2,183 research outputs found

    On the Strength of Uniqueness Quantification in Primitive Positive Formulas

    Get PDF
    Uniqueness quantification (Exists!) is a quantifier in first-order logic where one requires that exactly one element exists satisfying a given property. In this paper we investigate the strength of uniqueness quantification when it is used in place of existential quantification in conjunctive formulas over a given set of relations Gamma, so-called primitive positive definitions (pp-definitions). We fully classify the Boolean sets of relations where uniqueness quantification has the same strength as existential quantification in pp-definitions and give several results valid for arbitrary finite domains. We also consider applications of Exists!-quantified pp-definitions in computer science, which can be used to study the computational complexity of problems where the number of solutions is important. Using our classification we give a new and simplified proof of the trichotomy theorem for the unique satisfiability problem, and prove a general result for the unique constraint satisfaction problem. Studying these problems in a more rigorous framework also turns out to be advantageous in the context of lower bounds, and we relate the complexity of these problems to the exponential-time hypothesis

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory

    Get PDF
    In this article we introduce systems for metapredicative Mahlo in explicit mathematics and admissible set theory. The exact upper proof-theoretic bounds of these systems are establishe

    Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory

    Get PDF
    In this article we introduce systems for metapredicative Mahlo in explicit mathematics and admissible set theory. The exact upper proof-theoretic bounds of these systems are established

    Predicativity, the Russell-Myhill Paradox, and Church's Intensional Logic

    Full text link
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church's intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms of Church's intensional logic that have been criticized by Parsons and Klement: this, it turns out, is due to resources which also permit an interpretation of a fragment of Gallin's intensional logic. Finally, the relation between the predicative response to the Russell-Myhill paradox of propositions and the Russell paradox of sets is discussed, and it is shown that the predicative conception of set induced by this predicative intensional logic allows one to respond to the Wehmeier problem of many non-extensions.Comment: Forthcoming in The Journal of Philosophical Logi

    Notes on the Riemann Hypothesis

    Full text link
    These notes were written from a series of lectures given in March 2010 at the Universidad Complutense of Madrid and then in Barcelona for the centennial anniversary of the Spanish Mathematical Society (RSME). Our aim is to give an introduction to the Riemann Hypothesis and a panoramic view of the world of zeta and L-functions. We first review Riemann's foundational article and discuss the mathematical background of the time and his possible motivations for making his famous conjecture. We discuss some of the most relevant developments after Riemann that have contributed to a better understanding of the conjecture.Comment: 2 sections added, 55 pages, 6 figure

    Antinomicity and the axiom of choice. A chapter in antinomic mathematics

    Get PDF
    The present work is an attempt to break ground in mathematics proper, armed with the accepting view just described. Specifically, we shall examine various versions of antinomic set theory, in particular the axiom of choice, keeping the presentation as intuitive as possible, more in the manner of a nineteenth century paper than as a thoroughly formalized system. The reason for such a presentation is the conviction that at this point it should be the mathematics that eventually determines the logic, rather than the other way around

    A predicative variant of a realizability tripos for the Minimalist Foundation.

    Get PDF
    open2noHere we present a predicative variant of a realizability tripos validating the intensional level of the Minimalist Foundation extended with Formal Church thesis.the file attached contains the whole number of the journal including the mentioned pubblicationopenMaietti, Maria Emilia; Maschio, SamueleMaietti, MARIA EMILIA; Maschio, Samuel

    Wellordering proofs for metapredicative Mahlo

    Get PDF
    In this article we provide wellordering proofs for metapredicative systems of explicit mathematics and admissible set theory featuring suitable axioms about the Mahloness of the underlying universe of discourse. In particular, it is shown that in the corresponding theories EMA of explicit mathematics and KPm0 of admissible set theory, transfinite induction along initial segments of the ordinal φω00, for φ being a ternary Veblen function, is derivable. This reveals that the upper bounds given for these two systems in the paper Jäger and Strahm [11] are indeed shar
    • …
    corecore