a sandbox, the CFG
extracted at the previous step is transformed into an event graph. This operation
involves substituting events for method signatures, according to the aliases defined
in the policy, and suitably collapsing all the other nodes of the graph.

Finally, the event graph is transformed into a history expression. This is done
through a variant of the classical state-elimination algorithm for finite state au-
tomata [46].

Example 3.11 Consider again the procedure shown in Example 3.10. The history
expression Hlog = Hlog = new(f, "/tmp") · read(f) · µh. (write(f) · h + ε) is
obtained from the event graph depicted in Figure 3.9.

One of the main issues in converting CFGs to history expressions is to cor-
rectly track objects. For instance, in Figure 3.9 it is important to detect that f

always denotes the same object, so to express this information in the history ex-
pression without losing precision. When this is not possible, e.g., because f = new

File(...) occurs in many places in the code, we need to use a more approximated
history expression. This is done by exploiting non-deterministic choice (+).

The LocUsT model checker. The final phase of the analysis consists in model-
checking history expressions against usage policies. To do that, history expressions
are transformed first into Basic Process Algebras (BPAs, [33]), so that we can apply
standard model-checking techniques [87].

The LocUsT model-checker has been implemented as a Haskell program running
in polynomial time in the size of the history expression extracted from the event
graph. Full details about this technique and LocUsT can be found in [27, 29].

Briefly, the model-checking algorithm verifies that no trace of the BPA is also a
trace recognized as offending by the policy. To do that, it checks the emptiness of
the pushdown automaton resulting from the conjunction of the BPA and the policy
(which denotes the unwanted traces). The transformation into BPA preserves the

50 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

validity of the approximation, i.e. the traces of the BPA respect the same policies
as those of the history expression.

The final result of this process is a list of security policies that still need to be
dynamically enforced. As seen above, we use this list to set the check.local and
check.global system properties when running an instrumented application. Note
that these lists can also be instrumented together with the monitoring support in
order to apply them to every execution of the program with no need for external
commands.

3.3 On-device monitor inlining

In this section we move to a specific platform context, i.e. mobile devices. Mobile
devices, e.g. smart phones and personal digital assistants, are becoming more popu-
lar day by day. As their computational capability and memory capacity are growing
rapidly, users start to exploit them for many purposes other than just making and
receiving phone calls. Moreover, they also handle many highly critical resources
that need to be protected, e.g. personal data and phone credit.

The Java environment for mobile devices, namely Java ME, has received major
attention and several security studies have been presented about it, e.g. by Kolsi
and Virtanen [108] and Debbabi et al. in [72, 73, 74]. Many possible threats have
been pointed out and, in particular, some architectural vulnerabilities have been
identified.

Natively, the Java ME platform provides some basic security support for Java
ME applications, i.e. MIDlets. However, this mechanism does not provide a real
protection against malicious programs. In practice, the standard Java ME approach
consists of associating each MIDlet to a proper security domain. Different security
domains have different privileges and can access to different sets of system resources.
The security domain for a new installation depends on the signature of the MIDlet.
For instance, if the MIDlet is signed by a trusted certification authority it is placed
in an high level domain. Otherwise, if the MIDled is not signed, it receives no
privileges. Whenever a running MIDlet tries to access a resource that is not in its
security domain, the user is prompted with a request for an explicit permission.

This approach to application security is not satisfactory for several reasons.
Mainly, it charges the users with the responsibility of deciding whether a certain
action is safe or not. Needless to say that the mobile devices users are rarely aware
about the problems of security. Hence, we propose a different technique for securing
Java ME applications through a runtime monitor.

3.3.1 Application monitoring on mobile devices

The proposed monitoring environment works by exploiting two components: a cen-
tral monitoring entity called policy decision point (PDP) and one or more sources

3.3. ON-DEVICE MONITOR INLINING 51

of security events called policy enforcement points (PEPs). The behaviour of the
PDP is quite simple. Roughly, it receives a signal from a PEP, it evaluates the
event against the current security state and it answers allowing or prohibiting the
operation. Instead, the PEPs are responsible for intercepting the system events and
applying the PDP’s response.

In the remainder we detail the parts of our system and we explain their behaviour
and interactions.

Policies and actions. For the specification of security policies we adopt the Con-
Spec language. ConSpec has been specifically designed for resource limited platforms
as part of the Security for Software and Services for Mobile Systems (S3MS) project
[164] [81]. ConSpec is inspired by Erlingsson and Schneider’s PSLang [86] and its for-
mal semantics is given in terms of Schneider’s security automata [168]. A complete
dissertation about ConSpec and its features can be found in [6] and [7].

In this context we do not use local policies as we did in Section 3.1 for standard
Java application. This choice is motivated by the different working assumptions of
the current scenario. Indeed, here we want to prevent an entire, possibly untrusted,
application from misusing the system resources. Hence, we do not assume a MIDlet
to contain any security mechanism such as a policy sandbox. In other words, every
policy that we apply to a running MIDlet must be considered “global” with respect
to the entire application.

Another important issue is that here we focus on a predefined set of operations to
be monitored. In particular we aim at defining security policies over the sequences
of invocations to the Java ME system libraries. As a matter of fact, Java ME
provides a quite rich set of functionalities for handling the resources of a mobile
device and mediating the access to them. Furthermore, the inner structure a MIDlet
is commonly unknown or even obfuscated [59]. Hence, allowing for a customisable
set of monitored actions would produce a system overhead with few or even no
benefits for the expressiveness of the policy formalism.

We now informally describe the structure of a ConSpec policy. A ConSpec policy
consists of a set of rules. Each rule has a scope defining its validity extension. There
are four possible scopes: object, session, multi-session and global. The object scope
indicates that the policy rule refers to a specific instantiation of an object. Session
scope says that the rule applies to the entire session of a MIDlet execution. Policy
rules with a multi-session scope are enforced on multiple execution of the same
MIDlet. Finally, global rules are enforced on all the MIDlets running on the mobile
device. In other words, rules with a global scope are used to handle a shared security
state that is affected by all the MIDlets and their interactions. The security state
of a policy is defined by means of a set of variables.

Each rule defines the authorization conditions that must be satisfied before al-
lowing a MIDlet to execute a certain security-relevant action and the instructions
for updating the security state. A condition is a boolean guard, expressed accord-

52 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

1 SCOPE session

2 SECURITY STATE

3 int smsNo = 0;

4 BEFORE javax.microedition.io.Connector.open(String url)

5 PERFORM

6 (url.startsWith("sms") && url.getNumber().startsWith("+39")) -> skip

7 BEFORE javax.wireless.messaging.MessageConnection.send(Message msg)

8 PERFORM

9 (smsNo < N) -> smsNo++;

Table 3.4: An example of ConSpec security policy.

ing to the Java syntax. Similarly, the state updating is defined through the Java
commands and a special keyword skip for no actions.

Table 3.4 shows an example of ConSpec policy. The scope of the policy is session
(line 1), hence the policy is enforced on each MIDlet instance and its state (lines
2 and 3) reinitialises at every new execution. The first clause of the policy (lines
4-6), authorizes the MIDlets to open a connection using the protocol “sms” only
if the phone number starts with “+39”. The second clause of the policy (lines
7-9) concerns the method javax.wireless.messaging.MessageConnection.send,
used for sending short text messages, and states that before the execution of the
method, the value of the variable smsNo must be less than the constant N. If this
condition is satisfied, the execution of the method is allowed, and the value of smsNo
is incremented. Since ConSpec uses a default: deny approach, the actions that do
not fit in these rules are prohibited. Hence, this policy allows each MIDlet to send
no more than N messages to numbers with prefix “+39”.

Moreover, the enforcement of a policy could also require that some system infor-
mation is retrieved from the device. For this purpose, ConSpec is integrated with
a rich class of specific operations for retrieving system information. They include:
the types of available network interfaces (e.g. WiFi and Bluetooth), the battery
level, the system time and many others. The policy rules can use this information
in defining guards that, for instance, prevent some specific applications from being
executed when the battery level is below a certain threshold.

Monitor structure. From an architectural point of view, the runtime monitor
framework has been integrated with the Java ME architecture following the reference
monitor model of [168]. It exploits the PEP component to intercept the invocations
to security-relevant methods before they are actually executed, asks the PDP for the
permission to proceed and enforces the PDP response. The PEPs are responsible

3.3. ON-DEVICE MONITOR INLINING 53

for monitoring the MIDlet during its execution. In particular, it intercepts all the
security-relevant actions that the MIDlet tries to perform on the underlying mobile
phone. Clearly, in order to be effective, the PEPs must catch every instance of the
actions they are responsible for.

Instead, the PDP reads the security policy and handles the decision process.
In practice, it is responsible for evaluating whether a given action is permitted in
the current state by the policy. When stimulated by an invocation from a PEP, it
exploits the policy information service component to manage the policy state. If the
policy evaluation requires pieces of information from the device, they are retrieved
through the system information service.

It is important to note that this architecture for events monitoring is general with
respect to all the possible PEP implementations. Indeed, the PDP receives external
signals through a connection channel in a way that is independent from the signal
source. This technique makes the approach general and reusable in many different
contexts and also in presence of heterogeneous PEPs, i.e. PEPs implemented and
deployed in different ways. As an example consider the two monitoring architectures
shown in Figure 3.10 and 3.11. Figure 3.10 depicts the monitoring architecture where
PEPs have been added to the functionality of a customised Java virtual machine
[132, 79]. It is straightforward that the PDP structure, on the right hand side,
keeps unchanged with respect to the system deploying the PEPs through in-lining
of Figure 3.11.

3.3.2 Bytecode in-lining

Hereafter we discuss our bytecode in-lining procedure for Java MIDlets. The in-
lining process is an instrumentation step performed on the MIDlets bytecode before
being executed by the Java ME virtual machine, called KVM. There are several
differences with the instrumentation technique that we presented in Section 3.1.
Mainly, the in-lining result is not a standalone application. Indeed, it can be exe-
cuted only in presence of a working PDP. Moreover, we must consider the platform
constraints and the reduced capabilities of Java ME. For instance, here we do not
need to cope with dynamic class loading. However, as efficiency is crucial on devices
having limited resources, we aim at implementing a fast and lightweight monitoring
environment.

Instrumentation time. Basically, the in-lining process is performed by an in-
liner. The in-liner is responsible for instrumenting the MIDlet bytecode before it
can be executed. A possible approach would consist in applying the instrumentation
before the first execution. However, as we will see later in this section, the instru-
mentation process requires a certain amount of time that is clearly noticed by the
users. Even though this step needs to be performed only once, the first execution of
a MIDlet would be substantially delayed. This would produce an annoying effect to

54 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

PEP

PEP

MIDP

CLDC

Ja
va

 M
E

KVM

PDP

MIDlet

allow/deny

allow/deny

method(args)

method(args)

Mobile Device OS

SIS

PIS

Figure 3.10: Runtime monitoring architecture using a customised JVM.

the user and could cause problem to MIDlets that are time dependent (for instance,
imagine the first execution of an alarm clock MIDlet).

Instead, our solution consists in inserting the in-liner execution, called instru-
mentation time, between the retrieval of a MIDlet and its installation. As a matter
of fact, these two steps are almost always executed in sequence. Usually, MIDlets are
retrieved from some provider, e.g. downloaded from an application store or received
from another device through a bluetooth connection. MIDlets are packaged in Java
archives, i.e. JAR files, containing their class files and resources, e.g. pictures and
sound. The installation process takes a JAR file, verifies its signature and deploys
it according to the platform specifications, e.g. it could simply copy the JAR into
the KVM working directory.

Before the installation of a JAR file, our in-liner instruments it with the security
code and creates a new installable package. Then, the new package is installed in
place of the original one. Pragmatically, we aim at preserving the system usability
by including this step in the installation process. Indeed, the users is typically aware
about the fact that program installation is time consuming. Hence, the instrumen-
tation is included among the standard operations and exposed to the user as shown
in Figure 3.12.

3.3. ON-DEVICE MONITOR INLINING 55

PEP

PEP
PDP

Mobile Device OS

MIDlet

Java ME

method(args)

allow/denyWrapped
APIs

In
lin

in
g

PIS

SIS

Figure 3.11: Runtime monitoring architecture using the in-lining approach.

Instrumentation procedure. The in-liner starts by loading the list of the security-
relevant API calls, i.e. the list of Java ME methods to be monitored. This list can be
optimised by synchronizing the in-liner with the settings of the PDP. Otherwise, we
can also decide to monitor all the API invocations. In our system, we convention-
ally decide to have a predefined subset of methods that can be monitored, i.e. the
policy alphabet. For instance, we can include in the alphabet several classes of the
javax.microedition.io package, responsible for many networking functionalities,
and none of the javax.microedition.lcdui, handling graphics components. In
this way, we assume networking activities to be potentially involved in the security
evaluation, while we do not care about the access to graphics facilities. For each
class involved in this process we have a corresponding wrapper. In this way, wrap-
pers redefine part of the Java ME APIs, from which we call them wrapped APIs.
Note that, differently from the wrappers of Section 3.2, these classes are statically
defined. Hence, the in-liner has a pre-compiled package containing the wrapped
APIs instead of automatically producing them at instrumentation time.

A further advantage deriving from the static wrappers is that we can use the
original classes exceptions for making our enforcement more transparent. As a mat-
ter of fact, almost every security-relevant method can throw some exception. These

56 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

Figure 3.12: The instrumentation step of a MIDlet.

exceptions are declared in the method signatures and programs should handle them.
In this way, we created wrappers that, in case of a security violation, do not raise
a SecurityException that in many cases would lead to a system failure killing
the application. Indeed, when a violation occurs, our wrappers throw an exception
having a type that is compatible with the original API invocation. For instance,
the wrapper for the method Connector.open(...) throws a IOException. Con-
sequently, if a MIDlet implements a correct exception handling procedure it can
continue its execution even after such an exception. Needless to say, this possibility
can contribute for the overall system usability.

The second phase of the in-liner is inspecting the MIDlet bytecode sequence
looking for corresponding invocation operational code. These positions are replaced
by the invocations to the wrapper code implementing the PEP operations. Since the
wrapped APIs have the same signature as the original methods, a simple rewriting of
the invoked method name is sufficient. The PEP mainly performs three operations:
(i) it converts the current method call and its parameters into a PDP message, (ii) it
sends the message to the PDP using an internal, inter-process connection and (iii) it
receives and enforces the answer of the PDP. The first two steps are straightforward.
Indeed, at runtime the n parameters of a method invocation, including the object
this for non-static calls, are stored in the top n positions of the operand stack.
Hence, the wrapper receives the n parameters, prepares the message and sends it.
If the PDP answers with an “allow” message, then the wrapper calls the original
method, otherwise it raises an exception according to what we said above. Before
leaving its scope, and returning to the code of the application, the PEP performs a
second check on the return value of the API invocation.

Figure 3.13 shows the result of instrumenting a piece of bytecode. Imagine that
the k-th instruction is a monitored method invocation. The in-liner replaces it with
the invocation to a proper wrapper that executes the PEP code before and after the

3.3. ON-DEVICE MONITOR INLINING 57

Figure 3.13: The in-lining of a single API call in a bytecode sequence

original invocation.

Remarks and open issues. Part of the PEP execution exchanges messages with
the PDP through a local network interface. This operation represents a possible
threat for the whole monitoring system. Indeed, it creates the conditions for a man
in the middle attack [176]. An attacker could try to delete or inject some message
from/to the PDP. Then, the communication between a PEP and the PDP should
be secured, e.g. via encryption. These techniques should be considered in order to
find a reasonable compromise with the performances of the system.

The current PEP strategy allows the in-lined application for running only if a
PDP is working properly. Indeed, whenever the PDP does not answer to a request,
the PEP reacts as if a “deny” command was received. In particular, when a MIDlet
starts its actual execution a signal is sent to the PDP. This is obtained since we
always instrument the StartApp method, that is the entry point of a MIDlet exe-
cution, both when it is explicitly required by the current policy or not. If the PDP
does not reply, i.e. it is not running or has been corrupted, the PEP handles the lack
of information as a negative response and aborts the current execution. Moreover,
we also wrap the methods implementing the state change of a MIDlet, i.e. Paused,
Active and Destroyed. These events are necessary for managing the policies scope
and for a variety of policies of interest, e.g. applications black or white list.

Other important issues arise from the Java ME framework. Indeed, we observe
that the modifications to the structure of a MIDlet invalidate its signature, if any.
Clearly this means that, on the current devices, an in-lined MIDlet loses all the
access privileges provided to its original, unmodified version. However, since our
framework is intended to be an alternative to the certificate-based one, this is not a
drawback of our approach. Furthermore, our system seems particularly appropriate
for the current mobile software scenario. Indeed many MIDlets are produced by

58 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

companies and developers that for various reasons, e.g. high costs, do not apply a
proper signature to their applications. Using our security model, users can install
and execute unsigned, well-behaving MIDlets with no limitations on their usability.

Taking into account the consequences of rewriting (part of) MIDlets is another
crucial issue. Indeed, as Java is not provided with a formal semantics, actually
we can not prove formally that the segments of code added for each PEP do not
introduce any unpredicted behaviour. However, since every PEP is composed by
few, atomic instructions not interacting with the other parts of the MIDlet, we are
confident that in-lined MIDlets preserve their integrity (remember that an in-lined
wrapper takes the same arguments, returns the same value and, possibly, throws
the same exceptions as the corresponding original method).

3.3.3 System implementation

In this section we detail our prototype implementation and we give several experi-
mental results. The performances evaluation has been obtained by comparing our
system with a similar one using a customised KVM [132] instead of bytecode instru-
mentation.

Platform and tools. The implementation of the prototype of the in-lining ap-
proach has been carried out using different mobile devices. In particular the whole
architecture has been installed and tested on the Nokia phones E61 and N78. Nokia
E61 works with Symbian v9.1 S60 3rd edition operating system while Nokia N78
runs Symbian v9.3 FP2. Both of them support the Java 2 Micro Edition Mobile In-
formation Device Profile (MIDP) v2.0 (JSR 118) [105]. As previously explained, the
adoption of the in-lining approach does not require the modification of any compo-
nents on the mobile phone, such as the operating system or the Java ME platform,
but it is sufficient to install additional software: the in-liner and the PDP .

The in-liner component of the prototype has been entirely implemented in Java
ME. Considering the reduced computational capabilities and the restrictions on
memory usage posed by most of the current mobile devices, the in-lining process
seems to be on the edge of what is actually feasible on these platforms. Indeed, it
handles compressed Java archives, reads and modifies class files, changes the inner
structure of the target MIDlet (and the corresponding JAD description file) and,
finally, builds a new executable MIDlet.

The files compression issue needs a further comment. As a matter of fact, the
compression/decompression algorithms require such a computational effort that the
KVM prefers to delegate them to external, system code. The Java Standard and Java
Enterprise obtain this by exploiting the Java Native Interface (JNI). Unfortunately,
this approach is infeasible for Java ME, that is provided with no such APIs, and
it has been necessary to create a light-weight, fully Java-implemented compression
library. Another complication arises from class files. Actually, class files can exceed
the maximum memory size available for the running Java ME applications. This

3.3. ON-DEVICE MONITOR INLINING 59

problem is solvable by implementing a partial-representation mechanism that can
work on classes without having their complete structure in memory.

The last step of the in-lining process is the MIDlet re-assemblage. In doing this,
we add the wrapping classes to the original code of the application. Since the APIs
to be wrapped are a well-known, finite set, we preferred to create the corresponding
classes in advance. This solution requires a few KiloBytes of memory space but
relieves the in-liner from the burden creating these classes at runtime. Again we
have to use our compression library to create a valid JAR file and, in addition, we
modify the Java description file (JAD) changing some entries, e.g. the archive size
and the application entry point. The result of the procedure is a new JAR archive
including the instrumented MIDlet, ready to be installed on the mobile device.

The policy decision point has been implemented in C++ for Symbian v9.1 and
runs also on later Symbian OS versions. The C++ implementation has been chosen
mainly for efficiency reasons. As a matter of fact, since the PDP code is executed
twice for each security relevant method invoked by the MIDlet, a inefficient imple-
mentation could introduce a considerable overhead in the MIDlet execution time.
The PDP is a daemon, it is started at device initialization time and it is always active
on the mobile device. Once activated, the PDP daemon reads the security policy,
builds the policy internal representation that is used to test the actions against the
security policy, and suspends itself waiting for an invocation from a PEP.

The communication between the PDP daemon and the PEPs embedded in the
MIDlets has been implemented through a local socket. The security policy itself
prevents MIDlets from communicating directly with the PDP to interfere with the
policy evaluation process. This is possible because any connection that an in-lined
MIDlet tries to perform should be first authorized by the PDP. Moreover, if the
PDP is unavailable, the PEP automatically denies any action that the MIDlet tries
to execute. An advantage of this choice is that all the MIDlets that are executed on
the mobile device share the same PDP. This allows to naturally implement global
security policies, i.e. policies that take into account the actions performed by all the
MIDlets running on the device. As an example, imagine a security policy stating
that no more than N sms messages can be sent every day. In this case, the PDP
should take into account the sms messages that have been sent by all the MIDlets.
Similarly for a policy that states that a MIDlet A can be executed only if another
MIDlet B has not been executed yet.

Performances. Monitoring the running MIDlets introduces an execution over-
head mainly due to the evaluation of the security policy for each action performed.
The impact of the policy evaluation on the execution time depends on several fac-
tors, such as the complexity of the security policy and the actions executed by the
MIDlet. As a matter of fact, the security policy evaluation time depends on the
number of rules concerning the current action and on the complexity of the pred-
icates to be evaluated for these rules. Moreover, the impact of the monitoring on

60 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

the MIDlet execution time increases with the rate of security relevant actions it
performs.

To obtain a realistic evaluation of the overhead, we carried out our test using
a real case MIDlet, the Proteus PicoBrowser [159], an open-source Java ME In-
ternet browser. We slightly modified the original version of Proteus by adding a
timer to measure the execution time. When the browser is asked for loading a new
HTML page, the timer starts. Then Proteus retrieves the required file, interprets
its content and shows it on the screen. At this point, the timer stops returning
the elapsed time. The security-relevant method that we decided to monitor is the
javax.microedition.io.Connector.open, i.e., the API responsible for creating
new connections. In our experiments, we enforced distinct policies each containing
a different number of rules. All these rules concern the open method, and hence they
are all evaluated each time that the PDP is invoked. Thus, from the overhead point
of view, this is the worst case. In fact, the computations required for analysing the
policy when a security-relevant action is executed strictly depends on the number
of rules referring to that particular action.

We executed the test MIDlet on both the prototypes, i.e. running its in-lined
version on a standard KVM and the original version on the customised virtual ma-
chine. We repeated the same tasks, under the same conditions, for both the original
and the monitored prototype. To avoid the influence of network-dependent delays,
we accessed a local page, i.e. a page stored on the mobile device itself. In order to
minimize the irrelevant computation we used light html document containing only
a short text. In this sense, the results of our test must be interpreted as the maxi-
mum cost due to the monitoring process during a page loading. Indeed, loading a
bigger file from the network would lengthen the total execution time reducing the
percentage of impact of the monitoring operations. We repeated our measurement
several times and we computed the average values.

Figure 3.14 shows the results of the test we performed. The top chart refers to the
in-lining approach. We installed the required components, i.e. the in-liner and the
PDP, on a Nokia N78 mobile phone and we executed the test MIDlet under different
conditions. The first value of the chart, represented by the white bar, refers to the
execution of the original MIDlet. The second is the time for the in-lined MIDlet
guarded with a single-rule policy and the third is monitored using a policy with 5
rules. The number of rules has been considered in our experiments since the PDP
needs to verify more conditions before deciding whether an operation is granted or
not. This, in principle, could lead to a longer computation and, consequently, to
more noticeable delays. We opted for these two policy sizes because we observed
that many policies of interest can be written in less than 5 rules. For instance, the
policy of Table 3.4 is the composition of two, single rule policies defined over two
different methods.

We observe that in the case of a policy with 1 rule the overhead is about the 12%
of the whole execution time. This delay is due to the presence of an extra process
in the system, i.e. the PDP, and to its interactions with the monitored application.

3.3. ON-DEVICE MONITOR INLINING 61

 0

 100

 200

 300

ex
ec

ut
io

n
tim

e(
m

s)

Internet browser MIDlet

Original MIDlet
In-lined MIDlet (1 rule)

In-lined MIDlet (5 rules)

 500

 1000

 1500

 2000

ex
ec

ut
io

n
tim

e(
m

s)

Internet browser MIDlet

original phoneME
monitored phoneME (1 rule)

monitored phoneME (5 rules)

Figure 3.14: Monitoring overhead performances comparison.

When increasing to 5 the number of rules, we obtain a further 1% performances
overhead. These results outline that our monitoring mechanism allows for applying
very expressive policies with moderate consequences on the execution time.

The bottom chart of Figure 3.14 reports the results concerning the experiment
that uses a customised KVM. The security enhanced KVM has been installed on an
HTC Universal smartphone QTEK 9000 running Linix Openmoko OS [143]. Since
this device has a different hardware profile with respect to the N78, we can not
make a direct comparison among execution times. However, we can compare and
analyse the percentage of execution time due to the monitoring system. Also in this
case, the first result, i.e. the white bar, refers to the execution of the MIDlet on the
original KVM, the second bar refers to the execution of the MIDlet on the modified
KVM and a policy with one rule and the third bar refers to the execution of the
MIDlet using a policy with 5 rules. We can observe that the overhead in the case of
a policy with 1 rule is about 3%, while in the case of a policy with 5 rules is about
8%.

62 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

From these observations we deduce that, as expected, a customised KVM per-
forms better than the instrumented MIDlet. This difference derives from the two
different implementation of the PEPs: C++ for the customised KVM and Java for
the in-lined MIDlet. Clearly, Java implemented operations are compiled into byte-
code instructions and then interpreted by the KVM while the C++ routines are
compiled into assembly code running directly on the device. However, the difference
seems to be negligible with respect to the advantages deriving from using MIDlet
in-lining. Firstly, we must consider that replacing the standard KVM is a very diffi-
cult, and often impossible, operation on mobile devices. Indeed, it is a quite complex
task for user having no particular technical skills. Furthermore, many manufacturer
simply do not allow to modify the KVM of their devices. Instead, being a normal
application, the in-liner can be installed on every device with no restriction. Another
advantage of using the in-lining method is its higher versatility. In fact, the in-liner
can be tuned on the user’s necessity by changing the list of API calls to instrument.
In this way, different MIDlets can be instrumented only for some operations, while
a customised KVM always intercepts all the monitored invocations. Moreover, the
instrumentation process can be applied more than one in order to add new opera-
tions to monitor, while changing the monitored APIs list of the security enhanced
KVM requires a new installation of the virtual machine.

Power saving. Besides the performance overhead, running the PDP generates
an increment of battery power consumption as well. We started by comparing
the battery consumption of a mobile device running the original web browser to a
mobile device running the web browser and, additionally, the PDP as a background
process. We expected to see the impact that an additional process has on the battery
consumption. Then we also compared the battery consumption loading a local web
page on an unmodified system to the battery consumption loading the same local
web page on a modified system, i.e. running the in-lined web browser and the PDP.
With these set of test we expected to get figures on the power consumption with an
active PDP.

To measure the battery power consumption we run the Nokia Energy Profiler2.
The Energy Profiler monitors various parameters of a mobile device and, in partic-
ular, its power consumption. The energy consumption has been measured on the
device running the web browser but not performing any security-relevant operation.

The measured data for both scenarios, i.e., without and with PDP, are shown
in Figure 3.15. The X axis scale reports the time units. On the Y axis the power
consumption in watt (W) is given. Comparing the two graphs we do not notice
relevant differences in power consumption (peaks are due to the periodic awakening
of system daemons).

In the second test we force to web browser to load a local html document and
we observe the power consumption due to the monitoring process applied to this

2http : //www.forum.nokia.com/

3.4. A CENTRALISED MONITORING ARCHITECTURE FOR MOBILE DEVICES 63

Figure 3.15: Battery power consumption without and with a running PDP.

Figure 3.16: Power consumption for loading a local html page.

action. The results are shown in Figure 3.16. Again, even though a small peak is
produced by the PDP activation (time 27 – 31), the power consumption profiles
are very similar. Hence, we can assert that the monitoring cost in terms of power
consumption is totally sustainable by a mobile devices.

3.4 A centralised monitoring architecture for mo-

bile devices

In this section we present a monitoring architecture generalising the model of Sec-
tion 3.3. We aim at dealing with more realistic assumptions. In particular, we
focus on the security of a platform as a whole, rather than on a single aspect or
component.

3.4.1 Platform monitoring

In the previous sections of this chapter we focussed on the problem of guaranteeing
security properties over the execution of programs. As a matter of fact, almost every
security model roughly distinguishes among actors and resources (e.g., programs or

64 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

users, and connections or files), and the system, i.e. the platform. Here we re-discuss
these assumptions in order to move to a more general characterisation of a system
in terms of security-relevant behaviours.

Motivations. In Section 3.3 we introduced runtime monitoring as a technique,
used by a system, for verifying that the behaviour of a program, e.g. a Java MIDlet,
complies with a security specification. Nevertheless, evaluating the actual security
state of a complex device goes beyond the mere control of MIDlets behaviour. As a
matter of fact, mobile devices holds many different resources that can be accessed
and used in several ways. For instance, mobile phones often execute native binary
code as well as dynamically interpreted code, e.g. Ruby [163] and Python [160].
Security flaws can involve two or more of these components and they all should
be considered. Although we can assume that every intermediate language can be
instrumented, different execution environment use different abstractions for the ac-
cess to the actual system resources. Also the level of detail for actions visibility
can drastically change. Indeed, observing low level operations, e.g., UDP packages
writing and sending, is relatively easier for interpreted instructions then for machine
executable code. In general, we have to restrict to the largest set of actually visible
events.

