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UPPER BOUNDS FOR METAPREDICATIVE MAHLO 
IN EXPLICIT MATHEMATICS AND ADMISSIBLE SET THEORY 

GERHARD JAGER AND THOMAS STRAHM 

Abstract. In this article we introduce systems for metapredicative Mahlo in explicit mathematics and 

admissible set theory. The exact upper proof-theoretic bounds of these systems are established. 

§1. Introduction. In classical set theory an ordinal K is called a Mahlo ordinal if 
it is a regular cardinal and if, for every normal function / from K to K, there exists a 
regular cardinal fi less than K so that {/(£) : £ < ju} C [i. The statement that there 
exists a Mahlo ordinal is a powerful set existence axiom going beyond theories like 
ZFC. It also outgrows the existence of inaccessible cardinals, hyper inaccessibles, 
hyperhyperinaccessible and the like. 

There is also an obvious recursive analogue of Mahlo ordinal. Typically, an 
ordinal a is baptized recursively Mahlo, if it is admissible and reflects every TI2 
sentence on a smaller admissible ordinal. The corresponding formal theory KPM 
has been proof-theoretically analyzed by Rathjen [14, 15]. KPM is a highly impred-
icative theory, and its proof-theoretic strength is significantly beyond that of KPi, 
the second order theory (A2-CA) + (Bl) and Feferman's theory To, which are all 
proof-theoretically equivalent (cf. [3, 6, 10]). 

This article can be seen as a further contribution to the general program of 
metapredicativity. We have studied other metapredicative theories in Jager, Kahle, 
Setzer and Strahm [8], Jager and Strahm [11], and Strahm [21, 20]; there also some 
further background material can be found. 

One aim here is to look at metapredicative Mahlo in admissible set theory. The 
corresponding theory, named KPm°, is admissible set theory above the natural 
numbers as urelements plus n2 reflection on the admissibles. As induction principles 
we have complete induction on the natural numbers for sets, but do not include e 
induction. 

A further aim of this paper is to introduce the concept of Mahloness into explicit 
mathematics and to analyze the proof-theoretic strength of its metapredicative 
version. An extension of Feferman's theory T0 by Mahlo axioms is studied in Jager 
and Studer [12]. Setzer [18] presents a related formulation in the framework of 
Martin-L6f type theory. 

For the formalization of Mahlo in explicit mathematics we work over the ba
sic theory EETJ which comprises the axioms of applicative theories and has type 
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936 GERHARD JAGER AND THOMAS STRAHM 

existence axioms for elementary comprehension and join. To obtain Mahlo, we in
troduce the concept of universe with the idea that universes act as explicit analogues 
of admissibles. Then we add Mahlo axioms which require that, for each name a of 
a type and for every operation / which maps names of types into names of types, 
there exists a universe with name m(a, / ) which contains a and is closed under / . 
The theory EMA is EETJ plus these Mahlo axioms and induction on the natural 
numbers for types. It provides one basic formalism for metapredicative Mahlo in 
explicit mathematics. 

In the following we will see that the proof-theoretic ordinals of KPm° and EMA 
are less than or equal to tpcoOO, for ip being the ternary Veblen function. Together 
with the results of Strahm [19] we thus conclude that ipcoOO is the proof-theoretic 
ordinal of KPm° and EMA. If complete induction on the natural numbers for 
arbitrary formulas is added, we obtain systems of strength </?e000. 

§2. The theory KPm°. In this section we introduce the metapredicative theory 
KPm° for a recursively inaccessible Mahlo universe. Basically, KPm° is the theory 
KPi° of Jager [7] augmented by an axiom scheme for II2 reflection on the admissibles. 
It is equivalent to the theory KPM of Rathjen [14] if complete induction on co is 
restricted to sets and all other forms of e induction are omitted there. 

For the following it will be convenient to work in a framework with the natural 
numbers as urelements. Therefore, we let S'x denote the language of first order 
arithmetic, which has number variables a ,b ,c ,d ,e , f ,u , v ,w ,x ,y , z , . . . (possibly 
with subscripts), symbols for all primitive recursive functions and relations, as well 
as a unary relation symbol Q. Q plays the role of an anonymous relation variable 
with no specific meaning. Its role will become clear in Definition 1 below. There is 
also a symbol ~ for forming negative literals.1 

The number terms (r, s, t, r\, s\, t\,...) of SS\ are defined as usual. Positive literals 
of 5f\ are all expressions R{s\,... , sn) for R a symbol for an n -ary primitive recursive 
relation as well as expressions of the form Q(s). The negative literals of Jz?i have the 
form ~ £ so that E is a positive literal. The formulas of S?\ are now generated from 
the positive and negative literals of 5C\ by closing against disjunction, conjunction, 
as well as existential and universal number quantification. The negation -*A of 
an S'x formula A is defined by making use of De Morgan's laws and the law of 
double negation. Moreover, the remaining logical connectives are abbreviated in 
the standard way. 

KPm° is formulated in the extension Se* = i?i(e , N, S, Ad) of Sf\ by the mem
bership relation symbol e, the set constant N for the set of natural numbers and the 
unary relation symbols S and Ad for sets and admissibles, respectively. 

The terms (r, s, t, ti , s\, t i , . . . ) of 2"* are the terms of S?\ plus the set constant 
N. The formulas {A, B, C,Ai,BuCi,...) of S?* as well as the A0, Z, IX E„ and Un 

formulas of 2?* are defined as usual. The notation s is shorthand for a finite string 
S\,... ,s„ whose length will be specified by the context. Equality between objects 

'This formulation of the language is chosen for the Tait-style reformulation of our systems in the next 
section. 
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is not represented by a primitive symbol but denned by 

[ seNAteNA(s= N t)) 

v(s(s)AS(t)A(Vx es)(x e t)A(Vx e t)(x es)) 

where = N is the symbol for the primitive recursive equality on the natural numbers. 
The formula AB is the result of replacing each unrestricted quantifier 3x(...) and 
Vx(...) in ,4 by (3x G s)( . . . ) and (Vx G s) ( . . . ) , respectively. In addition, we freely 
make use of all standard set-theoretic notations and write, for example, Tran(s) for 
the Ao formula saying that s is a transitive set. 

Let & be a collection of 2£* formulas. Induction on the natural numbers with 
respect to & consist of all formulas 

(^"-IN) ,4(0) A(Vx € N)U(x) -> A(x')) -> (Vx G N)A(x) 

so that A (a) belongs to !?. Below we are particularly interested in the two induction 
schemas (A0-IN) and (J?*-IM). 

Now we introduce the theory KPm° for metapredicative Mahlo. Its logical axioms 
comprise the usual axioms of classical first order logic with equality. The non-logical 
axioms of KPm° can be divided into the following five groups. 

I. Ontological axioms. We have for all terms r, 5 and i of SP*, all function symbols h 
and relation symbols R of 5f\ and all axioms A (a) of group HI whose free variables 
belong to the list a: 

(1) t e N « n S ( t ) . 
(2) sG l \ l -+ / r ( s ) e N. 
(3) R(s)^se N. 
(4) t e t ^ S ( t ) . 
(5) A d ( t ) - » ( N GtATran(t) ) . 
(6) AdW^VxGtMHx*)-
(7) Ad(t) A Ad(t) - » t e t V t = t V t e r . 

II. Number-theoretic axioms. We have for all axioms A(a) of Peano arithmetic 
PA which are not instances of the schema of complete induction and whose free 
variables belong to the list a: 

(Number theory) ( V f e N ) / ( x ) . 

III. Kripke Platek axioms. We have for all terms s and t and all Ao formulas A(a) 
and 5(0,6) of ^ * : 

(Pair) 3x(s G x A t G x) . 
(Tran) 3x(s C x ATran(x)). 
(Ao-Sep) 3y(S(y)Ay = {xes:A(x)}). 
(Ao-Coll) (Vx G s)3yB(x,y) -f 3z(Vx G s)(3y G z)B{x,y). 

