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Abstract
Uniqueness quantification (∃!) is a quantifier in first-order logic where one requires that exactly one
element exists satisfying a given property. In this paper we investigate the strength of uniqueness
quantification when it is used in place of existential quantification in conjunctive formulas over a
given set of relations Γ, so-called primitive positive definitions (pp-definitions). We fully classify
the Boolean sets of relations where uniqueness quantification has the same strength as existential
quantification in pp-definitions and give several results valid for arbitrary finite domains. We also
consider applications of ∃!-quantified pp-definitions in computer science, which can be used to study
the computational complexity of problems where the number of solutions is important. Using our
classification we give a new and simplified proof of the trichotomy theorem for the unique satisfiability
problem, and prove a general result for the unique constraint satisfaction problem. Studying these
problems in a more rigorous framework also turns out to be advantageous in the context of lower
bounds, and we relate the complexity of these problems to the exponential-time hypothesis.
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1 Introduction

A primitive positive definition (pp-definition) over a relational structure A = (A;R1, . . . , Rk)
is a first-order formula ∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym) with free variables x1, . . . , xn

where ϕ(x1, . . . , xn, y1, . . . , ym) is a conjunctive formula. Primitive positive definitions have
been extremely influential in the last decades due to their one-to-one correspondence with term
algebras in universal algebra, making them a cornerstone in the algebraic approach for studying
computational complexity [1, 10]. In short, pp-definitions can be used to obtain classical
“gadget reductions” between problems by replacing constraints by their pp-definitions, which
in the process might introduce fresh variables viewed as being existentially quantified. This
approach has successfully been used to study the complexity of e.g. the constraint satisfaction
problem (CSP) which recently led to a dichotomy between tractable and NP-complete
CSPs [6, 28]. However, these reductions are typically not sufficient for optimisation problems
and other variants of satisfiability, where one needs reductions preserving the number of
models, so-called parsimonious reductions. Despite the tremendous advances in the algebraic
approach there is currently a lack of methods for studying problems requiring parsimonious
reductions, and in this paper we take the first step in developing such a framework. The
requirement of parsimonious reductions can be realised by restricting existential quantification

© Victor Lagerkvist and Gustav Nordh;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:victor.lagerkvist@liu.se
mailto:gustav.nordh@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2019.36
https://arxiv.org/abs/1906.07031
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


36:2 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

to unique quantification (∃!), where we explicitly require that the variable in question can be
expressed as a unique combination of other variables. That is, A |= ∃!xi : ϕ(x1, . . . , xi, . . . , xn)
if and only if there exists a function f such that f(a1, . . . , ai−1, ai+1, . . . , an) = ai, for all
a1, . . . , ai−1, ai, ai+1, . . . , an ∈ A where A |= ϕ(a1, . . . , ai−1, ai, ai+1, . . . , an). This notion of
unique quantification is not the only one possible and we discuss an alternative viewpoint
in Section 5. As a first step in understanding the applicability of uniqueness quantification
in complexity classifications we are interested in studying the expressive power of unique
existential quantification when used in place of existential quantification in pp-definitions,
which we call upp-definitions. Any variables introduced by the resulting gadget reductions
are then uniquely determined and do not affect the number of models.

Our main question is then: for which relational structures A is it the case that for
every pp-formula ϕ(x1, . . . , xn) there exists a upp-formula ϑ(x1, . . . , xn) such that A |=
ϕ(a1, . . . , an) ⇔ A |= ϑ(a1, . . . , an) for all a1, . . . , an ∈ A? If this holds over A then
uniqueness quantification has the same expressive power as existential quantification. The
practical motivation for studying this is that if upp-definitions are as powerful as pp-definitions
in A, then, intuitively, any gadget reduction between two problems can be replaced with a
parsimonious reduction. Given the generality of this question a complete answer for arbitrary
relational structures is well out of reach, and we begin by introducing simplifying concepts.
First, pp-definitions can be viewed as a closure operator over relations, and the resulting
closed sets of relations are known as relational clones, or co-clones [21]. For each universe A
the set of co-clones over A then forms a lattice when ordered by set inclusion, and given a set
of relations Γ we write 〈Γ〉 for the smallest co-clone over A containing Γ. Similarly, closure
under upp-definitions can also be viewed as a closure operator, and we write 〈Γ〉∃! for the
smallest set of relations over A containing Γ and which is closed under upp-definitions. Using
these notions the question of the expressive strength of upp-definitions can be stated as: for
which sets of relations Γ is it the case that 〈Γ〉 = 〈Γ〉∃!? The main advantage behind this
viewpoint is that a co-clone 〈Γ〉 can be described as the set of relations invariant under a set
of operations F , Inv(F ), such that the operations in F describe all permissible combinations
of tuples in relations from Γ. An operation f ∈ F is also said to be a polymorphism of Γ
and if we let Pol(Γ) be the set of polymorphisms of Γ then Pol(Γ) is called a clone. This
relationship allows us to characterise the cases that need to be considered by using known
properties of Pol(Γ), which is sometimes simpler than working only on the relational side.