A further source of complexity derives from the difficulty of distinguishing be-
tween resources and actions. Indeed, several components of a mobile device play
a double role. For instance, a GPS receiver is both a resource that needs to be
guarded, e.g., for restricting the access to programs, and a source of events, e.g. co-
ordinates changing in time. Moreover, resources and actions are very heterogeneous
categories. Some actions could be prevented, e.g., an instrumented Java MIDlet try-
ing to open a connection, while others are unstoppable, e.g., GSM signal blackout.
We also need to consider the actions sources, e.g. programs and users. When the
set of actions of two different actors partially overlap, the monitoring environment
must be able to react in the more appropriate way.

In Section 3.4.3 we apply these considerations to a realistic case study for mobile
devices, i.e., a system for parental control.

Apparatuses. One of the main issues when designing a centralised monitoring
architecture consists in finding a unique behavioural model suitable for describing all
the aspects of the target system. Indeed, finding ad hoc solutions for each security-
relevant component would increase the overall complexity. This can make it very
difficult to reason about the security of the system in terms of the composition of
the behaviours of very diverse objects.

The level of abstraction that we use in our system is based on the key con-
cept of apparatus. Basically, an apparatus is a mixed set of software and hardware
components mediating the access to some security-relevant entity. More in detail,
we identify an apparatus with a homogeneous class of either physical or logical re-

3.4. A CENTRALISED MONITORING ARCHITECTURE FOR MOBILE DEVICES 65

sources, e.g. text messages and GPS receiver, and the interfaces for accessing them,
e.g. system APIs. As they are informally defined, an example can better characterise
the structure of an apparatus.

Example 3.12 Consider the phone call interface of a generic mobile device. Ba-
sically, it can be triggered by several, different actors: a user pressing the “call”
button, a program modifying the network settings or a remote agent calling the
mobile phone. As it mediates the access to an abstract resource, i.e. the phone
network, we can model this part of the device as a system apparatus.

Note that the logical organization of the facilities of a platform in apparatuses
is arbitrary. For instance, consider again the phone call apparatus of Example 3.12.
Following a similar reasoning we could make a distinction, so defining two different
apparatuses, between incoming and outgoing calls. When defining an apparatus
we only aim at having a reasonable compromise between a low and an high level
view. In fact, the former is usually closer to the actual operations performed by the
device but can be far from offering an intelligible representation of the security state.
Instead, the latter can be much more descriptive but could neglect some relevant
behaviours.

Interestingly enough, we do not even require apparatuses to have a pairwise
disjoint scope, i.e. not influencing each other or referring to shared resources. For
instance, it seems reasonable to use two different apparatuses for J2ME APIs (see
Section 3.3) and the messages interface, e.g. text and multimedia messages. Never-
theless, J2ME also includes libraries for the access to the messaging facilities.

For our purposes, an apparatus must only satisfy three requirements. It must
be:

1. unique, i.e. there can be at most one instance in the system;

2. non by-passable, i.e. it is the only (direct or indirect) access point to a set of
(possibly abstract) resources;

3. observable, i.e. all the operations involving the apparatus can be seen by a
proper observer.

3.4.2 Extensible monitoring architecture

The enforcement system uses a centralised security service. This core service is
responsible for evaluating the overall security state and decides how to intervene.
Moreover, the basic functionalities can be extended with supplementary modules.
Hence, we opted for a plugin-based architecture of the core components. Below we
present the architecture of our monitoring system. In particular, we describe the
modules composing the monitoring environment and their interaction.

66 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

Core service. Following a event-driven model, we implemented the security man-
ager as a centralised, system service, namely the core service. Roughly, the core
service is responsible for two main activities: (i) managing the security policy and
(ii) maintaining the communications with the apparatuses.

The first point is obtained by including a PDP (see Section 3.3) in the service.
During system boot, the core service loads the security policy from a secure location
and initialises the security state, i.e. loads the values stored during the previous
session. This information is used to start the PDP that recovers the state saved at
the moment of the last shut down of the device.

Communications are a crucial for the correct behaviour of the system. Basically,
the security state of the PDP relies on the continuous arrival of information from the
apparatuses. Indeed, a malicious agent can try to alter the security state by mod-
ifying, deleting or injecting packets. For this reason we included a communication
interface that is responsible for authenticating the communications. This process is
obtained by signing the communications and checking their sequence.

The core service automatically starts when the device is turned on and cannot
be deactivated neither manually nor by other programs. Actually, the service works
as a background process, but is always visible. This means that the user can check
its presence in the of the active programs, i.e., using the system task manager, and
can put it in foreground, e.g., for reading the current security state. In this way we
guarantee that this software cannot be misused for inappropriate purposes. Indeed,
an invisible program could be adapted for illegal usages, e.g., remote spying and
activity control.

Security modules. A security module is a software package that extends the
basic functionality of the control system. Each module must be included in the
already working system. The inclusion process is responsible for:

• Actions/reactions registration. The definitions of the actions and reactions
that the module introduces in the system are appended to the existing alpha-
bet.

• PEPs deployment. The module places the PEP that will generate the security
actions and interpret the received reactions.

• Attributes declaration. The attribute manager is extended with the code for
querying the values of the attributes that are relevant for the new security
module.

• Default rules insertion. The current security policy is extended with the de-
fault rules for handling the security actions.

After the installation of a module, the security policies can include rules referring
to the freshly registered actions and reactions. Actions and reactions are written

3.4. A CENTRALISED MONITORING ARCHITECTURE FOR MOBILE DEVICES 67

Policy

MIDlet

M

M

M1

2

3

Device OS

PDP

Interface

AM

PEP

PEP

PEP

J2ME

recv(msg, from)/send(msg, to)

position(latitude, longitude)

allow

allow/deny/delete(attachment)

allow/deny

action(arg1,...,argN)

MSG

GPS

S

W E

N

Figure 3.17: A schematic representation of the system managing three modules.

inside private XML files. Roughly, they contain a list of declarations of actions
(reactions). Each declaration consists of a symbolic name, a module identifier, an
action identifier, a list of typed parameters.

The PEPs are deployed and activated. Each PEP installed by a module must fire
actions and handle reactions of the same type of those declared by the corresponding
module. We also assume that every PEP can accept two special actions, namely
allow and deny. The messages, i.e. actions and reactions, with the core service
pass through a communication interface. In general, each module can deploy a
number of PEPs that depends on the features of the monitored apparatus. For
instance, monitoring the GPS data can be done through a single manager invoking
the proper system APIs. Instead, a large number of PEPs could be required for the
control of the Java MIDlets (see Section 3.3).

The attributes are registered by loading in the core service a new object imple-
menting a two-methods interface. Basically, each attribute must simply implement
a pair of functions get and set. Often, only one of the two functions is actually
implemented. For instance, we can imagine an attribute mediating the access to
the charge level of the device battery. Clearly, the system can read the value but
it cannot be modified. The dynamic access to attributed is delegated to a specific
system component, namely the Attribute Manager (AM).

As our enforcement mechanism follows a default-deny approach, a new module
must also insert appropriate rules in the system policy. Indeed, if the security policy
contains no rules for a certain action, the PDP answers with the deny reaction that

68 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

is accepted by every PEP. In many cases, this is not the desired default behaviour.
Even though it is not always the case, sometimes we can decide to include in the
policy a default-allow clause for each new action.

The structure of our enforcement environment is depicted in Figure 3.17. Basi-
cally, we represented an environment with three monitored apparatuses: the mes-
saging interface (red), the GPS receiver (cyan) and the J2ME platform (green).
The modules M1, M2 and M3 extend the core service. The components of the same
colour, i.e. PEPs, policy rules and attributes, are created and activated when the
corresponding module is deployed. Finally, we used arrows to represent the com-
munications between the PEPs and the interface. Each arrow is labelled with the
actions (above) and reactions (below) that the PEP can send and receive.

Security policies. Here we need to model a global security policy, possibly con-
taining many rules. These rules must handle the security state according to the
behaviours of heterogeneous entities. ConSpec can offer some advantages. Indeed,
a ConSpec policy is a list of security statements. Also, it stores the security state
using global variables. In general, reasoning in terms of variables and their values
can be easier than using the automata states.

We extended the ConSpec language with a number of features for dealing with
the complex operations that we need in a real implementation. The resulting syntax
is very rich and articulated. Hence, here we limit the presentation to the most
important aspects that we introduced.

A main difference is the structure of the security rules. In our language, a rule
is a tuple 〈Action, Guard, ComList, Reaction〉 where

• Action is an action belonging to the accepted alphabet. Each parameter in
the action declaration can be renamed in order to use it for the evaluation of
the rule;

• Guard is a boolean expression. It is obtained combining the classical logical
connectives, relations over parameters, variables and constants;

• ComList is a sequence of commands. For instance, a command can be the
assignment of an expression to a variable;

• Reaction is the constructor of a reaction. The reaction is invoked through
its unique identifier and its parameters are replaced by actual values obtained
during the evaluation of the rule.

Here, a policy is a list of abstract transitions from a security state to another.
When the policy is evaluated, all the rules concerning the received action are con-
sidered. Among them, we activate those having a guard which is satisfied according
to the current state and action parameters. For all the active rules, we execute
the corresponding commands. Finally, we synthesize and send back the reaction.

3.4. A CENTRALISED MONITORING ARCHITECTURE FOR MOBILE DEVICES 69

Note that, even though many rules can be active after a single action, we can only
generate one reaction. Hence, the system follows a priority relation for deciding the
“elected” reaction (e.g., deny always wins and allow always loses).

The policy is total with respect to the actions in the sense that it always gener-
ates a reaction. If no rules fit with a received action, the system produces a deny
reaction. This behaviour complies with the default: deny approach. Nevertheless,
in many practical cases it turned out that a default: allow mechanism would better
implement some security requirements. For this reason, we also included special
allow-all rules that always accept a certain action.

The security policies are stored through signed XML files. These files are crucial
for the correct behaviour of the enforcement environment. During the system boot-
strap, the policy is verified for integrity and loaded. Moreover, the policy is stored
in a protected area of the file system and preserved in multiple copies.

3.4.3 Parental control: a case study

We designed our system in order to have a versatile model that can be easily tuned
in for coping with different scenarios. Nevertheless, the system can be tailored to
address a specific security domain. Here we show the application of the methods
presented so far to the problems of children safety and parental control. The re-
sults of this work have been used for the creation of a real protection tool called
iCareMobile [99].

Minors protection. The problem of protecting the young users from the possi-
ble threats deriving from the usage of mobile phones has a relatively long tradition.
Since they very first appearance on the market, mobile devices raised issues that
attracted the attention of the citizens and institutions. For instance, many dis-
cussions are related to the problem of deciding which is the right age for the first
mobile phone [4]. In the last years, many public and private associations carried
out a control activity on the usage of mobile phones. Some of the most interesting
results derived from the study of quantitative as well as qualitative aspects.

The Pew Research Center [156] has been monitoring many trends related to
the citizens access to the digital technology for the last years. In particular, the
Pew Internet [155] project was entirely dedicated to this mission. Many periodical
reports provided a very descriptive view of several tendencies that emerge from
the observation of the American society. In many cases, the consequences of these
statistics can be reasonably extended to almost every western country.

From a quantitative point of view, the presence of mobile devices among the
minors has been continuously growing. For instance in the US, the percentage of
the adults having at least one mobile phone is converging to a stable point, i.e., about
the 90%, while the number of young users is still increasing [120]. Also the type of
produced traffic and the types of communications are very different. For instance,
it turned out that minors mainly use text messaging for their communications.

70 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

On the other hand, the usage made by teens is also qualitatively different. In
particular, new behaviours have been identified. Among them, sexting [121] is get-
ting more and more common. Sexting is the activity of users exchanging sexual
contents via text messaging, also called “sexts”. The statistics outlined that the 4%
of the young users sent and the 15% received sexts.

Another interesting information derives from the behaviour of the minors’ par-
ents. As a matter of fact, the average age for the first mobile phone is continuously
decreasing [122]. This means that, beyond the actual risks, the parents still con-
sider the mobile phones to be appropriate for their children. Nevertheless, it is also
important to remark that when asking teens the reasons why they stopped using
a mobile phone, one of the most common answers is “parents took it away” [122].
This remarks the fact that many parents care about the access of their children to
this technology.

Contents filtering. The main issue for an actual implementation of a parental
control system is to cover the gap between the real, high-level necessities and the
internal, low-level model of security. We addressed this point by exploiting the
extensional architecture of our system.

In [9] we presented a solution to the problem of detecting the contents that
characterise sexts. Basically, we integrated a pattern recognition process, namely
image classification, in the structure of the module responsible for managing the
messaging activities. The process can be applied to the attachments of the incoming
and outgoing messages.

In order to perform the automatic classification of images for finding sexual con-
tents we developed a classifier that basically distinguishes between images belonging
to a class (images with sexual content in this case) and images that do not belong
to the class. We used the Support Vector Machine (SVM) [69] technology applied to
images described using the MPEG-7 visual descriptors. We decided to use the SVM
technology due to its potential flexibility in being adapted to specific applications.
Indeed, a number of possible kernels can be used to characterize the space of fea-
tures and the parameters that can be set for fine tuning. In addition, the decision
function of an SVM is conceptually very simple and can be easily implemented also
on a mobile device. We refer the interested reader to [9] for a detailed dissertation.

The result of the classification process is a rating value in a continuous range,
e.g. [0, 1]. In general, the classification of an actual sexual content returns a value
close to the higher bound of the range. Hence, we can interpret this value as the
level of certainty of the classifier that the image is a pornographic one. Note that
the classifier is not responsible for deciding whether to accept or reject a message.
Such a decision is still delegated to the PDP. Instead, the result of the classification
is communicated to the core service, hosting the PDP, through a proper action.
Finally, the PDP evaluates the result with the policy and sends back a reaction that
possibly forces the cancellation of the message.

3.4. A CENTRALISED MONITORING ARCHITECTURE FOR MOBILE DEVICES 71

Figure 3.18: Control screens for phone calls (left) and messages (right).

Policy editing. A major issue arising during the design of a usable parental con-
trol system is finding a mechanisms that non-skilled users, i.e. the parents, can use
to define their security requirements and rules. Indeed, the creation of a security
policy is a very complex process requiring a quite rich technical background. Usu-
ally, administrators define the security policies for the users of a system. As a matter
of fact, this activity requires a good, or even perfect, knowledge of the system, the
security mechanisms and the policy language. On the contrary, here we want to ex-
pose a set of controls to users that could have a scarce understanding of the mobile
device and its components.

In order to overcome this limitation, we designed a graphic user interface for the
declaration of the security controls. The idea is to provide the parents with a set of
facilities that can be easily compared with the informal recommendations that they
usually ask their children to follow. These recommendations can be about the direct
usage of the mobile phone. For instance, recommendations like “Do not use games
at school” or “call me when you leave from school” are very common. However,
some of them can also indirectly involve the device like “Do not get in contact with
unknowns (e.g., through phone calls)”.

The access to the security controls is protected by a password. When the parent
logs in, the system loads the current policy and authenticates to the core service.
Then, it is possible to access and modify the security settings. The controls are
divided in compounds containing homogeneous elements. Figure 3.18 shows two of
them responsible for phone calls and messages.

Other groups of controls are for applications usage, anti-theft settings and posi-
tion control. When all the settings are submitted, the system saves the current policy

72 MOBILE APPLICATION SECURITY AND ENFORCEMENT ON DEVICES

and sends it to the core service through a reliable channel. After the submission,
the PDP loads the new policy and starts enforcing the new rules.

3.5 Discussion

This chapter presented our work on the security issues regarding mobile applications.
We schematically list the sections of this chapter with their content.

• Section 3.1 proposes an extension of the Java language allowing a code devel-
oper for defining and applying local security policies.

• Section 3.2 presents an implementation of the programming model introduced
in Section 3.1.

• Section 3.3 describes a tool for centralised security enforcement on resource
limited devices.

• Section 3.4 extends the previous model by introducing a plugin-based archi-
tecture for monitoring global security properties of mobile devices.

Even though the recent advancements of the mobile technology released some of
our working assumptions, e.g., we could argue that modern smart phones are not
limited capabilities devices, the security issues deriving from mobile applications are
still a main concern. As a matter of fact, in the last few years the diffusion of mobile
applications have been rapidly growing. Also, while the number of J2ME-enabled
platforms is reducing, other Java-based systems, e.g., Android, are becoming more
and more popular.

As the capabilities of the mobile devices increase, we delegate them more respon-
sibility and sensitive tasks. This could make them even more appealing for security
attacks. Hence, beyond the continuous evolution of the reference context, all the
motivations for the work presented here keep unchanged.

Trust-Driven Secure Composition

To formally analyse a system secure we need a proper representation of both the
security policy and of the system itself. However, it is often the case that some parts
of a composed system are not available when the security verification takes place.
This may happen for several reasons. For instance, the overall system could be the
composition of remote platforms communicating through messages.

Often, this kind of composition relies on a description of the components, namely
a contract. Contracts typically declare the expected behaviour of each component.
The reliability of the contracts plays a central role for the correct compositions.
When contracts cannot be verified against the actual implementation of the com-
ponents, we cannot expect to have formal guarantees of secure interactions. Trust-
based mechanisms can be used to mitigate the risk of interacting with malicious
components.

In this chapter we propose a security paradigm for integrating the trustworthiness
evaluation in the composition process. In particular, our model uses the feedback
obtained from the behaviour of previous interactions for deciding whether to accept
a new composition. To do that, we present a new class of automata, namely gate
automata, that can be used for defining security and trust policies. On the one hand,
these policies drive the monitoring process generating trust feedback cited above.
On the other hand, the trust feedbacks generate a continuous tuning of the security
constraints in order to increase the controls over the untrusted components and to
decrease the security overhead for the trusted ones.

4.1 Security-by-Contract-with-Trust

Here we present Security-by-Contract-with-Trust (S×C×T), that is a new paradigm
for dealing with security and trust in composite systems. The main novelty of our
approach consists in obtaining a fully integrated environment for dealing with both
trust and security policies. We achieve this by extending the Security-by-Contract
model with special facilities for trust management, trust policies enforcement and
contract monitoring.

74 TRUST-DRIVEN SECURE COMPOSITION

4.1.1 Security-by-Contract Paradigm

We start by recalling the Security-by-Contract (S×C) [81] paradigm in its original
formulation. The S×C paradigm provides a full characterisation of the contract-
based interaction. The two main categories of items in S×C are: contracts and
policies. A contract is an over-approximation of all the possible execution behaviours
of an application. Loosely speaking, a contract contains a description of the relevant
features of the application and the relevant interactions with its hosting platform.
The contract is released by the developer or vendor that provides it together with
the application.

The other cornerstone of the S×C approach is the concept of policy, which is
usually defined on the hosting platform, that is the execution environment. It may
be specified by the owner or by the producer of the platform and consists of a set
of admitted application execution behaviours.

The core idea behind the Security-by-Contract approach is depicted in Fig-
ure 4.19. When a client receives an application, the system automatically checks the
formal correspondence between the program code and contract (Check Evidence).
This step is intended to provide a formal proof that the contract effectively denotes
the behaviour of the running program. This step can be implemented, for instance,
using the model-carrying code [170] method. If the result is negative, i.e., the con-
tract is corrupted or incorrect, the program runs under the control of a security
enforcement agent (Enforce Policy). Otherwise a matching between the contract
and the policy is performed to establish if the contract is also compliant with the
security requirements. If it is the case, then the application is executed without
overhead (Execute Application), otherwise the policy is enforced again (Enforce
Policy). Finally, if the previous checks were positively passed, the application can
be executed with no active runtime monitor.

The contract-policy matching function ensures that any security relevant be-
haviour declared by the contract is also allowed by the policy. This matching can
be implemented using different behavioural relation, e.g., language inclusion [79] or
simulation relation [95]. The matching function allows the user to check whether
the behaviour of the application is compliant with the policy or not, without the
need for running the application.

Also the enforcement process has been shown to be feasible using different ap-
proaches. For instance, two techniques suitable for interpreted languages have been
detailed in the literature and exploited for experiments and tools: interpreter cus-
tomization (e.g., see [52]) and intermediate language rewriting (e.g., in [70, 66]).
Briefly, the first replaces the standard system interpreter (e.g., a JVM) with a mod-
ified one dispatching signals to the monitoring agent whenever a program makes
a call to (a subset of) the system APIs. The second instruments the sequence of
interpreted instructions (e.g., the bytecode) with invocations to the security policy
monitor making the program send security signals at run-time. Both the approaches
typically use an external component, namely a Policy Decision Point (PDP, see Sec-

4.1. SECURITY-BY-CONTRACT-WITH-TRUST 75

ENFORCE
POLICY

Y

NEvidence
Check

START

N

Y

& Policy
Contract
Match

E
X

E
C

U
T

E
 A

P
P

LI
C

A
T

IO
N

Figure 4.19: The Security-by-Contract process.

tion 3.3), holding the set of rules that compose the security policy. Moreover the
PDP reads the current device state (battery consumption, link strength, available
credit) through dedicated internal components. When the PDP receives a request for
an action violating the security policy, it answers denying the necessary permission.
Then, the system reacts by throwing an exception.

Note that the notion of trust was not integrated in the Security-by-Contract
approach. Basically, the user can trust or not the application’s provider according
to a software certification delivered by some certification authorities.

4.1.2 Extending S×C with Trust

As mentioned above, a crucial point of the S×C model is the verification of the
relation that exists between the application and its contract. Nevertheless, the
approach of many real-world systems to the security of the mobile applications is
much more naive. Very often, the mobile code is run if its source is somehow
trusted. This means that we can only reject or accept the signature of the application
provider. For this reason, it is becoming more and more common among the platform
manufacturers to have official applications stores (e.g., see [13, 145, 14]).

Here we propose an extension of the existing architecture by adding a component
for the contract monitoring. Checking whether the execution of an application
adheres to declared contract we can modify the level of trust of the application
provider.

Driving trust management with contract monitoring offers several advantages.
Many of them derive from the automatic management of the decisions about the
trustworthiness of the providers. Basically, in order to have a precise trust measure,
a behavioural feedback is needed. Indeed, the trust weight associated to a certain

76 TRUST-DRIVEN SECURE COMPOSITION

provider should change according to whether its applications behave correctly or
not. In some cases, the trust value modification is triggered by a program trying
to execute some forbidden action, i.e. violating a security policy. However, policy
violations are not always caused by a real security attack. As a matter of fact, in
case of customised security policies, we can not expect that every provider is aware
about the requirements of each customer. Hence, a policy violation could simply
be the result of a mismatch between the provider’s specification and the platform
restrictions.

On the other hand, a precise trust value has some clear advantage for the plat-
form. A first benefit derives from the possibility of avoiding security enforcement.
Two important issues about policy enforcement are execution overhead and seman-
tics interference. In other words, when an enforcement mechanisms follow the ex-
ecution of a program, it slightly decreases the standard performances of the whole
system. Furthermore, enforcing a policy may cause a modification of the original
behaviour of programs. If a program comes from a trusted source, the user could
decide to run it free from any control.

A further important issue is policy specification. Users applying customised secu-
rity properties on their devices must specify all the acceptable behaviours of running
applications. Needless to say, this can be a cumbersome task especially for users
having no technical skills. In fact, many users do not specify any security restriction
on the applications they trust, e.g. utilities provided by the device’s manufacturer.
Hence, allowing trusted application to run according to their contracts may also
reduce the complexity of specifying security policies.

Our strategy takes place in two phases: at deploy-time by setting the monitoring
state and at run-time by applying the contract monitoring procedure for adjusting
the provider trust level.

Deployment Architecture

The S×C paradigm does not require the software provider to be a trusted entity and
simply relies on the correctness of local, internal components (i.e. Check Evidence
and Contract-Policy Matching). Here, we deploy a framework for quantitative trust
management. In this way, it is possible to dynamically update the levels of trust.
The Updating is done according to the adherence between the real execution of the
application and its contract. Indeed, we extend the existing architecture by adding
a contract monitoring that checks the compliance between the application and its
contract. We replace the contract verification (Check Evidence) with a simple check
on the level of trust of the provider (Trusted Provider). If the provider is untrusted
then the policy is enforced, otherwise the contract-policy matching is performed.
Hence the S×C×T workflow results as in Figure 4.20 and Figure 4.21. It consists
of the following steps:

• Step 1-Trust Assessment : Each downloaded mobile application is associ-
ated with a given recommendation rate, which allows the trust module of the

4.1. SECURITY-BY-CONTRACT-WITH-TRUST 77

EPMC
Scenario

STEP 2STEP 1

START

Y

N

N

Y

Application
Trusted

& Policy
Contract
Match Scenario

MC

CONTRACT

MONITOR

ENFORCE
POLICY &
MONITOR

CONTRACT

E
X

E
C

U
T

E
 A

P
P

LI
C

A
T

IO
N

Figure 4.20: The extended Security-by-Contract application workflow.

user device to decide if the application can be considered as trusted or not
(see section 4.1.3).

• Step 2-Contract Driven Deployment : According to the trust measure,
the security module decides to simply monitor the contract or also enforce the
policy going into one on the scenarios described in Step 3.

• Step 3-Contract Monitoring vs Policy Enforcement : Depending on
the chosen scenario the security module is in charge for monitoring either the
policy or the contract and saving the execution traces (logs).

• Step 4-Trust Feedback Inference: Finally, the trust module parses the
produced logs and infers a trust feedback (see section 4.1.3).

Description of the Scenarios

We outline how trust measures assigned to security assertions can be adjusted as
a result of a contract monitoring strategy. Indeed, trust measures associated with
the provider concern on the contract goodness mainly. Updated trust measures will
influence on future interactions with an application and contract providers. In other
words, our system highly penalizes the provider more when the contract does not
specify the application’s behaviour correctly. Instead, when the application violates
the security policy, the system slightly penalizes it.

78 TRUST-DRIVEN SECURE COMPOSITION

Check
Contract
Violation

Capture
Event

Update
Monitor
State

Enforce
Policy

Check
Policy

ViolationRAISE
SECURITY

EXCEPTION

Continue
Execution

R
U

N
N

IN
G

 A
P

P
LIC

A
T

IO
N

UPDATE

N

Y
TRUST

Y

N

STEP 3 STEP 4

(a) Scenario MC

Check
Contract
Violation

Capture
Event

Update
Monitor
State

Check
Policy

Violation RAISE
SECURITY

EXCEPTION

Continue
Execution

R
U

N
N

IN
G

 A
P

P
LI

C
A

T
IO

N

UPDATE

N

Y
TRUST

Y

N

STEP 4 STEP 3

(b) Scenario EPMC

Figure 4.21: The contract monitoring configurations.

We presented in Section 3.3 a proposal for a monitoring infrastructure. It consists
of a PDP that holds the actual security state and is responsible for accepting or
rejecting new actions. Policy Enforcement Points (PEPs) are both in charge of
intercepting actions to be dispatched to the PDP and preventing the execution of
illegal operations.

Starting from this model, we extend it by making the PDP also responsible for
the contract monitoring operations and for the trust vector updating. According
to [52, 66], we assume that both contracts and policies are specified through the
same formalism. Hence, the policy enforcement configuration of the PDP keeps
unchanged. The PDP must load application contracts as well as security policies
dynamically. Moreover, it must be able to run under the two different execution
scenarios of Figure 4.20. The two possible configurations are described below.

EPMC Scenario. Both the policy enforcement and the contract monitoring are
active. During the execution, contract violations are checked to update the
trust levels. Moreover, the policy enforcement guarantees that the application
does not violate the security policy. In particular, the contract monitoring re-
ceives event signals from the executing code and keeps trace of the execution
trace. When a signal arrives, its consistency with respect to the monitored
contract is checked. If the contract is respected then the internal monitor-
ing state is updated and the operation is allowed, and a good behaviour is
logged (i.e., contract respected). Otherwise, if a violation attempt happens, a
security error occurs and a violation feedback is logged for the trust module.
The policy enforcer is in charge for following the execution of the application.
Whenever the program attempts to violate the security policy, the enforce-
ment mechanism halts the execution. This guarantees that the security policy
is always satisfied.

4.1. SECURITY-BY-CONTRACT-WITH-TRUST 79

MC Scenario. The contract monitoring is performed. It works according to the
following strategy: the contract monitoring receives event signals from the ex-
ecuting code. The execution trace is kept in memory. When a signal arrives,
its consistency with respect to the monitored contract is checked. As in the
previous case, if the contract is respected then the internal monitoring state is
updated and the operation is allowed, and a good behaviour is logged. Other-
wise, if a violation attempt happens, a security error and a bad trust feedback
occur. After a violation, the system switches from the contract monitoring to
the policy enforcement configuration in order to guarantee that the security
policy is satisfied.

The whole behaviour of the two configurations is depicted in Figure 4.21.

4.1.3 Trust management

Trust management techniques are used in systems where some level of uncertainty
exists upon the components and their behaviour. In many practical cases, a client
has no formal evidences guaranteeing the correct behaviour of a software or a service
before the actual execution. Nevertheless, in real life many transactions and collab-
orations take place without formal assurances. In fact, we can argue that most of
the interactions are based on clients’ expectations and providers’ promises. Hence,
users rely on trustworthy applications for many of their daily activities. On the
one hand, this behaviour pragmatically simplifies many security issues increasing
the usability of several systems. On the other hand, attacks trying to exploit the
methodical evaluation errors due to the psychology of the human beings are even
too simple, e.g. phishing.

In the last years, much work aimed at providing a rigorous description of the
conscious and unconscious evaluations about trustworthiness. As a consequence,
several models of trust have been proposed (see [152] for a survey). Due to the nature
of our model, i.e., a system continuously adjusting the trust values, we decided to
use a quantitative representation of trust.

In this way, we associate each application provider to a certain trust weight rang-
ing in [0, 1]. The trust manager (TM) is the component responsible for handling
these values. Basically, it consists of a mapping between the unique identifier of a
provider and a trust weight. Also, it implements the basic operations for rewarding
and penalising. Intuitively, a reward (penalty) is a trust feedback causing the in-
creasing (decreasing) of the trust level of a provider. In general, there can be more
that just one type of reward (penalty) in order to model different feedback types,
e.g., feedback related to the provider community or identity.