IV. Mahlo axioms. We have for all Ao formulas A(a, b, c) whose parameters belong 
to the list a, b, c: 

(M) (Vx)(3y)A(x,y,c) -» (3z)[Ad(z) Ac G z A(Vx G z){3y G z)A(x,y,c)] 

V. Induction axioms. These consist of the schema (AO-IN) of complete induction on 
the natural numbers for A0 formulas. 

(« = t) := 
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938 GERHARD JAGER AND THOMAS STRAHM 

Observe that € induction is not available in KPm . This is the price for obtaining a 
metapredicative theory. The situation here is analogue to that for theories of iterated 
admissible sets dealing with recursive inaccessibility. The theory KPi introduced in 
Jager [5] can be considered as a formalized approach to a recursively inaccessible 
universe; it contains full induction on the natural numbers and full e induction. 
KPi is fairly strong and proof-theoretically equivalent, for example, to the theory 
(Aj-CA) + (Bl), however, if we omit e induction and restrict induction on the 
natural numbers to sets, the resulting theory KPi0 has proof-theoretic ordinal T0 

(cf. Jager [7]). 
In the following we will measure the proof-theoretic strength of formal theories in 

terms of their proof-theoretic ordinals. As usual, for all primitive recursive relations 
-< and all i?* formulas A (a) we set: 

P r o g K A) := (Vx G N)[(VJ tN){y -< x -» A{y)) -> A(x)], 

1\{^,A) •= ProgK.4) -> (Vx e N)A(x). 

Thus TI(-<, A) expresses transfinite induction along the relation -< for the formula 
A{a). The proof-theoretic ordinal of a theory T is defined by referring to transfinite 
induction for the anonymous relation Q. 

DEFINITION 1. 1. An ordinal a is provable in a theory T, if there is a primitive 
recursive wellordering -< of order type a so that T |- TI(-<, Q). 

2. The least ordinal which is not provable in T is called the proof-theoretic ordinal 
of T and is denoted by |T|. 

The proof-theoretic ordinals of the theories which we consider in this paper are 
most easily expressed by making use of a ternary Veblen or tp function which we 
are now going to define. The usual Veblen hierarchy, generated by the binary 
function <p, starting off with the function ipQ/3 = co1*, is well known from the 
literature, cf. Pohlers [13] or Schutte [17]. The ternary ip function is obtained as a 
straightforward generalization of the binary case by defining <pafiy inductively as 
follows: 

(i) <pOf}y is just <p/ly; 
(ii) if a > 0, then <pa0y denotes the yth ordinal which is strongly critical with 

respect to all functions 1<J, n.(pS^n for S < a. 
(iii) if a > 0 and /? > 0, then ipaPy denotes the yth common fixed point of the 

functions X£,.ipaS£, for<5 < fS. 

For example, iplOa is TQ, and more generally, tp\af] denotes a Veblen hierarchy 
over Xa.ra. It is straightforward how to extend these ideas in order to obtain ip 
functions of all finite arities, and even further to Schutte's Klammersymbole [16]. 

In Strahm [19] a primitive recursive notation system based on the ternary Veblen 
function is used to show that ipcoOO and ipe^OO are lower bounds of the proof-
theoretic ordinals of KPm0 and KPm0 + (J?*-IN) , respectively. In this article we will 
establish that these lower bounds are sharp. 

Actually, we do not give a detailed proof-theoretic treatment of KPm ; rather we 
turn to corresponding systems of explicit mathematics and exhibit their upper proof-
theoretic bounds via an interpretation into suitable theories of ordinals. A proof-
theoretic analysis of the latter systems will be carried out in detail. An obvious 
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UPPER BOUNDS FOR METAPREDICATIVE MAHLO ... 939 

adaptation of the proof-theoretic treatment of these theories for ordinals also works 
for KPm°. 

§3. The theory EMA. The counterpart of the theory KPm° in explicit mathemat
ics is the system EMA which we will describe below. The role of admissibles in 
set theory is now played by (names of) so-called universes. The Mahlo axiom of 
KPm° allows to reflect set-theoretic II2 formulas on admissibles. In EMA we reflect 
functions from names to names on universes. The remaining axioms of EMA are 
the usual first order axioms of explicit mathematics, axioms for uniform elementary 
comprehension and join, as well as complete induction on the natural numbers for 
types. 

EMA is formulated in the second order language L for individuals and types. 
It comprises individual variables a,b,c,f,g,h,u,v,w,x,y,z,... as well as type 
variables U, V, W, X, XZ,... (both possibly with subscripts). L also includes the 
individual constants k, s (combinators), p, po, pi (pairing and projections), 0 (zero), 
sN (successor), pu (predecessor), dw (definition by numerical cases) and additional 
individual constants, called generators, which will be used for the uniform naming 
of types, namely nat (natural numbers), id (identity), co (complement), int (inter
section), dom (domain), inv (inverse image), j (join) and m (universe generator). 
There is one binary function symbol • for (partial) application of individuals to 
individuals. Further, L has unary relation symbols j. (defined) and N (natural 
numbers) as well as three binary relation symbols e (membership), = (equality) 
and 5ft (naming, representation). Finally, L has a symbol ~ for forming negative 
literals. 

It is convenient that L also includes an anonymous unary relation symbol Q 
and a corresponding generator q. As in the previous section, Q plays the role of 
an anonymous predicate on the natural numbers with no specific mathematical 
meaning. 

The individual terms (r, s, t, r\, si, t\,...) of L are built up from individual vari
ables and individual constants by means of our function symbol • for application. 
In the following we often abbreviate (s • t) simply as (st), st or sometimes also 
s(t); the context will always ensure that no confusion arises. We further adopt the 
convention of association to the left so that S1S2 . . . s„ stands for (... (si • s2) • • • s„). 
We also set t' := s^t. Finally, we define general n tupling by induction on « > 2 as 
follows: 

{s\,s2) := ps\s2, (su... ,sn+i) := {{su... ,s„),sn+\). 

The positive literals of L are the formulas N(s), si, s = t, U = V, s e U and 
$t(s, U), and the negative literals of L have the form ~ £ so that E is a positive 
literal. Since we work with a logic of partial terms, it is not guaranteed that all 
terms have values, and si is read as s is defined or s has a value. Moreover, N(s) 
says that s is a natural number, and the formula $i(s, U) is used to express that the 
individual s represents the type U or is a name of U. 

The formulas (A, B, C, A\, B\, C\,...) of L are generated from the positive and 
negative literals by closing against disjunction, conjunction, as well as existential and 
universal quantification for individuals and types. The negation -*A of an L formula 
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940 GERHARD JAGER AND THOMAS STRAHM 

A is defined as usual. The following table contains a useful list of abbreviations: 

s ~ t 

i s N 

(3x G N)A(x) 

(Vx e N)A(x) 

u c v 
S G / 

(3x G J)/*(JC) 

(Vx G ^)^(x) 

s = f 

5 C t 

U{s) 

= s[y *j -> * = ?, 

= N(*), 

= (3x)(x G NA^(x)) , 

= (Vx)(x e N - n 4 ( x ) ) , 

= (Vx)(x G £ / - > * € V), 

= {3X)($t(t,X)As eX), 

= (3x)(x 6 s AA(x)), 

= (Vx)(x G s - • A(x)). 

= (3Jr)[»(j,Ar)AK(r,Ar)], 

= (3x, r)[»(*, jr) A$R(?, Y)AX c Y], 
= (3X)&(s,X). 

The vector notation U and i*is sometimes used to denote finite sequences of type 
variables U\,... ,Um and individual terms s\,... ,s„, respectively, whose length is 
given by the context. 

The logic of EM A is Beeson's classical logic of partial terms (cf. Beeson [2] or 
Troelstra and Van Dalen [22]) for the individuals and classical logic with equality 
for the types. Observe that Beeson's formalization includes the usual strictness 
axioms. 

Before turning to our theory EMA for metapredicative Mahlo in explicit math
ematics, we introduce the auxiliary theory EETJ which provides a framework for 
explicit elementary types with join. The nonlogical axioms of EETJ can be divided 
into the following groups: 

I. Applicative axioms. These axioms formalize that the individuals form a partial 
combinatory algebra, that we have paring and projection and the usual closure 
conditions on the natural numbers plus definition by numerical cases. 