Our Results

Our main research question is to identify Γ such that 〈∆〉∃! = 〈Γ〉 for each ∆ such that
〈∆〉 = 〈Γ〉. If this holds we say that 〈Γ〉 is ∃!-covered. The main difficulty for proving this
is that it might not be possible to directly transform a pp-definition into an equivalent
upp-definition. To mitigate this we analyse relations in co-clones using partial polymorphisms,
which allows us to analyse their expressibility in a very nuanced way. In Section 3.1 we show
how partial polymorphisms can be leveraged to prove that a given co-clone is ∃!-covered.
Most notably, we prove that 〈Γ〉 is ∃!-covered if Pol(Γ) consists only of projections of the
form π(x1, . . . , xi, . . . , xn) = xi, or of projections and constant operations. As a consequence,
Γ pp-defines all relations over A if and only if Γ upp-defines all relations over A. One way of
interpreting this result is that if Γ is “sufficiently expressive” then pp-definitions can always be
turned into upp-definitions. However, there also exists ∃!-covered co-clones where the reason
is rather that Γ is “sufficiently weak”. For example, if Γ is invariant under the affine operation
x− y + z (mod |A|), then existential quantification does not add any expressive power over
unique existential quantification, since any existentially quantified variable occurring in a
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pp-definition can be expressed via a linear equation, and is therefore uniquely determined
by other arguments. In Section 3.2 we then turn to the Boolean domain, and obtain a full
classification of the ∃!-covered co-clones. Based on the results in Section 3.1 it is reasonable to
expect that the covering property holds for sufficiently expressive languages and sufficiently
weak languages, but that there may exist cases in between where unique quantification
differs from existential quantification. This is indeed true, and we prove that the Boolean
co-clones corresponding to non-positive Horn clauses, implicative and positive clauses, and
their dual cases, are not ∃!-covered. Last, in Section 4 we demonstrate how the results from
Section 3 can be used for obtaining complexity classifications of computational problems.
One example of a problem requiring parsimonious reductions is the unique satisfiability
problem over a Boolean set of relations Γ (U-SAT(Γ)) and its multi-valued generalization
the unique constraint satisfaction problem (U-CSP(Γ)), where the goal is to determine if
there exists a unique model of a given conjunctive Γ-formula. The complexity of U-SAT(Γ)
was settled by Juban [15] for finite sets of relations Γ, essentially using a large case analysis.
Using the results from Section 3.2 this complexity classification can instead be proved in
a succinct manner, and we are also able to extend the classification to infinite Γ and large
classes of non-Boolean Γ. This systematic approach is also advantageous for proving lower
bounds, and we relate the complexity of U-SAT(Γ) to the highly influential exponential-time
hypothesis (ETH) [12], by showing that none of the intractable cases of U-SAT(Γ) admit
subexponential algorithms without violating the ETH.

Related Work

Primitive positive definitions with uniqueness quantification appeared in Creignou & Her-
mann [7] in the context of “quasi-equivalent” logical formulas, and in the textbook by
Creignou et al. [8] under the name of faithful implementations. Similarly, upp-definitions were
utilised by Kavvadias & Sideri [16] to study the complexity of the inverse satisfiability problem.
A related topic is frozen quantification, which can be viewed as uniqueness quantification
restricted to variables that are constant in any model [22].

2 Preliminaries

2.1 Operations and Relations
In the sequel, let D ⊆ N be a finite domain of values. A k-ary function f : Dk → D is
sometimes referred to as an operation over D and we write ar(f) to denote the arity k.
Similarly, a partial operation over D is a map f : dom(f)→ D where dom(f) ⊆ Dk is called
the domain of f , and we let ar(f) = k be the arity of f . If f and g are k-ary partial
operations such that dom(f) ⊆ dom(g) and f(t) = g(t) for each t ∈ dom(f) then f is said
to be a suboperation of g. For k ≥ 1 and 1 ≤ i ≤ k we let πk

i be the ith projection, i.e.,
πk

i (x1, . . . , xi, . . . , xk) = xi for all x1, . . . , xi, . . . , xk ∈ D. We write OPD for the set of all
operations over D and pOPD for the set of all partial operations over D. As a notational
shorthand we for k ≥ 1 write [k] for the set {1, . . . , k}. For d ∈ D we by dn denote the
constant n-ary tuple (d, . . . , d). Say that a k-ary f ∈ OPD is essentially unary if there exists
unary g ∈ OPD and i such that f(x1, . . . , xi, . . . , xn) = g(xi) for all x1, . . . , xi, . . . , xn ∈ D.

Given an n-ary relation R ⊆ Dn we write ar(R) to denote its arity n. If t = (x1, . . . , xn) is
an n-ary tuple we write t[i] to denote the ith element xi, and Proji1,...,in′ (t) = (t[i1], . . . , t[in′ ])
to denote the projection on the coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, if R is an
n-ary relation we let Proji1,...,in′ (R) = {Proji1,...,in′ (t) | t ∈ R}. The ith argument of a
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36:4 On the Strength of Uniqueness Quantification in Primitive Positive Formulas

relation R is said to be redundant if there exists j 6= i such that t[i] = t[j] for each t ∈ R,
and is said to be fictitious if for all t ∈ R and d ∈ D have t′ ∈ R where t′[i] = d and
Proj1,...,i−1,i+1,...,n(t) = Proj1,...,i−1,i+1,...,n(t′).

We write EqD for the equality relation {(x, x) | x ∈ D} over D. We often represent
relations by their defining first-order formulas, and if ϕ(x1, . . . , xn) is a first-order formula
with n free variables we write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) to define the relation R =
{(f(x1), . . . , f(xn)) | f is a model of ϕ(x1, . . . , xn)}. We let RELn

D be the set of all n-ary
relations over D, REL≤n

D =
⋃n

i=1 RELn
D, and RELD =

⋃∞
i=1 RELi

D. A set Γ ⊆ RELD will
sometimes be called a constraint language.

2.2 Primitive Positive Definitions and Determined Variables
We say that an n-ary relation R has a primitive positive definition (pp-definition) over a
set of relations Γ over a domain D if R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ : R1(x1) ∧ . . . ∧ Rm(xm)
where each xi is a tuple of variables over x1, . . . , xn, y1, . . . , yn′ of length ar(Ri) and each
Ri ∈ Γ∪{EqD}. Hence, R can be defined as a (potentially) existentially quantified conjunctive
formula over Γ ∪ {EqD}. We will occasionally be interested in pp-definitions not making
use of existential quantification, and call pp-definitions of this restricted type quantifier-free
primitive positive definitions (qfpp-definitions).

I Definition 1. Let R be an n-ary relation over a domain D. We say that 1 ≤ i ≤ n

is uniquely determined, or just determined, if there exists i1, . . . , ik ∈ [n] and a function
h : Dk → D such that h(t[i1], . . . , . . . , t[ik]) = t[i] for each t ∈ R.

When defining relations in terms of logical formulas we will occasionally also say that the
ith variable is uniquely determined, rather than the ith index.