In [65] we proposed a trust manager using two types of feedback, i.e. high and
low, for rewarding and penalising. The trust manager is implemented as a centralised
component of an applications marketplace where providers register they programs
and users retrieve software for their platforms. Each feedback from authenticated

80 TRUST-DRIVEN SECURE COMPOSITION

X
X
X
X
X
X
X
X
X
X
X
X

Trust
Security Respect the contract Violate the contract

MC EPMC MC EPMC

Trusted High reward Low reward High penalty
Untrusted —— Low reward —— Low penalty

Table 4.5: The trust feedback generated by an application.

users changes the level of trust of the application provider within the marketplace.
The trust level is used as a recommendation factor for the new customers of the
provider. A user bases the decision about the trustworthiness of the provider on the
recommendation of the marketplace. Table 4.5 lists the trust feedback types that
users can send according to the model of [65].

Briefly, untrusted applications, i.e. coming from an untrusted provider, can only
run under the EPMC configuration. We decided that they receive a low feedback for
both respecting or violating the contract. Instead, for trusted applications we apply
a different mechanism. We always punish the contract violation severely and we
reward the contract compliance according to the execution configuration, i.e. high
for MC and low for EPMC.

Note that this table is purely arbitrary. It encodes the procedure for managing
the trust feedback. Changing the number of feedback and the cells content we can
obtain different behaviours.

4.2 Introducing Gate Automata

In this section we introduce gate automata and their properties. Moreover, we
shall provide the reader with several examples showing how gate automata can be
suitably used for specifying security and trust policies. These policies are suitable
for integrating security and trust in the S×C×T runtime environment. Indeed, a
gate automaton represents a security policy that, as a side effect, can trigger the
S×C×T trust manager. On the other hand, the trust manager is responsible for
deciding the security domain of an application, i.e., which are the security policies
to be applied on it.

Also note that this model offers a precise characterisation of the relation be-
tween trust and security in the S×C×T. As a matter of fact, we create a reciprocal
dependency between the two concepts. In particular, trust increasing (decreasing)
may cause a decreasing (increasing) of the number of the active security policies.
Similarly, more security policies may produce more feedback for the trust manager.

In this way, we generalise the S×C×T runtime by relaxing the limitation of hav-
ing two configurations, i.e., MC and EPMC. Through gate automata we achieve a
number of configurations, i.e., approximatively one for each policy, that are dynam-

4.2. INTRODUCING GATE AUTOMATA 81

read open

close

read

openopen close

close

Figure 4.22: A gate automaton for file access.

ically updated at runtime.

4.2.1 Gate automata

Intuitively, a gate automaton denotes a security policy in the form of a reacting
agent. When it receives a security-relevant action, it starts a reaction procedure
involving an arbitrary number of steps. Each step consists of either a visible, output
action or an internal, trust feedback. An external observer can only see the output
actions. According to the S×C×T paradigm, the interpretation of the trust feedback
is delegated to a centralised trust manager that collects them.

Before giving the definition of usage automaton, we propose the following exam-
ple to clarify the structure and behaviour of the automata.

Example 4.13 Imagine a file access policy ϕFA saying “never read a file if it is not
open”. The gate automaton of Figure 4.22 represents ϕFA.

The automata has two possible paths starting from the initial (leftmost) state.
In the initial state, the automaton waits for an input action. All the actions which
label no outgoing transitions are neglected, i.e., the automaton does not change
them. When an action “read” is performed, the automaton takes the top path.
Instead, if an action “open” arrives, the automaton goes through the bottom path.
In the first case, the reaction to the input is a sequence of three output actions, i.e.
“open”, “read” and “close”, returning to the initial state. In other words, whenever
a program tries to read a closed file, the automaton wraps this action between
a “open” and a “close”. The second path, propagates the action open with no
changes, i.e., reads and writes it, and moves to a new state. In this state there are
no transition labelled with “read” and “open”. Hence, they are allowed. Instead,
when a “close” arrives, the automaton makes it pass and returns to the initial state.

We now give the formal definition of gate automata.

Definition 4.1 A gate automaton G is a 4-tuple 〈V, ı, A, T 〉 where

82 TRUST-DRIVEN SECURE COMPOSITION

• V is a finite set of states;

• ı ∈ V is the initial state;

• A is a set of actions;

• L(A) = A ∪ Ā ∪ {N,H} is a set of labels such that:

1. Ā = {ᾱ | α ∈ A} is the set of output labels

2. N,H 6∈ A ∪ Ā are the trust labels

• T ⊆ V × L(A)× V is a set of labelled transitions such that:

1. (v, a, u) ∈ T ∧ (v, b, w) ∈ T ∧ a = b⇐⇒ u = w

2. ∀(v, a, u) ∈ T.a ∈ Ā ∪ {N,H} =⇒ ∄ b, w.b 6= a ∧ (v, b, w) ∈ T

A gate automaton slightly differs from a deterministic, finite state automaton
(DFA). It has a finite set of states (V , ı being the initial one), an alphabet of
accepted symbols (A) and a set of transitions (T). The transitions of the automata
are labelled with either input or output actions. Slightly abusing the notation, we use
“actions” in place of labels when there is no ambiguity. We write α ∈ A to denote
an input action, ᾱ ∈ Ā for an output one and a, b for generic elements of L(A).
Gate automata can also perform two special operations, i.e., N and H, that denote
the positive and negative trust feedback. The two supplementary requirements on
T force gate automata to be deterministic (1) and limit the outgoing transitions
labelled with output or trust actions to be at most one per state (2). In particular,
the second restriction characterises the model of reaction. In other words, if a state
is the source of some reaction transition, no other transitions are allowed. Where
it improves the readability, we use v

a
−→ w in place of (v, a, w) ∈ T and v 6

a
−→ for

∄w . (v, a, w) ∈ T .
Producing trust feedback is one of the distinguishing features of gate automata.

We propose the following examples to clarify their behaviour.

Example 4.14 Imagine a Chinese Wall policy ϕCW saying “never send network
messages while accessing the file system”.

We implement this policy though the gate automaton of Figure 4.23. The target
can take two directions. Indeed, it is allowed to either open a file or send data. Each
of the previous actions leads to a new state. This state allows all the other actions,
but the complement of the previously executed one, i.e. “open” after “send” and
“send” after “open”. If the second, the relevant action is performed, the automaton
does not propagate it, fires a negative trust feedback and moves to a pit, looping
state where everything is permitted but the freshly cancelled action.

Note that, from a security point of view, we could implement the same policy in
several ways. For instance, we may anticipate the pit states in the path and remove
the trust feedback. Nevertheless, the two automata represent two different trust
policy.

4.2. INTRODUCING GATE AUTOMATA 83

send send

openopen

open

H
open

send

H

send

Figure 4.23: A gate automaton for the Chinese Wall policy.

no

open

yes

never

ask

open

open

always open

Figure 4.24: A gate automaton for the ask user policy.

Example 4.15 The security of mobile devices is based on software certification (see
Section 3.3). Basically, an application is signed with a certificate provided by some
trusted entity, i.e., a certification authority. At install time, the signature is verified
and, if it is valid, the application receives all the required access privileges. If the
signature is corrupted or absent, the application has no access rights to security
critical operations and every decision is delegated, time by time, to the user. Users
allow or deny permissions to each single operation. If the user considers a program
to be harmless, i.e., he trusts the application, he can decide to always permit the
action. Symmetrically, if the application is not trusted, the user can decide to never
allow the access.

The gate automaton of Figure 4.24 implements the policy that asks the user to
decide whether to permit once (“yes”), always permit (“always”), deny once (“no”)
or never permit (“never”) the “open” action.

Briefly, when the automaton receives an “open” action, it blocks it and requests
the authorization of the user (“ask”). The user decides among four answers, each of
them causing a different reaction.

• “yes”. The automaton fires the “open” action and returns to the initial state
(waiting for further requests).

• “no”. The automaton returns to the initial state and the “open” action is
cancelled.

84 TRUST-DRIVEN SECURE COMPOSITION

• “always”. The automaton generates the “open” action and moves to a state
where all the actions are permitted.

• “never”. The automaton reaches a state where all the “open” actions are
definitively blocked (self loop).

4.2.2 Automata semantics

In this section we introduce the relation between gate automata and interface au-
tomata [71]. In this sense, a gate automaton denotes a corresponding interface au-
tomaton, i.e., its instantiation. Therefore the semantics of a gate automaton is given
through that of the corresponding interface automaton. The interface automaton
obtained in this way reads an execution trace, i.e., its input, and writes a modified
trace, i.e., its output, which is compliant with the policy specification. Here, we
briefly recall the definition of interface automaton given in [71] (see Section 2.3 for
further detail).

Definition 4.2 An interface automaton P = 〈VP , V
init
P , AI

P , A
O
P , A

H
P , TP 〉 consists of

the following elements:

• VP is a set of states.

• V init
P ⊆ VP is a set of initial states such that ♯V init

P 6 1.

• AI
P , A

O
P and AH

P are mutually disjoint sets of input, output and internal actions.

• TP ⊆ VP × (AI
P ∪A

O
P ∪ A

H
P)× VP is a set of transitions.

The main advantage deriving from using interface automata is that they can be
easily composed in several ways. In particular, they can be aligned using their inter-
faces for obtaining a sequential composition. Each automaton receives invocations
from its predecessor, changes its internal state, possibly executing internal actions,
and invokes the methods of its successor. Using this approach we can implement a
chain of policies as discussed in the next section.

A gate automaton can be instantiated to a corresponding interface automaton
through a simple transformation. Hence, we use interface automata for giving an op-
erational semantics to the security policies defined through our gate automata. The
formal definition on the instantiation of a gate automaton is provided in Table 4.6.

Roughly, the instantiation works as follows. The set of states VP is obtained by
adding a set Vid of special states for self loop transitions to the set V of states of the
gate automaton. For each state v ∈ V being the source of some input transition and
for each input action α that labelling no transitions from v, we have a corresponding
state, namely vαid ∈ Vid. The input and output actions of the interface automaton
are obtained by pairing the instantiation index k (input) and its successor (output)

4.2. INTRODUCING GATE AUTOMATA 85

An instantiation of a gate automaton G = 〈V, ı, A, T 〉 over a index k ∈ N,
denoted by Gk, is an interface automaton P = 〈VP , {ı}, A

I
k , A

O
k+1, {N,H}, TP 〉

where:
• VP = V ∪ Vid is the set of states with

Vid = {v
α
id : v ∈ V ∧ ∃β ∈ A, u ∈ V.v

β
−→ u ∧ v 6

α
−→};

• AI
k = {〈α, k〉 : α ∈ A} is the input alphabet;

• AO
k+1 = {〈α, k + 1〉 : α ∈ A} is the output alphabet;

• TP is a set of transitions defined as:

TP = {(v, 〈α, k〉, w) : (v, α, w) ∈ T} (input)
∪ {(v, 〈α, k + 1〉, w) : (v, ᾱ, w) ∈ T} (output)
∪ {(v,�, w) : (v,�, w) ∈ T} (internal)
∪ {(v, 〈α, k〉, vαid) : v

α
id ∈ Vid} (loop input)

∪ {(vαid, 〈α, k + 1〉, v) : vαid ∈ Vid} (loop output)

where � ∈ {N,H}

Table 4.6: Gate automata instantiation.

with the input and output actions of the gate automaton. The instantiation index
k is used for distinguishing the input from the output actions and also for allowing
the composition among the automata as discussed in Section 4.3.2. The labels
for trust feedback are used as internal actions. The input, output and internal
actions are used to label the transitions the interface automaton. In particular, for
each transition of the gate automaton, its instantiation has a corresponding one.
Moreover, we add input (output) transitions to (from) the elements of Vid. These
pairs of transitions define a two-steps path passing through the states of Vid and
represent allowed actions.

Example 4.16 Consider the gate automaton of Example 4.13. We instantiate it
with index k and we obtain the interface automaton of Figure 4.25.

For the sake of simplicity, we use α? and α! in place of 〈α, k〉 and 〈α, k+1〉 when
there is no ambiguity. Self loops labelled with an action α are a compact notation
for the pair of transitions (v, α?, vαid) and (vαid, α!, v), where v

α
id is the small black state

in the loop. We use this notation in order to have a more readable representation
of the automata.

For what concerns the semantics of an instantiation Gk of a gate automaton
G, we define it in terms of reaction sequences. Intuitively, a reaction sequence is a
trace of output and internal actions fired by an interface automaton after reading

86 TRUST-DRIVEN SECURE COMPOSITION

read open

open? read? close?

open! read! close!

open!

close!

open?

read? read!

close!

close open! close?

Figure 4.25: The instantiation of the file access gate automaton.

one input symbol. We start by extending the definition of execution fragment in the
following way.

Definition 4.3 An execution fragment of an interface automaton P is a possi-
bly infinite, alternating sequence of states and actions v0, α0, v1, α1, . . . such that
(vi, αi, vi+1) ∈ TP .

Definition 4.4 Given an interface automaton P = 〈VP , V
init
P , AI

P , A
O
P , A

H
P , TP 〉, an

action α ∈ AI
P and a state v ∈ VP , a reaction sequence to α in v is a possibly infinite

trace of actions σ = α0, α1, . . . such that

• αi ∈ A
O
P ∪ A

H
P ,

• ∃v, v0, v1, . . . ∈ VP such that v, α, v0, α0, v1, α1, . . . is an execution fragment of
P and

• if σ has finite length n then ∀β ∈ AO
P ∪ A

H
P . vn 6

β
−→.

We say that α is an activator of σ in v and denote it with v
σ

=⇒
α

vn if σ is finite or

v
σ

=⇒
α
↑ otherwise.

Example 4.17 Consider the interface automaton of Figure 4.25. Starting from
the initial state the automaton takes the top path if it receives an input action
read?. The path consists of three transitions (labelled with open!, read! and close!

4.2. INTRODUCING GATE AUTOMATA 87

respectively) and returns to the initial state. Hence, calling ı the initial state, we
say that read? activates the reaction open!read!close! in ı.

4.2.3 Trace validity

In this section we provide a formal definition of compliance of a trace with respect
to a gate automaton. Intuitively, we can imagine that a sequence of actions is
allowed by a gate automaton if, passing it as the input of the (instantiation of the)
automaton, the output is the unchanged sequence. Below we formally define this
notion in terms of reactions sequences.

As the input and output actions of the instantiations of gate automata are paired
with the instantiation index, we use an operator, i.e., the function fout to remove
them and obtain standard sequences of actions. This function also removes the trust
feedbacks which are not visible from outside the automaton. The function fout is
recursively defined as follows.

fout(〈α, k〉) = α fout(〈�, k〉) = · fout(σσ
′) = fout(σ)fout(σ

′)

being · the empty trace and � ∈ {N,H}.
We can now define the notion of weak compliance for the gate automata.

Definition 4.5 Given a finite trace of actions σ = α1, . . . , αn and a gate automa-
ton G = 〈V, ı, A, T 〉 we say that σ is weakly compliant with G, in symbols σ ⊢ G, if
and only if for any instantiation Gk of G we have

ı
σk+1
1=⇒

〈α1,k〉
v1 . . .

σk+1
n=⇒

〈αn,k〉
vn

such that σk+1
i = 〈βi,1, k + 1〉 . . . 〈βi,mi

, k + 1〉 and

fout(σ
k+1
1 . . . σk+1

n) = σ

Beyond the technical definition, we can see the weak compliance as the dual of
transparency. That is, a trace weakly complies with a gate automaton if and only
if an external observer cannot understand whether the trace has been processed by
(the instantiation of) the automaton or not. The following example can help in
clarifying this aspect.

Example 4.18 Imagine a policy ϕRC saying “all files must be closed after reading”.
We represent this policy through the 4-states gate automaton G depicted below.

The automaton G allows a “read” action and immediately enqueues a “close”
reaching the rightmost state w. From this state two branches are possible. If the
next action is a “close”, the automaton cancels it and returns to the initial state ı.
Instead, if it receives a “read” action, it loops on the second state u and repeats the
first behaviour.

88 TRUST-DRIVEN SECURE COMPOSITION

read read close

close

read

ı u v w

Figure 4.26: A file closing policy.

Consider now the trace σ = read, close. It is easy to verify that interface automa-
ton obtained instantiating the gate automaton for ϕRC reacts to σ in the following
way:

ı
read!,close!
=⇒
read?

w
·

=⇒
close?

ı

where we used the notation of Example 4.16 for input and output actions.
Since fout(read!, close!) = σ, the trace is weakly compliant with G, i.e. σ ⊢ G.

Clearly, weak compliance does not correspond to a full transparency. Indeed, the
transitions of the automaton can introduce and delete actions in such a way that a
trace is kept unchanged as a whole, but its prefixes are modified. For instance this
can happen when the automaton anticipates an action, e.g. close in the previous
example, or postpones it.

For characterising sequences that are not modified at all by a gate automaton
we use the notion of strong compliance.

Definition 4.6 Given a finite trace of actions σ = α1, . . . , αn and a gate automa-
ton G = 〈V, ı, A, T 〉 we say that σ is strongly compliant with G, in symbols σ |= G,
if and only if for any prefix σ′ of σ holds that σ′ ⊢ G.

Example 4.19 Consider again the gate automaton G of Example 4.18. We al-
ready discussed the weak compliance of the trace σ = read, close with respect to G.
However, we also observed that

ı
read!,close!
=⇒
read?

w

and fout(read!, close!) 6= read. Hence, σ is not strongly compliant with G.

Comparing gate automata with edit automata Starting from the definition
of security automaton given by Schneider in [168], Ligatti et al. [123] have defined
a new category of deterministic security automata, namely edit automata. The
importance of the edit automata resides in the fact that they identify a very general
class of properties, namely edit properties, suitable for runtime enforcement. Here we

4.2. INTRODUCING GATE AUTOMATA 89

show in a constructive way that the properties expressed through gate automata are
a subset of the edit properties. Translating a specification into an edit automaton
has some advantages. For instance, one can exploit existing tools based on edit
automata, e.g., Polymer [31].

An edit automaton is defined as (Q, q0, δ, γ, ω), where δ : A × Q → Q is the
transition function, γ : A×Q → A×Q specifies the insertion of an action into the
program actions sequence and ω : A × Q → {−,+} indicates whether or not the
action in question must be suppressed (-) or emitted (+). The functions ω and δ
have the same domain, while the domains of γ and δ are disjoint. Note that this
conditions guarantee the resulting automaton to be deterministic, as stated by the
following rules.

if σ = a; σ′ and δ(a, q) = q′ and ω(a, q) = +

(σ, q)
a
−→E (σ′, q′) (E-StepA)

if σ = a; σ′ and δ(a, q) = q′ and ω(a, q) = −

(σ, q)
τ
−→E (σ′, q′) (E-StepS)

if σ = a; σ′ and γ(a, q) = (b, q′)

(σ, q)
b
−→E (σ, q′) (E-Ins)

otherwise
(σ, q)

·
−→E (·, q) (E-Stop)

Also note that the single-step rules can be generalised to sequences of actions by
computing the transitive closure of the above transitions.

We can observe that the class of security properties defined through gate au-
tomata can be mapped into edit policies.

Proposition 4.1 For each gate automaton G there exists an edit automaton EG

enforcing the same property of G.

Proof. We start from a gate automaton G = 〈V, ı, A, T 〉 and we instantiate it to the
interface automaton G. We denote the input (output) symbols of G with α? (α!).
Then build the two sets3

• QV = {qv | v ∈ V } and

3Note that, even though the reaction sequences σ can be infinite, i.e. v
σ!
=⇒
α?
↑, we just need a

finite number of states for representing them. Indeed, applying the pumping lemma for regular
languages to (the definition of instantiation of) our gate automata we observe that each infinite
reaction sequence σ can be represented as σ = σ1σ

∗

2 where ∗ is the Kleene star and both σ1 and
σ2 are finite. However, as the infiniteness of QΣ does not affect the proof, we can still imagine it
as an infinite set.

90 TRUST-DRIVEN SECURE COMPOSITION

• QΣ =
⋃

{qσv,α | ∃σ
′.v

σ′!
=⇒
α?
∧· � σ � σ′}

Now we define the functions ω and δ as follows.

• for each v, α such that v
α
−→ and v

σ!
=⇒
α?

– ω(α, qv) = −

– δ(α, qv) = qσv,α

• for each v, α such that v 6
α
−→

– ω(α, qv) = +

– δ(α, qv) = qv

Finally we define γ as:

γ(, qβσv,α) = (β, qσv,α)

where u is a state such that v
σ′!
=⇒
α?

u for some σ′, is any possible action symbol

(also including ·) and q·v,α = qu.

We can easily verify that EG = 〈QV ∪ QΣ, qı, δ, γ, ω〉 is a valid edit automaton.
Indeed, by construction Dom(ω) = Dom(δ) = QV 6= Dom(γ) = QΣ and QV ∩QΣ =
∅.

The last part of the proof consists of showing that for each finite input trace G
and EG produce the same output. We show that for each action α the two automata
G, i.e. an instantiation of G, and EG starting from the states v and qv generate the
traces σ! and σ. Moreover, we show that if G and EG do not diverge then they reach
the states u and q such that q = qu.

For each α two cases arise: either v 6
α
−→ or v

α
−→ v′.

• If v 6
α
−→ then, by definition of G, v

α!
=⇒
α?

v. Moreover, by construction of EG ,

ω(α, qv) = + and δ(α, qv) = qv from which the thesis follows.

• If v
α
−→ v′ then we have two sub cases:

– v
σ!
=⇒
α?

u. In this case, ω(α, qv) = − and δ(α, qv) = qσv,α. Then δ applied

to qσv,α generates each action of σ till reaching qu.

– v
σ!
=⇒
α?
↑. We proceed similarly to the previous case. Just note that, as σ

is infinite, δ cannot lead to a state qu for each qu ∈ QV .

4.2. INTRODUCING GATE AUTOMATA 91

ı u v w
read? read! close!

close?

read?close?

close!
z

Figure 4.27: The instantiation of the file closing policy.

Example 4.20 Consider again the automaton of Example 4.18. We instantiate it
to the interface automaton of Figure 4.27

Applying the procedure described in Proposition 4.1 we generate the edit au-
tomaton defined by the following states and functions (for brevity we only report
the relevant cases).

QV = {qı, qu, qv, qw}

QΣ = {q·ı,read, q
read
ı,read, q

read;close
ı,read } ∪ {q·ı,close, q

close
ı,close} (qı)

∪ ∅ ∪ ∅ (qu)
∪ ∅ ∪ ∅ (qv)

∪ {q·w,read, q
read
w,read, q

read;close
w,read } ∪ {q·w,close} (qw)

∪ ∅ ∪ ∅ (qz)

ω δ γ
ω(close, qı) = − δ(close, qı) = qcloseı,close γ(, qcloseı,close) = (close, qı)

ω(read, qı) = − δ(read, qı) = qread;closeı,read γ(, qread;closeı,read) = (read, qcloseı,read)

ω(close, qw) = − δ(close, qw) = q·w,close = qw γ(, qcloseı,read) = (close, qw)

ω(read, qw) = − δ(read, qw) = qread;closew,read γ(, qread;closew,read) = (read, qclosew,read)

γ(, qclosew,read) = (close, qw)

Let now consider again the trace of Example 4.18, i.e., σ = read; close. Applying
the edit automaton defined above, we obtain

(read; close, qı)
τ
−→E (close, qread;closeı,read)

read
−−→E (close, qcloseı,read)

close
−−→E (close, qw)

τ
−→E (·, qı)

which corresponds to the application of the rules (E-StepS), (E-Ins), (E-Ins) and
(E-StepS).

As the definition of edit automaton poses no restriction on how the functions ω
and γ are computed, the opposite of Proposition 4.1 is not true in general.

92 TRUST-DRIVEN SECURE COMPOSITION

4.3 S×C×T through gate automata

In this section we present the enforcement environment based on our gate automata.
As we saw in Section 4.1, the S×C×T runtime enforcement relies on the retrieval
of trust feedback from the running programs. Also, it must be able to change its
configuration according to the trust values. Here we discuss how gate automata
satisfy both these requirements.

We describe how gate automata drive the enforcement mechanism in a security
framework based on S×C×T. This approach represents an extension of the original
S×C×T model [64] in which the policy enforcement is limited to target truncation.
Moreover, we improve S×C×T, where the trust management is triggered only by
contract violations, by integrating trust-oriented actions in the policies specification.

4.3.1 Gate Automata and ConSpec

We saw in Section 3.3 how ConSpec has been proposed as a formalism for defining
both behavioural contracts and security policies. Here we recall the syntax of Con-
Spec and we show how ConSpec specifications can be translated into corresponding
gate automata. Note that, for simplicity, we omit a few details of the original
ConSpec syntax irrelevant for our purposes.

Roughly, a ConSpec specification is composed by three blocks: (i) a pream-
ble, (ii) a security state and (iii) a finite list of clauses. The preamble just de-
clares the range of values for the used variables (MAXINT and MAXLEN)4. The secu-
rity state is a list of variables declarations following the schema τ x ::= v where
τ ∈ {bool, int, string} is a type, x is a variable name and v is a value of type
τ . Note that, following the definition given in [7], types are bounded, i.e., they
represent a finite number of values. For instance, if we set MAXINT to 3 then integer
values range in {0, 1, 2, 3}.

Each clause contains a parametric action α(τ y), activating the rule, and a list of
conditional instructions. Action names belong to a denumerable set Λ, i.e., α ∈ Λ,
and types are the same as for the security state. The left side of the conditional
instructions is a decidable, boolean guard g defining a property of the security state
and action parameter, while the right side is an update statement u (i.e., a possibly
empty block of variable assignments). We assume all the guards of a single clause to
be pairwise disjoint, i.e., if g and g′ belong to the same clause then it never happens
that g ∧ g′ is verified. Figure 4.28 shows the syntax described above.

The structure of security clauses requires some further explanations. Indeed,
comparing it with the standard one [6, 7], we see two main differences: (i) we only
have before-event checks (i.e., we do not use the keywords AFTER and EXCEPTIONAL)
and (ii) we use monadic actions. We claim that these simplifications do not reduce

4The standard ConSpec syntax also contains statements defining the scope of a policy, i.e.,
Session, Multisession and Global. However, it is immaterial for our purposes and we can
simply neglect it.

4.3. S×C×T THROUGH GATE AUTOMATA 93

MAXINT n
MAXLEN m

SECURITY STATE

τ1 x1 ::= v1; · · · τN xN ::= vN;

BEFORE α1(τ
′
1 y1) PERFORM

g11 -> u11 · · · g
1
M1

-> u1M1
...

BEFORE αK(τ
′
K yK) PERFORM

gK1 -> uK1 · · · g
K
MK

-> uKMK

Figure 4.28: The ConSpec preamble, security state (left) and clauses (right).

the expressive power of the ConSpec language. As a finite number of parameters can
be encoded in a single one, using monadic actions is not a restriction. For instance,
we could use strings to encode n-arguments actions (e.g., α(”3, msg, false”) for
α(3, ”msg”, false)). Then, we can use the string operations in the guards of the rules
for extracting the actual parameters. Also, we require all the variable and parameter
names to be unique and all the clauses to be triggered by different actions.

Moreover, we can simulate the behaviour of AFTER and EXCEPTIONAL clauses
by introducing new actions. As a matter of fact, the standard syntax of ConSpec
aims at modelling the computations of object-oriented systems, i.e., passing through
method invocations. Every method triggers the clauses when it is invoked, when it
returns a result and, possibly, when raising an exception. Then, for each method
m we can define three actions αBm , α

A
m and αEm representing the method invocation,

standard return and exceptional return, respectively.

Example 4.21 Consider the policy saying “An application cannot open connec-
tions after reading local files”. We model the involved methods through the actions
fopen(int mode) and copen(string url). Where mode ∈ {0, 1, 2, 3} is a two-bits
mask representing the access type (i.e., 00 = none, 01 = read, 10 = write and 11 =
read and write), and url is a network address. The resulting policy is:

MAXINT 3

MAXLEN 0

SECURITY STATE

bool accessed ::= false;

BEFORE fopen(int mode) PERFORM

(mode == 1) -> {accessed ::= true;}

(mode == 3) -> {accessed ::= true;}

(mode == 0 || mode == 2) -> {}

BEFORE copen(string address) PERFORM

!accessed -> {}

The semantics of ConSpec can be given using gate automata. Given a state q

94 TRUST-DRIVEN SECURE COMPOSITION

and a guard g, we say that g is valid in q (q ⊢ g) if and only if replacing the variable
names of g using the mapping defined by q we obtain a tautology. Moreover, we say
that an update block u denotes a function, namely JuK, from states to states, i.e.,
JuK : Q→ Q.

We obtain a gate automaton from a ConSpec specification as follows.
States. The set Q of states is fully characterised by the security state and the
actions parameters. In particular, we define a state q as a mapping from variable
and parameter names to the lifted domain of possible values. Formally, given a
variable or parameter name x, then q(x) = v with v ∈ V al ∪ {⊥} (where V al =
int ∪ bool ∪ string). Moreover, to be valid a state must assign to each variable a
value different from ⊥ and to at most one parameter a value that is different from
⊥. Hence, Q is the set of all the possible, valid combinations of assignments. Note
that, as ConSpec uses bounded types, the number of states is always finite.

Initial state. The initial state ı ∈ Q is the set mapping the variables of the
security state to their initial values and the parameters to the undefined, ⊥ value.

Alphabet. The set of events A that the automaton can read is the set of pairs
{〈α, v〉 | α ∈ Λ ∧ v ∈ V al}. We use α(v) instead of 〈α, v〉 where unambiguous.

Transitions. We build the set T of transitions in the following way. For each
ConSpec clause we take the triggering action α(τ x) and we list all the states q ∈ Q
such that q(x) = ⊥. Then we proceed as follows.

1. For each possible event α(v) we add a transition from q
ᾱ(v)
−−→ q′, where ∀y 6=

x.q′(y) = q(x) and q′(x) = v.

2. For each conditional instruction g → u of the clause and for each of the freshly

added transitions, if q′ ⊢ g then we add a transition q′
α(v)
−−→ JuK(q).

3. For all the states q̇ such that x = ⊥ and for all the events α(v̇) such that

q̇ 6
ᾱ(v̇)
−−→, we add a transition q̇

ᾱ(v̇)
−−→ q̇.

We iterate these steps until every clause has been processed.