(1) kab = a, 
(2) sab I Asabc ~ ac{bc), 
(3) p0(a,b) = a Api(a,b) = b, 
(4) 0G NA(Vx G N ) ( X ' G N), 
(5) (VxG N ) ( x ' ^ 0 A p N ( x ' ) = x ) , 
(6) (Vx G N)(x ^ 0 -> pNx G N A(pNx) ' = x ) , 
(7) fleNA*£NAa=^ dNxyab = x, 
(8) a eNAb GNAa ^ b ^ dNxyab = y. 

As usual, from axioms (1) and (2), one derives a theorem about X abstraction and 

a form of the recursion theorem. 

II. Explicit representation and extensionality. The following axioms state that each 
type has a name, that there are no homonyms and that equality of types is exten-
sional. 
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(1) (3x)K(x, £/), 
(2) SR(a, C/)A»(a, V)-*U=V, 
(3) (Vx)(x £ [ / « J C € F ) - * [ / = F . 

ill. Basic type existence axioms. In the following we provide a finite axiomatization 
of uniform elementary comprehension plus join. 
Natural numbers 
5R(nat)A(Vx)(x e nat <-» N(x)). 

Representation ofQ 
3?(q) A(Vx)(x G q <-> Q(x)) A q C nat. 

5R(id)A(Vx)(x G id ~ (3y)(x = (y,y))). 
Complements 
K(a) -» 5R(co(a)) A(Vx)(x G co(a) ^ x £ a). 

3?(a) A K(Z>) - • SR(int(a, Z>)) A(Vx)(x G int(a, i ) « x e a A x e l ) ) . 

.Doma/n.? 
K(a) -> 3t(dom(a)) A(Vx)(x G dom(a) <-• (3j')((x, >>) G a)). 

Inverse images 
3?(a) -> 3?(inv(a, / ) ) A(Vx)(x G inv(a, / ) < - > / * € a). 

Joins 
38(a) A(Vx e a)ft(/;c) -+ »G(a, / ) ) A £(a, / , j(a, / ) ) . 
In this last axiom the formula £(a, / , 6) expresses that 6 names the disjoint union 
o f / over a, i.e. 

T.(a,f,b) := (Vx)(x G * <-» (3y,z)(x = (y,z) Ay G a Az G / » ) • 

IV. Uniqueness of generators. These axioms essentially guarantee that different 
generators create different names. To achieve this we have, for syntactically different 
generators r0 and r\ and arbitrary generators s and t: 

(1) r o ^ r , , 
(2) (Vx)(*x ^ 0 . 
(3) (Vx, j ) (sx = ty —> s = t Ax — y). 

In the original formulation of explicit mathematics, elementary comprehension is 
not dealt with by a finite axiomatization but directly as an infinite axiom scheme. 
An L formula A is called elementary if it contains neither the relation symbol 5J 
nor bound type variables. The following theorem of Feferman and Jager [4] shows 
that this scheme of uniform elementary comprehension is provable from our finite 
axiomatization. Join and uniqueness of generators are not needed for this argument. 

THEOREM 2. For every elementary formula A{u,v, W\,... , W„) with at most the 
indicated free variables there exists a closed term t so that one can prove in EETJ: 

1- Ki=\^wi,Wi)^^{t{v,wu...,wn)), 
2. /\"=]^{whWi)^{Vx)(x et{v,wi,... ,w„)^A(x,v,Wu... ,W„)). 
In the following we employ two forms of induction on the natural numbers, type 

induction and formula induction. Type induction is the axiom 

(T-IN) (VZ)(0 G X A(Vx G N)(X e I ^ x ' 6 l ) - » ( V i e N)(x G X)). 
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942 GERHARD JAGER AND THOMAS STRAHM 

Formula induction, on the other hand, is the schema 

(L-IN) A(0) A(VX G N ) U ( X ) - • A{x')) -» (Vx G U)A{x) 

for each L formula A. According to Feferman [3], one has the following theo
rem about the proof-theoretic strength of EETJ plus type and formula induction, 
respectively. 

THEOREM 3. The theory EETJ + (T-IN) is proof-theoretically equivalent to Peano 
arithmetic PA and to the system (Zj-AC)o; the theory EETJ + (L-IN) is proof-
theoretically equivalent to (£{-AC).2 

The next step is to introduce the concept of a universe in explicit mathematics. 
To put it very simply, a universe is supposed to be a type which consists of names 
only and reflects the theory EETJ. 

For the detailed definition of a universe we introduce some auxiliary notation 
and let W (W, a) be the closure condition which is the disjunction of the following L 
formulas: 

(1) a = nat V a = q V a = id, 
(2) (3x){a = co(x)Ax e W), 
(3) (3x,y)(a = \nt(x,y) Ax € W Ay G W), 
(4) (3x){a = dom(x) A x G W), 
(5) (3x, f)(a = inv(x, / ) A x G W), 
(6) (3x, f)[a = j(x, / ) A x G W A (Vy G x){fy G W)\. 

Thus the formula {Mx){%{W, x) —> x G W) states that W7 is a type which is closed 
under the type constructions of EETJ, i.e. elementary comprehension and join. If, 
in addition, all elements of W are names, we call W a universe. 

DEFINITION 4. 1. We write U( W) to express that the type W is a universe, 

\]{W) := (Vx)(g'(^x) -^xeW)A(y/xe W)3l(x). 

2. We write 11 {a) to express that the individual a is a name of a universe, 

a,(a):=(3Ar)(»(fl ,Jr) AU(JST)). 

Based on (names of) universes we can now introduce the Mahlo axiom for explicit 
mathematics. Given a name a and an operation / from names to names one simply 
claims that there exists (a name of) a universe m(a, / ) which contains a and reflects 
/ . Taking up the analogy that regular cardinals in classical set theory correspond to 
universes in explicit mathematics, our formulation of Mahlo in explicit mathematics 
may be regarded as a uniform version of Mahlo in classical set theory. 

The following shorthand notations are useful for obtaining a compact form of 
our Mahlo axiom: 

( / : 5ft -> ft) := (Vx)(5ft(x) - • ft(/x)), 

( / : s ^s):={Vx G s){fx G s). 

Obviously, ( / : ft —> ft) and ( / : s —> s) means that / maps names to names and 
elements of (the type named by) s to elements of (the type named by) s, respectively. 

2(X[-AC)o is (£j-AC) with induction restricted to sets. 
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UPPER BOUNDS FOR METAPREDICATIVE MAHLO . . . 943 

Mahloness in explicit mathematics is now expressed by the axioms 

(M.l) » (a )A( / : 3 f ^ » ) ^ ^ M a , / ) ) A « e m(a,f), 

(M.2) »(f l) A ( / : 3? - B) - ( / : m(a, / ) -+ m(a, / ) ) . 

It is an interesting topic to see what kind of ordering principles for universes can be 
consistently added to the previous axioms. This question is discussed at full length 
in Jager, Kahle and Studer [9], and it is shown there that one must not be too liberal. 
As a consequence of these considerations we do not claim linearity and connectivity 
for arbitrary universes, but only for so-called normal universes, i.e. universes which 
are named by means of the type generator m, 

# m (a) :=(3x,f)[a = m(x,f) AW(a)]. 

Linearity and connectivity of normal universes are then given by the following two 
axioms: 

(^m-Lin) (Vx, y)[%m(x) A%m(y) ->xeyVx±yVy£x], 

(^m-Con) (Vx,y)[Wm(x) A^ m ( j ) -^xtyVytx]. 

It is shown in [9] that connectivity of normal universes also implies transitivity of 
normal universes in its most general form. 

The theory EMA of explicit mathematics, whose universe is Mahlo, comprises the 
theory EETJ plus type induction (T-IN), the Mahlo axioms (M.l) and (M.2) as well 
as the ordering principles (^m -Lin) and (̂ Cm -Con). 