IDefinition 2. An n-ary relation R has a unique primitive positive definition (upp-definition)
over a set of relations Γ if there exists a pp-definition

R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ : R1(x1) ∧ . . . ∧Rm(xm)

of R over Γ where each yi is uniquely determined by x1, . . . , xn.

We typically write ∃!y1, . . . , yn′ for the existentially quantified variables in a upp-definition.
Following Nordh & Zanuttini [22] we refer to unique existential quantification over constant
arguments as frozen existential quantification (i ∈ [ar(R)] is constant if there exists d ∈ D
such that t[i] = d for each t ∈ R). If R is upp-definable over Γ via a upp-definition only
making use of frozen existential quantification then we say that R is freezingly pp-definable
(fpp-definable) over Γ. Let us define the following closure operators over relations.

I Definition 3. Let Γ be a set of relations. Then we define (1) 〈Γ〉 = {R | R has a pp-
definition over Γ}, (2), 〈Γ〉∃! = {R | R has a upp-definition over Γ}, (3), 〈Γ〉fr = {R | R has
an fpp-definition over Γ}, and (4), 〈Γ〉6∃ = {R | R has a qfpp-definition over Γ}.

In all cases Γ is called a base. If Γ = {R} is singleton then we write 〈R〉 instead of
〈Γ〉, and similarly for the other operators. Sets of relations of the form 〈Γ〉 are usually
called relational clones, or co-clones, sets of the form 〈Γ〉 6∃ weak systems, or weak partial
co-clones, and sets of the form 〈Γ〉fr are known as frozen partial co-clones. Note that
〈Γ〉 ⊇ 〈Γ〉∃! ⊇ 〈Γ〉fr ⊇ 〈Γ〉6∃ for any Γ ⊆ RELD. Co-clones and weak systems can be
described via algebraic invariants known as polymorphisms and partial polymorphism. More
precisely, if R ∈ RELn

D and f ∈ OPD is a k-ary operation, then for t1, . . . , tk ∈ R we let
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f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])). We then say that a k-ary partial
operation f preserves an n-ary relation R if f(t1, . . . , tk) ∈ R or there exists i ∈ [n] such
that (t1[i], . . . , tk[i]) /∈ dom(f), for each sequence of tuples t1, . . . , tk ∈ R. If f preserves
R then R is also said to be invariant under f . Note that if f is total then the condition
is simply that f(t1, . . . , tk) ∈ R for each sequence t1, . . . , tk ∈ R. We then let pPol(R) =
{f ∈ pOPD | f preserves R}, Pol(R) = pPol(R) ∩ OPD, pPol(Γ) =

⋂
R∈Γ pPol(R), and

Pol(Γ) =
⋂

R∈Γ Pol(R). Similarly, if F is a set of (partial) operations we let Inv(F ) be
the set of relations invariant under F , and write Inv(f) if F = {f} is singleton. It is then
known that Inv(F ) is a co-clone if F ⊆ OPD and that Inv(F ) is a weak system if F ⊆ pOPD.
More generally, 〈Γ〉 = Inv(Pol(Γ)) and 〈Γ〉 6∃ = Inv(pPol(Γ)), resulting in the following Galois
connections.

I Theorem 4 ([3, 4, 11, 26]). Let Γ and ∆ be two sets of relations. Then Γ ⊆ 〈∆〉 if and
only if Pol(∆) ⊆ Pol(Γ) and Γ ⊆ 〈∆〉 6∃ if and only if pPol(∆) ⊆ pPol(Γ).

Last, we remark that sets of the form Pol(Γ) and pPol(Γ) are usually called clones, and
strong partial clones, respectively, and form lattices when ordered by set inclusion. Boolean
clones are particularly well understood and the induced lattice is known as Post’s lattice [24].
If F ⊆ OPD then we write [F ] for the intersection of all clones over D containing F . Hence,
[F ] is the smallest clone over D containing F .

2.3 Weak and Plain Bases of Co-Clones
In this section we introduce two special types of bases of a co-clone, that are useful for
understanding the expressibility of upp-definitions.

I Definition 5 (Schnoor & Schnoor [27]). Let 〈Γ〉 be a co-clone. A base Γw of 〈Γ〉 with the
property that 〈Γw〉 6∃ ⊆ 〈∆〉 6∃ for every base ∆ of 〈Γ〉 is called a weak base of 〈Γ〉.

Although not immediate from Definition 5, Schnoor & Schnoor [27] proved that a weak
base exists whenever 〈Γ〉 admits a finite base, by the following relational construction.

I Definition 6. For s ≥ 1, let Us
D = {t1, . . . , ts} where t1, . . . , ts is the sequence of |D|s-ary

tuples where (t1[1], . . . , ts[1]), . . . , (t1[|D|s], . . . , ts[|D|s]) is a lexicographic enumeration of Ds.

For R ∈ RELD and F ⊆ OPD we let F (R) =
⋂

R′∈Inv(F ),R⊆R′∈RELD
R′. We typically write

Us instead of Us
D if the domain D is clear from the context, and say that a co-clone Inv(C)

has core-size s if there exist relations R,R′ such that Pol(R) = C, R = C(R′), and s = |R′|.
Weak bases can then be described via core-sizes as follows (a clone C is finitely related if
there exists a finite base of Inv(C)).

I Theorem 7 (Schnoor & Schnoor [27]). Let C be a finitely related clone where Inv(C) has
core-size s. Then C(U t) is a weak base of Inv(C) for every t ≥ s.

See Table 2 for a list of weak bases for the Boolean co-clones of interest in this paper [17, 18].
Here, and in the sequel, we use the co-clone terminology developed by Reith & Wagner [25]
and Böhler et al. [5], where a Boolean co-clone Inv(C) is typically written as IC. Many
relations in Table 2 are provided by their defining logical formulas; for example, x1 → x2 is
the binary relation {(0, 0), (0, 1), (1, 1)}. See Table 1 for definitions of the remaining relations.
As a convention we use c0 to indicate a variable which is constant 0 in any model, and c1
for a variable which is constant 1. On the functional side we use the bases by Böhler et
al. [5] and let I2 = [π1

1 ], I0 = [0], I1 = [1], I = [{0, 1}], N2 = [x], N = [{x, 0, 1}], E2 = [∧],

MFCS 2019
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Table 1 Relations.