Example 4.22 We create a gate automaton for the specification in Example 4.21.
Figure 4.29 shows the gate automaton produced by the procedure described

above. Rows and columns denote the values of variables for the automaton states,
for instance the top row contains the states q such that q(access) = false. The left-
most column contains the states assigning no values to the actions parameters. The
unreachable state in position access = true, url = ””, which would correspond to a
specification violation, has been removed. Also, two pairs of column, i.e., mode = 0/2
and mode = 1/3, have been grouped as their states share the same behaviour. Fi-
nally, we did not draw immaterial self loops, i.e., representing transitions that cannot
take place.

Clearly, the procedure described above can be optimised in several ways, e.g.,
removing unreachable states or collapsing groups of equivalent states. Nevertheless,

4.3. S×C×T THROUGH GATE AUTOMATA 95

accessed = false

accessed = true

mode = 1/3mode = 0/2url = ""

fopen(1), fopen(3)

fopen(0), fopen(2)

copen(””)

fopen(1), fopen(3)

fopen(1), fopen(3)

fopen(0), fopen(2)

fopen(0), fopen(2)

copen(””)

copen(””)

fopen(0), fopen(2)

fopen(1), fopen(3)

Figure 4.29: The conversion of a ConSpec specification into a gate automaton.

our purpose is to show that gate automata can be suitably used to encode ConSpec
policies and contracts.

Note that the opposite direction is not possible according to the syntax of Con-
Spec given in Figure 4.28. In other words, we cannot translate a gate automaton
in a ConSpec policy without introducing some modification. First of all, we should
introduce facilities for updating the trust values. This could be done by extending
the syntax and semantics of the ConSpec rules.

Another modification would be needed for allowing the execution of security-
relevant methods, i.e. reactions. Again an extension of the syntax would be needed.
However, this would raise some issues about the semantics of the composition of
two specifications. Indeed, we should discuss whether the actions generated by one
policy should be also processed by the others and in which order. In the next
section we will show how gate automata can be hierarchically organised for dealing
with these issues.

4.3.2 Enforcement environment

The S×C×T workflow, depicted in Figure 4.20, shows the two phases of the applica-
tion deployment process: the evaluation of trustworthiness and the assignment to a
security domain. When an application enters the deployment procedure, i.e., before
its first execution, the trust module decides about the trustworthiness of the code
provider. This amounts to accept the truthfulness of the contract and its source.

If this check is not passed, i.e., the system rejects the vendor’s trustworthiness,
then the application runs in the scope of the policy enforcement mechanism. Oth-
erwise, if the trust check succeeds, the system checks whether the contract complies
with the security policy. In case of compliance, the system executes the applica-
tion under a contract monitoring setting. While the policy enforcement process

96 TRUST-DRIVEN SECURE COMPOSITION

prevents the security violations, the monitoring facility keeps under control the pos-
sible contract violations. When a running program violates its contract, i.e, it tries
to perform in an undeclared way, the system reacts by changing the trust level of
the application provider.

Here we introduce an implementation of the S×C×T runtime support using gate
automata. According to the S×C×T standard model [64, 65], applications run in
the scope of one of the two security domains described above. In both cases, running
programs are dynamically checked for compliance with respect to their contract (i.e.,
contract monitoring process). Moreover, the applications watched by the policies
enforcement facility are checked for possible policy violations.

The platform owners declare their security policies through gate automata either
directly or translating ConSpec policies (see Section 4.3.1). Instead, we assume that
the contracts are always specified through ConSpec.

Starting from a ConSpec contract, we build a corresponding gate automaton
by following the procedure for policies presented in the previous section. The only
difference is that here we replace the third step of the transitions creation procedure
with

3. For all states q̇ s.t. x = ⊥ and for all events α(v̇) s.t. q̇ 6
ᾱ(v̇)
−−→, we add a fresh,

new state q⋆ in Q and a pair of transitions q̇
ᾱ(v̇)
−−→ q⋆ and q⋆

H
−→ q̇ in T .

In this way, as expected, a contract violation leads to a trust penalty. This behaviour
implements the S×C×T reaction to the contract violations.

We use the gate automata specifications of policies and contracts for implement-
ing the S×C×T runtime environment. We consider a program R as a source of
the security-relevant actions, that are the side effects of the programs’ executions.
Moreover, we assume the enforcement environment to be effective, i.e., R can be
suspended before the actual execution of the operation corresponding to the ongo-
ing action. For instance, if R tries to access a resource, so raising an access action,
it actually obtains the permission only after checking the security settings.

The first component of the enforcement environment is the trust management
system (TMS). This component handles the trust weights associated to each agent
and provides an implementation of the two internal actions N and H. While following
the execution of its target, the enforcement environment can perform one or more
actions of type N and H. The TMS receives these signals and increases (decreases)
the target trust level. Note that some TMSs use a finer characterisation of rewards
and penalties, i.e., more than two actions. Nevertheless, this behaviour is fully
compatible with our model. Indeed, we can easily extend the set of internal actions
or simulate it by adding more consecutive transitions.

The enforcement environment also contains a set of gate automata G1, . . . ,Gn

composing the policy pool (PP). The automata in the policy pool are associated
to a certain level of trust 0 6 t 6 1 on which they are inversely ordered, i.e.,

4.3. S×C×T THROUGH GATE AUTOMATA 97

push/pop

PPTMS

R

...

Gk
k

G1
1

N,H

N,H
...

...

tk+1

tk

tn

t1

〈α, 1〉

tR

fout(σ
k+1)

: G1

: Gk
: Gk+1

: Gn

Figure 4.30: The enforcement environment based on gate automata.

1 6 i < j 6 n implies that ti > tj . We also insert the gate automaton obtained
from the contract of R in PP. The level of trust of this automaton is always equal
to 1 and it is the first in the ordering.

When a target R, having trust level tR, starts its execution, the policy pool
instantiates all the gate automata Gi such that ti > tR to the corresponding inter-
face automata Gi

i (see Section 4.2.2). Then, the resulting interface automata are
composed to create an interface automata stack that is applied to R. Note that
the automaton obtained from the contract of R is always in the first position of the
stack, i.e., the stack bottom.

The stack receives the actions performed by R and processes them by passing the
reaction sequences of each automaton to the layer above. More in detail, assuming
that the current state of each interface automaton Gi

i is vi, every layer of the stack
follows this procedure:

1. Gi
i receives a trace σi from the level below;

2. for each element 〈•, i〉 of σi execute the following sub steps:

(a) if • = N (H) then require the TMS to increase (decrease) tR.

(b) otherwise, if • = α compute vi
σi+1

=⇒
〈α,i〉

v′i and pass the control to the layer

above (by invoking this procedure);

3. return the control to the level below.

When R fires some action α, the previous steps are executed starting from the first
layer, representing the contract of R, with σ1 = 〈α, 1〉. The output of the last layer

98 TRUST-DRIVEN SECURE COMPOSITION

(after removing the index k) is a sequence of reactions that have been stimulated
by α, that is, the enforcement result.

As the actions pass through the stack levels, the TMS receives trust adjustment
signals. As a consequence, the TMS updates tR, possibly causing the system to add
or remove one or more automata in the stack.

Figure 4.30 depicts the environment described above. We used G1 to denote the
gate automaton obtained from the contract of R.

4.4 Discussion

In this chapter we described our proposal for an integrated security and trust
paradigm. In particular, the chapter went through the following topics.

• Section 4.1 details the Security-by-Contract-with-Trust model and its features.

• Section 4.2 introduces gate automata as an integrated formalism for specifying
security and trust policies.

• Section 4.3 proposes a strategy for implementing the S×C×T framework through
the application of gate automata.

At the current stage, the relations between security and trust properties are
still under investigation. Some simulations have been carried out in [64, 65]. This
preliminary analysis shows that our approach is technically feasible and a proto-
type is currently under implementation. However, conclusive results have not been
produced yet.

The complexity of studying and providing security assurances on the behaviour
of large scale, distributed systems can be a serious issue during the design and
development of software and services. Many modern systems opted for trust-based
solutions. Concepts like “trust” and reputation proved to be more than sufficient
for mitigating security risks in many practical cases. We think that security analysis
and trustworthiness evaluation systems can be integrated to obtain hybrid solutions
exploiting both the approaches.

Secure Service Composition

This chapter presents our work on secure service composition. Service composition
is crucial in Service-Oriented Computing (SOC). As a matter of fact, almost every
functionality of a service network (directly or indirectly) depend on how the services
compose each other. Composition requests are declared in the implementations of
a service at development time. This means that the development framework must
offer to the programmes the facilities for performing services invocations. After the
deployment of the service, the invocations must be interpreted, according to the
actual network structure, for producing the real composition.

The dynamic composition includes two stages, i.e., choreography and orchestra-
tion [154]. Choreography identifies the end-to-end composition between two services.
Many of the relevant aspects of service choreography consider the cooperation rules,
e.g., the sequence of the exchanged messages and their content. Instead, orchestra-
tion deals with the composition of multiple services in terms of the business process
they generate. Here we mainly focus on the security aspects of the service orches-
tration. From the security perspective, the orchestration process should be carried
out respecting the security requirements (i.e., the policies) of the parts involved in
the composition. As long as the service orchestration is performed automatically,
security verification steps must be included in the procedure.

Our approach consists in proposing a way of supporting the automatic verifica-
tion of the service orchestration. We start in Section 5.1 by introducing the model
that we used for defining services and security policies. Than, we proceed with
the presentation of our framework for the safe composition of orchestration plans
(Section 5.2). Finally, in Section 5.3 we conclude by extending our system with
a mechanism for declaring security prerequisites that services apply to the client
sessions in which they are involved.

5.1 Security issues in open networks

Major work has been done for investigating the interactions between a service and
its clients and how to secure them. As a consequence of these efforts some security
standards have been defined. For instance, WS-SecurityPolicy [40, 75] provides an
XML-based syntax for specifying and enforcing security requirements over services
executions. The effort devoted to the creation of standards for the security aspects

100 SECURE SERVICE COMPOSITION

of the service networks outlines the interest of researchers and industries in finding
reliable security mechanisms for the web services.

Recently, Bartoletti et al. [23], outlined the importance of extending the security
requirements to the whole network structure. In this section we extend the security
model of [23] to the open networks, i.e. service networks having some unspecified
components.

5.1.1 Open networks

Many theoretical frameworks dealing with the security issues of service networks
rely on a theoretical model representing the network or a part of it. For instance,
several authors proposed models based on the notion of session, e.g., see [39, 45,
50, 117]. Generally speaking, a session represents the temporary composition of two
or more services. These models provide a pure framework allowing for a simpler
and more elegant investigation of the properties of the networks, e.g. through static
verification. However, having a static knowledge of all the participants composing
a service network or a complete session can be a quite strong assumption.

Service networks have been proposed for dealing with highly dynamic environ-
ments based on pervasive interoperability [147]. Even though it seems reasonable
that a service developer knows at least a part of the existing services, a prediction
of all the possible sessions that might involve his own service is often unrealistic.
Nevertheless, we would prefer to maintain the advantages deriving from the static
verification of sessions.

Here, we move to different assumptions. We use open sessions to model the,
intrinsically incomplete composition of a group of services in an open network. Open
networks can model the behaviour of service networks without assuming a static
knowledge of the whole network structure. Below we present the advantages of
using open sessions and we use them to model a real-world case study.

Motivations. Service networks are meant to be distributed, large scale systems.
Their complexity poses a barrier to using static techniques for verifying their security
properties. Indeed, even assuming non-circularity in service invocations, that is the
requests chains are always terminating, the number of possible compositions grows
rapidly with the total number of services in the network.

A further issue derives from the incremental development of service networks. In
Section 3.1 we saw how a security verification step can be included in the software
development process. However, a similar solution is not viable for web services. As
a matter of fact, each service is developed independently from the others and it can
join an existing network in any moment. Thus we cannot expect to reduce all the
static analysis operations to a single step of the development process.

Nevertheless, the security properties of service networks can be suitably verified
using static approaches. Also consider that, due to the distributed deployment of

5.1. SECURITY ISSUES IN OPEN NETWORKS 101

the service networks, dynamic monitoring techniques are difficult to apply prop-
erly. Monitoring systems for web services have been proposed in the literature, e.g.
see [171, 165, 19, 92] However, as each service can run on its own physical platform
many visibility issues arise. Moreover, the idea of a centralised monitor watching
(part of) the network seems to be in contrast with purpose of a distributed en-
vironment. Hence, many authors (e.g. see [82, 43, 51]) advocate contract-based
approaches to be the reference models for the security verification of service compo-
sitions and orchestrations.

Bartoletti et al. [23] proposed a language-based approach for defining security
policies directly inside the instructions of a service implementation. Their model
only deals with closed networks, i.e. with services whose components are fully spec-
ified a priori. The resulting composed service is indeed dealt with as a single, large
scale service. However, services are incrementally built, and components may ap-
pear and disappear dynamically. It is then important to also analyse open networks,
i.e. networks having unspecified participants. As a matter of fact, service-oriented
paradigms aim at guaranteeing compositional properties and their behaviour should
be independent from the actual implementation of (possibly unknown) parties.
Moreover, closed networks orchestrated by a global composition plan require to
be completely reorganized whenever a service fails or a new one becomes available.

The main contribution of this section is extending the results of [23] to open
networks. In particular, we will define partial plans that only involve parts of the
known network, i.e. open sessions, and that however will be safely adopted within
any operating context. We also show how these partial plans can be combined
together, along with the composition of the services they come from. As expected,
composability of viable plans is subject to some constraints, and we also outline a
possible way to efficiently check when these constraints are satisfied.

Furthermore, we enrich the contract that a service offers with the requirements
a client must fulfil to be served. This extension accounts for when the execution of
the service is affected by that of the client, e.g. being already registered in a digital
identity list. We propose a procedure for synthesizing these requirements for all the
services that compose a given open network. Note that the requirements generally
depend on all the network components. Hence, to guarantee security we need a
composition plan for computing these requirements and therefore a service cannot
always specify them safely in isolation.

Policy scope. In [23] the security policies are applied to a local scope, i.e. a
limited block of instructions being part of a service implementation. The scope is
defined at development-time through a proper language operator (see Section 5.1.2).
Informally, the meaning of the policy scope is that the policy must be respected
while executing the internal instructions. Dynamically, this amount to say that,
within its scope, the policy is checked against the current execution trace before
each computational step (involving security aspects).

102 SECURE SERVICE COMPOSITION

From a traditional perspective, this method correctly apply for modelling the se-
curity policies of a program running on a single platform (see Section 3.1). However,
some further discussion is needed for web services. Indeed, local policies correspond
to temporal properties defined on the sequence of security-relevant operations, i.e.,
the execution history, performed at runtime. While a single application starts its
execution from an empty trace, a web service is usually invoked after a previous
computation which was carried out elsewhere.

Closed networks simplifies this issue by assuming that all the computational
units executing before the invocation of a service are statically defined. In this way,
when entering the scope of a policy, a set of possible execution history is given. This
set is safe in the sense that it always contains the history that will actually take
place. In this way, the local policies have a well defined security context on which
they can be evaluated.

As we aim at releasing this assumption, i.e. the existence of a static approxi-
mation of the whole network, we need to redefine the behaviour and scope of the
local policies. In particular, here we assume that the validity of a local policy only
depends on the computation taking place within its scope. This means that, when
entering a policy scope, the policy evaluation starts from an empty history. We say
that these policies are hyper-local in order to distinguish them from the standard
local policies that we used so far, e.g. in Section 3.1. As in this section we always
refer to them, for brevity we simply use the expression “local policies”.

Still, hyper-local policies can be suitably used for defining many security proper-
ties of interest. Moreover, they apply pretty well for modelling the call-by-contract
security interactions among web services. Indeed, service invocations can lay in the
scope of a security policy. In this way, the security requirements only flow from the
the caller to the callee. We discuss this aspect and its consequences in Section 5.1.2
when introducing our operational semantics for web services.

We also introduce the notion of security prerequisite in our model. Being ap-
plied to the execution history preceding a service invocation, security prerequisites
complement hyper-local policies. A prerequisite is defined through the same formal-
ism, i.e. usage automata, as a local policy. We use a partial evaluation technique
for automatically synthesising prerequisites starting from a usage automaton and a
service implementation. This part will be discussed in Section 5.3.

Working example. Below we introduce our working example. We start by giving
an informal description of a simple network implementing a travel-booking service.
Figure 5.31 shows how the service network is organised. Rounded boxes denote loca-
tions that host services. Dashed lines contain locations with homogeneous services,
i.e. services offering similar functionalities. Clients contact the travel agency provid-
ing a credit card number for payments and receive back a receipt. Every instance
of the travel agency books exactly one room and one flight. The responsibility of
doing an actual reservation is delegated to booking services. Each booking service

5.1. SECURITY ISSUES IN OPEN NETWORKS 103

Travel Agency

Book− Here− F

Pay−With− Us Pay− On− Line

Booking services

Payment services

Book− Here− A Book− Now − F Book− Now − A

Figure 5.31: A travel booking network

receives a card number and uses it for paying a reservation. Payment services are
in charge of authorising a purchase. A payment service charges the needed amount
on the credit card (possibly after checking some property of the card number), and
returns TRUE. Otherwise, it answers FALSE.

Moreover, we imagine that each service is interested in declaring and verifying
its own security requirements. Clearly, different services focus on different security
aspects, depending on the service resources, interactions, context, etc. For example,
since a booking service invokes a payment service, it would like to “perform at least
one availability check before each payment”; we call this policy ϕBN. Another possi-
ble policy for an efficient booking service says “never execute unnecessary checks”,
referred to as ϕBH. Similarly, the travel agency can declare rules concerning the in-
tended behaviour of the booking services it wants to use. A typical policy of a travel
agency might be “never book twice the same service (accommodation or flight)”,
call it ϕTA. Note that this last policy also involves a functional requirement. Indeed,
the correct behaviour of the travel agency consists in booking exactly one flight and
one hotel. Our formalism is expressive enough to represent both functional and non
functional constraints in our policies.

In this example, the clients of the travel agency are left unspecified, so the
network is open, as one or more components are missing. As a matter of fact,
clients cannot affect at all the security policies introduced so far. We can therefore
check whether this simple network satisfies the constraints specified by the involved
services, regardless of the presence of any clients.

Even though in most cases services do not put explicit security constraints on
their clients, as done here, sometimes it would be helpful to expose policies governing
service usages. This happens in reality. For example, new clients are often required
to register before being allowed to access a service. Example 5.34 considers this
case, further detailed in Section 5.3.2, where we address this more general situation.

104 SECURE SERVICE COMPOSITION

5.1.2 Service structure

Our programming model for service composition is based on λreq, which was intro-
duced in [23]. The syntax of λreq extends the classical call-by-value λ-calculus with
two main differences: security framing and call-by-contract service request. Syntac-
tically, a security framing embraces a term and it represents the scope of a security
policy. Instead, a request denotes the invocation to a remote service. In this section,
we provide the reader with a detailed description of the λreq syntax.

Service networks are sets of services. A service e is hosted in a location ℓ,
e.g. denoting a network address. We assume that there exists a trusted, public
service repository Srv that contains references to available services. Abstractly, an

element of Srv has the form eℓ : τ
H
−→ τ ′, where eℓ is the code of the service, ℓ

is the unique location that hosts the service, τ −→ τ ′ is the type of eℓ and H is its
effect. Types represent a functional signature of the service in terms of input/output
values. Clients requiring a service must specify its type and Srv returns an instance
satisfying it. Instead, an effect H represents the behaviour of the associated service
mainly expressing the security-relevant events. In other words, the effect H provides
the clients with a behavioural contract of the side effects produced by a service that
may affect security.

Usage policies. A usage policy governs the access to resources that we may wish
to protect. A policy ϕ is defined through a corresponding usage automaton Aϕ. Us-
age automata are much like non-deterministic finite state automata (NFA). Briefly,
a usage automaton consists of an input alphabet of events Ev, a finite set of states
Q, an initial state ı, a set of final states F and a set T of transitions labelled by
events.

In order to define the events, we assume as given a denumerable set of variables
Var, ranged over by x, y, ..., a finite set of resources Res, ranged over by {r, r′, r1, ...}, a
finite set of actions Act, ranged over by α, β, . . .These sets are pairwise disjoint. Also,
we let ẋ, ẏ range over Res∪Var. Then, the events belong to Ev ⊆ Act× (Res∪Var),
ranged over by α(ẋ), β(ẏ), . . .

The formal definition of usage automaton in given in Table 5.7.

Transitions are labelled with an event α(ẋ), and we feel free to write q
α(ẋ)
−−→ q′

instead of 〈q, α(ẋ), q′〉). We say that usage automata are parametric over resources,
because ẋ can be a variable that will eventually be bound to an actual resource, so
giving rise to an actual policy. Differently from [28], here we will allow for partial
instantiations, because we wish to deal with open systems, and so some resource
can be still unknown. A usage automaton is (partially) instantiated through a
name binding function or substitution

σ : Res ∪ Var→ Res ∪ Var, such that ∀ r ∈ Res. σ(r) = r

We understand that σ is homomorphically applied to the usage automaton Aϕ. We

5.1. SECURITY ISSUES IN OPEN NETWORKS 105

A usage automaton Aϕ is a 5-tuple 〈Ev, Q, ı, F, T 〉, where

• Ev is the input alphabet,

• Q is a finite set of state,

• ı ∈ Q is the initial state,

• F ⊆ Q is a set of final states,

• T ∈ Q× Ev×Q is a set of labelled transitions.

Table 5.7: Definition of Usage Automaton.

will sometimes write binding functions according to the following grammar

σ ::= {} | {x 7→ ẏ} ∪ σ′

where x is a variable and ẏ can be either a resource or a variable.
Instantiating an automaton Aϕ with σ gives back the automaton Aϕ(σ). Essen-

tially, Aϕ(σ) has the same structure of Aϕ but its transitions set T (σ) is defined to
be

T (σ) = {q
α(σ ẋ)
−−−→ q′ | q

α(ẋ)
−−→ q′ ∈ T}

A sequence of access events η violates an instance of a usage automaton if it leads to
a final state, also called offending. Hence, the accepted language is made of violating
traces. So a trace η violates ϕ (in symbols η 6|= ϕ) whenever there exists a σ such
that Aϕ(σ) accepts η; otherwise, we say that η complies with ϕ (in symbols η |= ϕ).

From a language-theoretic point of view, we say that every instance of usage
automata defines the upper bound of a class of regular languages over the parametric
events alphabet. In symbols

L(Aϕ) =
⋃

σ

L(Aϕ(σ)) = {η | ∃ σ : η ∈ L(Aϕ(σ))}

Hence, the compliance check between a trace η and a usage automaton Aϕ corre-
sponds to verifying whether ∀ σ. η 6∈ L(Aϕ(σ)).

The following property states that instantiating a usage automaton we obtain a
new automaton defining a less restrictive policy.

Proposition 5.2 For each usage automaton Aϕ, mapping σ and trace η

η ∈ L(Aϕ(σ)) =⇒ η ∈ L(Aϕ)

Proof. Straightforward from the definition of L(Aϕ).

106 SECURE SERVICE COMPOSITION

0 1
α(x)

Figure 5.32: A trivial usage automaton (self-loops are omitted).

0 1

2

check(x)

charge(x)
0 1 2

check(x) check(x)

(a) Book-Now policy (ϕBN) (b) Book-Here policy (ϕBH)

0

unbook(x)

1
book(x)

2

book(x)

(c) Travel Agency policy (ϕTA)

Figure 5.33: Security policies as usage automata.

Example 5.23 Let us assume Res = {r} and Act = {α, β}. Now imagine a usage
policy ϕ saying “never α(x)”, while performing β(r) (for some resource r) does not
affect the security status. We model this property through a usage automaton with
two states, defined as follows

Aϕ = 〈{α(x), β(r)}, {0, 1}, 0, {1}, {〈0, α(x), 1〉 〈0, β(r), 0〉, 〈1, β(r), 1〉}〉

Pictorially, we render this automaton in Figure 5.32. From here onwards, we omit
all the immaterial looping transitions, like the ones here labelled β(r). Now consider
the single-event trace α(r). To prove that this trace is compliant with ϕ we should
verify that it is not accepted by any instance of Aϕ. However, the trivial mapping
σ = {x 7→ r} instantiates Aϕ to an automaton that accepts α(r). Instead, any
instantiation would leave the automaton in state 0, when checking compliance of
the trace β(r), which indeed complies with the given policy.

Example 5.24 Consider now the policies ϕBN, ϕBH and ϕTA introduced in Sec-
tion 5.1.1. The policy ϕBN is violated whenever a payment (action charge) is not
preceded by an availability check (action check). We model this policy using the
usage automaton of Figure 5.33a: starting from the initial state 0, the automaton
transits to the safe (i.e., non-final pit) state 1 when catching an action check. (Re-
call that immaterial self-loops are omitted in the drawings.) Otherwise, if a charge

5.1. SECURITY ISSUES IN OPEN NETWORKS 107

e, e′ ::= ∗ unit
r resource
x variable
α(e) access event
if g then e else e′ conditional
λzx.e abstraction
e e′ application
ϕ[e] security framing

reqρ τ
ϕ
−→ τ ′ service request

Table 5.8: The syntax of λreq.

happens, the automaton reaches the final state 2.
Instead, Figure 5.33b shows the automaton for ϕBH. Basically, it counts the

number of actions check performed on a single resource (identified by x).
Finally, the automaton for ϕTA is shown in Figure 5.33c. It is similar to that for

ϕBH, because both constrain the number of actions (check and book respectively)
performed on the same resource. The only difference it that an action book can be
cancelled through its “inverse” unbook.

Syntax of services. We introduce in Table 5.8 the syntax of λreq. Similarly to
the standard λ-calculus, syntactically correct λreq terms are the closed expressions,
i.e. with no free variables, respecting the following grammar. We borrow most
constructs from [23] and [28], but for simplicity we do not have a construct for
creating resources like in [28].

The expression ∗ represents a distinguished, closed, event-free value. Resources,
ranged over by r, r′, belong to finite set Res. Access actions α, β operate on resources
giving rise to events α(r), β(r′), . . . that actually are side effects.

Function abstraction (where z in λzx.e denotes the abstraction itself inside e) and
application are standard. Note that here we use an explicit notation for conditional
branching, the guards of which are defined below. This point will be further clarified
in Section 5.1.3. Security framing applies the scope of a policy ϕ to a program e.
Service request requires more attention. We stipulate that services cannot be directly
accessed by using a public name or address. Instead, clients invoke services through
their public interface, i.e. their type and effect (see Section 5.1.3). A policy ϕ is
attached to the request in a call-by-contract fashion: the invoked service must obey
the policy ϕ. Since both τ and τ ′ can be higher-order types, we can model simple
value-passing interaction, as well as mobile code scenarios. Finally, the label ρ is a
unique identifier associated with the request, to be used while planning services.

108 SECURE SERVICE COMPOSITION

g, g′::= true | [ẋ = ẏ] | ¬g | g ∧ g′ (ẋ,ẏ range over variables and resources)

Table 5.9: The syntax of guards.

We use v to denote values, i.e. resources, variables, abstractions and requests.
Moreover, we introduce the following standard abbreviations: λx.e = λzx.e with
z 6∈ fv(e), λ.e = λx.e with x 6∈ fv(e) and e; e′ for (λ.e′)e.

The abstract syntax of guards is reported in Table 5.9.

Basically, guards can be either the constant true, a syntactic equality check
between the variables and/or resources ([ẋ = ẏ]), a negation or a conjunction. All
the variables of a guard are bound within it. This implies that the free variables
of an expression do not include variables that only occur in guards. We use false
as an abbreviation for ¬true, [ẋ 6= ẏ] for ¬ [ẋ = ẏ] and g ∨ g′ for ¬(¬g ∧ ¬g′). We
also define an evaluation function B mapping guards into boolean values, namely
{tt ,ff }, as follows

B(true) = tt B([ẋ = ẋ]) = tt B([ẋ = ẏ]) = ff (if ẋ 6= ẏ)

B(¬g) =

{

tt if B(g) = ff
ff otherwise

B(g ∧ g′) =

{

tt if B(g) = B(g′) = tt
ff otherwise

Note that B is total, and that also guards containing variables can be evaluated
(according to the second and third rules). In our model we assume resources to be
uniquely identified by their (global) name, i.e. r and r′ denote the same resource if
and only if r = r′. In the following, we will use [ẋ ∈ D] for

∨

d∈D[ẋ = d].

Example 5.25 Consider again the services in Figure 5.31. In order to implement
them as λreq expressions, we assume that the resources include the following: Card,
i.e. the set of credit card numbers, with C, C′ ⊆ Card; Item = {F,A}, i.e. the
resources representing flight and accommodation items to book, with S ∈ Item;
Rec, i.e. the set of certified receipts, with rcpt ∈ Rec; and the set of boolean
resources Bool = {TRUE, FALSE}.

We now specify the services Travel-Agency, Book-Here-S, Book-Now-S (for brevity
we use hereafter -S for either -F or -A), Pay-On-Line and Pay-With-Us through the
following corresponding expressions eTA, eBH−S, eBN−S, ePOL and ePWU.

5.1. SECURITY ISSUES IN OPEN NETWORKS 109

ePWU = λx.if [x ∈ C] then charge(x); TRUE else FALSE

ePOL = λx.if [x ∈ C′] then check(x); charge(x); check(x); TRUE else FALSE

eBH−S = λx.(λy.if [y = TRUE] then book(S) else ∗)

((reqρ Card
ϕBH
−−→ Bool)x)

eBN−S = λx.book(S); (λy.if [y = FALSE] then unbook(S) else ∗)

((reqρ′ Card
ϕBN
−−→ Bool)x)

eTA = λx.ϕTA

[

(reqρ̄ Card −→ 1)x; (reqρ̄′ Card −→ 1)x; rcpt
]

Briefly, ePWU receives a card number x, verifies whether it is a registered one (i.e.
[x ∈ C]) and charges the due amount to x. Service ePOL works similarly, but verifies
money availability (event check) before and after the operation.