Strahm [19] provides a proof that <̂ a>00 is a lower bound to the proof-theoretic 
ordinal of EMA and that <p£000 is a lower bound to the proof-theoretic ordinal of 
EMA + (L-IN). In the next two sections we will prove that these ordinals are also 
upper bounds of the proof-theoretic ordinal of the theories EMA and EMA + (L-IN), 

respectively, thus establishing the exact proof-theoretic strength of these systems. 
No methods of impredicative proof theory are used in our analysis of EMA 

and EMA + (L-IN) SO that the metapredicativity of both systems is established. 
Impredicative Mahlo in explicit mathematics is obtained by adding the principle of 
inductive generation to EMA, cf. Jager and Studer [12]. 

§4. The theory OMA. In this section we introduce the ordinal theory OMA for 
the Mahlo axiom. It is a first order theory with ordinals tailored for dealing 
with certain non-monotone inductive definitions which provides the appropriate 
framework for modelling our theory EMA. In the next section we will determine 
the upper proof-theoretic bounds of OMA. 

In the following we make use of the usual primitive recursive coding machinery in 
-2*1: (...) is a standard primitive recursive function for forming n -tuples (11,... ,t„); 
Seq is the primitive recursive set of sequence numbers; lh(t) denotes the length of 
(the sequence number coded by) t;(t),-is the i th component of (the sequence coded 
by) Mf / < lh(t), i.e. t — ((/)o, • • • , (0/A(/)-=-I) if ? is a sequence number. 

Now let P be a fresh «-ary relation symbol and write 2C\ (P) for the extension of 
S\ by P. An 5C\(P) formula which contains at most a\,... ,a„ free is called an 
H-ary operator form, and we let stf{P, a\,... ,a„) range over such forms. 
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944 GERHARD JAGER AND THOMAS STRAHM 

The theory OMA is formulated in the language Jzf0 which extends Sf\ by adding 
a new sort of ordinal variables a, r, ?/, d;,... (possibly with subscripts), new binary 
relation symbols < and = for the less and equality relation on the ordinals, re
spectively, and a unary relation symbol Ad to express that an ordinal is admissible. 
Moreover, S?Q includes an (n + l)-ary relation symbol Py for each operator form 
s/(P,a\,... ,an). 

The number terms of SC® are the number terms of 5f\, and the ordinal terms of 
%<o are the ordinal variables. The positive literals of iz?o are the positive literals 
of 5?\ plus all expressions (a < T), (<T = r) and P^{a,s) for each «-ary operator 
form $f(P, a). We write P&a{s) for P^(cr, s). The negative literals of J?o are the 
expressions ~ £ with E a positive literal of Jz?o-

The formulas (A, B, C, A\, B\, C\,...) ofJ?fo are generated from the positive and 
negative literals by closing under conjunction and disjunction, quantification over 
natural numbers, and the bounded ordinal quantifiers (3d; < a) and (Vd; < o) as 
well as the unbounded ordinal quantifiers (3d;) and (Vd;). 

An Jz?o formula is called S° if it does not contain ordinal quantifiers of the 
form (Vd;); it is called IT0 if it does not have ordinal quantifiers of the form (3d;). 
Finally, the A® formulas of S?o are those formulas which are both X° and n ° ; the 
£® formulas of SCQ are the A® formulas plus all formulas of the form (3£)A{£) 
with A a A® formula and accordingly for Tl® formulas. Further, we write A" 
to denote the S<Q formula which is obtained from A by replacing all unbounded 
ordinal quantifiers (Qdj) in A by bounded ordinal quantifiers (Q£ < o). Additional 
abbreviations are 

P*<a{s) := m < a) P*Hs) and P*(s) := (3£) Pj(s). 

The theory OMA is formulated in classical two sorted predicate logic with equality 
in both sorts, containing the axioms of Peano arithmetic PA, linearity axioms for 
the ordinals, operator axioms and certain reflection principles. 

I. Number-theoretic axioms. The axioms of Peano arithmetic PA with the exception 
of complete induction on the natural numbers. 

II. Linearity axioms. 

a ft a t\{a <rAr<rj—>fj<tj) A(CT < T V C T = T V T < O - ) . 

III. Operator axioms. For all operator forms sf(P,a): 

IV. IP reflection axioms. For all S° formulas A: 

A - (30^. 
V. Axioms for Tl® reflection on Ad. For all A® formulas A(d;, 77, f) whose free ordinal 
variables are from the list d;, 77, f: 

(y€)(BnU(€,i,t) -> (3o)[M(o) A?< a A(V£ < a){3n < o)A($,ti,i)]. 
VI. Axioms for Ad. For all E° formulas A{x) whose free ordinal variables are from 
the list x: 

Ad(ff) Af < a AAa(f) -f (3f < a)Ai(z). 
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UPPER BOUNDS FOR METAPREDICATIVE MAHLO . . . 945 

VII. A() induction on the natural numbers. For all A0 formulas A {a): 

A(0) A(Vx)UU) -> A{x')) -» (Vx)A(x). 

Observe that there are no induction principles for ordinals. In this respect the 
theory OMA is related to KPm° in which no e induction is present. Even very weak 
induction along the ordinals, for example for A® formulas, would make our theory 
much stronger than the theory EMA. 

Later in this paper we will sometimes use the fact that, for each ordinal a in OMA, 
there exists an ordinal x greater than a. This is an immediate consequence of Z° 
reflection. 

The next step is to build a model of EMA in OMA. The crucial idea is to choose 
a suitable operator form J / ( P . a, b, c) so that the relation symbol P^ can then be 
used to single out the numbers which name types, and to define elementhood in the 
names of types. Before doing this, we have to translate term application and the 
individual constants of the language L into S£\. 

We interpret application • of L in the sense of ordinary recursion theory so that 
(a • b) in L is translated into {a}(b) in S£\, where {«} for n — 0 ,1 ,2 ,3 , . . . is a 
standard enumeration of the partial recursive functions. Then it is possible to assign 
pairwise different numerals to the constants k, s, p, p0, Pi, sN, pN and d|\i so that the 
applicative axioms (1 )-(8) of EM A are satisfied. We also require that the constant 0 
of L is interpreted as the 0 of S?\ and the term SN<2 of L as a + 1 in S?\. In addition, 
we let pairing and projections of L go over into the primitive recursive pairing and 
unpairing machinery introduced above. 

For each L term / there also exists an 5C\ formula Valr(a) expressing that a is 
the value of / under the interpretation described above. Accordingly, the atomic 
formulas t[, (s = t) and N(?) are given their obvious interpretations in 3'\ with the 
translation of N ranging over all natural numbers. 

For dealing with the generators we choose, again by ordinary recursion theory, 
numerals nat, q. id, co, int. dom, inv, j and rn so that we have the following properties: 

n a t = (0,0). q = (1.0), jd = (2,0). {co}(a) = (3,a), 

{int}((a.6)) = (4.a,b). {dom}(a) = (5,a), {m}({a,b)) = {6,a,b}, 

m(a,b)) = (7. a,6). {m}««.&» = (8,a,A>, {eo}(a) ± ex 

for all natural numbers a, b and all e0 and e\ from the set ranging over nat, q, id, co, 
int, dom, inv, j and rn. 

It is our strategy to define a specific operator form $f(P,a,b,c) and use the 
corresponding relation symbol P& for dealing with codes for types and elements of 
types. Later our interpretation will be so that 

5ft(a) translates into (3£) Pj/(a,0,0) and 

b e a translates into (3£) 9^{a,b, 1). 