Relation Definition
F {(0)}

T {(1)}
Ne {(0, 1), (1, 0)}
n-EVEN {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . . + xn is even}
n-EVENn 6= n-EVEN(x1, . . . , xn) ∧Ne(x1, xn+1) ∧ . . . ∧Ne(xn, x2n)
n-ODD {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . . + xn is odd}
n-ODDn6= n-ODD(x1, . . . , xn) ∧Ne(x1, xn+1) ∧ . . . ∧Ne(xn, x2n)
NAn {0, 1}n \ {(1, . . . , 1)}

Table 2 Weak and plain bases of selected Boolean co-clones.

C Weak base of Inv(C) Plain base of Inv(C)
Sn

1 {NAn(x1, . . . , xn) ∧ F (c0)} {NAn}
S1 {NAn(x1, . . . , xn) ∧ F (c0) | n ≥ 2} {NAn | n ≥ 1}
Sn

12 {NAn(x1, . . . , xn) ∧ F (c0) ∧ T (c1)} {NAn, T (c1)}
S12 {NAn(x1, . . . , xn) ∧ F (c0) ∧ T (c1) | n ≥ 2} {NAn | n ≥ 1} ∪ {T (c1)}
Sn

11 {NAn(x1, . . . , xn) ∧ (¬x→ ¬x1 · · · ¬xn) ∧ F (c0)} {NAn, (x1 → x2)}
S11 {RSn

11
| n ≥ 2} {NAn | n ≥ 1} ∪ {(x1 → x2)}

Sn
10 {RSn

11
(x1, . . . , xn, c0) ∧ T (c1)} {NAn, (x1 → x2), T (c1)}

S10 {RSn
10
| n ≥ 2} {NAn | n ≥ 1} ∪ {(x1 → x2), T (c1)}

D {(x1 ⊕ x2 = 1)} {(x1 ⊕ x2 = 1)}
D1 {(x1 ⊕ x2 = 1) ∧ F (c0)} ∧ T (c1) {(x1 ⊕ x2 = 1)} ∪ {F (c0), T (c1)}
D2 {(x1 ∨ x2) ∧Ne(x1, x3) ∧Ne(x2, x4) ∧ F (c0) ∧ T (c1)} {(x1 ∨ x2), (¬x1 ∨ x2), (¬x1 ∨ ¬x2)}
E {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4)} {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1}
E0 {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ F (c0)} {NAn | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1}
E1 {(x1 ↔ x2x3) ∧ T (c1)} {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N}
E2 {(x1 ↔ x2x3) ∧ F (c0) ∧ T (c1)} {NAn | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N}

E0 = [{∧, 0}], E1 = [{∧, 1}], E = [{∧, 0, 1}], L2 = [x ⊕ y ⊕ z], and S11 = [{x ∧ (y ∨ z), 0}],
where x = 1− x and where 0, 1 are shorthands for the two constant Boolean operations. We
conclude this section by defining the dual notion of a weak base.

I Definition 8 (Creignou et al. [9]). Let 〈Γ〉 be a co-clone. A base Γp of 〈Γ〉 with the property
that 〈∆〉6∃ ⊆ 〈Γp〉6∃ for every base ∆ of 〈Γ〉 is called a plain base of 〈Γ〉.

Clearly, every co-clone is a trivial plain base of itself, but the question remains for which
co-clones more succinct plain bases can be found. For arbitrary finite domains little is known
but in the Boolean domain succinct plain bases have been described [9] (see Table 2).

2.4 Duality
Many questions concerning Boolean co-clones can be simplified by only considering parts
of Post’s lattice. If f ∈ OP{0,1} is k-ary then the dual of f , dual(f), is the operation
dual(f)(x1, . . . , xk) = f(x1, . . . , xk), and we let dual(F ) = {dual(f) | f ∈ F} for a set
F ⊆ OP{0,1}. Each Boolean clone C can then be associated with a dual clone dual(C).
Similarly, for R ∈ REL{0,1} we let dual(R) = {t | t ∈ R} and dual(Γ) = {dual(R) | R ∈ Γ}
for Γ ⊆ REL{0,1}. It is then known that Inv(dual(C)) = dual(Inv(C)).

3 The Expressive Power of Unique Existential Quantification

The main goal of this paper is to understand when the expressive power of unique existential
quantification coincides with existential quantification in primitive positive formulas. Let us
first consider an example where a pp-definition can be rewritten into a upp-definition.



V. Lagerkvist and G. Nordh 36:7

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

Figure 1 The lattice of Boolean clones. Inv(C) is coloured in red if and only if Inv(C) is not
∃!-covered.

I Example 9. Consider the canonical reduction from k-SAT to (k−1)-SAT via pp-definitions
of the form (x1 ∨ . . .∨xk) ≡ ∃y : (x1 ∨ . . .∨xk−2 ∨ y)∧ (xk−1 ∨xk ∨¬y). In this pp-definition
the auxiliary variable y is not uniquely determined since, for example, y = 0 and y = 1 are
both consistent with x1 = 1, . . . xk−2 = 1, xk−1 = 1, xk = 1. On the other hand, if we instead
take the pp-definition (x1 ∨ . . . ∨ xk) ≡ ∃y : (x1 ∨ . . . ∨ xk−2 ∨ y) ∧ (y ↔ (xk−1 ∨ xk)), which
can be expressed by (k − 1)-SAT, it is easily verified that y is determined by xk−1 and xk.

Using the algebraic terminology from Section 2 this property can be phrased as follows.

I Definition 10. A co-clone 〈Γ〉 is ∃!-covered if 〈Γ〉 = 〈∆〉∃! for every base ∆ of 〈Γ〉.