Booking services eBH−S require a payment and then, if it has been authorised (i.e.
the resource TRUE has been received), books the flight (accommodation). On the
contrary, eBN−S books the flight (accommodation) and then cancels the reservation
if the payment has been refused. Both eBH−S and eBN−S require the behaviour of the
invoked service to comply with the policies ϕBH and ϕBN.

Finally eTA simply calls two booking service instances and releases the receipt
rcpt of type Rec to the client. Note that now the travel agency applies its policy
ϕTA to the sequential composition of service requests.

Operational semantics. Clearly, the run-time behaviour of a network of services
depends on the way they interact. As already mentioned, requests do not directly
refer to the specific services that will be actually invoked during the execution, but
to their abstract behaviour, i.e. to their type and effect (defined below), only. A
plan resolves the requests by associating them with locations hosting the relevant
services. Needless to say, different plans lead to different executions. A plan is said
to be valid if and only if the executions it drives comply with all the active security
policies. Of course, a service network can have many, one or even no valid plans.

A computational step of a program is a transition from a source configuration
to a target one. In our model, configurations are pairs η, e where η is the execution
history, that is the sequence of events done so far (ε being the empty one), and e is
the expression under evaluation. Actually, the syntax of histories and expressions
is slightly extended with markers [mϕ as explained below in the comment to the rule
for framing. The automaton for a policy ϕ will simply ignore these markers.

Formally, a plan is a (partial) mapping from request identifiers (ρ, ρ′, . . .) to
service locations (ℓ, ℓ′, . . .) defined as

π, π′ ::= ∅ | {ρ 7→ ℓ} | π; π′

An empty plan ∅ is undefined for any request, while a singleton {ρ 7→ ℓ} is only
defined for request ρ to be served by the service hosted at location ℓ. Plan com-
position π; π′ combines two plans. It is defined if and only if for all ρ such that

110 SECURE SERVICE COMPOSITION

(S−Ev1)
η, e→π η′, e′

η, α(e)→π η′, α(e′)
(S−Ev2) η, α(r)→π ηα(r), ∗

(S−If) η, if g then ett else eff →π η, eB(g) (S−App1)
η, e1 →π η′, e′1

η, e1e2 →π η′, e′1e2

(S−App3) η, (λzx.e)v →π η, e{v/x, λzx.e/z} (S−App2)
η, e2 →π η′, e′2

η, ve2 →π η′, ve′2

(S−Frm1) η, ϕ[e]→π η[mϕ , ϕ
m[e] m fresh (S−Frm2) η, ϕm[v]→π η]mϕ , v

(S−Frm3)
η[mϕ η

′, e→π η[mϕ η
′′, e′ η′′ |= ϕ

η[mϕ η
′, ϕm[e]→π η[mϕ η

′′, ϕm[e′]

(S−Req)
eℓ̄ : τ

H
−→ τ ′ ∈ Srv⌋ℓ π(ρ) = ℓ̄ H |= ϕ

η, (reqρ τ
ϕ
−→ τ ′)v →π η, eℓ̄v

Table 5.10: The operational semantics of λreq.

ρ ∈ dom(π) ∩ dom(π′) ⇒ π(ρ) = π′(ρ), i.e. the same request is never resolved by
different services. Two such plans are called modular.

Given a plan π we evaluate λreq expressions, i.e. services, according to the rules of
the operational semantics given in Table 5.10. Actually, a transition should be also
labelled by the location ℓ hosting the expression under evaluation. For readability,
we omit this label.

Briefly, an event α(r) is appended to the current history (possibly after the
evaluation of its parameter), a conditional branching chooses between two possible
executions (depending on its guard g) and application works as usual (recall that v
is a value, i.e. either a resource, a variable, an abstraction or a request). The rule
(S−Frm1) opens an instance of framing ϕ[e] and records the activation in the history
with a marker [mϕ , and in the expression with ϕm[e] (to keep different instantiations
apart we use a fresh m not occurring in the past history η). The rule (S−Frm2)
simply deactivates the framing and correspondingly adds the proper marking]mϕ
to the history. The rule (S−Frm3) checks whether the history at the right of the
m-th instantiation of ϕ respects this policy; in other words if the history after the
activation of that specific instance does not violate ϕ. Recall that all “opening” and
“closing” markers ([mϕ and]mϕ) within a history are all distinct and that the usage
automata skip them all. This is the way we implement our right-bounded local
mechanism.

A service request firstly retrieves the service eℓ̄ that the current plan π associates

5.1. SECURITY ISSUES IN OPEN NETWORKS 111

with ρ within the repository Srv. We assume that services can not be composed in
a circular way. This condition amounts to saying that there exists a partial order
relation ≺ over services: read ℓ ≺ ℓ̄ as ℓ can see ℓ̄. So the rule says that the selected
service must be within the sub-network that can be seen from the client (hosted at
location ℓ, the implicit and omitted label of the transition). This is rendered by the
check eℓ̄ ∈ Srv⌋ℓ = {eℓ′ : τ ∈ Srv | ℓ ≺ ℓ′}. Additionally, the effect of the selected
service is checked against the policy ϕ required by the client. In other words, the
client verifies if its requirement ϕ is met by the “contract” H offered by the service.
If successful, the service is finally applied to the value provided by the client, so
implementing our “call-by-contract”.

We show below a simple execution of the system in our running example.

Example 5.26 Consider the service Book-Here-F as implemented in Example 5.25.
If it is invoked with parameter c ∈ C starting from an empty trace, its execution
under the plan π = {ρ 7→ PWU} follows. Note that this computation complies with
the only policy ϕBH that is activated when the request ρ is evaluated. In the next
section we will formalise this notion.

ε, (eBH−F c)

→π ε, (λzy.if [y = TRUE] then book(F) else ∗)((reqρ Card
ϕBH
−−→ Bool)c)

→π ε, (λzy.if [y = TRUE] then book(F) else ∗)((ePWU)c)

→π ε, (λzy.if [y = TRUE] then book(F) else ∗)
(if [c ∈ C] then charge(c); TRUE else FALSE)

→π ε, (λzy.if [y = TRUE] then book(F) else ∗)(charge(c); TRUE)

→π charge(c), (λzy.if [y = TRUE] then book(F) else ∗)(TRUE)

→π charge(c), if [TRUE = TRUE] then book(F) else ∗

→π charge(c), book(F)

→π charge(c)book(F), ∗

We illustrate below how right-bounded local policies work.

Example 5.27 Let z = λzx.ϕ[α(r); z(x)] and let ϕ be the policy saying that “a
single α(r) is allowed”. Then, we have the following computation (under the empty
plan).

ε, (z ∗)→∅ ε, ϕ[α(r); z(∗)]→∅ [
1
ϕ, ϕ

1[α(r); z(∗)]→∅ [
1
ϕα(r), ϕ

1[z(∗)]

Note that the last transition is possible because α(r) |= ϕ. Then the computation
proceeds as follows.

→∅ [
1
ϕα(r), ϕ

1[ϕ[α(r); z(∗)]]→∅ [
1
ϕα(r)[

2
ϕ, ϕ

1
[

ϕ2[α(r); z(∗)]
]

112 SECURE SERVICE COMPOSITION

H,H ′ ::= ε empty
h variable
α(ẋ) access event
H ·H ′ sequence
H +H ′ choice
ϕ[H] security framing
µh.H recursion
gH guard

Table 5.11: The syntax of history expressions.

The last configuration is stuck. Indeed, a further step would lead to the configuration
[1ϕα[

2
ϕα, ϕ

1[ϕ2[z(∗)]]. This causes a security violation, in spite of the fact that the
second instance of ϕ is satisfied by the suffix α of the history after the marker [2ϕ.
Indeed, the history after the first instance does not satisfy ϕ: α[2ϕα 6|= ϕ (recall that
the marker [2ϕ is invisible to ϕ).

5.1.3 Type and effect system

We now introduce our type and effect system for λreq. Our system builds upon
[23, 26], aiming at better approximating service behaviour through more precise
history expressions. For that, we introduce two new elements: effects with guards
and a new typing rule that handles them. A key point is that guards generate
invariants that we can exploit for validating the service network even when one or
more resources are unspecified.

History expressions We statically check services to comply with given security
policies. To do that we soundly over-approximate the behaviour of λreq programs by
history expressions, that denote sets of histories. Table 5.11 contains the abstract
syntax of history expressions, which extends those of [23] in the explicit treatment
of guards.

A history expression can be empty (ε), a single access event to some resource
(α(r) or α(x)). Also, a history expression can be obtained through sequential com-
position (H · H ′) where we assume H · ε = ε · H = H . History expressions can be
combined through non-deterministic choice (H + H ′) and we feel free to consider
“+” associative and to use sometimes the standard abbreviation

∑

i∈{1,...,k}Hi, for a
non-deterministic choice among k history expressions. Moreover, we use safety fram-
ing ϕ[H] for specifying that all the execution histories represented by H are under
the scope of the policy ϕ. Additionally, µh.H (where µ binds the free occurrences

5.1. SECURITY ISSUES IN OPEN NETWORKS 113

α(ẋ)
α(σẋ)
−−−→σ ε

H
a
−→σ H ′

H ·H ′′ a
−→σ H ′ ·H ′′

H
a
−→σ ε

H ·H ′ a
−→σ H ′

H
a
−→σ H ′

gH
a
−→σ H ′

σ |= g
H

a
−→σ H ′′

H +H ′ a
−→σ H ′′

H ′ a
−→σ H ′′

H +H ′ a
−→σ H ′′

ϕ[H]
[ϕ
−→σ H·]ϕ]ϕ

]ϕ
−→σ ε

H{µh.H/h}
a
−→σ H ′

µh.H
a
−→σ H ′

JHKσ = {a1 · · · an | H
a1−→σ · · ·

an−→σ Hn} n > 0; ai ∈ Ev ∪ {[ϕ,]ϕ}

Table 5.12: The semantics of history expressions.

of h in H) represents recursive history expressions. Finally, we introduce guarded
histories gH (where the guard g is defined according to the syntax of Definition 5.9).

The operational semantics function in Table 5.12 maps a history expression H to
a set of histories H. Intuitively, the semantics of a history expression H contains all
the prefixes of all the traces that H may perform. The traces of a history expression
are produced according to the rules of a Labelled Transition System. We write
H

a
−→σ H

′ to denote that, under the substitution σ, H performs a and reduces to
H ′.

We now introduce the semantics of history expressions. Basically, each history
expression denotes a set of histories.

The semantics operator J·K· maps a history expression H into a set of histories
H, where substitutions are the same as in Section 5.1.2.

As expected, an expression α(ẋ) can transit to ε while firing the event α(σ(ẋ))
(recall that ẋ stands for either a resource r or a variable x). Sequential composition
H · H ′ and non-deterministic choice H + H ′ behave in the usual way. A policy
framing ϕ[H] adds a special event ([ϕ) to denote the policy activation point and
appends a corresponding deactivation event, i.e.]ϕ, at the end of the scope of the
policy. The history expression gH behaves as H if σ satisfies g (in symbols σ |= g).
Satisfiability of a guard g through a substitution σ is equivalent to check whether
B(σg) = tt (remember that B is total). Finally, µh.H behaves as H where all the
free instances of h have been replaced by µh.H .

5.1.4 Typing relation

We define types and type environments in the usual way. Type environments are
defined in a standard way as mappings from variables to types. Types can be either

114 SECURE SERVICE COMPOSITION

τ, τ ′ ::= 1 | R,R′ ⊆ Res | τ
H
−→ τ ′ Γ,Γ′ ::= ∅ | Γ; x : τ

(T-Unit) Γ, ε ⊢g ∗ : 1 (T-Res) Γ, ε ⊢g r : R ⊆ Res (T-Var) Γ, ε ⊢g x : Γ(x)

(T-Abs)
Γ;x : τ ; z : τ

H
−→ τ ′,H ⊢g e : τ

′

Γ, ε ⊢g λzx.e : τ
H
−→ τ ′

(T-Ev)
Γ,H ⊢g e : R

Γ,H ·
∑

r∈R
α(r) ⊢g α(e) : 1

(T-App)
Γ,H ⊢g e : τ

H′′

−−→ τ ′ Γ,H ′ ⊢g e
′ : τ

Γ,H ·H ′ ·H ′′ ⊢g e e
′ : τ ′

(T-Frm)
Γ,H ⊢g e : τ

Γ, ϕ[H] ⊢g ϕ[e] : τ

(T-Wkn)
Γ,H ⊢g e : τ σ |= g JHKσ ⊆ JH ′Kσ

Γ,H ′ ⊢g e : τ

(T-If)
Γ,H ⊢g∧g′ e : τ Γ,H ⊢g∧¬g′ e

′ : τ

Γ,H ⊢g if g
′ then e else e′ : τ

(T-Str)
Γ,H ⊢g e : τ g ⇒ g′

Γ, g′H ⊢g e : τ

(T-Req)
I = {H | eℓ′ : τ

H
−→ τ ′ ∈ Srv⌋ℓ ∧ H |= ϕ}

Γ, ε ⊢g reqρ τ
ϕ
−→ τ ′ : τ

∑
H∈I H

−−−−−→ τ ′

Table 5.13: Types, type environment and typing relation.

base types, i.e. unit or resources, or higher-order types τ
H
−→ τ ′ annotated with the

history expression H . Resources belong to subsets R,R′, . . ., e.g. Bool and Card
in several examples in this paper. Note that, as expected, service interfaces (see
Section 5.1.2) published on the service repository Srv are simply higher-order types
annotated with a location identifier ℓ.

A typing judgement has the form Γ, H ⊢g e : τ and means that the expression e
is associated with the type τ and the history expression H . The guard g labelling
the ⊢ records information about the branchings passed through during the typing
process. Table 5.13 shows the definitions of types, type environment and the type
and effect system.

We require the repository to be trusted — this is the only trust requirement
we put on our framework. Consequently, to be included in Srv, services must be
well-typed with respect to our type and effect system, i.e.

eℓ : τ
H
−→ τ ′ ∈ Srv =⇒ ∅, ε ⊢tt eℓ : τ

H
−→ τ ′

We briefly comment on the typing rules. We borrow most of them from [23],

5.1. SECURITY ISSUES IN OPEN NETWORKS 115

except for those dealing with guards, namely (T-If), (T-Str) and (T-Wkn). The rules
(T-Unit, T-Res, T-Var) for ∗, resources and variables are straightforward. An event
has type 1 and produces a history that is the one obtained from the evaluation
of its parameter increased with the event itself (T-Ev). Note that, since the set of
resources is finite, an event only has finitely many instantiations.

An abstraction has an empty effect and a functional type carrying a latent effect,
i.e. the effect that will be produced when the function is actually applied (T-Abs).
The application moves the latent effect to the actual history expression and con-
catenates it with the actual effects according the call-by-value semantics (T-App).
Security framing extends the scope of the property ϕ to the effect of its target
(T-Frm).

The rule for conditional branching says that if we can type e and e′ to the same τ
generating the same effect H , then we can extend τ and H to be the type and effect
of the whole expression (T-If). Moreover, in typing the sub-expressions we take into
account the guard g′ and its negation, respectively. Indeed, the rule requires that
the expression e has got type τ under the guard g ∧ g′, as e will only be executed if
g′ is true. Of course also the conditions collected so far in g should be true, which in
turn enable the whole if g′ then e else e′ to occur at run-time. Symmetrically for
e′.

Similarly to abstractions, service requests have an empty effect (T-Req). However,
the type of a request is obtained as the composition of all the types of the possible
servers. In particular, the resulting latent effect is the (unguarded) non-deterministic
choice among them. Note that we only accept exact matching for input/output
types. A more general approach would require to define a sub-typing relation.
However, such an extension is out of the scope of this work and it is easy, following
the proposal of [23], to which we refer the interested reader for details.

The last two rules are for weakening and strengthening. The first (T-Wkn) states
that is always possible to make a generalisation of the effect inferred from an ex-
pression e, possibly losing precision. In particular, we say that in typing e a history
expression H can be replaced by H ′ provided that H ′ denotes a superset of the his-
tories denoted by H under any possible environment σ, provided that it satisfies g.
Finally, (T-Str) applies a guard g′ to an effect H provided that ∀ σ.σ |= g ⇒ σ |= g′,
abbreviated by g ⇒ g′. This rule says that we can use the information stored in g
for wrapping an effect in a more precise guarded context.

A few examples of typing derivations follow. Recall that resources include credit
cards (C, C′ ⊆ Card), receipts (Rec) and boolean values (Bool).

Example 5.28 Let ePWU be the service introduced in Example 5.25, then the follow-
ing derivation is possible (dots stands for trivial or symmetrical derivations)

116 SECURE SERVICE COMPOSITION

(T-Abs)

(T-If)

(T-Abs)

...

x : Card, [x ∈ C] charge(C) ⊢[x∈C] charge(x); TRUE : Bool

...

x : Card, [x ∈ C] charge(C) ⊢true IF : Bool

∅, ε ⊢true ePWU : Card
[x∈C]charge(C)
−−−−−−−−→ Bool

where
charge(C) =

∑

c∈C charge(c) and IF = if [x ∈ C] then charge(x); TRUE else FALSE.

Similarly, we observe that

∅, ε ⊢true ePOL : Card
[x∈C′]check(C′)charge(C′)check(C′)
−−−−−−−−−−−−−−−−−−−−→ Bool

Example 5.29 Consider now eBH−S from Example 5.25. For the rightmost expres-
sion we can derive

(T-App)

x : Card, ε ⊢true reqρCard
ϕBH
−−→ Bool : τ x : Card, ε ⊢true x : Card

x : Card, [x ∈ C]charge(C) ⊢true (reqρCard
ϕBH
−−→ Bool)x : Bool

where

τ = Card
[x∈C]charge(C)
−−−−−−−−→ Bool

Moreover we can derive

(T-Str)

(T-If)

Γ, book(S) ⊢[y=TRUE] book(S) : 1

Γ, [y = TRUE]book(S) ⊢[y=TRUE] book(S) : 1

Γ, ε ⊢[y 6=TRUE] ∗ : 1

Γ, [y = TRUE]book(S) ⊢[y 6=TRUE] ∗ : 1

Γ, [y = TRUE]book(S) ⊢true if [y = TRUE] then book(S) else ∗ : 1

(T-Wkn)

where Γ = x : Card; y : Bool. Combining the two we obtain

∅, ε ⊢true eBH−S : Card
[x∈C]charge(C)·[y=TRUE]book(S)
−−−−−−−−−−−−−−−−−−→ 1

Similarly, the result of typing eBN−S is

∅, ε ⊢true eBN−S : Card
book(S)·[x∈C′]check(C′)charge(C′)check(C′)[y=FALSE]unbook(S)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1

5.1. SECURITY ISSUES IN OPEN NETWORKS 117

Example 5.30 Consider now the term eTA. The following derivation is possible

(T-Req)

(T-App)

...

x : Card, ε ⊢true reqρ̄ Card −→ 1 : Card
H+H′

−−−−→ 1 x : Card, ε ⊢true x : Card

x : Card,H +H′ ⊢true (reqρ̄ Card −→ 1)x : 1

(T-Var)

where
H = [x ∈ C]charge(C) · [y = TRUE]book(S)

H ′ = book(S) · [x ∈ C′] check(C′)charge(C′)check(C′) · [y = FALSE]unbook(S)

Then, we can type the whole service as follows

∅, ε ⊢true eTA : Card
ϕTA[(H+H′)·(H+H′)]
−−−−−−−−−−−−→ Rec

Our type and effect system produces history expressions that approximate the
run-time behaviour of programs. The soundness of our approach relies on producing
safe history expressions, i.e. any trace produced by the execution of an expression
e (under any valid plan) is denoted by the history expression obtained typing e.
To prove type and effect safety we need the following lemmata. Lemma 5.1 states
that type and effect inference is closed under logical implication for guards, and
Lemma 5.2 says that history expressions are preserved by programs execution.

Lemma 5.1 If Γ, H ⊢g e : τ and g′ ⇒ g then Γ, H ⊢g′ e : τ

The histories denoted by history expressions are slightly different from those
produced at runtime. To compare histories of these two kinds, we introduce below
the operator ∂, that removes labels from markers of framing events:

ε∂ = ε (α(ẋ)η)∂ = α(ẋ) · (η∂) ([mϕ η)
∂ = [ϕη

∂ (]mϕ η)
∂ =]ϕη

∂

Lemma 5.2 (Subject reduction) Let Γ, H ⊢g e : τ and η, e →∗
π η

′, e′. For each
g′ such that g′ ⇒ g, there exists H ′ such that Γ, H ′ ⊢g′ e

′ : τ and ∀σ.σ |= g′ =⇒
(η′JH ′Kσ)∂ ⊆ (ηJHKσ)∂

Now, the soundness of our approach is established by the following theorem,
where we overload η to denote both a history generated by the operational semantics
of an expression e (i.e. possibly containing framing markers), and a history belonging
to the denotational semantics of a history expression H (i.e. without markers).

Theorem 5.1 (Type safety)
If Γ, H ⊢true e : τ and ε, e→∗

π η
′, v, then ∀ σ. ∃ η ∈ JHKσ such that η = (η′)∂.

We now define the notion of validity for a history expression H . The validity of
H guarantees that the expression e, from which H has been derived, will raise no
security violations at runtime.

118 SECURE SERVICE COMPOSITION

0 1 2
α(x) α(x)

Figure 5.34: A policy saying “never two actions α on the same resource”.

Definition 5.7 (Validity of History Expressions)

A history η is balanced iff it is produced by the following grammar.

B ::= ε | α(ẋ) | [ϕB]ϕ | BB
′

H is valid iff ∀ σ and ∀ η[ϕη
′]ϕη

′′ ∈ JHKσ (with η′ balanced) then η′ |= ϕ.

The type and effect system of [23] has no rule for strengthening like our rule
(T-Str). The presence of this rule in our system makes it possible to discard some
of the denoted traces. These traces correspond to executions that, due to the actual
instantiation of formal parameters, can not take place. Consequently, our type and
effect system produces more compact and precise history expressions than those of
[23]. This enables the verification algorithm to run faster and to produce fewer false
positives, so improving both the efficiency and effectiveness of the original method.
Example 5.31 shows that strengthening is crucial in keeping small the size of a
history expression H .

As a matter of fact, the validity of H is established through model-checking.
Roughly, the model-checking procedure extracts each policy instance from a pro-
gram. Then, the model-checker verifies whether the set of traces violating the policy
and the set of histories denoted by expression in its scope have an empty intersec-
tion. If they share no traces, the program cannot violate the policy. This problem
is known to be polynomial in the size of the history expression H . We refer the
interested reader to [29].

Example 5.31 Consider the policy ϕ defined by the automaton

Aϕ = 〈{α}, {0, 1, 2}, 0, {2}, {〈0, α(x), 1〉, 〈1, α(x), 2〉}〉

depicted in Figure 5.34. Briefly, the automaton recognizes the (illegal) traces con-
taining two α actions on the same resource x. Then consider the program

e = λy.λy′.ϕ[if [y 6= y′] thenα(y);α(y′) else ∗]

We type e in this way:

5.2. MODULAR PLANS FOR SECURE SERVICE COMPOSITION 119

(T-Str)

(T-If)

(T-Frm)

(T-Abs)

(T-Abs)

..

.

y : τ ; y′ : τ ′, H ⊢[y 6=y′] α(y);α(y
′) : 1

..

.

y : τ ; y′ : τ ′,H ⊢[y=y′] ∗ : 1

y : τ ; y′ : τ ′,H ⊢true if [y 6= y′] then α(y);α(y′) else ∗ : 1

y : τ ; y′ : τ ′, ϕ[H] ⊢true ϕ[if [y 6= y′] then α(y);α(y′) else ∗] : 1

y : τ, ε ⊢true λy
′.ϕ[if [y 6= y′] then α(y);α(y′) else ∗] : τ ′

ϕ[H]
−−−→ 1

∅, ε ⊢true e : τ −→ τ ′
ϕ[H]
−−−→ 1

(T-Wkn)

Where H = [y 6= y′]α(y)α(y′) and the dots represent trivial derivations. In
order to verify whether ϕ[H] is valid, we must check if there is some σ such that
[y 6= y′]α(y)α(y′) 6|= ϕ. However, we can easily observe that, for any substitution
σ, J[y 6= y′]α(y)α(y′)Kσ ⊆ {α(σy)α(σy′) | σy 6= σy′}∪{α(σy)}∪{ε} while L(Aϕ) =
⋃

σ{α(σx)α(σx)}. Hence, the two sets above have an empty intersection and ϕ[H]
is valid.

Note that, if we do not apply our strengthening rule when typing e, we can not
prove the program to be policy-compliant, as it happens with the proposal in [23, 26]
that in this case results in a false positive.

5.2 Modular plans for secure service composition

In this section we introduce our mechanism for plan composition. Roughly, we define
a composition strategy allowing for synthesizing a global orchestration plan. The
main issue here is defining the necessary conditions under which partial plans can
be safely composed. The result is a plan that composes the network services in a
secure manner.

5.2.1 Properties of Plans

In Section 5.1.2 we saw how plans drive the execution of services turning service
requests into actual service invocations. We can also interpret plans as static de-
scriptions of the dynamic interactions among services. In other words, a plan can
be used to replace services requests with the code of the service to which the re-
quest is mapped. Note that, applying this substitution process is always terminating
since the binding between a request and a service in statically defined. We call this
semantics preserving transformation flattening, and flat a service without requests.

The definition is given in Table 5.14. Intuitively, flattening an expression e with
increasingly more defined plans (i.e. plans containing more binding) reduces the set
of histories associated with e. This property is made precise below.

Theorem 5.2 Given two plans π and π′, if Γ, H ⊢g e |π: τ and
Γ, H ′ ⊢g e |π;π′: τ then ∀ σ.JH ′Kσ ⊆ JHKσ

120 SECURE SERVICE COMPOSITION

∗ |π= ∗ r |π= r x |π= x

α(e) |π= α(e |π) (λzx.e) |π= λzx.e |π (e e′) |π= e |π e′ |π

ϕ[e] |π= ϕ[e |π] (if g then e else e′) |π= if g then e |π else e′ |π

(reqρ τ
ϕ
−→ τ ′) |π=

{

eℓ |π if π(ρ) = ℓ ∧ eℓ : τ
Hℓ−−→ τ ′ ∈ Srv ∧ Hℓ |= ϕ

reqρ τ
ϕ
−→ τ ′ otherwise

Table 5.14: The flattening operator.

The following definition introduces the key concept of plan completeness. Intu-
itively, a plan π is complete with respect to a service e if it is valid and makes e flat.
Complete plans play a crucial role in the secure composition of services.

Definition 5.8

Given a closed term e, a plan π is said to be complete for e if and only if

1. e |π is flat and

2. for all H such that ∅, H ⊢true e |π: τ , it is the case that H is valid.

Note that, according to the previous definition, we check the completeness of
plans by typing flattened services. However, this method is not suitable for real
scenarios. Indeed, typing a service is usually a cumbersome operation that should
be applied only if necessary. Moreover, in general we cannot assume the code of the
services to be publicly accessible to external entities, e.g. an orchestrator. Hence,
implementing this approach could be infeasible.

Nevertheless, more efficient techniques for checking plans exist. For instance, it
is possible to extend the syntax of the history expressions and the rules of the type
and effect system. This method requires history expressions to be translated in a
normal form (i.e. regularised and linearised) and it also need a more complex model-
checker for verifying the validity of the history expressions. We refer the interested
reader to [23].

However, more complex and efficient approaches do not affect the following dis-
sertation. Indeed, here we aim at defining a bottom-up strategy for composing plans.
Such a result is independent from which method is used for the verification of plans,
we only require it to be effective.

Complete, modular plans for services can be composed preserving completeness,
as stated below.

Lemma 5.3 Given two terms e,e′ and two modular plans π,π′ complete for e and
e′, respectively, then π; π′ is complete for both e and e′.

5.2. MODULAR PLANS FOR SECURE SERVICE COMPOSITION 121

We now state a theorem characterising our notion of composition. Unfortu-
nately, we cannot aim at a full compositionality, because history validity itself is not
compositional. The reason why is that we follow a history-dependent approach to
security. The following example suffices to make this point. Let ϕ say “never α(r)
twice”. Clearly, α(r) complies with ϕ, but α(r)α(r) does not.

Lemma 5.3 above helps in finding conditions that permit to obtain secure services
by putting together components already proved secure. We shall then outline a
way of efficiently reuse the proofs of validity already known for components, so to
incrementally prove the validity of a plan for the composed service. (Recall that
services are closed expressions, typable in an empty environment.)

Theorem 5.3 Let πi be modular plans complete for services ei, and let ∅, Hi ⊢gi
ei : τi, i = 0, 1. Then,

• π0; π1 is complete for both α(e0) and if g then e0 else e1

• ∀ϕ, if H0 |= ϕ then

- π0; π1 is complete for ϕ[e0]

- {ρ 7→ ℓ}; π0 is complete for reqρ τ
ϕ
−→ τ ′, with eℓ = e0 and eℓ : τ

H0−→ τ ′ ∈
Srv

• if τ0 = τ1
H′

0−→ τ ′ and H0 ·H1 ·H
′
0 is valid, then π0; π1 is complete for e0e1

Example 5.32 Consider again the service network of introduced in Section 5.1.1.
We typed the services of the network in Section 5.1.3 and we defined their security
policies in Figure 5.33.

It is immediate to verify that the plans π1 = {ρ 7→ PWU} and π2 = {ρ′ 7→ POL}
are modular and complete for Book-Here-F (Book-Here-H) and Book-Now-H (Book-
Now-F), respectively (actually they are such for the expressions eBH−F, eBH−H, eBN−H

and eBN−F).

We now obtain a plan for the service Travel Agency by composing the above two
plans (recall that sequentialization is encodable as a simple form of application).
To find a valid plan we have to check the validity of the history expressions arising
when mapping the requests of eTA into actual servers. The number of composition
plans for the small network rooted in the Travel Agency service is 28 (24 pairs for
the Travel Agency and 24 mappings for the booking services) However, we already
discovered that only one plan, i.e. π1; π2, is viable for the booking services. Hence,
we can focus on finding an extension of π1; π2 also satisfying ϕTA. This consists of
verifying only 24 history expressions, i.e. those arising from the possible mappings
of the two requests ρ̄ and ρ̄′ (see Example 5.25) into the four booking services.