Before turning to our final operator form sf(P, a, b, c) we introduce the auxiliary 
ternary operator form stf0(P,a,b,c) which is the disjunction of the following for
mulas (1)—(16): 

(1) a = {0,0)Ab = 0Ac = 0, 
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946 GERHARD JAGER AND THOMAS STRAHM 

(2) a = (0,0) A c = 1, 
(3) a = (l,0)Aft = 0Ac = 0, 
(4) a = ( l , 0 )AQ( i )Ac = 1, 
(5) a = (2,0) Aft = 0 Ac = 0 , 
(6) a = (2,0)A{3x){b = (x.x))Ac = l, 
(7) (3w)[a = (3, u) A P(». 0,0)] A b = 0 A c = 0, 
(8) {3u)[a = ( 3 , « ) A P ( M , 0 , 0 ) A - I P ( M , 6 . 1 ) ] A C = 1. 
(9) (3w, v)[a = (4. M, v) A P(M, 0,0) A P(v. 0,0)] A b = 0 A c = 0, 

(10) (3w,u)[a = (4.«, v) A P(w, 0,0) A P(u. 0,0) A P(», A, 1) A P(«, I), 1)] A c = 1. 
(11) {3u)[a = (5,w)AP(M,0,0)]Aft = 0Ac = 0, 
(12) (3u,x)[a = ( 5 , H > A P ( H , 0 , 0 ) A P ( « , ( 6 > X ) , 1 ) ] A C = 1. 
(13) (3u, f)[a = (6, u. f) A P(w, 0,0)] A b = 0 A c = 0, 
(14) (3u,f)[a = ( 6 , H , / ) A P ( « , 0 . 0 ) A P ( U , { / } ( 6 ) , 1 ) ] A C = 1, 
(15) (3M, / ) [ a = (7, w, / ) A P(«, 0,0) A(Vx)(P(w, X, 1) - • P({/}(x), 0,0))] 

A f t = 0 A c = 0, 
(16) {3u,f)[a = ( 7 , M , / ) A P ( W , 0 , 0 ) A ( V X ) ( P ( M , X , 1)-> P ( { / } ( X ) , 0 , 0 ) ) 

A(3^z ) ( i = ^ z ) A P ( H j , l ) A P ( { / } W , z , l ) ) ] A c = l . 

This operator form takes care of all generators except the generator for the Mahlo 
axiom. In order to deal with the generator m we have to make sure that m(a, / ) is 
only made a name provided that the codes generated so far constitute a universe, 
contain a and reflect / . The following shorthand notation expresses that the names 
given by P form a universe: 

Univ(P) := {Va.b.c)[s>f0(P,a.b,c) -> P(a.b.c)]. 

s&i(P, a,b, c) is the operator form given by the disjunction of sfo{P, a, b) and the 
following formulas (17) and (18): 

(17) (3x, f)[a = (8. x. f) A P(x, 0,0) A ( V J ) ( P ( J , 0,0) -+ P({f}(y). 0.0))] 
AUniv(P)Aft = 0 A c = 0 . 

(18) (3x, f)[a = (8, x, f) A P(x, 0,0) A ( V J ) ( P ( ^ . 0.0) -+ P({f}(y). 0.0))] 
AUniv(P)AP(ft,0,0)Ac = 1. 

If we had foundation on the ordinals, this operator form stf\ (P, a, b, c) would be 
sufficient for our model construction. By induction on the ordinals we could show, 
for example, that (3£) P^^(a, 0,0) implies that there is a least such £. In our 
context, however, induction on the ordinals is not available. Thus, in order to have 
a "unique time stamp" for triples (a, ft, c) to get into stages generated, we work with 
the following operator form J/(P, a, b, c): 

sf{P, a. b. c) := s#\ (P, a, b. c) A - P(a, 0,0). 

Given this careful definition of the operator form J / ( P , a, b.c). the following lemma 
concerning the stages of stf{P. a. b, c) is trivially provable in OMA: 

LEMMA 5. The following assertions are provable in OMA: 

1. P^a(a.0,0)APr f
T(f l ,0 ,0)^cr = T. 

2. P J / , ( a ,M)-»P J / < , (« ,0 ,0 ) , 
3. P^(a.O.O) - • (yb)[PAa,b.\) <-> PA{a,b, 1)]. 
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Before turning to the interpretation of the types, the e relation and the naming 
relation we introduce the following definition: 

Rep(a) := (3$) Pj(a. 0,0), E{b,a) := (3f) Pj{a, ft, 1). 

In our embedding of EMA into OMA we first assume that the number and type 
variables of L are mapped into the number variables of S'o so that no conflicts arise; 
to simplify the notation we often identify the type variables with their translations 
in J?o- Then we let the type variables of EMA range over Rep and the translation 
of the atomic formulas of L involving types is as follows: 

Mit.U)* := {3x)\ya\t(x) ARep(x) ARep(U) A(\/y)(E(y,x) <-• E(y,U))l 

(t e U)* := (3x)[Val,(x) A E(x, £/)], 

(U = V)* := (VJC)(E(JC, U) <-• E(x, V)). 

On the basis of these basic cases the translation of arbitrary L formulas A into So 
formulas A* should be obvious. The embedding of EMA into OMA is given by the 
following theorem. 

THEOREM 6. We have for all L formulas A(U,a) with all its free variables indicated 
that 

EUAV A{U,a) = > OMAh Rep(C/) -» A*(U,a). 

PROOF. The proof proceeds by induction on the length of the derivation of the for
mula A. If A is an applicative axiom or an axiom concerning the uniqueness 
of generators then its translation is provable in OMA by our assumptions about 
the coding of the first order part of EMA. The translations of the axioms about 
explicit representation and extensionality as well as linearity {%m -Lin) and connec
tivity (%?m -Con) of normal universes are easily verified. In the case of the basic 
type existence axioms we confine ourselves to showing the translation of the axioms 
about Intersection. 

Assume we are given two natural numbers a and b so that Rep(a) and Rep(ft). 
Hence, there exist ordinals a and z with P^"{a, 0,0) and Rs/(Z>, 0,0). Choose an 
ordinal n greater than a and z and carry through the following distinction by cases. 

Case 1. -i Ptf<r,{(4, a, b),0,0). Then our operator form s/(P,a,b,c) yields 
P^n({4, a, b), 0,0). Moreover, we also have 

(VJC)[R,/((4, a, b).x, 1) <-> P^<r,(a, x, 1) A P^ib, x, 1)]. 

In view of Lemma 5 we thus have Rep((4, a, b)) and for all natural numbers x that 
E(x, (4,a,b)) if and only if E(x, a) and E(x,b). 

Case 2. P^<rl{{4. a, b),Q, 0). Because of Lemma 5 there exists a unique £ less 
than n so that Pj/C((4, a,b),0,0). Hence, the operator form $f(P,a,b,c) forces 
P«r<4(a,0,0), P^<{(ft, 0.0) and - P,^((4,a , f t ) ,0 ,0) . Now we proceed as in the 
previous case. 

Hence, the intersection axiom of EMA is verified. The other basic type existence 
axioms are treated accordingly. Observe that S° reflection is essential for handling 
Join. By carrying through these proofs in detail one obtains even more: the basic 
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948 GERHARD JAGER AND THOMAS STRAHM 

type existence axioms can already be seen to be valid at the admissible stages of our 
construction, i.e. 

(1) Ad(ff) -* Univ(P^<a). 

We finally turn to the verification of the axioms (M.l) and (M.2). To this end 
assume that we have a and / so that Rep(a) and (Vx)(Rep(x) —> Rep({/}(x)). 
Hence, there exists a T so that 

(2) p y ^ t x o ) . 

A simple transformation of our second assumption yields, in addition, that 

(3) (V£)(Vx)(3,7)[P^U.O,0) - P^"({f}(x),0.0)]. 

and, therefore, lP reflection gives 

(4) (Va(3,7)(Vx)[P^U,0.0) -* P^ <"({/}(*), 0.0)]. 

Hence, n® reflection on Ad provides an admissible a so that 

(5) r < a A(V£ < a)On < <7)(Vx)[P^(x, 0, 0) - PJ/
<"({/}U).0,0)] . 

In view of (2) and by a simple transformation we derive 

(6) PJ/
<>,0,0)A(Vx)[Prf

<CTU,0,0) - P^<f f({/}(x),0.0)]. 

As we have remarked above the admissibility of a forces Univ(Pj/<a). As before we 
proceed by a distinction by cases. 

Case I. - .P^< f f ( (8.a , /} ,0,0) . Then our operator form snf(P,a.b,c) gives 
Pjs?a((8. a, / ) , 0,0) and, therefore, Rep((8, a. f)). Our operator form also gives for 
all x 

(7) E(x, (8.a, / ) )~P^< f f (x ,0,0) . 