Thus, we are interested in determining the ∃!-covered co-clones, and since every constraint
language Γ belongs to a co-clone, namely 〈Γ〉, Definition 10 precisely captures the aforemen-
tioned question concerning the expressive strength of uniqueness quantification in primitive
positive formulas. The remainder of this section will be dedicated to proving covering results
of this form, with a particular focus on proving a full classification for the Boolean domain.
See Figure 1 for a visualisation of this dichotomy. We begin in Section 3.1 by outlining
some of the main ideas required to prove that a co-clone is ∃!-covered, and consider covering
results applicable for arbitrary finite domains. In Section 3.2 we turn to the Boolean domain
where we prove the classification in Figure 1. Throughout, the missing proofs can be found
in the extended preprint [19], and the affected statements are marked with an asterisk (∗).
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3.1 General Constructions
Given an arbitrary constraint language Γ it can be difficult to directly reason about the
strength of upp-definitions over Γ. Fortunately, there are methods to mitigate this difficulty.
Recall from Definition 5 that a weak base of a co-clone 〈Γ〉 is a base which is qfpp-definable
by any other base of 〈Γ〉, and that a plain base is a base with the property that it can
qfpp-define every relation in the co-clone. We then have the following useful lemma.

I Lemma 11. Let 〈Γ〉 be a co-clone with a weak base Γw and a plain base Γp. If Γp ⊆ 〈Γw〉∃!
then 〈Γ〉 is ∃!-covered.

Proof. Let ∆ be a base of 〈Γ〉 and R an n-ary relation from 〈Γ〉, with a qfpp-definition
R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) over Γp. By assumption, Γw can upp-define every relation
in Γp, and it follows that R(x1, . . . , xn) ≡ ∃!y1, . . . , ym : ϕ′(x1, . . . , xn, y1, . . . , ym) for a Γw-
formula ϕ′(x1, . . . , xn, y1, . . . , ym) since each constraint in ϕ(x1, . . . , xn) can be replaced by
its upp-definition over Γw. Last, since ∆ can qfpp-define Γw, we obtain a upp-definition of R
by replacing each constraint in ϕ′(x1, . . . , xn, y1, . . . , ym) by its qfpp-definition over ∆. J

Although not difficult to prove, Lemma 11 offers the advantage that it is sufficient to
prove that Γp ⊆ 〈Γw〉∃! for two constraint languages Γw and Γp. Let us now illustrate some
additional techniques for proving that 〈Γ〉 is ∃!-covered. Theorem 7 in Section 2.3 shows
that the relation C(Us) is a weak base of Inv(C) for s larger than or equal to the core-size of
Inv(C). For s smaller than the core-size we have the following description of C(Us).

I Theorem 12 (∗). Let C be a finitely related clone over a finite domain D. Then, for every
s ≥ 1, C(Us) ∈ 〈Γ〉 6∃ for every base Γ of Inv(C).

The applications of Theorem 12 in the context of upp-definitions might not be immediate.
However, observe that each argument i ∈ [|D|s] of Us is determined by at most s other
arguments, and if C is sufficiently simple, this property can be proved to hold also for C(Us).
This intuition can then be formalised into the following general theorem.

I Theorem 13. Let Pol(Γ) be a clone over a finite domain D such that each f ∈ Pol(Γ) is
a constant operation or a projection. Then 〈Γ〉 is ∃!-covered.

Proof. Let F be a set of operations such that [F ] = Pol(Γ). We may without loss of
generality assume that F = {f1, . . . , fk} for unary operations fl such that fl(x) = dl for
some dl ∈ D. Take an arbitrary n-ary relation R ∈ 〈Γ〉. Let s = |R| and consider the
relation F (Us) from Definition 6. Our aim is to prove that F (Us) can upp-define R, which
is sufficient since F (Us) ∈ 〈Γ〉6∃ via Theorem 12. Let i1, . . . , in ∈ [|D|s] denote the indices
satisfying Proji1,...,in

(F (Us)) = R. If k = 0, and Pol(Γ) consists only of projections, then
F (Us) = Us, and each argument in [|D|s] \ {i1, . . . , in} is already determined by i1, . . . , in,
and by the preceding remark R ∈ 〈F (Us)〉∃!. Therefore, assume that k ≥ 1. For each
fl ∈ F then observe that (dl, . . . , dl) ∈ F (Us) and that (dl, . . . , dl) ∈ Proji1,...,in

(Us). Choose
j1, j2 ∈ [|D|s] such that t[j1] 6= t[j2] for t ∈ Us if and only if Proji1,...,in

(t) = (dl, . . . , dl), for
a dl such that fl(x) = dl. Thus, we choose a pair of indices differing in Us if and only if the
projection on i1, . . . , in is constant. Such a choice is always possible since the arguments
of Us enumerate all s-ary tuples over D. Then construct the relation R′(x1, . . . , x|D|s) ≡
F (Us)(x1, . . . , x|D|s) ∧ Eq(xj1 , xj2). It follows that Proji1,...,in

(R′) = R, and that every
argument l ∈ [|D|s] \ {i1, . . . , in} is determined by i1, . . . , in. Hence, R ∈ 〈F (Us)〉∃!. J

Theorem 13 implies that 〈Γ〉 is ∃!-covered if Γ is sufficiently powerful, and in particular
implies that RELD is ∃!-covered for every finite D. Hence, Γ pp-defines every relation if and
only if Γ upp-defines every relation. However, as we will now illustrate, this is not the only
possible case when a co-clone is ∃!-covered.
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I Lemma 14 (∗). Let F be a set of operations over a finite domain D. If each argument
i ∈ [ar(R)] is either fictitious or determined for every R ∈ Inv(F ), then Inv(F ) is ∃!-covered.

I Theorem 15. Let D be a finite domain such that |D| is prime, and let f(x, y, z) =
x − y + z (mod |D|). Then, for any constraint language Γ over D such that 〈Γ〉 ⊆ Inv(f),
〈Γ〉 is ∃!-covered.