122 SECURE SERVICE COMPOSITION

2 41 3

Travel Agency

Pay−With− Us Pay− On− Line

Book− Here− F Book− Here− A Book− Now − F Book− Now − A

Figure 5.35: Safe plans for the travel booking network

We can prove the following eight plans to be safe:

{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BH− F, ρ̄′ 7→ BH− H}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BH− F, ρ̄′ 7→ BN− H}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BN− F, ρ̄′ 7→ BH− H}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BN− F, ρ̄′ 7→ BN− H}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BH− H, ρ̄′ 7→ BH− F}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BH− H, ρ̄′ 7→ BN− F}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BN− H, ρ̄′ 7→ BH− F}
{ρ 7→ PWD, ρ′ 7→ POL, ρ̄ 7→ BN− H, ρ̄′ 7→ BN− F}

As a matter of fact, ϕTA requires “never book twice the same resource” (see
Fig. 5.33c). However, each booking service performs at most one book action on a
single resource. Hence, we are guaranteed that invoking two booking services acting
on different resources ϕTA cannot be violated.

Figure 5.35 shows the eight valid composition plans. Unlabelled arrows denote
fixed mapping (shared by every plan). Numbered arrows represents the mappings
for the two request of Travel Agency. Odd arrows point to flight booking services,
while even arrows point to hotel booking services. Accordingly to what we said
above, valid plans corresponds to a pair of these arrows where the first is odd and
the second is even or vice versa.

In conclusion, starting from a space of 28 possible composition plans for the
network rooted in Travel Agency, we discharged many, potentially unsafe plans and
we detected few of them (8) that can be proved valid.

5.2.2 The “Buy Something” Case Study

Hereafter we present our working example which models the W3C “buy something”
scenario for web services [187]. We take into account the web service templates

5.2. MODULAR PLANS FOR SECURE SERVICE COMPOSITION 123

Figure 5.36: The “buy something” scenario.

of the original “buy something” specification and we imagine a simple network
implementing it. Then we add to the actual services some security requirement
that the network should respect at runtime.

The UML class diagram in Figure 5.36 shows the entities composing the net-
work and their relationships. On the left hand side, web services, denoted by the
<<Web Service>> stereotype, are specified through a functional interface, that is a
specification of the service operations given through signatures.

The right side shows instances of services. Solid lines link a service instance to
the interface it implements. Instances can use internal resources for managing their
state. When an actual service implements a service interface it has to provide an
implementation, e.g. a method or a procedure, for each of the declared operations.

Dashed lines denote service composition relations, i.e. they connect a service
instance to a service interface whenever one or more of the source operations im-
plementations invoke (an operation of) the pointed service. Note that these rela-
tionships are not defined by the web service interface. Indeed, each service instance
implementing a given interface must simply guarantee the interface functionalities.

The service interfaces involved in this case study are: Supplier, Cart Service,
Credit Card Service and Certification Service. We briefly comment on them.

A Supplier is a service offering operations for web-based selling services. These
operations are:

124 SECURE SERVICE COMPOSITION

• login: a client provides its identity (Client), receives back a welcome message
(of type String) and starts a new session.

• logout : a client provides its identity (Client) and closes its current session.

• add : a client adds an item (Item) to its current set of items.

• buy : a client uses its credit card (Card) to buy the set of items that have
been added during the session and receives back a certificated receipt (of type
Certificate).

A Cart Service provides the basic support for handling electronic baskets. Its oper-
ations are:

• add : an item (Item) is added to the cart and a boolean acknowledgement is
returned.

• total : the total value (Amount) of the current cart content is returned.

The Credit Card Service offers a single, on-line payment operation returning a cer-
tified receipt (having type Certificate) whenever a certain amount (Amount) is
charged on the client credit card (Card). Finally, the Certification Service sim-
ply takes a document (Document) and returns a signed version of it (Certificate).

For each of these interfaces the network contains at least one instance. The
Restaurant Supplier is the only implementation of the Supplier class. Intuitively,
it offers a public catalogue of items, stored in a public list. Moreover, its methods
invoke other services as part of their implementation. In particular, the Restaurant
Supplier relies on a Cart Service to handle the shopping sessions details of its clients
and a Credit Card Service to perform payments. Both E-Basket and E-Shopper
implements of the Cart Service specification. They use a public resource, i.e. cart,
and they refer to no external service in their implementation. Two alternative
implementations for the Credit Card Service exist in the network: ABCredit and
Easy Credit. These two instances have a private, static resource called cClient
containing the set of the known clients. Moreover, these instances both require a
Certification Service to sign their receipts. Finally, two instances of the Certification
Service are in the network.

Policies and network structure. We imagine that each service defines its own
security requirements using local policies. Clearly, different service instances can
focus on different security aspects and can require customised security policies. For
instance, Restaurant Supplier can be interested in preventing the undesired usage
of its clients’ personal data. Hence, it can apply a policy saying “never store details
of credit cards” on the invoked services. Similarly, the instances of the Credit Card
Service can specify requirements on the Certifying Service behaviour. Examples of

5.2. MODULAR PLANS FOR SECURE SERVICE COMPOSITION 125

0 1
store(c)

a) Restaurant Supplier buy policy (ϕRS)

read(doc)
0 1

connect(addr)
2

b) ABCredit policy (ϕAB)

0 1 2

read(doc)

read(doc)

sign(v)

c) Easy Credit policy (ϕEC)

Figure 5.37: Usage automata.

policies of this kind are “never open connections after reading the target document”
or “do not read more than what is actually signed”.

The usage automata in Figure 5.37 correspond to the properties informally de-
scribed above. For the sake of readability we use here the graphical notation to
define usage automata. Nevertheless, usage automata can be defined within the
service implementation or specification, for instance using the approach shown in
Section 3.1.

Finally, Figure 5.38 shows the deployment of web services on physical platforms.
Again, we assume a simple deployment strategy in which the methods provided by
a single instance of a service are place on the same hosting location. However, our
model also admits distributed deployment strategies. Indeed, the only requirement
that we make on the deployment of services is that there exists no ambiguity between
their locations. In this example, all the locations are identified by a public address
and the functionalities installed on them are associated to a local port. In this way,
each method is uniquely identified inside the network by a pair of coordinates, i.e.
the address of its host and its local port.

The deployment diagram has been enriched with relationships, denoted by solid
lines, representing all the possible service compositions. A line connects a client,
on the left, to a server, on the right, when they are compatible according to the
specification of Figure 5.36. Clearly, only one server will be chosen at runtime.
Thus, many of the represented connections will not arise during a single execution
of this network.

This network is intrinsically incomplete because there are no clients for the

126 SECURE SERVICE COMPOSITION

Figure 5.38: Services deployment.

Restaurant Supplier service. However, the mentioned security policies do not in-
volve any aspect of the possible clients behaviour. Indeed, all the services only
define security constraints over their own traces and on those of the services they
invoke. In particular, each service could be interested in verifying whether the in-
teraction with others satisfies the existing policies or not.

Services implementation. Here we propose an implementation of some of the
functions involved in the “buy something” case study. We start by introducing
some abbreviations that we use in order to make our presentation more compact
and readable.

let x = e in e′ = (λx.e′) e

〈v, v′〉 = λf.(fv)v′

fst = λx.λy.x

snd = λx.λy.y

τ × τ ′ = (τ −→ (τ ′ −→ τ ′′)) −→ τ ′′ for some τ ′′

According to the deployment diagram in Figure 5.38 we give an implementation
of the functions buy, pay and certify as shown in Table 5.15. In words, the services
of Table 5.15 behave as follows.

5.2. MODULAR PLANS FOR SECURE SERVICE COMPOSITION 127

e(1,4) = λx.let a = (reqρ1 1 −→ Amount) ∗ in

(reqρ′1 Amount× Card
ϕRS
−−→ Certificate)〈a, x〉

e(4,1) = λx.let a = (fst x) in let c = (snd x) in

if [c ∈ cCards]

then access(c); charge(a); (reqρ4 Document
ϕAB
−−→ Certificate)rcpt

else store(c); (reqρ′4 Document −→ Certificate)empty

e(5,1) = λx.let a = (fst x) in let c = (snd x) in

if [c ∈ cCards]

then access(c); charge(a); (reqρ5 Document
ϕEC
−−→ Certificate)rcpt

else (reqρ′5 Document −→ Certificate)empty

e(6,1) = λzx.let c = if [x = empty] then cert else read(x); sign(∗); z x in
connect(host); c

e(7,1) = λzx.if [x = empty] then cert else

read(x); let c = z x in sign(∗); c

Table 5.15: A possible implementation of buy, pay and certify.

• e(1,4) implements the function buy. It receives a credit card, denoted by the
variable x, retrieves an amount to pay, through a proper invocation, stores the
obtained value in the variable a and performs a payment request using the
pair 〈a, x〉. Note that the first request has no policy label. This means that
no security constraints are put on the actually invoked service. Instead, the
second request carries on a reference to the policy ϕRS (see Figure 5.37).

• e(4,1) and e(5,1) both implement the method pay. The both of them check
whether the received credit card number, associated to x, belongs to a known
client ([c ∈ cCards]). If it is the case, they access the card details, charge
the payment amount and certify the customer receipt (rcpt) through a proper
invocation to a certifying service. Otherwise, they return an empty certificate.
The two instances apply their own security policies (ϕAB and ϕEC) on the cer-
tification requests whenever they involves a non-empty receipt retrieval. The
main difference between the two instances is that e(4,1) stores the credit card
number before producing the empty certificate while e(5,1) does not.

• e(6,1) and e(7,1) implement the operation certify. The former recursively reads
and signs the document x until the end is reached ([x = empty]). Then, when
the process terminates, e(6,1) opens a connection with host and returns the
produced certificate c. Instead, e(7,1) first reads the whole document x and
then performs all the signing actions before returning c.

We use the following example to show an instance of computation for the previ-

128 SECURE SERVICE COMPOSITION

ously presented services.

Example 5.33 Consider the implementation of pay given through e(4,1). We sim-
ulate the invocation of the function pay with actual parameter 〈ā, c̄〉, where c̄ 6∈
cCards. The execution takes place under a plan π mapping ρ′4 to (6, 1). Starting
from the empty trace, the resulting execution is:

ε, (e(4,1)〈ā, c̄〉)
→π ε, let a = (fst 〈ā, c̄〉) in let c = (snd 〈ā, c̄〉) in if [c ∈ cCards]

thenaccess(c); charge(a); (reqρ4 Document
ϕAB
−−→ Certificate)rcpt

elsestore(c); (reqρ′4
Document −→ Certificate)empty

→∗
π ε, let c = (snd 〈ā, c̄〉) in if [c ∈ cCards]

thenaccess(c); charge(ā); (reqρ4 Document
ϕAB
−−→ Certificate)rcpt

elsestore(c); (reqρ′4 Document −→ Certificate)empty

→∗
π ε, if [c̄ ∈ cCards]

thenaccess(c̄); charge(ā); (reqρ4 Document
ϕAB
−−→ Certificate)rcpt

elsestore(c̄); (reqρ′4
Document −→ Certificate)empty

→π ε, store(c̄); (reqρ′4 Document −→ Certificate)empty

→π store(c̄), (reqρ′4
Document −→ Certificate)empty

→π store(c̄), (e(6,1))empty

→∗
π store(c̄), let c = cert in connect(host); c

→π store(c̄), connect(host); cert

→π store(c̄)connect(host), cert

Checking plans validity. Here we show how to build a valid plan for (a part
of) the network depicted in Figure 5.38. We start by typing the implementations of
the services in Table 5.15. Below we show the reasoning applied during the typing
process.

Let consider the service e(6,1). The following derivations are possible (dots stands
for trivial or symmetrical derivations).

(T−Abs)

...

Γ; c : τ ′, connect(host) ⊢true connect(host); c : τ
′

Γ, ε ⊢true λc.connect(host); c : τ
′ connect(host)
−−−−−−−−→ τ ′

where

Γ = z : τ
H
−→ τ ′; x : τ

τ = Document

τ ′ = Certificate

5.2. MODULAR PLANS FOR SECURE SERVICE COMPOSITION 129

and
H = µh.[x 6= empty]read(D)sign(∗) · h

Similarly, we observe that

(T−Wkn)

(T−If)

Γ, ε ⊢g cert : τ ′ JεKσ ⊆ JHKσ

Γ, H ⊢g cert : τ ′

...

Γ, H ′ ⊢¬g read(x); sign(∗); z x : τ ′ JH ′Kσ ⊆ JHKσ

Γ, H ⊢¬g read(x); sign(∗); z x : τ ′

Γ, H ⊢true if [x = empty] then cert else read(x); sign(∗); z x : τ ′

where g = [x = empty] and H ′ = [x 6= empty]read(D)sign(∗) ·H .
Composing the two previous derivations we obtain

∅, ε ⊢true e(6,1) : Document
H(6,1)
−−−→ Certificate

where H(6,1) = (µh.[x 6= empty]read(D)sign(∗) · h) · connect(host).
A similar reasoning procedure can be applied for typing e(7,1) to obtain

∅, ε ⊢true Document
H(7,1)
−−−→ Certificate

where H(7,1) = µh.[x 6= empty]read(D) · h · sign(∗)
Consider now e(4,1) and e(5,1). We type them in the following way.

∅, ε ⊢true e(4,1) : Amount× Card
H(4,1)
−−−→ Certificate

∅, ε ⊢true e(5,1) : Amount× Card
H(5,1)
−−−→ Certificate

where:
H(4,1) = [c ∈ cCards]access(c)charge(a)H(7,1) + ¬[c ∈ cCards]store(c) · (H(6,1) +H(7,1))

and
H(5,1) = [c ∈ cCards]access(c)charge(a)H(6,1) + ¬[c ∈ cCards](H(6,1) +H(7,1))

Let now apply the typing rules to e(1,4). We obtain the following result:

∅, ε ⊢true e(1,4) : Card
H(1,4)
−−−→ Certificate

where H(1,4) = (H(2,2) +H(3,2)) ·H(5,1).
The typing process presented above is exploited for generating the history ex-

pressions that we use for checking the validity of composition plans. We proceed
bottom-up as follows. The bottom-level services are implemented by e(6,1) and e(7,1)
and they both give rise to the empty plan.

Now, we can build a plan for e(4,1). Its request ρ4 can only be served by e(7,1).
Indeed, it is simple to verify the H(7,1) |= ϕAB (note that H(7,1) does not even contain
the event connect). Instead, H(6,1) 6|= ϕAB. Request ρ′4 can instead be served by
both e(6,1) and e(7,1). Collecting the above, we obtain two partial plans:

π1 = {ρ4 7→ (7, 1), ρ′4 7→ (6, 1)} and π′
1 = {ρ4 7→ (7, 1), ρ′4 7→ (7, 1)}.

130 SECURE SERVICE COMPOSITION

Figure 5.39: A valid plan rooted in service buy.

Similarly, for e(5,1) we obtain the two plans:

π2 = {ρ5 7→ (6, 1), ρ′5 7→ (6, 1)} and π′
2 = {ρ5 7→ (6, 1), ρ′5 7→ (7, 1)}.

We can now show how we get the plan for the topmost service buy implemented by
e(1,4).

Typing e(1,4) we observe that the request ρ1 can be served by either the expression
e(2,2), i.e. E-Basket, or e(3,2), i.e. E-Shopper. This is recorded in the derivation by
the history expression H(2,2)+H(3,2). Since reqρ1 requires no security policy, we can
generate the two alternative (fragments of) valid plans. Similarly, in a valid plan
reqρ′1

will be associated with e(5,1) only. Indeed, H(5,1) |= ϕRS, while H(4,1) 6|= ϕRS as
it may perform an event store.

As seen above, ρ1 can be served by either (2, 2) or (3, 2), while ρ′1 by (5, 1), only.
The two resulting partial plans are:

π = {ρ1 7→ (2, 2), ρ′1 7→ (5, 1)} and π′ = {ρ1 7→ (3, 2), ρ′1 7→ (5, 1)}.

Composing the previously introduced valid plans according to the rules stated in
Theorem 5.3, we obtain the following complete plans.

{ρ1 7→ (2, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (6, 1), ρ5 7→ (6, 1), ρ′5 7→ (6, 1)}
{ρ1 7→ (2, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (6, 1), ρ5 7→ (6, 1), ρ′5 7→ (7, 1)}
{ρ1 7→ (2, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (7, 1), ρ5 7→ (6, 1), ρ′5 7→ (6, 1)}
{ρ1 7→ (2, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (7, 1), ρ5 7→ (6, 1), ρ′5 7→ (7, 1)}
{ρ1 7→ (3, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (6, 1), ρ5 7→ (6, 1), ρ′5 7→ (6, 1)}
{ρ1 7→ (3, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (6, 1), ρ5 7→ (6, 1), ρ′5 7→ (7, 1)}
{ρ1 7→ (3, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (7, 1), ρ5 7→ (6, 1), ρ′5 7→ (6, 1)}
{ρ1 7→ (3, 2), ρ′1 7→ (5, 1), ρ4 7→ (7, 1), ρ′4 7→ (7, 1), ρ5 7→ (6, 1), ρ′5 7→ (7, 1)}

All these plans are valid and drive executions of the service buy raising no security
exception. We show in Figure 5.39 the effect of applying the first of the above plan
to the service buy. Solid lines represent the actual bindings between a client (on the
left side) and a server (on the right). Each binding is labelled with the identifier of
the request it maps to a service location.

5.3. SYNTHESIZING SECURITY PREREQUISITES 131

5.3 Synthesizing security prerequisites

The model presented so far follows the standard call-by-contract philosophy, in which
service invocation can happen whenever a certain service instance offers a contract
that satisfies the client requirements. This technique assumes that a service is not
concerned about discriminating over requests, possibly deciding to reject a client.
Indeed, in many practical cases, a service aims at accepting as many clients as
possible. However, it frequently happens that a service requires some information
about its clients, i.e. a prerequisite, before serving them.

We saw in the previous sections how the contract-driven generation of valid plans
can be used to organise groups of services within a large scale network. History ex-
pressions have been exploited for defining behavioural contracts that are inferred
from the implementation of the services. Hyper-local policies (introduced in Sec-
tion 5.1.1) are applied by the service developers to their code and are automatically
included in the history expressions. In this way, a service which is only aware about
a small part of the global network it must operate into, can still find a suitable
composition. Even though these assumptions seem to be reasonable for many prac-
tical cases, one could be interested in extending the security requirements to the
composition with the clients of a service.

In this section we discuss how the security policies of a service can affect its
interaction with clients and how our model copes with this scenario. In particular
we provide a mechanism for automatically computing the prerequisites of services
and we exploit them for a simple negotiation of contracts. So far, when a service is
added to an existing network we infer its type and effect and we check which other
services it can safely be composed with. Now we improve our model by allowing
services to specify also a prerequisite policy ψ that a session with a client has to
fulfil. This policy is defined as a standard local policy, i.e. through a proper usage
automaton, but its scope also includes (a part of) the client history.

Summing up, a service declares the security prerequisites for its clients as a
policy ψ over the concatenation of a hypothetical client history expression and its
own. Then, we partially evaluate ψ with respect to the history expression of the
service obtaining the actual prerequisite ψ⋆. At runtime the invocation is rejected if
the client history does not fulfil the requirement, i.e. it is accepted by the automaton
for ψ⋆.

5.3.1 Security Prerequisite

Here we introduce the concept of security prerequisite. Basically, a prerequisite is
a security requirement involving the composition between a service and its clients.
In order to highlight the utility of security prerequisites we propose the following,
motivating example.

Example 5.34 Many, real-world services require their clients to register to some

132 SECURE SERVICE COMPOSITION

0 1

2
access(x)

create(x)

delete(x)

Figure 5.40: A policy rejecting unregistered clients.

identity provider beforehand. This results in a policy that also involves the behaviour
of a service’s clients. For instance we assume to have registered clients’ identities
represented by a resource of type id. A client can register a new id (action create)
and cancel it (action delete) through proper services (ec and ed respectively). A
service e, upon receiving the identity of a client, logs the access (action access) and
serves the request (action serve). Suppose that the service e only accepts registered
clients, so it will respect a policy ψ saying: “never permit access to unregistered
clients”. Actually, the service needs to inspect other parties’ histories to check the
policy ψ, depicted in Figure 5.40. Clearly this is infeasible under our assumptions
to incrementally build services with no a priori knowledge of the potential clients.

We will see in Section 5.3.2 how to mechanically derive a prerequisite in the form
of a policy that a client has to fulfil to be accepted by the server. Checking that a
client satisfies ψ⋆ can be done at invocation time without running the service and
without model checking the composition client-service, but only relying on the past
history of the client.

This example will be worked out in detail in Example 5.35, where the prerequi-
site, called ψ⋆ is depicted in Figure 5.41.

Even though local policies and prerequisites are both defined using the same
formalism, i.e. usage automata, we make a clear distinction between them. As a
matter of fact, they differ for few, crucial aspects. As we said above, the main
difference is that they apply to completely different scopes. Indeed, local policies
define security properties of limited blocks of code while prerequisites extends their
scope on both the client and the service.

A further difference derives from the stage of the service life-cycle they are in-
volved in. In particular, local policies are mainly used statically for driving the
creation of valid composition plans. Instead, the security prerequisites are needed
dynamically for checking whether a certain history, belonging to a client, is compat-
ible with the service invocation.

Also note that while local policies are applied through the framing operator (see

5.3. SYNTHESIZING SECURITY PREREQUISITES 133

Section 5.1.2), security prerequisites are defined beside the service implementation.
In this way, they are exposed at the same level of the service contract and integrate
its information with the requirements that a client must fulfil.

5.3.2 Partial evaluation of policies

Partial evaluation [104] consists in specialising a program by forcing a part of its
input to a constant value. Often, partial evaluation is used for the automatic gener-
ation of specialised routines and the program optimisation in compiler theory. Also,
this approach proved to be suitable for the analysis of the security properties of
programs. For instance, in [130] the authors combine partial evaluation and partial
model checking [10] for mechanically building security monitors. They take advan-
tage from the static knowledge of the system that they want to secure. In particular,
they model the scenario in which a known system interacts with an unknown com-
ponent. With their approach they can find a security monitor that is specialised
on the system structure and is guaranteed to enforce the desired security policy on
each possible component joining the system.

Here we work under similar assumptions in which a service is invoked by a
client. In particular, we want that the composition of a (statically known) service
with any possible client complies with a certain security requirement, i.e. the service
prerequisite. The evaluation of a prerequisite involves the behaviour of the service
(also including the sub-services it invokes) and the client. However, we assume that
the service behaviour is statically predicted through its history expression. The goal
of the partial evaluation of a service prerequisite is to find a proposition that can be
checked against (the history of) a client when an invocation request arrives.

Example 5.34 illustrated how processing the history of a client can be an impor-
tant aspect of the service composition. A very common and traditional mechanism
for storing and handling information about the history of a client consists in using
cookies. However, this is not the only approach. Briefly, services store pieces of in-
formation on their clients in order to retrieve them in the next session. Beyond local
histories, services can also share their information, e.g., in the scope of a Virtual
Organisation [90]. Our approach integrates this model by using observable actions.
Indeed, actions can be both fired by a client or by other services that have been
invoked before the current request.

Example 5.35 Consider the following implementation of the services outlined in
Example 5.34 where the service e requires its clients to have an identity id, handled
by a couple of services ec and ed. This prerequisite takes the form of the policy ψ
in Figure 5.40.

ec = λx.create(x) ed = λx.delete(x) e = λx.access(x); serve(x)

Clearly, ψ cannot be enforced as a local policy of one of the above services.
Indeed, in that case the scope of ψ would be strictly limited to the service execution,

134 SECURE SERVICE COMPOSITION

1: Procedure Preq
2: input H and Aψ = 〈Ev, Q, ı, F, T 〉
3: ARψ ← 〈Ev, Q

′, ı′, F ′, T ′〉
4: Q⋆ ← ∅
5: for all q ∈ Q′ do
6: Aq ← 〈Ev, Q

′, ı′, {q}, T ′〉
7: if ∃ σ : L(Aq(σ)) ∩ JHRKσ 6= ∅ then
8: Q⋆ ← Q⋆ ∪ {q}
9: end if

10: end for
11: Nψ⋆ ← 〈Ev, Q′, Q⋆, F ′, T ′〉
12: Aψ⋆ ← DFA(NR

ψ⋆)
13: return Aψ⋆

Table 5.16: The prerequisite synthesis algorithm

while instead it is intended to span over the history η of a client, even though the
service has already been invoked and thus has no access to η.

The example above shows that making the client aware about the service re-
quirement at an early stage avoids pointless invocation, i.e. requests that will not
be served. Since we are dealing with open networks, there is no static assumption
we can make on the structure and behaviour of network clients.

To cope with these issues, we extend the synthesis of composition plans with
a mechanism for specifying and checking prerequisites. In our model, prerequisites
work symmetrically with respect to contracts and complement the approach to ser-
vice security seen so far.

In Table 5.16 we formalise the partial evaluation procedure used to deduce an
actual prerequisite for the requirements put by a service on its clients. Roughly,

given a service e such that e : τ
H
−→ τ ′ and (the usage automaton computing) the

requirement ψ, the procedure returns the partial evaluation of it with respect to H ,
namely the prerequisite ψ⋆. We start (line 3) by generating the usage automaton
ARψ that accepts the reverse language of Aψ (we omit here the details and refer the
interest reader to the analogous construction of [5]). Then, starting from the empty
set Q⋆ (line 4), the procedure finds all the states of ARψ that can be reached with a
trace belonging to the reverse of the language ofH (lines 5-10). Note that the reverse
of JHKσ can be computed by “reversing” the history expression H itself, similarly
to what is done for reverting context-free grammars [5]. Then, we construct a sort
of automaton Nψ⋆ having Q⋆ as set of initial states (line 11). Clearly, as Nψ⋆ could
have more than one initial state, it is not a usage automaton. We then reverse Nψ⋆

and convert it to a standard usage automaton Aψ⋆ (line 12).

5.3. SYNTHESIZING SECURITY PREREQUISITES 135

0 1

2
access(x)

create(x)

delete(x)

Figure 5.41: Prerequisite policy returned by Preq(H,Aψ)

It is immediate to verify that the procedure above always terminates. Intu-
itively, its complexity is the same as solving the model checking problem for usage
automata [29]. Indeed, in line 7, repeated for the number of states of the automaton
ARψ , we are intersecting a context-free language and a regular one.

The result of this algorithm is the usage automaton Aψ⋆ that recognizes the
histories violating the prerequisite ψ⋆. When a client invokes the service the usage
policy ψ⋆ is checked against the actual execution history of the client. If the check
is passed the client can safely invoke the service. This assertion is formalised by the
following theorem.

Theorem 5.4 Let Preq(H,Aψ) = Aψ⋆ then

∀ η : η |= ψ⋆ ⇒ ηH |= ψ

Example 5.36 Consider again the services of Example 5.35 where the requirement
of e is the policy ψ in Figure 5.40. Typing e we obtain

∅, ε ⊢true e : id
H
−→ 1

where H = access(x)serve(x).
The result of the partial evaluation procedure Preq applied to H and Aψ is the

automaton in Figure 5.41. This automaton says that a client is accepted only if
the following occurs. The client performed no access without being registered; it
has at least one active registration, i.e. it performed at least a create not followed
by a delete action. Theorem 5.4 guarantees that the client satisfying ψ⋆ will also
respect ψ when composed with e.

Note that this mechanism is independent of the kind and source of the client
data the service wants to check. For instance, the information about the clients
history could be stored using cookies (on client side) or through a database shared
by the services. Indeed, to apply our method we only need to know that a reliable
representation of (a part of) the clients history exists and can be inspected.

136 SECURE SERVICE COMPOSITION

5.3.3 A strategy for service orchestration

Now we show how the standard service repository model can be trivially extended
in order to exploit prerequisite policies for service composition. As we mentioned in
Section 5.1.2, a repository Srv contains the services composing the network, their
types and effects as history expressions. History expressions represent the contracts
that the services offer to their clients.

As we assume open networks, service developers cannot foresee the context in
which their services will run. Hence, services are written according to their own
specification that include their security policies and requirements on their clients, if
any. When a service is actually deployed in a service network, it is processed in the
following way:

1. The service code e and the prerequisite ψ (namely the automaton Aψ) are
submitted to the network orchestrator;

2. The orchestrator applies the type and effect system to e for finding its type

τ
H
−→ τ ′;

3. The valid composition plans are computed;

4. The prerequisite policy ψ⋆ is created through Preq(H,Aψ).

If the above steps are successful, the pair 〈ψ∗, e : τ
H
−→ τ ′〉 is added to Srv (we neglect

locations here). Otherwise, the service is rejected by the orchestrator.
As said above, the actual invocation depends on the security policies of the client

and the prerequisite of the service. The negotiation for a session corresponds to
finding an agreement between the two. When a client requires a service, its history
is checked against the prerequisite ψ⋆. Then the contract H is model checked against
the client policies and, if successful, the invocation can safely take place.

This model can be improved in several ways. The mechanism presented above
follows an “all or nothing” strategy, that is the service is accepted or rejected by the
orchestrator. Nevertheless, the negotiation process can be extended by associating
to each service more than one contract. As a matter of fact, we can replicate one
entry of Srv for each valid plan available for the corresponding service. Projected
over different plans, a service offers different contracts and, consequently, different
prerequisite policies.

For instance, imagine to have k valid plans π1, . . . , πk for a service e having a
prerequisite ψ. We can replace the single entry of Srv associated to e with the set

〈ψ⋆1 , e : τ
H1−→ τ ′〉

...

〈ψ⋆k, e : τ
Hk−→ τ ′〉

where ∅, ε ⊢true e |πi: τ
Hi−→ τ ′ and Aψ⋆

i
= Preq(Hi, Aψ).