Combining (6) and (7) shows that (8. a, f) names a type which contains a and is 
closed under f. In view of Univ(PJ/

<ff) we indeed have by (7) that (the translation 
of) f^((8, a, f) is true in our model. 

Case 2. P^ <l7((8, a, / , ) , 0,0). Because of Lemma 5 there exists a unique £ less 
than a so that P^((8, a. /")). Hence, we have that the operator form sf(P, a, b, c) 
forces P ^ ( a , 0 , 0 ) and (Vx)[PJ/

<c:(x,0,0) -> P ^ ( { / } ( x ) , 0 , 0 ) ] as well as 
Univ(P^<<'). The rest is as in the previous case. 

Therefore, our Mahlo axioms (M.l) and (M.2) are shown to be valid in our 
model, and this completes the proof of the embedding of EM A into OM A. H 

§5. Proof-theoretic analysis of OMA. Our next goal is to establish the upper 
proof-theoretic bound of OMA. First we show that the proof-theoretic strength 
of OMA is already exhausted by suitable theories for n-inaccessible ordinals for all 
finite n < co. Afterwards, we compute the upper proof-theoretic bounds of these 
auxiliary systems. 
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5.1. Reduction of OM A to //-inaccessibility. We begin our proof-theoretic analysis 
of OMA by eliminating the axiom of n® reflection in favor of n-inaccessible ordinals 
for sufficiently large n less than co. To this end, we first reformulate OMA in a Tait-
style manner. 

The Tait-style version OMAT of OMA is formulated for finite sets r , A , . . . (possi
bly with subscripts) of 5?® formulas. If A is an .So formula, then I", A is a shorthand 
for F U {A}, and similar for expressions of the form T, A, B. The system OMAT 

contains the following axioms and rules of inference. 

I. Axioms. For all finite sets T of 5C® formulas, all A® formulas A and all A® 
formulas B which are axioms of OMA: 

Y,^A,A and Y,B. 

II. Propositional and quantifier rules. These include the usual Tait-style inference 
rules for the propositional connectives and all sorts of quantifiers. 

III. S° reflection rules. For all finite sets rof_S?o formulas and for all E° formulas A: 

Y,A 

r, (asM«' 
IV. n 2 refection on Ad rules. For all finite sets T of 3?®, formulas and for all A® 
formulas A(£, //, f) whose free ordinal variables are from the list £, n, f: 

r,(V{)(3ri)A(Z,ti,f) 

T, (3ff)[Ad(<r) A T < a A(V£ < a)(3n < o)A(t tj, f )] ' 

V. Cut rules. For all finite sets T of .§% formulas and all Sf® formulas A: 

T,A T,^A 

r ' 
The notion OMAT (̂  T is used to express that the set Y is provable in OMAT by a 
proof of depth less than or equal to n; we write OMAT [̂  T if T is provable in OMAT 

by a proof of depth less than or equal to n so that all its cut formulas are S° or Yl® 
formulas. In addition, OMAT |- Y or OMAT [̂  Y means that there exists a natural 
number n so that OMAT [̂  T or OMAT [̂  T, respectively. 

One readily notes that the main formulas of all axioms and rules of OMAT are I,® 
formulas. As a consequence, we obtain the following weak cut elimination theorem 
for OMAT. 

THEOREM 7 (Weak cut elimination). We have for all finite sets Y of' S<® formulas 
that OMAT \- Y implies OMAT |̂  I \ 

Of course, the axioms and rules of OMA are tailored so that the OMA can be 
embedded into OMAT in a straightforward manner. Thus we obtain the following 
corollary. 

COROLLARY 8. If the 5C® formula A is provable in OMA, then there exists a natural 
number n so that OMAT[f A. 

Our next immediate aim is to introduce the semiformal system H. which will be 
used to interpret quasi-normalized OMAT derivations. Essentially, H is OMAT with
out reflection rules and with complete induction on the natural numbers replaced 
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950 GERHARD jAGER AND THOMAS STRAHM 

by the co rule. Moreover, in H we no longer have unbounded ordinal quantifiers, and 
since H is a semiformal system, free number variables are not present. 

The language Jz? of H is obtained from Jz?o by omitting free number variables and 
unbounded quantifiers for ordinals. In addition, we assume that 5C includes a new 
constant 0 for the least ordinal. Therefore, the ordinal terms of 2 are the constant 
0 and the ordinal variables. We call two literals of Jz? numerically equivalent, if they 
are syntactically identical modulo number subterms which have the same value. 
The axioms and rules of inference of H are now given as follows. 

I. Axioms, group 1. For all finite sets r of 2 formulas, all numerically equivalent 
Jz? literals A and B, and all true Jz?i literals C: 

T,^A,B and T, C. 

II. Axioms, group 2. For all finite sets r of 3? formulas, all literals A(a) of i ? , all 
ordinal terms [i, v of S? and all (instances of) axioms B of OMA from the groups 
II. III and VI: 

r , 0 = / i , 0 < ^ and Y,fi -£ v,^A{/x),A(v) and F.B. 

III. Propositional rules. The usual Tait-style rules for disjunction and conjunction. 

IV. Number quantifier rules. For all finite sets r of 3? formulas and all Jz? formu
las A(s): 

r , A{s) F, A(t) for all closed number terms t 

r,(3x)A(x)' r,{Vx)A{x) 
{to). 

V. Ordinal quantifier rules. For all finite sets T of i ? formulas, all J? formulas A, 
all ordinal terms /u, v of Jz? and all ordinal variables a so that the usual variable 
conditions are satisfied: 

r , ^ < vAAjp.) r ,cr < v ->• A{a) 

r,m<v)A(0' r,(yt<v)A(t)-
VI. Cut rules. For all finite sets T of i ? formulas and all Jz? formulas A: 

r , A r , -nA 
r ' 

Similarly as before, H ^ T means that the finite set r of Jz? formulas has an H proof 
of depth less than or equal to a. Furthermore, we write H [̂  T if T has a cut-free 
proof in H of depth less than or equal to a. Moreover, we write H ^ T and H [^ T 
if there exists a /? < a such that H |^ T and H [| T, respectively. 

For the following theorem, the notion of n -inaccessibility is crucial. By recursion 
on n < co we define a formula la„(er) to express that a is an n -inaccessible ordinal 
as follows: 

la0(<7) := Ad(<r), 

la„+,(ff) := Ad(ff) A(V£ < a)(3n < CT)[f < n A la„(^)]. 

We observe that each formula la„ (<r) is a A® formula without free number variables 
and therefore also an J? formula. 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2695054
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 08:51:30, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2695054
https:/www.cambridge.org/core


UPPER BOUNDS FOR METAPREDICATIVE MAHLO . . . 951 

Unfortunately we need some further terminology before we turn to the main result 
of this section. If f is the sequence of ordinal variables n , . . . , zm, then (f* it a) 
stands for the set 

{TI it er, ...,zm it cr}. 

A finite set of Sf® formulas A is called an instance of the finite set of Jz?o formulas T 
if it results from T by replacing all free number variables of formulas in Y by closed 
number terms of S?\. 

For an i?o formula A we use the notation A[f\ to express that all its free ordinal 
variables belong to the list f; the analogous convention is employed for finite sets 
of i?o formulas. Finally, we write P7 for the finite set of J?o formulas which is 
obtained from T by replacing each formula A in T by its restriction A". 

THEOREM 9 (Reduction of OMAT). Assume that T[f\ is a finite set of IP formulas 
of Jifo- Then we have for all instances A[f] of V[T\ and all natural numbers n that 

OMATi f r [T] = > H|2k±^-.lal,(<r),(fY(T),A<'[f|. 

PROOF. This theorem is proved by induction on n. In the following we exemplarily 
treat the cases of cut and n® reflection on admissible ordinals. We note that 
complete induction on the natural numbers is dealt with as usual by making use of 
the co rule. In all other cases the claim is immediate from the induction hypothesis. 

Let us first look at the case where T[f] is the conclusion of a cut. Then there are 
natural numbers n0, n\ < n and a A® formula A[£, tj] so that 

(1) O M A T [ ^ r[f\, (3£)A[€,r?l and OMAT ^ r [ f ] , (\/^A[^ff\. 