Proof. We will prove that the preconditions of Lemma 14 are satisfied for Inv(f), which is
sufficient to prove the claim. Let R be invariant under f . Then it is known that R is the
solution space of a system of linear equations modulo |D| [14], from which it follows that
each argument is either determined, since it can be written as a unique combination of other
arguments, or is fictitious. J

3.2 Boolean Constraint Languages
In this section we use the techniques developed so far to prove that the classification in Figure 1
is correct. Note first that Inv(C) is ∃!-covered if and only if Inv(dual(C)) is ∃!-covered, since
a upp-definition ∃!y1, . . . , yn′ : R1(x1)∧ . . .∧Rm(xm) of n-ary R ∈ Inv(C) immediately yields
a upp-definition ∃!y1, . . . , yn′ : dual(R1)(x1)∧ . . .∧dual(Rm)(xm) of dual(R) ∈ Inv(dual(C)).
Thus, to simplify the presentation we omit the case when C ⊇ V2 in Figure 1. Let us begin
with the cases following directly from Section 3.1 or from existing results (recall that IC is a
shorthand for Inv(C)).

I Lemma 16. Let IC be a Boolean co-clone. Then IC is ∃!-covered if IC ⊆ IM2, IC ⊆ IL2,
IC ⊆ IS12, IC = IS10, IC = ISn

10 for some n ≥ 2, IC = IS1, or IC = ISn
1 for some n ≥ 2.

Proof. The case when IC ⊆ IL2 follows from Theorem 15 since L2 = [x⊕ y ⊕ z]. For each
case when C belongs to the infinite chains in Post’s lattice, or if IC ⊆ IM2, it is known that
IC = 〈Γ〉fr for any base Γ of IC [22], which is sufficient since 〈Γ〉fr ⊆ 〈Γ〉∃!. J

We now move on to the more interesting cases, and begin with the case when Pol(Γ) is
essentially unary, i.e., consists of essentially unary operations. This covers I2, I0, I1, I,N2,N
from Figure 1.

I Theorem 17 (∗). Let Γ be a Boolean constraint language such that Pol(Γ) is essentially
unary. Then 〈Γ〉 is ∃!-covered.

Next, we consider ID2, consisting of all relations pp-definable by binary clauses.

I Lemma 18 (∗). ID2 is ∃!-covered.

We now tackle the cases when Inv({∧, 0, 1}) ⊆ IC ⊆ Inv({∧}) (E, E0, E1, and E2 in
Figure 1). First, we describe the determined arguments of relations in E0.

I Lemma 19. Let R ∈ IE0 be an n-ary relation. If i ∈ [n] is determined in R then either (1)
there exists i1, . . . , ik ∈ [n] distinct from i such that t[i] = t[i1] ∧ . . . ∧ t[ik] for every t ∈ R,
or (2) t[i] = 0 for every t ∈ R.

Proof. Assume that i ∈ [n] is determined in R. Let R1 = {t1, . . . , tm} = {t ∈ R | t[i] = 1}
and R0 = {s1, . . . , sm′} = {s ∈ R | t[i] = 0}. Note first that R0 = ∅ cannot happen since R
is preserved by 0, and if R1 = ∅ then we end up in case (2). Hence, in the remainder of the
proof we assume that R0 and R1 are both non-empty.

Consider the tuple t1 ∧ . . . ∧ tm = t (applied componentwise), and observe that t ∈
{t1, . . . , tm} since R is preserved by ∧, and that t[i] = 1 since t1[i] = . . . = tm[i] = 1.
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Furthermore, if t[j] = 1 for some j ∈ [n] then it must also be the case that t1[j] = . . . =
tm[j] = 1. Let i1, . . . , il ∈ [n] \ {i} denote the set of indices such that t[ij ] = 1. Then
t′[i] = t′[i1] ∧ . . . ∧ t′[il] for every t′ ∈ R1, and we also claim that s[i] = s[i1] ∧ . . . ∧ s[il] for
every s ∈ R0, thus ending up in case (1). Note that l > 0, as otherwise every argument
distinct from i is constantly 0 in t, which is not consistent with the fact that 0n ∈ R0, since
it contradicts the assumption that i is determined. Assume that there exists s ∈ R0 such
that s[i] = 0 6= s[i1] ∧ . . . ∧ s[il]. Then, clearly, s[i1] = . . . = s[il] = 1. But then t ∧ s ∈ R
implies that i is not determined, since Proj1,...,i−1,i+1,...,n(t ∧ s) = Proj1,...,i−1,i+1,...,n(t) but
(t∧ s)[i] 6= t[i]. Hence, s[i] = s[i1]∧ . . .∧ s[il] for every s ∈ R, which concludes the proof. J

Lemma 19 also shows that if R ∈ IE with a determined argument i then there exists
i1, . . . , ik ∈ [ar(R)] such that t[i] = t[i1]∧ . . .∧t[ik] for every t ∈ R, since the constant relation
{(0)} /∈ IE. Before we use Lemma 19 to show the non-covering results for IE and IE0, we will
need the following lemma, relating the existence of a upp-definition to a qfpp-definition of a
special form. The proof essentially follows directly from the statement of the lemma and is
therefore omitted.

I Lemma 20. Let Γ be a constraint language. Then an n-ary relation R ∈ 〈Γ〉∃! has a upp-
definition R(x1, . . . , xn) ≡ ∃!y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym) if and only if there exists
an (n+m)-ary relation R′ ∈ 〈Γ〉6∃ such that Proj1,...,n(R′) = R where each n < i ≤ n+m is
determined by 1, . . . , n.

Say that a partial operation f is ∧-closed if dom(f) is preserved by ∧ and that it is
0-closed if 0ar(f) ∈ dom(f). We may now describe partial polymorphisms of 〈Γ〉∃! using
∧-closed and 0-closed partial polymorphisms of Γ.

I Lemma 21 (∗). Let Γ be a constraint language such that 〈Γ〉 = IE0. If f ∈ pPol(Γ) is ∧-
and 0-closed then f ∈ pPol(〈Γ〉∃!).

We now have all the machinery in place to prove that IE0 and IE are not ∃!-covered.

I Theorem 22. Let Rw be the weak base of IE0 from Table 2. Then 〈Rw〉∃! ⊂ IE0.