5.4. DISCUSSION 137

In this way clients can choose among k versions of the same service. Indeed,
when a client wants to invoke a service, it asks the service repository for finding
a suitable one. The repository compares the client history with the prerequisite
policies of the compatible service instances, i.e. one for each viable plan. Those
being satisfied are candidates for serving the request. Among them, the repository
finds a contract, i.e. a history expression, that also satisfies the client policies if any.
This second step consists of a model checking procedure that, in general, is much
more expensive than the verification of prerequisites. In this way, we avoid solving
the model checking problem for verifying the compatibility of a composition that
would fail anyway.

5.4 Discussion

In this chapter we described our work on the security analysis and orchestration of
service networks. The contents on this topic has been presented according to the
following structure.

• Section 5.1 introduced the notion of open network and our computational
model for web services.

• Section 5.2 presented our strategy for incrementally creating composition plans
while preserving their security properties.

• Section 5.3 detailed a mechanism for the automatic synthesis of security pre-
requisites which lead the dynamic composition of services under security con-
straints.

Web services are rapidly changing the shape of the Internet. One of the reason of
their success is that they offer access to arbitrary complex systems abstracting from
the actual implementation. Also, they allow companies for building new services on
top of existing ones, so favouring economies of scale. However, abstraction does not
cope with security issues which may affect low level aspects of a service network.
Hence, modern service platform should carry out the security analysis process auto-
matically. Indeed, delegating such responsibility to service developers and designer
would dramatically reduce their possibility of abstraction. The techniques presented
here aim at providing service networks with security support without compromising
the basic features of SOC systems.

138 SECURE SERVICE COMPOSITION

Conclusions

We presented our contribution to providing software and service compositions with
formal security guarantees. Our investigation started from a basic composition
model, i.e., the integration of a mobile application in a hosting platform. In this
context, we outlined the importance of including proper security mechanisms in the
three main stages of the mobile applications life-cycle, i.e., development, deployment
and execution, for providing the mobile application with formal security guarantees.
We presented a framework (Sections 3.1 and 3.2) that integrates (i) the design of
security policies, (ii) their application to the code, (iii) the formal verification and
(iv) the automatic creation of execution monitors. Then, we addressed the comple-
mentary problem of securing a platform from an untrusted piece of mobile code. We
presented an enforcement architecture for providing security assurances to a plat-
form importing some external software (Section 3.3). Also, we showed the feasibility
of our approach for the design of centralised monitors even under severe constraints
on platform, e.g., on mobile devices with limited capabilities (Section 3.4).

Then, we considered a more general composition and we introduced a model that
handles trust and security issues in an integrated manner. We allow for composing
some agents, none of them having a complete control on the other. Under these
assumptions, we added a quantitative trust management system to the Security-
by-Contract standard model (Section 4.1). In our proposal, the trust evaluation is
integrated among the security procedures and is responsible for deciding the security
settings for a new composition. Furthermore, a new class of policy automata has
been introduced (Section 4.2) for specifying and driving the new security and trust
monitoring process (Section 4.3).

Finally, we moved to a very general compositional model of web services. Web
services are compositional in a very general sense. Indeed, they can invoke each other
through messages, remote invocations or even mobile code. In this field, we extended
some existing work to deal with open networks and open sessions (Section 5.1).
During our investigation, we exploited many of the techniques derived from analysis
of the previous cases. Interestingly, we show that most of them are preserved through
service composition under some reasonable assumptions. Moreover, we proposed an
automatic approach to the secure composition of modular plans (Section 5.2) and
we enhanced the call-by-contract invocation paradigm with a new element, namely
the security prerequisite (Section 5.3).

140 CONCLUSIONS

Related Work

In the following we survey on some related work. For the sake of presentation, we
structured the works listed below according to the three application scenarios that
we detailed in this thesis. However, this organisation is quite artificial and its main
purpose is to facilitate a direct comparison with our work on each specific field.

Application security. Polymer [31] is a language for specifying, composing and
dynamically enforcing (global) security policies. In the lines of edit automata [30],
a Polymer policy can intervene in the program trace to insert or suppress some
events. The access control model of Java is enhanced in [146], by specifying fine-
grained constraints on the execution of mobile code. A method invocation is denied
when a certain condition on the dynamic state of the system is false.

Security policies are modelled as process algebras in [17, 131, 133]. There, a
custom JVM is used, with an execution monitor that traps system calls and fires
them concurrently to the policy. When a trapped system call is not permitted by
the policy, the execution monitor tries to force a corrective event – if possible –
otherwise it aborts the system call.

Since the policies of [31, 146, 17, 131, 133] are Turing-equivalent, they are very
expressive, yet they have some drawbacks. First, the process of deciding if an action
must be denied might not terminate. Second, non-trivial static optimizations are
infeasible, unlike in our approach.

The problem of deciding whether the contract advertised by an application is
compatible with that required by a mobile device is explored in [83]. To do that, a
matching algorithm is proposed, based on a regular language inclusion test. In [134]
the model is further extended to use automata modulo theory, i.e., Büchi automata
where edges carry guards expressed as logical formulas. In this approach both the
policy and the application behaviour are expressed using the same kind of automata.
Instead, using history expressions, which have the same expressivity of context-free
languages, allows for modelling richer behaviour.

The problem of wrapping method calls to make a program obey a given policy
has been widely studied, and several frameworks have been proposed in the last
few years. Some approaches, e.g., the Kava system [185], use bytecode rewriting to
obtain behavioural run-time reflection. This amounts to modifying the structure of
the bytecode, by inserting additional instructions before and after a method invo-
cation. A different solution, adopted e.g., by JavaCloak [161], consists in exploiting
the Java reflection facilities to represent Java entities through suitable behavioural
abstractions. However, this is not fully applicable in our case, since currently it
neither supports wrapping of constructors, nor it allows one to handle methods not
defined in some interface. Note that our bytecode rewriting approach needs no such
assumptions.

Many authors have studied verification techniques for history-based security at
a foundational level. Static and dynamic techniques have been explored in [58, 85,

141

129, 180], to transform programs and make them obey a given policy. While these
approaches consider global policies and no dynamic creation of objects, our model
also allows for local policies, and for events parameterized over dynamically created
objects.

A typed λ-calculus with primitives for creating and accessing resources, and for
defining their permitted usages, is presented in [100]. A type system guarantees that
well-typed programs are resource-safe. The policies of [100] can only speak about
the usage of single resources, while ours can span over many resources.

A lot of effort has been devoted to develop verification techniques for Java pro-
grams. The Soot project [175] provides a comprehensive Java optimization frame-
work, also exploiting static analysis techniques to compute approximated data flow
and control flow graphs, and points-to information. In [38] Java source programs
are monitored through tracematches, a kind of policies that constrain the execution
traces of method calls. Static analysis is used to prove that code adheres to the
tracematch at hand, so the monitor can be removed. Unlike ours, these policies are
global. Also, bytecode analysis is not considered.

JACK [20] is a tool for the validation of Java applications, both at the levels of
bytecode and of source code. Programmers specify application properties through
JML annotations, which are as expressive as first-order logic. These annotations
give rise to proof obligations, to be statically verified by a theorem prover. The
verification process might require the intervention of the developer to resolve the
proof obligations, while in our framework the verification is fully automated.

A security study of Java ME has been presented by Kolsi and Virtanen in [108],
where they described the possible threats and the security needs in a mobile envi-
ronment. In particular, they described how MIDP 2.0 solved some security issues of
MIDP 1.1, but they concluded that some issues are still present. A security analysis
of Java ME has been presented also by Debbabi et al. in [72, 73, 74]. In these
papers, they detail the MIDP and CLDC security architecture, and they identify
a set of vulnerabilities of this architecture. Moreover, they also test some attack
scenarios on actual mobile phones. However, the previous papers do not propose
any improvement to the Java ME security support to solve the security issues they
described.

In [79] the authors present a framework for the run time monitoring of applica-
tions running on the .NET platform exploiting the in-lining technique. Their model
is symmetrical to the one we have presented in Section 3.3 but for the technical dif-
ferences deriving from the diverse environment. Recently, they also presented in [78]
a complete system composed by an instrumentator for modifying the .NET Interme-
diate Language and a PDP for enforcing ConSpec policies. Actually, the proposed
framework implements the PDP as a Dynamic Linked Library that is invoked dur-
ing the execution. Instead, our model exploits a separate process for monitoring
the running applications. The necessity for this mechanism arises from the different
execution environment. Indeed the Java MIDlets do not share the execution context
and they can not access public, external libraries.

142 CONCLUSIONS

In [138] the author presents proof carrying code (PCC). PCC generalises the
idea of code signature to a formal proof that is attached to certified applications.
Roughly, the producer of the MIDlet provides an automatically computed proof
that the final user can verify against the received code. While the proof extraction
requires some computational effort, verifying the compliance between the certificate
and the MIDlet is a quite simple task. Hence this approach is particularly suitable
for the context of mobile devices and frameworks based on it have been presented,
e.g., [35]. However, there are two main issues that we must consider comparing
PCC with our system: proofs size and policies customization. In general, expressive
security policies can lead to long certificates. Since each MIDlet must be signed,
we pay this memory overhead several times. Unlike, our system works with only
one copy of the enforced policy. Moreover, when using PCC it is necessary that
users and producers agree on the security properties used for signing the MIDlets.
This in a severe constraint for both the vendors and the costumers. Indeed, the first
must provide very general and possibly complex certificates. The second, can not
change the security policies unless they replace the installed MIDlets with a new,
policy-compliant copy of them.

Security and trust. Recently, the full integration between security enforcement
mechanisms and trust management systems is receiving more attention. For in-
stance, some work has been done for adding a trust management system to fine-
grained access control in Grid Architecture. A proposal can be found in [111] where
the authors present an access control system that enhances the Globus toolkit with
a number of features. Among them, trust-based decisions are used to drive the
interactions among the grid nodes.

Along this line of research [60] presents an integrated architecture, extending the
previous one, with an inference engine managing reputation and trust credentials.
This framework is extended again in [110] where a mechanism for trust negotiat-
ing credential is introduced to overcome some scalability issues. In this way the
framework preserves privacy credentials and the security policies of both users and
providers. Even if the application scenario and the implementation are different,
the basic idea consists in considering trust metrics for deciding the reliability of an
application provider.

Also [125] presents a reputation mechanism to facilitate the trustworthiness eval-
uation in ubiquitous computing environments. This method is based on probability
theory and supports reputation evolution and propagation. The proposed reputa-
tion mechanism is also implemented as part of a QoS-aware Web service discovery
middleware and evaluated against its overhead on service discovery latency. It is
important to note that our approach is not probabilistic. Indeed, according to our
method the responsibility of the trustworthiness decision is deterministically affected
by the applications behaviour.

In [97] the authors show a method for combining trust management theories

143

with nonce-based cryptographic protocols. Roughly, they use formulas from a trust
management logic for annotating the transmit and receive actions of the protocol
principals following an assume-guarantee reasoning. Basically, their approach deals
with the correctness of cryptographic protocols using a well defined model of trust.
Instead, our proposal does not depend on any predefined trust model.

Security in service composition. As said, our contribution on secure service
composition builds upon the work of Bartoletti et al. [23, 26, 28]. We have compared
our results with theirs along Chapter 5, in particular in Section 5.1.

In [42] the authors present a framework for contract-based creation of choreogra-
phies. Roughly, they use a contract system for finding a match between contracts
and choreographies. In this way they verify whether a given contract, declared by a
service joining the network, is consistent with the current choreography. However,
this framework exploits a global knowledge about the network structure while our
model also deals with open networks.

Among the formal approaches to the description of web services and their in-
teractions presented in the last years, CaSPiS [44] is a major proposal. Basically,
sessions are permitted only when a client and a service agree on a security level. This
check is done through a security-oriented type system [109]. Well typed processes
are free from a finite set of common security errors that could arise at runtime. The
main difference with respect to our work is that here the security properties are
fixed, while in our approach they are user defined.

A process algebra for service orchestration is proposed in [18]. Briefly, the au-
thors propose an extension of the interfaces of services with a behavioural pattern.
Patterns are then used for computing a description of the system arising from a ser-
vice composition. Even though patterns can be seen as security requirements, they
must be known when the composition is computed, which is equivalent to having a
closed network.

Castagna et al. [51] use a variant of CCS for defining service contracts. A
subcontract relation guarantees that the choreography always respects the contracts
of both client and service. This approach assumes that clients always know the
request contract and it is focused on finding a satisfactory composition with some
available service. Since the composition depends on the possible instantiations of a
service, such a contract could be unavailable during the analysis phase. Instead we
produce valid plans independently of the actual instantiation of resources.

Busi et al. [49] propose an analysis of service orchestration and choreography.
In their work, the validity of the service orchestration is a consequence of its con-
formance with respect to the intended choreography. The main difference with our
work consists in the approach to choreography. Indeed, they start from a pre-defined
choreography and verify the validity of an orchestration. Instead, our approach aims
at checking partial service composition without relying on any global orchestrator.

In [130] a framework for the synthesis of orchestrators is presented. This tech-

144 CONCLUSIONS

nique consists in automatically producing an orchestrator guaranteeing that the ser-
vice composition respects the desired security policy. This approach defines a com-
position that complies with the policy of a client. Since our method produces partial
compositions that respect all the involved policies (of both clients and servers), it
seems to be more general. However, as [130] generates dynamic orchestrators, that
system works under completely different assumptions with respect to ours.

Future Work

We see many possible directions for extending the present work. Actually, some
of them are already under investigation and some preliminary results have been
achieved. For instance, in [67] we presented a new logic, namely elective temporal
logic (ETL), for the specification of the temporal properties of programs. The ETL
specifications can be used for the verification of programs and, even more important,
they can drive optimised execution monitors. Indeed, a controller using a ETL
specification can safely predict the minimum number of actions that, starting from
the current state, can lead to a violation. In this way, the monitor can suspend its
activity for the predicted amount of time with no risk of a policy violation.

Beyond the obvious benefit of reducing the monitoring activity, we aim at ex-
tending this line of research for finding a new formalisation of probabilistic security.
As a matter of fact, in many practical cases, we cannot assume a security monitor
to simply follow the execution of its target action by action. Sometimes it is costly
observing an action and we would prefer to reduce such overhead. Also, it is often
the case that the monitor cannot be proactive, i.e. it cannot suspend an action for
running security checks. Probabilistic monitors can cope with these issues. Indeed,
they can skip unnecessary checks and focus only on really critical operations. For
doing that, such kind of monitor also considers a risk factor, i.e. the probability
of failing to prevent a security violation. Through the combination of probabilistic
monitors and probabilistic model checkers, with aim at defining a more hopefully
complete picture of probabilistic security.

Following the approach of Section 4.1, we are also interested in studying the
possibility of a trust-based composition of services. As a matter of fact, many usages
of web services are affected or even based on concepts like trust and reputation. Even
though several advancements have been done on how to provide service compositions
with security guarantees, often the providers and their customers still prefer to rely
on their informal opinions about the counterparts. Perhaps, this behaviour depends
on the partial misunderstanding of the security mechanisms. Indeed, the formal
specification of security requirements is still too technical. Hence, we think that
these methods should be integrated with high level facilities for dealing with the
human perception of the security issues.

Bibliography

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46:749–786, September 1999.

[2] M. Abadi and C. Fournet. Access control based on execution history. In
Proceedings 10th Annual Network and Distributed System Security Symposium,
2003.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In 4th ACM Conference on Computer and Communications Security,
pages 36–47. ACM Press, 1997.

[4] S. Adams. Children get first mobile phone at average age of eight.
http://www.telegraph.co.uk/, February 2009.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[6] I. Aktug and K. Naliuka. ConSpec: A formal language for policy specification.
In Proceedings of the First Workshop on Formal Languages and Analysis of
Contract-Oriented Software (FLACOS 07), Oslo, Norway, October 2007.

[7] I. Aktug and K. Naliuka. ConSpec: A formal language for policy specification.
In Proceedings of the First International Workshop on Run Time Enforcement
for Mobile and Distributed Systems (REM 07), Dresden, Germany, September
2007. ESORICS.

[8] B. Alpern and F. B. Schneider. Recognizing Safety and Liveness. Distributed
Computing, 2:117–126, 1986.

[9] G. Amato, P. Bolettieri, G. Costa, F. L. Torre, and F. Martinelli. Detection of
images with adult content for parental control on mobile devices. In Proceed-
ings of the 6th International Conference on Mobile Technology, Applications
and Systems, Mobility Conference. ACM, 2009.

[10] H. R. Andersen. Partial Model Checking (Extended Abstract). In Proceedings,
Tenth Annual IEEE Symposium on Logic in Computer Science, pages 398–407.
IEEE Computer Society Press, 1995.

http://www.telegraph.co.uk/

146 BIBLIOGRAPHY

[11] S. Anderson et al. Web Services Trust Language (WS-Trust), 2005.
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf.

[12] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business process execution language for web services version 1.1, 2003.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel.

[13] Android Market, 2011. https://market.android.com/.

[14] App Store for iPhone, 2011. http://www.apple.com/.

[15] M. Archer and C. L. Heitmeyer. Human-Style Theorem Proving Using PVS.
In Proceedings of the 10th International Conference on Theorem Proving in
Higher Order Logics, TPHOLs ’97, pages 33–48, London, UK, 1997. Springer-
Verlag.

[16] K. Arnold, J. Gosling, and D. Holmes. The Java programming language.
Prentice Hall, forth edition, August 2005.

[17] F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli. Improving grid services
security with fine grain policies. In OTM Workshops, 2004.

[18] M. A. Barbosa and L. S. Barbosa. A perspective on service orchestration.
Science of Computer Programming, 74(9):671–687, 2009.

[19] L. Baresi, S. Guinea, and P. Plebani. WS-Policy for Service Monitoring. In
C. Bussler and M.-C. Shan, editors, Technologies for E-Services, volume 3811
of Lecture Notes in Computer Science, pages 72–83. Springer Berlin / Heidel-
berg, 2006.

[20] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, and A. Requet. Jack - a tool for validation of security and be-
haviour of Java applications. In Formal Methods for Components and Objects,
5th International Symposium, Amsterdam, NL, November 7-10, 2006, Revised
Lectures, volume 4709 of Lecture Notes in Computer Science, pages 152–174.
Springer, 2007.

[21] M. Bartoletti, G. Costa, P. Degano, F. Martinelli, and R. Zunino. Securing
Java with Local Policies. Journal of Object Technology, 8(4):5–32, 2009.

[22] M. Bartoletti, G. Costa, and R. Zunino. Jalapa: Securing Java with Local
Policies. Electronic Notes in Theoretical Computer Science, 253(5):145–151,
2009.

http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
https://market.android.com/
http://www.apple.com/

6.0. BIBLIOGRAPHY 147

[23] M. Bartoletti, P. Degano, and G. L. Ferrari. Enforcing Secure Service Compo-
sition. In Proceedings of the 18th Computer Security Foundations Workshop
(CSFW), 2005.

[24] M. Bartoletti, P. Degano, and G. L. Ferrari. History-based Access Control
with Local Policies. In Proceedings of Foundations of Software Science and
Computation Structures (FOSSACS), 2005.

[25] M. Bartoletti, P. Degano, and G. L. Ferrari. Policy Framings for Access Con-
trol. In Workshop on Issues in the Theory of Security, 2005.

[26] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Secure service or-
chestration. In Foundations of Security Analysis and Design, pages 24–74,
2007.

[27] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Model checking usage
policies. Technical report, Università di Pisa, 2008.

[28] M. Bartoletti, P. Degano, G.-L. Ferrari, and R. Zunino. Local policies for
resource usage analysis. ACM Transactions on Programming Languages and
Systems, 31(6):1–43, 2009.

[29] M. Bartoletti and R. Zunino. Locust: a tool for model checking usage policies.
Technical report, Università di Pisa, 2008.

[30] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In
Foundations of Computer Security (FCS), 2002.

[31] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Poly-
mer. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, pages 305–314. ACM, 2005.

[32] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical report, MITRE Corporation, 1973.

[33] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77–121, 1985.

[34] F. Besson, T. de Grenier de Latour, and T. Jensen. Secure calling contexts
for stack inspection. In Proceedings of the 4th ACM SIGPLAN international
conference on Principles and practice of declarative programming, PPDP ’02,
pages 76–87, New York, NY, USA, 2002. ACM.

[35] F. Besson, G. Dufay, and T. Jensen. A Formal Model of Access Control for
Mobile Interactive Devices. 2006.

148 BIBLIOGRAPHY

[36] F. Besson, T. P. Jensen, D. Le Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security, 9(3):217–250,
2001.

[37] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In Proceedings of the 5th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, TACAS ’99, pages
193–207, London, UK, 1999. Springer-Verlag.

[38] E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by
evaluating runtime monitors ahead-of-time. In ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE), 2008.

[39] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for
structured service programming. In G. Barthe and F. de Boer, editors, Formal
Methods for Open Object-Based Distributed Systems, volume 5051 of Lecture
Notes in Computer Science, pages 19–38. Springer Berlin / Heidelberg, 2008.

[40] D. Box, F. Curbera, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Na-
garatnam, M. Nottingham, C. von Riegen, and J. Shewchuk. Web services
security (WS-Security), 2002.

[41] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP)
1.1 Specification, 2000. http://www.w3.org/TR/soap/.

[42] M. Bravetti, I. Lanese, and G. Zavattaro. Contract-driven implementation of
choreographies. In Proceedings of the 4th International Symposium on Trust-
worthy Global Computing, pages 1–18, 2008.

[43] M. Bravetti and G. Zavattaro. A foundational theory of contracts for multi-
party service composition. Fundamenta Informaticae, 89:451–478, December
2008.

[44] R. Bruni. Calculi for service-oriented computing. In 9th International School
on Formal Methods for the Design of Computer, Communication, and Software
Systems, pages 1–41, 2009.

[45] R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty sessions in soc.
In D. Lea and G. Zavattaro, editors, Coordination Models and Languages,
volume 5052 of Lecture Notes in Computer Science, pages 67–82. Springer
Berlin / Heidelberg, 2008.

[46] J. Brzosowski and J. E. McCluskey. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. on Electronic Computers, 1963.

http://www.w3.org/TR/soap/

6.0. BIBLIOGRAPHY 149

[47] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic Model Checking: 1020 States and Beyond. Information and Computation,
98(2):142–170, 1992.

[48] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of jml tools and applications.
International Journal on Sofrware Tools for Technology Transfer, 7(3):212–
232, 2005.

[49] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography
and orchestration: A synergic approach for system design. In Proceedings of
3rd International Conference on Service Oriented Computing, pages 228–240,
2005.

[50] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred
programming for web services. In Proceedings of the 16th European conference
on Programming, pages 2–17, Berlin, Heidelberg, 2007. Springer-Verlag.

[51] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web
services. Journal ACM Transactions on Programming Languages and Systems,
31:1–61, July 2009.

[52] A. Castrucci, F. Martinelli, P. Mori, and F. Roperti. Enhancing Java ME
Security Support with Resource Usage Monitoring. In ICICS, pages 256–266,
2008.

[53] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Simple Object Access Protocol (SOAP) 1.1 Specification, 2001.
http://www.w3.org/TR/wsdl/.

[54] Google Chrome Web Store, 2011. https://chrome.google.com/webstore.

[55] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Work-
shop, pages 52–71, London, UK, 1982. Springer-Verlag.

[56] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244–263, 1986.

[57] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[58] T. Colcombet and P. Fradet. Enforcing trace properties by program transfor-
mation. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2000.

http://www.w3.org/TR/wsdl/
https://chrome.google.com/webstore

150 BIBLIOGRAPHY

[59] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’98,
pages 184–196, New York, NY, USA, 1998. ACM.

[60] M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and A. Vaccarelli. Fine
grained access control with trust and reputation management for globus. In
OTM Conferences (2), pages 1505–1515, 2007.

[61] G. Costa, P. Degano, and F. Martinelli. Secure Service Composition with
Symbolic Effects. In Proceedings of the 4th South-East European Workshop
on Formal Methods, pages 3–9, 2009.

[62] G. Costa, P. Degano, and F. Martinelli. Modular plans for secure service
composition. Journal of Computer Security, 2011. To Appear.

[63] G. Costa, P. Degano, and F. Martinelli. Secure service orchestration in
open networks. Journal of Systems Architecture - Embedded Systems Design,
57(3):231–239, 2011.

[64] G. Costa, N. Dragoni, A. Lazouski, F. Martinelli, F. Massacci, and I. Mat-
teucci. Extending Security-by-Contract with Quantitative Trust on Mobile
Devices. In CISIS 2010, The Fourth International Conference on Complex,
Intelligent and Software Intensive Systems, pages 872–877, 2010.

[65] G. Costa, A. Lazouski, F. Martinelli, I. Matteucci, V. Issarny, R. Saadi,
N. Dragoni, and F. Massacci. Security-by-Contract-with-Trust for Mobile
Devices. Journal of Wireless Mobile Networks, Ubiquitous Computing and
Dependable Applications (JoWUA), 1:75–91, December 2010.

[66] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. Walter. Runtime monitor-
ing for next generation Java ME platform. Computers & Security, 29(1):74–87,
2010.

[67] G. Costa and I. Matteucci. Elective Temporal Logic. In Proceedings of 2nd
International ACM Sigsoft Symposium on Architecting Critical Systems, June
2011. To Appear.

[68] G. Costa and I. Matteucci. Trust-Driven Policy Enforcement through Gate
Automata. In Proceedings of the 5th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, 2011. To Appear.

[69] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press,
2010.

6.0. BIBLIOGRAPHY 151

[70] M. Dam, B. Jacobs, A. Lundblad, and F. Piessens. Security Monitor Inlining
for Multithreaded Java. In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, pages 546–569, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[71] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of
the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering,
ESEC/FSE-9, pages 109–120, New York, NY, USA, 2001. ACM.

[72] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Java for mobile devices: A
security study. In Proceedings of the 21st Annual Computer Security Applica-
tions Conference (ACSAC05), pages 235–244. IEEE Computer Society, 2005.

[73] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Security analysis of mobile
Java. In Proceedings of the 16th International Workshop on Database and
Expert Systems Applications, 2005, pages 231– 235. IEEE Computer Society,
2005.

[74] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua. Security evaluation of J2ME
CLDC embedded Java platform. Journal of Object Technology, 2(5):125–154,
2006.

[75] G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk, C. Kaler,
H. Maruyama, N. Nagaratnam, A. Nash, R. Philpott, H. Prafullchandra,
J. Shewchuk, E. Waingold, and R. Zolfonoon. Web services security policy
language (WS-SecurityPolicy), 2002.

[76] D. E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19:236–243, May 1976.

[77] D. E. Denning and P. J. Denning. Certification of programs for secure infor-
mation flow. Communications of the ACM, 20(7):504–513, 1977.

[78] L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens,
and D. Vanoverberghe. The S3MS .NET run time monitoring, March 2009.
BYTECODE ’09.

[79] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan,
and D. Vanoverberghe. Security-by-Contract on the .NET platform. Informa-
tion Secururity Tech. Report, 13(1):25–32, 2008.

[80] K. Donnelly, J. J. Hallett, and A. Kfoury. Formal semantics of weak references.
In ISMM ’06: Proceedings of the 5th International Symposium on Memory
Management, 2006.

152 BIBLIOGRAPHY

[81] N. Dragoni, F. Martinelli, F. Massacci, P. Mori, C. Schaefer, T. Walter, and
E. Vetillard. Security-by-Contract (S×C) for Software and Services of Mobile
Systems. In At your service: Service Engineering in the Information Society
Technologies Program. MIT press, 2009.

[82] N. Dragoni and F. Massacci. Security-by-Contract for web services. In Pro-
ceedings of the 2007 ACM workshop on Secure web services, pages 90–98, New
York, NY, USA, 2007. ACM.

[83] N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract:
Toward a semantics for digital signatures on mobile code. In EuroPKI, volume
4582 of Lecture Notes in Computer Science, pages 297–312. Springer, 2007.

[84] V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated
Techniques for Formal Software Verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 27(7):1165–1178,
July 2008.

[85] U. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a
retrospective. In Proceedings of the 7th New Security Paradigms Workshop,
1999.

[86] U. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection.
In IEEE Symposium on Security and Privacy, page 246, Oakland, California,
USA, May 2000. IEEE Computer Society.

[87] J. Esparza. On the decidability of model checking for several µ-calculi and
Petri nets. In Proc. 19th Int. Colloquium on Trees in Algebra and Program-
ming, 1994.

[88] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. SIGPLAN Notices, 37:234–245,
May 2002.

[89] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In Proceedings of the 5th ACM conference on Computer
and communications security, pages 83–92, New York, NY, USA, 1998. ACM.

[90] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance
Computing Applications, 15:200–222, August 2001.

[91] C. Fournet and A. D. Gordon. Stack inspection: theory and variants. ACM
Transactions on Programming Languages and Systems, 25(3):360–399, 2003.

6.0. BIBLIOGRAPHY 153

[92] G. Gheorghe, P. Mori, B. Crispo, and F. Martinelli. Enforcing ucon policies
on the enterprise service bus. In R. Meersman, T. Dillon, and P. Herrero,
editors, On the Move to Meaningful Internet Systems, OTM 2010, volume
6427 of Lecture Notes in Computer Science, pages 876–893. Springer Berlin /
Heidelberg, 2010.

[93] L. Gong. Inside Java 2 platform security: architecture, API design, and im-
plementation. Addison-Wesley, 1999.

[94] Google TV, 2011. http://www.google.com/tv/.

[95] P. Greci, F. Martinelli, and I. Matteucci. A framework for contract-policy
matching based on symbolic simulations for securing mobile device applica-
tion. In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation, volume 17 of Communications in Com-
puter and Information Science, pages 221–236. Springer Berlin Heidelberg,
2009.

[96] D. Grove and C. Chambers. A framework for call graph construction al-
gorithms. ACM Transactions on Programming Languages and Systems,
23(6):685–746, 2001.

[97] J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C. Herzog, J. D. Ramsdell,
and B. T. Sniffen. Trust Management in Strand Spaces: A Rely-Guarantee
Method. In Proceedings of the 13th European Symposium on Programming,
Lecture Notes in Computer Science, pages 325–339. Springer, 2004.