Suppose that A[x\, {3£,)B[^, rf\ is an instance of r[f], (3^)A[£, tf\. Then inversion 
applied to the second premise and the induction hypothesis yield 

(2) H^^^\aH0{a),(r,rfita),Aa[r\,m<<r)B[^rfl. 

(3) H^i^ ^\ani(a),{r,ff,m ittr),Aa[rl,^B[?}0,tfl, 

where no is a fresh ordinal variable. From (2) and (3) we obtain 

(4) H \ ^ ^ - la„(ff), ( f > - y o-),Aa[f], (3£ < a)B[^,ff\, 

(5) H \ ^ ^ -n la„(a), (f, ff it a), A"[ f ] . (V£ < ahBtf, ff\-

Here we have used the obvious fact that H ^ -> la„ (cr), la^cr) for each natural 
number k less than n. A cut applied to (4) and (5) reveals 

(6) H ^ ^ - l a „ ( c 7 ) , ( f ^ c 7 ) , A 0 [ T l 

since superfluous ordinal variables can be easily eliminated. This is as desired and 
completes the treatment of the cut rule. 

Let us now turn to the heart of the reduction, namely the interpretation of 
n ° reflection on admissible ordinals. Assume that Y[f\ is the conclusion of the 
corresponding rule of 0MAT. Hence, there exist an n0 < n and a A® formula 
A[^,n,f\ so that 

(7) 0MAT ^ r [ f ] , (V£)(3»7M[£, r,, r\. 
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An application of inversion to (7) with a fresh ordinal variable To forces 

(8) OMAT\^r[f\A3r,)A[T0,n.T\. 

Next we choose an instance A[f], (3n)B[io, n, f\ of T[f], (3>/).4[TO. rj, f] and apply 
the induction hypothesis to (8) in order to obtain 

(9) H ^o±2) ^|a„o(f f o), (To,f ^ ff0), A^If], p»/ < <7o)5[T0,»/.f]. 

But from (9) we can immediately derive by bounded universal ordinal quantification 
that 

(10) H\±Mn+V ^laM o(a0),(f '^(To),AC T»[f| ,(V^<fTo)(37<^)S[^^Tl. 

Moreover, it is an easy task to check that we also have 

(11) H ^ -- Ia„(ff), {fit a), (3<J0 < a)[\ant)(a0) AT < <r0]. 

By combining (10) and (11) and applying persistency, we can finally derive 

(12) H |2^- la B ( f f ) , ( ?* f f ) ,A f f [ f ] ,C[<7 .T | 

for C[a, f] denoting the formula 

(Eff0 < ff)[Ad(ff0) A f < CTQ A(V£ < or0)(^ < a0)B[£, n, f\]. 

Since C[cr, f] is in fact an element of Aa[f] we have indeed established that 

H^±2)- , | a„ ( f r ) , ( f^a) ,A C T [ f | 

as desired. Observe that we have made crucial use of the fact that A[f] contains 
Z° formulas only in order to be able to apply persistency to Aa"[f|. Altogether this 
completes the reduction of OMA to n-inaccessibility. H 

5.2. The semiformal systems H[S, n, a]. Let J?" be some extension of £? by ad
ditional constants for ordinals and let S be a (finite or infinite) set of 3" formulas. 
The final part of this section is devoted to the proof-theoretic analysis of semifor
mal systems H[S, n, a] for each n < a> and each ordinal a. The crucial axioms of 
H[S, n,a] claim: (i) all formulas of 5; (ii) the existence of a many n-inaccessible 
ordinals which are ordered in an increasing chain and are greater than all the ordinal 
constants occurring in S. 

The language £?[S, n, a] of H[S, n, a] is the extension of the language S£ generated 
by the constants occurring in S plus additional new constants c[5,«, /?] for each 
/? < a. The semiformal system H[S,«, a] includes the axioms and rules of inference 
of H (extended to the language S?[S, n, a]) plus the following axioms: 

(i) T,A and T,d < c[5,«,0], 
(ii) r,la„(c[S,«,/?]) and r,c[S,n,y]<c[S,n,B], 

for all finite sets T of 3[S, n, a] formulas, all elements A of S, all ordinal constants 
d from S, and all ordinals y < /? < a. The deducibility relation H[.S, n,a] ^ T is 
understood as before. 

We call a finite set T[TI , . . . , T„] of £?[S, n, a] formulas quasi closed if there exist 
P\,... , /?„ < a so that T is of the form 

TI <jtc[S,n,P\],... ,T„ ^C[S,M,J5„] .A[TI T„]. 

Hence, in a quasi closed set of 3[S, n, a] formulas all occurring free ordinal variables 
are bound by some ordinal constant c[S, n, /?] with /? < a. 
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The following main result of this paragraph is the natural generalization of Main 
Lemma II in Jager, Kahle, Setzer and Strahm [8] to the context of n-inaccessible 
ordinals. 

THEOREM 10 (Reduction of H[S,n,p+col+p]). Let T be a quasi closed set of 
S[S, n, p+a>i+p] formulas with the property that 

H[S,n,p+col+p]\^ T. 

Then we have for all ordinals y less than col+p which are big enough for Y being a quasi 
closed set of&lS, n, P+y] formulas that 

H[S,n,p+y]\'p{n+l)pa T. 

PROOF. This theorem is proved by induction on n < a>. In the case of n = 0 one 
essentially proceeds as in the proof of Main Lemma II in [8]. the only difference being 
that instead of fixed points one eliminates admissible ordinals. For the induction 
step we assume that our theorem holds for some natural number n. Then we show 
our claim for n + 1 by main induction on p and side induction on a. Again the 
main steps of the argument are similar to the proof of Main Lemma II in [8], but 
for definiteness we spell out the details in the sequel. We distinguish cases whether 
p = 0. p is a successor, or p is a limit ordinal. 

(a) p = 0. Assume that T is a finite and quasi closed set of ^[S, n+l,p+k] 
formulas for some natural number k so that H[S, n+l, P+co] [̂  T. If T is an axiom 
of H[S, n+l, P+co], then the claim is trivial. Furthermore, if T is the conclusion 
of a rule different from the cut rule, the claim is immediate from the induction 
hypothesis. Hence, the only critical case comes up if T is the conclusion of a cut 
rule. Then there exist a natural number I > k, ao, a\ < a and an £?[S, n+l, /?+/] 
formula A so that 

(1) H[S,n+lJ+aj]\^r,A and H[S,n+\J+co] [^ T, ~>A. 

Let Ar be the formula which results from A by replacing all free ordinal variables 
of A which do not occur in T by the ordinal constant 0. Then we also have 

(2) H[S.n+l,p+co]\^r,Ar and H[S,n + lJ+co]\^ T,^Ar. 

By the induction hypothesis we can conclude that 

(3) H[S. n+l, p+l] ly("+2)0a° T, Ar, 

(4) H[5, n + l, p+l] [y("+2)0a| T, ^Ar. 

Hence, by a cut we yield 

(5) H[S,n+l , j8+/] |*r , 

where d denotes the ordinal ma\((p(n+2)Oao,<p(n+2)Oa\)+l. If / — k then we 
are done; therefore, let us assume that I = I' + I > k. In order to get rid of 
the (n + l)-inaccessible c[S, n+l, I'] one uses standard partial cut elimination and 
asymmetric interpretation in order to show 

(6) H[S',n,d+]f- T, 
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where S' denotes the set of axioms of the system H[,S, «+ l , /?+/'] and<S+ is the least 
£ number greater than <S. We know by induction hypothesis that the claim of our 
theorem is true for n and, hence, we can conclude from (6) 

(7) H[S',n,0]\^±^^r 

since T c Sf[S\n, 0] by hypothesis. But in fact the system H[-S",«,0] is just 
H[5, n+ l , /?+/'] and, moreover, we have that ip(n+\)S+S+ < (p(n+2)0a. Thus (7) 
immediately reveals 

(8) H[S,n+\J+l']\<v(n+2)0a r . 