Proof. We prove that the relation R(x1, x2, x3) ≡ x1 ↔ x2x3 is not upp-definable over Rw,
which is sufficient since R ∈ IE0, as evident in Table 2. Furthermore, using Lemma 20,
we only have to prove that any (3 + n)-ary R′ where Proj1,2,3(R′) = R, and where each
other argument is determined by the three first, is not included in 〈Rw〉6∃. Assume, without
loss of generality, that R′ does not contain any redundant arguments. Define the binary
partial operation f such that f(0, 0) = 0, f(0, 1) = f(1, 0) = 1. By construction, f is
both 0-closed and ∧-closed, and it is also readily verified that f preserves Rw, which via
Lemma 21 then implies that f ∈ pPol(〈Rw〉∃!). To finish the proof we also need to show
that f /∈ pPol(R′), which is sufficient since it implies that R′ /∈ 〈Rw〉∃!. Take two tuples
s, t ∈ R′ such that Proj1,2,3(s) = (0, 0, 1), and Proj1,2,3(t) = (0, 1, 0). From Lemma 19, for
each 3 < i ≤ n+3, either i is constant 0 in R′ or there exists i1, . . . , ik ∈ {1, 2, 3}, k ≤ 3, such
that t[i] = t[i1]∧ . . . t[ik] for each t ∈ R′. But then (s[i], t[i]) ∈ dom(f) for each 3 < i ≤ n+ 3,
since either (s[i], t[i]) = (0, 0) ∈ dom(f) or (s[i], t[i]) is a conjunction over (0, 0, 1) and (0, 1, 0).
However, this implies that f(s, t) = u /∈ R′ since Proj1,2,3(u) = (0, 1, 1). Hence, f does not
preserve R′, and R′ /∈ 〈Rw〉6∃ via Theorem 4. J

The proof for IE uses the same construction and we omit the details. Surprisingly, as we
will now see, IE1 and IE2 behave entirely differently and are in fact ∃!-covered.

I Lemma 23 (∗). IE1 and IE2 are ∃!-covered.
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The natural generalisation of the Boolean operations ∧ and ∨ are so-called semilattice
operations; binary operations that are idempotent, associative, and commutative. It is
then tempting to conjecture that Lemma 19 can be generalized to arbitrary semilattice
operations, i.e., that every determined argument can be described as a semilattice combination
of other arguments, whenever a relation is preserved by a given semilattice operation.
This, however, is not true. For a simple counterexample define the semilattice operation
s : {0, 1, 2}2 → {0, 1, 2} as s(x, x) = x and s(x, y) = 0 otherwise. If we then consider the
relation R = {(0, 0), (1, 1), (2, 0)} it is easily verified that s preserves R, and that the second
argument is uniquely determined by the first argument but cannot be described via the
operation s.

The only co-clones remaining are IS11 and ISn
11 (for n ≥ 2). As we will see, unique

existential quantification is only as powerful as frozen quantification for these co-clones. We
state the following lemma only for IS11 but the same construction is valid also for ISn

11.

I Lemma 24 (∗). Let Γ be a constraint language such that 〈Γ〉 = IS11. Then 〈Γ〉∃! = 〈Γ〉fr.

It thus only remains to prove that IS11 and ISn
11 do not collapse into a single frozen

co-clone. Here, we state the lemma only for ISn
11, but the same argument works for IS11.

I Lemma 25 (∗). Let Γp denote the plain base and Γw the weak base of ISn
11 (n ≥ 2) from

Table 2. Then 〈Γw〉fr ⊂ 〈Γp〉fr.

Combining the results in this section we can now finally prove our dichotomy theorem.

I Theorem 26. Let 〈Γ〉 be a Boolean co-clone. Then 〈Γ〉 is not ∃!-covered if and only if
1. 〈Γ〉 ∈ {IE, IE0, IV, IV1}, or
2. 〈Γ〉 ∈ {ISn

01, ISn
11 | n ≥ 2} ∪ {IS01, IS11} (where, in addition, 〈Γ〉∃! = 〈Γ〉fr).

Proof. Each negative case either follows immediately from Lemma 22, Lemma 24, Lemma 25,
or is the dual of one of those cases. Each ∃!-covered co-clone is proved in Lemma 16,
Theorem 17, Lemma 18, and Lemma 23. J

4 Applications in Complexity

In this section we apply Theorem 26 to study the complexity of computational problems not
compatible with pp-definitions. Let us begin by defining the constraint satisfaction problem
over a constraint language Γ (CSP(Γ)).

Instance: A tuple (V,C) where V is a set of variables and C a set of constraints of the
form Ri(xi1 , . . . , xiar(R)) for Ri ∈ Γ.
Question: Does (V,C) have at least one model? That is, a function f : V → D such
that f(xi1 , . . . , xiar(Ri)) ∈ Ri for each Ri(xi1 , . . . , xiar(Ri)) ∈ C?

For Boolean constraint languages Γ we write SAT(Γ) instead of CSP(Γ). If ∆ ⊆ 〈Γ〉 (or,
equivalently, Pol(Γ) ⊆ Pol(∆)) then CSP(∆) is polynomial-time reducible to CSP(Γ) [13].
However, there exist many natural variants of CSPs not compatible with pp-definitions, but
compatible with more restricted closure operators such as upp-definitions. One such example
is the unique satisfiability problem over a Boolean constraint language Γ (U-SAT(Γ)).
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Instance: A SAT(Γ) instance I.
Question: Does I have a unique model?

The unrestricted U-SAT problem, i.e., the U-SAT problem where all possible constraints
are allowed, can be seen as the intersection of satisfiability (in NP), and the satisfiability
problem of checking if a given instance does not admit two distinct models (in co-NP). Hence,
U-SAT is included in the second level of the Boolean hierarchy, BH2, but is not believed
to be complete for this class [23]. This unclear status motivated Blass and Gurevich [2] to
introduce the complexity class unique polynomial-time, US, the set of decision problems
solvable by a non-deterministic polynomial-time Turing machine where an instance is a
yes-instance if and only if there exists a unique accepting path. Blass and Gurevich then
quickly observed that U-SAT is US-complete and that US ⊆ BH2.