[98] M. Hennessy and R. Milner. On observing nondeterminism and concurrency.
In Proceedings of the 7th Colloquium on Automata, Languages and Program-
ming, pages 299–309, London, UK, 1980. Springer-Verlag.

[99] iCareMobile official website, 2011. http://icaremobile.iit.cnr.it/.

[100] A. Igarashi and N. Kobayashi. Resource usage analysis. In Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2002.

[101] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible
support for multiple access control policies. ACM Transactions on Database
Systems, 26(2):214–260, 2001.

[102] Jalapa: Securing Java with Local Policies web page at Sourceforge.net, 2008.
http://jalapa.sourceforge.net/.

[103] Java + Information Flow web page, 2011.
http://www.cs.cornell.edu/jif/.

http://www.google.com/tv/
http://icaremobile.iit.cnr.it/
http://jalapa.sourceforge.net/
http://www.cs.cornell.edu/jif/

154 BIBLIOGRAPHY

[104] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and automatic
program generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[105] JSR 118 Expert Group. Mobile Information Device Profile for Java 2
Micro Edition. Java Standards Process JSP 118, Java Community Process,
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html,
November 2002.

[106] K. Keahey and V. Welch. Fine-grain authorization for resource management
in the grid environment. In Proceedings of the Third International Workshop
on Grid Computing, pages 199–206, London, UK, 2002. Springer-Verlag.

[107] R. Khalaf, N. Mukhi, and S. Weerawarana. Service-Oriented Composition in
BPEL4WS. In Proceedings of WWW (Alternate Paper Tracks), 2003.

[108] O. Kolsi and T. Virtanen. MIDP 2.0 security enhancements. In Proceedings of
the 37th Annual Hawaii International Conference on System Sciences, 2004.

[109] M. Kolundzija. Security types for sessions and pipelines. In 5th International
Workshop on Web Services and Formal Methods, pages 175–190, 2008.

[110] H. Koshutanski, A. Lazouski, F. Martinelli, and P. Mori. Enhancing grid se-
curity by fine-grained behavioral control and negotiation-based authorization.
International Journal of Information Sececurity, 8(4):291–314, 2009.

[111] H. Koshutanski, F. Martinelli, P. Mori, L. Borz, and A. Vaccarelli. A Fine
Grained and X.509 Based Access Control System for Globus. In OTM, pages
1336–1350. Springer, 2006.

[112] H. Koshutanski, F. Martinelli, P. Mori, and A. Vaccarelli. Fine-grained and
History-based Access Control with Trust Management for Autonomic Grid
Services. In Proceedings of the International Conference on Autonomic and
Autonomous Systems, page 34, Washington, DC, USA, 2006. IEEE Computer
Society.

[113] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[114] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, 3(2):125–143, 1977.

[115] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: theory and practice. ACM Transactions on Computer Sys-
tems, 10:265–310, November 1992.

[116] B. W. Lampson. Protection. SIGOPS Operating Systems Review, 8:18–24,
January 1974.

http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html

6.0. BIBLIOGRAPHY 155

[117] I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara. Disciplining orches-
tration and conversation in service-oriented computing. In IEEE International
Conference on Software Engineering and Formal Methods, pages 305–314, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[118] G. T. Leavens, A. L. Baker, and C. Ruby. Jml: A notation for detailed design.
In Behavioral Specifications of Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, 1999.

[119] K. R. M. Leino, P. Müller, and J. Smans. Verification of Concurrent Programs
with Chalice. In A. Aldini, G. Barthe, and R. Gorrieri, editors, Foundations
of Security Analysis and Design, volume 5705 of Lecture Notes in Computer
Science, pages 195–222. Springer, 2009.

[120] A. Lenhart. Teens and mobile phones over the past five years: Pew internet
looks back. http://www.pewinternet.org/, August 2009.

[121] A. Lenhart. Teens and sexting. http://www.pewinternet.org/, December
2009.

[122] A. Lenhart, R. Ling, S. Campbell, and K. Purcell. Teens and mobile phones.
http://www.pewinternet.org/, April 2010.

[123] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security,
4:2–16, 2005.

[124] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, second edition, 1999.

[125] J. Liu and V. Issarny. An incentive compatible reputation mechanism for
ubiquitous computing environments. International Journal of Information
Security, 6(5):297–311, 2007.

[126] G. Lowe. Casper: a compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, January 1998.

[127] G. Lowe. Analysing Protocol Subject to Guessing Attacks. Journal of Com-
puter Security, 12(1):83–98, 2004.

[128] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent sys-
tems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[129] K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification. In
Proceedings of the First Asian Programming Languages Symposium, 2003.

http://www.pewinternet.org/
http://www.pewinternet.org/
http://www.pewinternet.org/

156 BIBLIOGRAPHY

[130] F. Martinelli and I. Matteucci. Through Modeling to Synthesis of Security
Automata. Electronic Notes in Theoretical Compututer Science, 179:31–46,
2007.

[131] F. Martinelli and P. Mori. Enhancing java security with history based access
control. In FOSAD, pages 135–159, 2007.

[132] F. Martinelli, P. Mori, T. Quillinan, and C. Schaefer. A runtime monitoring
environment for mobile Java. In Proceedings of the 1st International ICST
workshop on Security Testing (SecTest08), 2008.

[133] F. Martinelli, P. Mori, and A. Vaccarelli. Towards continuous usage control
on grid computational services. In ICAS/ICNS, 2005.

[134] F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform
security policy using automata modulo theory. In 12th Nordic Workshop on
Secure IT Systems (NordSec’07), 2007.

[135] I. Mastroeni. On the Role of Abstract Non-interference in Language-Based
Security. In K. Yi, editor, Programming Languages and Systems, volume
3780 of Lecture Notes in Computer Science, pages 418–433. Springer Berlin /
Heidelberg, 2005.

[136] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1982.

[137] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[138] G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, Jan. 1997.

[139] F. Nielson, R. R. Hansen, and H. R. Nielson. Abstract interpretation of mobile
ambients. Science of Computer Programming, 47:145–175, May 2003.

[140] F. Nielson and H. R. Nielson. Type and effect systems. In Correct System
Design, 1999.

[141] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[142] C. Nodder. Cranor, L. and Garfinkel, S. L., Designing Secure Systems That
People Can Use, chapter Users and Trust: A Microsoft Case Study. O’Reilly
& Associates, 2005.

[143] OpenMoko project. OpenMoko. http://openmoko.org, 2010.

http://openmoko.org

6.0. BIBLIOGRAPHY 157

[144] OSGi Alliance Web Page. Simple Object Access Protocol (SOAP) 1.1 Speci-
fication, 2001. http://www.w3.org/TR/wsdl/.

[145] Nokia OVI Store, 2011. http://store.ovi.com/.

[146] R. Pandey and B. Hashii. Providing fine-grained access control for java pro-
grams. In ECCOP’99 - Object-Oriented Programming, 13th European Confer-
ence, Lisbon, Portugal, June 14-18, 1999, Proceedings, volume 1628 of Lecture
Notes in Computer Science, pages 449–473. Springer, 1999.

[147] M. P. Papazoglou. Web Services: Principles and Technology. Prentice Hall,
1999.

[148] M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and
directions. In WISE, 2003.

[149] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Krämer.
Service-oriented computing: A research roadmap. In F. Cubera, B. J. Krämer,
and M. P. Papazoglou, editors, Service Oriented Computing (SOC), Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[150] M. Papazouglou and D. Georgakopoulos. Special issue on service oriented
computing. Communications of the ACM, 46(10), 2003.

[151] J. Park and R. Sandhu. The UCONABC usage control model. ACM Transac-
tions on Information and System Security, 7:128–174, February 2004.

[152] A. S. Patrick, P. Briggs, and S. Marsh. Designing Secure Systems That Peo-
ple Can Use, chapter Designing Systems that People will Trust. O’Reilly &
Associates, 2005.

[153] L. C. Paulson. The foundation of a generic theorem prover. Journal of Auto-
mated Reasoning, 5:363–397, September 1989.

[154] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–
52, October 2003.

[155] Pew Research Center. Pew Internet and American Life Project.
http://www.pewinternet.org/, August 2011.

[156] Pew Research Center. Pew Research Center web site.
http://www.pewinternet.org/, 2011.

[157] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, pages 46–57, November
1977.

http://www.w3.org/TR/wsdl/
http://store.ovi.com/
http://www.pewinternet.org/
http://www.pewinternet.org/

158 BIBLIOGRAPHY

[158] A. Pretschner, M. Hilty, and D. Basin. Distributed usage control. Commu-
nunications of the ACM, 49:39–44, September 2006.

[159] Proteus J2ME Browser. http://sourceforge.net/projects/protheus/,
2010.

[160] Python programming language official website, 2011.
http://www.python.org/.

[161] K. V. Renaud. Experience with statically-generated proxies for facilitating
Java runtime specialisation. IEEE Proc. Software, 149(6), Dec 2002.

[162] A. Rensink and R. Gorrieri. Action refinement as an implementation relation.
In M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: Theory and Practice
of Software Development, volume 1214 of Lecture Notes in Computer Science,
pages 772–786. Springer Berlin / Heidelberg, 1997.

[163] Ruby programming language official website, 2011.
http://www.ruby-lang.org/.

[164] S3MS project. Security for Software and Services for Mobile Systems (S3MS).
http://www.s3ms.org.

[165] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F. Casati. Automated
SLA Monitoring for Web Services. In M. Feridun, P. Kropf, and G. Babin, edi-
tors, Management Technologies for E-Commerce and E-Business Applications,
volume 2506 of Lecture Notes in Computer Science, pages 28–41. Springer
Berlin / Heidelberg, 2002.

[166] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models,
and mechanisms. In FOSAD ’00: Revised versions of lectures given during
the IFIP WG 1.7 International School on Foundations of Security Analysis
and Design on Foundations of Security Analysis and Design, pages 137–196,
London, UK, 2001. Springer-Verlag.

[167] R. Sandhu and P. Samarati. Access control: Principles and practice. IEEE
Communications Magazine, 32, 1994.

[168] F. B. Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security, 3(1):30–50, 2000.

[169] P. Schnoebelen. The complexity of temporal logic model checking. In Pro-
ceedings of the 4th Workshop on Advances in Modal Logic (AIML’02), 2003.

[170] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney.
Model-carrying code: a practical approach for safe execution of untrusted
applications. In Proceedings of the 19th ACM symposium on Operating systems
principles, SOSP ’03, pages 15–28, New York, NY, USA, 2003. ACM.

http://sourceforge.net/projects/protheus/
http://www.python.org/
http://www.ruby-lang.org/
http://www.s3ms.org

6.0. BIBLIOGRAPHY 159

[171] P. Sewell and J. Vitek. Secure composition of untrusted code: box-π, wrappers,
and causality types. Journal of Computer Security, 11:135–187, March 2003.

[172] C. Skalka and S. Smith. History effects and verification. In Asian Programming
Languages Symposium, 2004.

[173] C. Skalka, S. F. Smith, and D. V. Horn. Types and trace effects of higher
order programs. Journal of Functional Programming, 18(2):179–249, 2008.

[174] G. Smith and D. Volpano. Secure information flow in a multi-threaded impera-
tive language. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’98, pages 355–364, New York,
NY, USA, 1998. ACM.

[175] Soot: a Java optimization framework http://www.sable.mcgill.ca/soot/.

[176] W. Stallings. Cryptography and Network Security: Principles and Practice.
Pearson Education, 3rd edition, 2002.

[177] Sun Microsystems. White Paper on KVM and the Connected, Limited Device
Configuration (CLDC). Technical report, Palo Alto, CA, USA, May 2000.

[178] Sun Microsystems Inc. The Connected Limited Device Con-
figuration Specification. Java Standards Process JSR 139,
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html,
March 2003.

[179] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 3rd edition,
2007.

[180] P. Thiemann. Enforcing safety properties using type specialization. In Proc.
ESOP, 2001.

[181] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4:167–187, January 1996.

[182] D. Walker. A type system for expressive security policies. In Proceedings of
the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2000.

[183] I. Walukiewicz. A complete deductive system for the µ-calculus. PhD thesis,
Warsaw University, 1994.

[184] I. Welch and R. Stroud. Kava - A reflective Java based on Bytecode rewriting.
Reflection and Software Engineering, pages 155–167, 2000.

http://www.sable.mcgill.ca/soot/
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html

160 BIBLIOGRAPHY

[185] I. Welch and R. Stroud. Kava - Using Bytecode rewriting to add behavioural
reflection to Java. In Proceedings of the 6th conference on USENIX Conference
on Object-Oriented Technologies and Systems, 2001.

[186] T. Y. C. Woo and S. S. Lam. Authorizations in distributed systems: A new
approach. Journal of Computer Security, 2(2-3):107–136, 1993.

[187] World Wide Web Consortium (W3C). The “Buy Something” scenario.
http://www.w3.org/2001/03/WSWS-popa/paper51, 2009.

[188] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and policy
specification of usage control. ACM Transactions on Programming Languages
and Systems, 8:351–387, November 2005.

[189] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical specification
for usage control. In Proceedings of the ninth ACM symposium on Access
control models and technologies, SACMAT ’04, pages 1–10, New York, NY,
USA, 2004. ACM.

http://www.w3.org/2001/03/WSWS-popa/paper51

Appendix

Technical Proofs of Chapter 5

Lemma 5.1 If Γ, H ⊢g e : τ and g′ ⇒ g then Γ, H ⊢g′ e : τ

Proof. By induction on the structure of e.

• Cases for e = ∗, e = r and e = x, trivial.

• If e = α(e′) then, applying the inductive hypothesis to the premise of the rule
we have

Γ, H ⊢g′ e
′ : R

Γ, H ·
∑

R α(r) ⊢g′ α(e
′) : 1

• If e = if ḡ then ett else eff we note that for all g, g′, ḡ g′ ⇒ g implies that
g′ ∧ ḡ ⇒ g ∧ ḡ. The thesis follows by applying the inductive hypothesis to the
premises of the rule.

• If e = ϕ[e′] the property follows directly from the inductive hypothesis.

• If e = λzx.e
′ we apply the inductive hypothesis and we immediately have

Γ; x : τ ; z : τ
H
−→ τ ′, H ⊢g′ e

′ : τ ′

Γ, ε ⊢g′ λzx.e
′ : τ

H
−→ τ ′

• If e = e1e2 we simply apply the inductive hypothesis to e1 and e2. We finish
using the typing rule for application.

• If e = reqρ τ
ϕ
−→ τ ′ the thesis follows directly from the definition of the rule

(T− Req).

We introduce here a new type system for λreq. We need a new type system
because the rules defined in Section 5.1.3 (see Table 5.11) do not apply to terms
containing some open security framing, that is a framing that has been activated
(identified by the marker m).

162 APPENDIX

The new typing relation ⊢♯ has the same rules as ⊢ (we use T2− instead of T−
to identify them). Moreover, ⊢♯ has a new rule for framing:

(T2−Frm1)
Γ, H ⊢♯g e : τ

Γ, H·]mϕ ⊢
♯
g ϕ

m[e] : τ

Property 5.1 If Γ, H ⊢g e : τ then Γ, H ⊢♯g e : τ .

Proof. By definition of ⊢♯.

Property 5.2 If Γ, H ⊢g e : τ then for each η ∈ JHKσ it holds that η∂ = η.

Proof. By definition of ⊢ and ∂.

Property 5.3 Let Γ, H ⊢♯g e : τ and η, e →π η
′, e′. For each g′ such that g′ ⇒ g,

there exists H ′ such that Γ, H ′ ⊢♯g′ e
′ : τ and ∀σ.σ |= g′ =⇒ (η′JH ′Kσ)∂ ⊆ (ηJHKσ)∂

Proof. By induction on the depth of Γ, H ⊢♯g e : τ . Note that cases (T2−Unit),
(T2−Res) and (T2−Var) cannot be used as base for the induction since they do not
admit transitions.

• Case (T2−Ev). We have two sub-cases

a) η, α(r)→π ηα(r), ∗. We instantiate the rule (T2− Ev) to

Γ, ε ⊢♯g r : R

Γ,
∑

R α(r) ⊢
♯
g α(r) : 1

We simply note that ∀σ.ηα(r)JεKσ ⊆ ηJ
∑

R α(r)K
σ.

b) η, α(ē)→π η
′, α(ē′). We instantiate the hypothesis to

Γ, H ⊢♯g ē : R

Γ, H ·
∑

R α(r) ⊢
♯
g α(ē) : 1

and
η, ē→π η

′, ē′

η, α(ē)→π η
′, α(ē′)

Assuming the premises of the two rules and applying the inductive hy-
pothesis we infer that for each ḡ′ s.t. ḡ′ ⇒ g then Γ, H̄ ′ ⊢♯ḡ′ ē

′ : R implies

that ∀σ.σ |= ḡ′ =⇒ (η′JH̄ ′Kσ)∂ ⊆ (ηJHKσ)∂. Applying the typing rule for
events we have

Γ, H̄ ′ ⊢♯ḡ′ ē
′ : R

Γ, H̄ ′ ·
∑

R α(r) ⊢
♯
ḡ′ ē

′ : R

Then ∀σ.σ |= ḡ′ =⇒ (η′JH̄ ′KσJ
∑

R α(r)K
σ)∂ ⊆ (ηJHKσJ

∑

R α(r)K
σ)∂ .

163

• Case (T2−If). We have two symmetric cases. Instantiating the rule we obtain

Γ, H ⊢♯g∧ḡ ett : τ Γ, H ⊢♯g∧¬ḡ eff : τ

Γ, H ⊢♯g if ḡ then ett else eff : τ

and
η, if ḡ then ett else eff →π η, eB(ḡ)

By inductive hypothesis we have that ∀g′ such that g′ ⇒ g ∧ ḡ the property
holds. We then conclude by observing that if g′ ⇒ g ∧ ḡ then g′ ⇒ g.

• Case (T2−Frm). Instantiating the premises we have

Γ, H̄ ⊢♯g ē : τ

Γ, [ϕH̄]ϕ ⊢
♯
g ϕ[ē] : τ

and
η, ϕ[ē]→π η[

m
ϕ , ϕ

m[ē]

The, typing ϕm[ē] we have

Γ, H̄ ⊢♯g ē : τ

Γ, H̄]mϕ ⊢
♯
g ϕ

m[ē] : τ

We conclude by observing that (η[mϕ ·JH̄Kσ·]mϕ)
∂ = (η[ϕ·JH̄Kσ·]ϕ)

∂ .

• Case (T2−App). Let e = e1e2. We have

Γ, H0 ⊢
♯
g e1 : τ

H2−→ τ ′ Γ, H1 ⊢
♯
g e2 : τ

Γ, H0 ·H1 ·H2 ⊢
♯
g e1e2 : τ

′

We must verify four possible sub-cases depending on the rule used to derive
η, e→π η

′, e′.

– If (S−App1) has been used, then

η, e1 →π η
′, e′1

η, e1e2 →π η
′, e′1e2

Applying the inductive hypothesis to e1 we infer that ∀ḡ such that ḡ ⇒ g

the property holds on Γ, H̄ ⊢♯ḡ e
′
1 : τ

H2−→ τ ′. Then, by lemma 5.1 and

property 5.1, we know that Γ, H1 ⊢
♯
ḡ e2 : τ . So, we apply (T2-App) and

we have
Γ, H̄ ⊢♯ḡ e

′
1 : τ

H2−→ τ ′ Γ, H1 ⊢
♯
ḡ e2 : τ

Γ, H̄ ·H1 ·H2 ⊢
♯
ḡ e

′
1e2 : τ

′

Since (η′JH̄Kσ)∂JH1 ·H2K
σ ⊆ (ηJHKσ)∂JH1 ·H2K

σ, the thesis follows.

164 APPENDIX

– If (S−App2) has been used, then e = ve2 and

η, e2 →π η
′, e′2

η, ve2 →π η
′, ve′2

We proceed similarly to the previous case but we apply the inductive
hypothesis to e2 and lemma 5.1 and property 5.1 to v. Then we obtain

Γ, ε ⊢♯ḡ v : τ
H2−→ τ ′ Γ, H̄ ⊢♯ḡ e

′
2 : τ

Γ, ε · H̄ ·H2 ⊢
♯
ḡ ve

′
2 : τ

′

We conclude noting that ∀σ.(η′Jε · H̄Kσ)∂ = (η′JH̄Kσ)∂ .

– (S−App3) has been used, then e = (λzx.e
′)v and

η, (λzx.e
′)v →π η, e

′{v/x, λzx.e
′/z}

We finish by applying the same reasoning as in the previous cases.

– If (S−Req) has been used, we have

eℓ̄ : τ
H∗

−→ τ ′ ∈ Srv⌋ℓ π(ρ) = ℓ̄ H∗ |= ϕ

η, (reqρ τ
ϕ
−→ τ ′)v →π η, eℓ̄v

By (T2−Req) follows that

I = {H | eℓ′ : τ
H
−→ τ ′ ∈ Srv⌋ℓ ∧ H |= ϕ}

Γ, ε ⊢g reqρ τ
ϕ
−→ τ ′ : τ

∑
i∈I Hi

−−−−−→ τ ′

We conclude by noting ∀σ.∀ Ĥ.(ηJH∗Kσ)∂ ⊆ (ηJH∗ + ĤKσ)∂.

• Case (T2−Wkn). The typing rule is

Γ, H̄ ⊢♯g e : τ σ |= g JH̄Kσ ⊆ JHKσ

Γ, H ⊢♯g e : τ

By applying the inductive hypothesis to Γ, H̄ ⊢♯g e : τ we know that, for all

g′ s.t. g′ ⇒ g, there exists H̄ ′ such that Γ, H̄ ′ ⊢♯g′ e
′ : τ and (η′JH̄ ′Kσ)∂ ⊆

(ηJH̄Kσ)∂. We conclude observing that (ηJH̄Kσ)∂ ⊆ (ηJHKσ)∂ and applying
the transitivity of ⊆.

• Case (T2−Str). The typing rule is

Γ, H ⊢♯g e : τ g ⇒ g′

Γ, g′H ⊢♯g e : τ

165

and we have that η, e →π η
′, e′. We apply the inductive hypothesis and we

obtain that for all ḡ such that ḡ ⇒ g then Γ, H̄ ⊢♯ḡ e
′ : τ implies that ∀σ.σ |=

ḡ =⇒ (η′JH̄Kσ)∂ ⊆ (ηJHKσ)∂. We conclude observing that, by definition,
σ |= ḡ implies σ |= g′ and, then, Jg′HKσ = JHKσ.

Lemma 5.2 (Subject reduction) Let Γ, H ⊢g e : τ and η, e →∗
π η

′, e′. For each
g′ such that g′ ⇒ g, there exists H ′ such that Γ, H ′ ⊢g′ e

′ : τ and ∀σ.σ |= g′ =⇒
(η′JH ′Kσ)∂ ⊆ (ηJHKσ)∂

Proof. We proceed by induction on the length of the derivation.

• Base case. In this case e = e′ and η = η′. Then the property is trivially
satisfied by lemma 5.1.

• Inductive step. We have η, e →∗
π η′, e′ →π η′′, e′′. We apply the inductive

hypothesis to η′, e′. Then, applying property 5.1 we have that Γ, H ′′ ⊢g′′ e
′′ :

τ =⇒ Γ, H ′′ ⊢♯g′′ e
′′ : τ . Now we apply property 5.3 and we obtain

(η′′JH ′′Kσ)∂ ⊆ (η′JH ′Kσ)∂ ⊆ (ηJHKσ)∂

That is the thesis.

Theorem 5.1 (Type safety) If Γ, H ⊢true e : τ and ε, e→∗
π η

′, v, then ∀ σ. ∃ η ∈
JHKσ such that η = (η′)∂.

Proof. By lemma 5.2 (and by noticing that ∀σ,H.JεKσ ⊆ JHKσ) we know that for
each g such that g ⇒ true then ∀σ.σ |= g =⇒ (ηJεKσ)∂ ⊆ (JHKσ)∂ . The thesis
follows from property 5.2.

Theorem 5.2 Given two plans π and π′, if Γ, H ⊢g e |π: τ and Γ, H ′ ⊢g e |π;π′: τ
then ∀σ.JH ′Kσ ⊆ JHKσ

Proof. By induction on the structure of e. The only interesting case is e =
reqρ τ

ϕ
−→ τ ′ (the others are trivial or direct consequences of the inductive hypothe-

sis). According to the definition of plan three cases arise:

• π(ρ) = ℓ. Then e |π= e |π;π′= e′ and we conclude by applying the inductive
hypothesis to e′.

• π(ρ) = ⊥ and π′(ρ) = ℓ. If e |π;π′= e |π= e the property is trivially satisfied.
Otherwise, H =

∑

i∈I Hi and H ′ = Hj for some j ∈ I. Hence ∀σ.JH ′Kσ ⊆
JHKσ.

• π(ρ) = π′(ρ) = ⊥. In this case we have H = H ′.

166 APPENDIX

Property 5.4 For all e and π such that e |π is complete, ∀ π′ . e |π;π′= e |π′;π= e |π.

Proof. By induction on the structure of e. Again, the only non trivial case is for
e = reqρ τ

ϕ
−→ τ ′. However, by definition of modular plans, we know that π(ρ) =

π; π′(ρ) = π′; π(ρ) = eℓ and we conclude by applying the inductive hypothesis to
eℓ.

Lemma 5.3 Given two terms e,e′ and two modular plans π,π′ complete for e and
e′, respectively, then π; π′ is complete for both e and e′.

Proof. A direct consequence of property 5.4.

Theorem 5.3 Let πi be modular plans complete for services ei, and let ∅, Hi ⊢gi
ei : τi, i = 0, 1. Then,

• π0; π1 is complete for both α(e0) and if g then e0 else e1

• ∀ϕ, if H0 |= ϕ then

- π0; π1 is complete for ϕ[e0]

- {ρ 7→ ℓ}; π0 is complete for reqρ τ
ϕ
−→ τ ′, with eℓ = e0 and eℓ : τ

H0−→ τ ′ ∈
Srv

• if τ0 = τ1
H′

0−→ τ ′ and H0 ·H1 ·H
′
0 is valid, then π0; π1 is complete for e0e1

Proof. All the cases are a consequence of the definition of complete plan and
lemma 5.3.

Property 5.5 For each usage automaton Aψ = 〈Ev, Q, ı, F, T 〉 holds that

∀ η : ∃ q ∈ Q : ı
η
−→∗q

Proof. A direct consequence of the definition of usage automaton.

Property 5.6 Let Preq(H,Aψ) = Aψ⋆ then

∀ η : η |= ψ⋆ ⇒ ∄ q ∈ Q⋆ : q
ηR

−→∗qf ∧ qf ∈ F
′

Proof. By contradiction. Let assume that there exists some η such that

(1) η |= ψ⋆ and

(2) ∃ q ∈ Q⋆ : q
ηR

−→∗qf ∧ qf ∈ F
′

167

We observe that (2) holds if and only if

ηR ∈ L(Nψ⋆)⇔ η ∈ L(NR
ψ⋆)⇔ η ∈ L(Aψ⋆)

(by definition of operator R and by property of the NFAs). Hence, we conclude by
verifying that η ∈ L(Aψ⋆) ⇔ η 6|= ψ⋆ (by definition of usage automaton), contra-
dicting (1).

Property 5.7 Let Preq(H,Aψ) = Aψ⋆ then

∀ η : ∃ σ : η ∈ JHKσ ⇒ ∃ q⋆ ∈ Q⋆ : ı′
ηR

−→∗q⋆

Proof. By property 5.5 there exists q ∈ Q′ such that ı′
ηR

−→∗q is a valid sequence of
transitions for ARψ . Hence, η

R ∈ L(Aq) and η
R ∈ JHRKσ.

Theorem 5.4 Let Preq(H,Aψ) = Aψ⋆ then

∀ η : η |= ψ⋆ ⇒ ηH |= ψ

Proof. By contradiction. Let assume that there exists some η such that

(1) η |= ψ⋆ and

(2) η ·H 6|= ψ

We note that (2) holds if and only if

∃ σ : Jη ·HKσ ∩ L(Aψ) 6= ∅ ⇔ ∃ η̄ ∈ JHKσ : ηη̄ ∈ L(Aψ)⇔ η̄RηR ∈ L(ARψ) (⋄)

Then, applying property 5.7 we obtain that

∃ q⋆ ∈ Q⋆ : ı′
η̄R

−→∗q⋆

However, by property 5.6 we know that

∄q̄ ∈ Q⋆ : q̄
ηR

−→∗qf ∧ qf ∈ F
′

Hence, we obtain
η̄RηR 6∈ L(ARψ)

and we find a contradiction with (⋄).

	Introduction
	Motivations and techniques
	Goal and structure of this thesis

	Background
	Security models
	Access Control
	Usage Control
	History-based security

	Security analysis mechanisms
	Type systems
	Model checking

	Trace properties specification
	Automata-based Specification
	Process Algebras
	Modal and temporal logics

	Composed systems security in the field
	J2ME security
	Web services and grid computing

	Mobile Application Security and Enforcement on Devices
	Extending Java with local policies
	Local policies specification
	Policy sandbox
	Security checks deployment

	The Jalapa framework
	Framework structure
	The Jisel runtime environment
	Static analysis and verification

	On-device monitor inlining
	Application monitoring on mobile devices
	Bytecode in-lining
	System implementation

	A centralised monitoring architecture for mobile devices
	Platform monitoring
	Extensible monitoring architecture
	Parental control: a case study

	Discussion

	Trust-Driven Secure Composition
	Security-by-Contract-with-Trust
	Security-by-Contract Paradigm
	Extending SC with Trust
	Trust management

	Introducing Gate Automata
	Gate automata
	Automata semantics
	Trace validity

	SCT through gate automata
	Gate Automata and ConSpec
	Enforcement environment

	Discussion

	Secure Service Composition
	Security issues in open networks
	Open networks
	Service structure
	Type and effect system
	Typing relation

	Modular plans for secure service composition
	Properties of Plans
	The ``Buy Something'' Case Study

	Synthesizing security prerequisites
	Security Prerequisite
	Partial evaluation of policies
	A strategy for service orchestration

	Discussion

	Conclusions
	Bibliography
	Appendix