Repeating this whole step / - k times enables us to get rid of finitely many (n + 1)-
inaccessibles and we finally obtain 

(9) H[S,n+\,p+k]fn+ma T. 

This concludes our proof in the case p = 0. 
(b) p = po + 1. Let y < co1+«+1 and T be a finite and quasi closed set of 

&[S, n+ l , /?+y] formulas so that 

(10) H[S,n + l.p+aj[+l'°+l]\^ T. 

Notethaty = co1+Wl -& + y' for some natural number k and some y' less than co1+/;°. 
Again the only crucial case occurs if T is the conclusion of a cut. Then there exist a 
natural number I > k, ao, a\ < a and an 5f[S, n+ l , /S+w1+''° • /] formula A so that 

(11) H[S,n+\J+wl+Pa+l]\^ r,Ar, 

(12) H[S,n+l ,£+co 1 + / ' 0 + 1 ]^ r,->Ar, 

where AY is defined as before. By applying the side induction hypothesis to (11) 
and (12) we derive 

(13) H [ S , n + l . £ + o > 1 + ' ' » - / ] F ^ r , . 4 n 

(14) H[S,n+lJ+al+>"> -n^^T^Ar, 

and, hence, we also have H[5,«+l,/?+co1+/'° • /] (̂  T, for 3 being the ordinal 
max{ip(n+2)pa>0, (p(n+2)pa\) + 1. If we inductively define a sequence of ordinals 
Si by <5o := <5 and <5J+i := y?(n + 2)p0Si, then by applying the main induction 
hypothesis I — k times one readily obtains: 

H [ S , n + l , / ? + c u 1 + ' M / - l ) ] ^ T, 

(15) i 

H[S,n+l,p+o)]+l'° • {k+l)]P^- T, 

H[S,n+l, p+col+"o • k+y']f^ T. 

Here we have successively replaced fi by 

p + coi+p° -(l ~\), . . . , p + coi+n -(fc + 1), p + tol+,'»-k 

in the main induction hypothesis. Since <5/_yt < <p(n+2)pa. we have indeed estab
lished 

(16) H[S,n + \,/J+y]\v{"+2]pa r 
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as desired. This finishes the treatment of the successor case. 
(c) p is limit. Assume that y < col+f and T is a finite and quasi closed set of 

£?[S, n + 1, 0+y] formulas so that 

(17) H[S,n + lJ+co'']\^r. 

Again assume that T is the conclusion of cut. Then there exists po < p with 
y < OJ1+/'°, a0, a\ < a and an ^[S, n+\,p+wx+pa] formula A so that 

(18) H[S,n+\J+wp]\^r,Ar and H[S,n+lJ+co'}] \^ T, ->Ar. 

The side induction hypothesis applied to (18) produces 

(19) H[S> + l,l+CT1+/Jo]|y("+2)/M0 r . ^ r , 

(20) H[S,n + \,pW+"(,]\9{n+2)pai Y,^AT, 

and, hence, we also have H[S,n+\, fi+(Ql+Pa] ^ I \ for S being the ordinal 
ma.x(ip(n+2)pao, tp{n+2)pat\)+l. From this, we conclude by the main induction 
hypothesis 

(21) H[s>n+l,p+y]pte£r. 

Since tplpoS < cp\pa, this is our claim. This finishes the proof of (c) and also the 
verification of the theorem. H 

5.3. Bounds for the arithmetic fragment of OMA. In this subsection we focus on 
the arithmetic part of OMA, and it only remains to piece together our previous 
results in order to establish the appropriate upper bounds. In the following we 
simply write H[«,a] instead of H[S, n,a] if S is the empty set. Similarly c[n,a] 
stands for c[S, n, a] with empty S. 

THEOREM 11. Let Abe a closed Jz?i formula and assume OMA |- A. Then we also 
have that H \^f^ A. 

PROOF. Assume that the Sf\ sentence A is provable in OMA. By Corollary 8 there 
exists a natural number n so OMAT £ A. This enables us to invoke the reduction 
theorem for OMAT, i.e. Theorem 9, in order to derive 

(i) H^ - ia„ (<7M. 

A substitution of the ordinal constant c[n, 0] for the ordinal variable a followed by 
a cut on the formula la„(c[«, 0]) reveals 

(2) H[n,co]\^ A. 

Now we apply Theorem 10 with S the empty set and /? = y = p = 0 and obtain 

(3) H[«, 0] |<y("+1)0a'2 A. 

According to our definition, the theory H[«, 0] does not contain constants for n-
inaccessibles and therefore is identical to H. Moreover, a standard predicative cut 
elimination for H finally yields 

(4) H | < y ( " + 1 ) 0 m 2 A. 

Since obviously <p(n + \)0u>2 < <pco00 this is as desired and completes our 
argument. -\ 
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We end this section with some remarks concerning interesting proper subsystems 
of OM A. For this purpose we introduce the limit axiom 

(«-Lim) M)(3ti)(Z<ttA\aM) 

for n-inaccessible ordinals. (« + l)-INAC is defined to be the theory which results 
from OMA if we replace Yl2 reflection on Ad by the axiom (w-Lim). Hence, 
(«+l)-INAC formalizes an (n + 1)-inaccessible universe of ordinals. However, 
observe that (n+l)-INAC, as OMA, does not include induction on the ordinals and 
that induction on the natural numbers is restricted to A® formulas. We mention 
that theories of explicit mathematics and admissible set theory corresponding to 
(«+l)-INAC can be easily defined. 

A standard reduction shows that the strength of («+1 )-IN AC is already exhausted 
by finite chains of n-inaccessible ordinals. Further, by gradually unfolding the top
most n -inaccessible into transfinitely many n — 1-inaccessibles and applying Theo
rem 10 one obtains the following theorem. 

THEOREM 12. Let Abe a closed S'x formula and assume (n+l)-INAC |- A. Then 

we also have that H |<y("0
+1)°° A. 

§6. Concluding remarks. Finally we turn to the proof-theoretic ordinals of KPm°, 
EMA, OMA and the other systems mentioned in this paper. In principle, all work is 
already done in Theorem 6, Theorem 11 and Theorem 12. 

The formula T\{<,A) has been defined in the context of the language J?*. From 
now on we take the liberty to also write TI(-<, A) for the corresponding formulas 
in the languages L and S?®. It only remains to apply one of the usual boundedness 
theorems (cf. e.g. Beckmann [1] or Schutte [17]) stating that 

H|f T IKQ) = • H|<eo-a, 

for all a and all primitive recursive wellorderings -<; here | —< | is the ordertype of 
-< as usual. Together with the lower bound computations of [19] we thus have the 
following main theorem of this article. 

THEOREM 13. We have the following proof-theoretic ordinals: 

1. |KPm°| = |EMA| = |OMA| = </?a;00; 
2. |(«+l)-INAC|=v»(fi+l)00. 
In the theories mentioned in the previous theorem, complete induction on the 

natural numbers is restricted to sets, types and A® formulas, respectively. The 
methods applied before also provide bounds for theories with complete induction 
on the natural numbers for arbitrary formulas. 

The pattern of the argument for EMA + (L-IN) and OMA + ( ^ O - ' N ) is as 
follows; KPm° + (5?*-\N) is treated accordingly: EMA + (L-IN) is interpreted 
into OMA + ( .SVIN) following the proof of Theorem 6. Then OMA + ( . § V I N ) 

is embedded into OMAT plus u> rule, thus getting rid of full complete induc
tion in favor of infinite derivation lengths. Weak cut elimination for OMAT 

plus co rule is proved as before, but because of the infinite derivations we now 
have 

OMA + (.2?O-IN) h A => OMAT + (co)\^ A 
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for each 5?o sentence A. From now on we can proceed as before, but always 
with families (laa(<7) : a < en) instead of families (la„(cr) : n < co). Carrying 
through everything in detail finally gives the following results for theories with full 
induction. 

THEOREM 14. We have the following proof-theoretic ordinals: 

1. |KPm° + (_Sf*-lM)| = |EMA + (L-IN)| = |OMA + (JSVWI = <pe00O; 
2. |(« + 1)-INAC + (^O- IN) I = <p(n+\)e00. 
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