We will present a simple, algebraic proof of Juban’s trichotomy theorem for U-SAT(Γ) [15],
showing that U-SAT(Γ) for finite Γ is either tractable, co-NP-complete, or US-complete.
Using our machinery we will also be able to generalise this result to arbitrary infinite constraint
languages. However, for infinite Γ we first need to specify a method of representation. We
assume that the elements R1, R2, . . . of Γ are recursively enumerable by their arity, are
represented as lists of tuples, and that there exists a computable function f : N→ N such
that for every k ≥ 1 and every k-ary relation R, R ∈ 〈Γ〉∃! if and only if R ∈ 〈Γ∩REL≤f(k)

{0,1} 〉∃!.
Thus, if a relation is upp-definable it is always possible to bound the arities of the required
relations in the definition. The complexity of U-SAT(Γ) is then determined by 〈Γ〉∃! in the
following sense.

I Theorem 27. Let Γ and ∆ be Boolean constraint languages. If ∆ ⊆ 〈Γ〉∃! is finite then
U-SAT(∆) is polynomial-time many-one reducible to U-SAT(Γ).

Proof. By assumption every R ∈ ∆ is upp-definable over Γ. First let k = max{f(ar(R)) |
R ∈ ∆}. We then begin by computing a upp-definition of R over Γ∩REL≤k

{0,1}, and store this
upp-definition in a table. Since ∆ is finite this can be done in constant time. Next, given an
instance I = (V,C) of U-SAT(∆), we similar to the ordinary CSP case simply replace each
constraint in C by its upp-definition over Γ, and identify any potential variables occurring in
equality constraints. This procedure might introduce additional variables, but since they are
all determined by V , the existence of a unique model is preserved. J

I Theorem 28 (∗). Let Γ be a Boolean constraint language. Then U-SAT(Γ) is co-NP-
complete if 〈Γ〉 ∈ {II0, II1}, US-complete if 〈Γ〉 = II2, and is tractable otherwise.

A complexity classification akin to Theorem 28 is useful since it clearly separates tractable
from intractable cases. However, in the last decade, a significant amount of research has
been devoted to better understanding the “fine-grained” complexity of intractable problems,
with a particular focus on ruling out algorithms running in O(c|V |) time for every c > 1,
so-called subexponential time. This line of research originates from Impagliazzo et al. [12]
who conjectured that 3-SAT is not solvable in subexponential time; a conjecture known as
the exponential-time hypothesis (ETH). Lower bounds for U-SAT(Γ) can then be proven
using the ETH and the results from Section 3.

I Theorem 29 (∗). Let Γ be a Boolean constraint language such that U-SAT(Γ) is US-
complete or co-NP-complete. Then U-SAT(Γ) is not solvable in subexponential time, unless
the ETH is false.
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Using our algebraic framework, hardness results can effortlessly be proven for the CSP
generalisation of U-SAT, i.e., the problem U-CSP(Γ) of answering yes if and only if the
given instance of CSP(Γ) admits a unique model.

I Theorem 30 (∗). Let Γ be a constraint language over a finite domain D. If 〈Γ〉 = RELD

then U-CSP(Γ) is US-complete, and if Pol(Γ) = [{f}] for a constant operation f , then
U-CSP(Γ) is co-NP-complete.

5 Concluding Remarks and Future Research

We have studied unique existential quantification in pp-definitions, with a particular focus
on finding constraint languages where existential quantification and unique existential
quantification coincide. In general, this question appears highly challenging, but we have
managed to find several broad classes of languages where this is true, and established a
complete dichotomy theorem in the Boolean domain. We also demonstrated that upp-
definitions can be applied to obtain complexity theorems for problems in a more systematic
manner than what has earlier been possible. Many interesting open question hinge on the
possibility of finding an algebraic characterisation of upp-closed sets of relations. For example,
it would be interesting to determine the cardinality of the set {〈Γ〉∃! | Γ ⊆ II2}, and hopefully
describe all such upp-closed sets. By our classification theorem it suffices to investigate the
Boolean co-clones that are not ∃!-covered, but even this question appears difficult to resolve
using only relational tools. Similarly, a continued description of the ∃!-covered co-clones over
finite domains would be greatly simplified by an algebraic characterisation. Thus, given a set
of relations Γ, what is the correct notion of a “polymorphism” of a upp-definable relation
over Γ? This question also has a strong practical motivation: essentially all complexity
classifications for CSP related problems over non-Boolean domain require stronger algebraic
tools than pp-definitions, and this is likely the case also for problems that can be studied
with upp-definitions.

Another interesting topic is the following computational problem concerning upp-definability.
Fix a constraint language Γ, and let R be a relation. Is it the case that R is upp-definable over
Γ? The corresponding problem for pp-definitions is tractable for Boolean constraint languages
Γ [9] while the corresponding problem for qfpp-definitions is co-NP-complete [16, 20]. Note
that if 〈Γ〉 is ∃!-covered (which can be checked in polynomial time) then R ∈ 〈Γ〉∃! can be
answered by checking whether R ∈ 〈Γ〉. Thus, only the co-clones that are not ∃!-covered
would need to be investigated in greater detail.

Last, it is worth remarking that our notion of uniqueness quantification in pp-definitions
is not the only one possible. Assume that we in ∃!xi : R(x1, . . . , xi, . . . , xn) over a domain D
do not require that xi is determined by x1, . . . , xi−1, xi+1, . . . , xn but instead simply obtain
the relation {(d1, . . . , di−1, di+1, . . . , dn) | ∃!di ∈ D such that (d1, . . . , di−1, di, di+1, . . . , dn) ∈
R)}. This notion of unique existential quantification is in general not comparable to existential
quantification, since if we e.g. let R = {(0, 0), (0, 1), (1, 0)} then T (x) ≡ ∃!y : R(y, x) even
though T /∈ 〈R〉, i.e., is not even pp-definable by R (where T = {(1)}). Thus, it would be
interesting to determine the resulting closed classes of relations and see in which respect they
differ from the ordinary co-clone lattice.
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