2,103 research outputs found

    On the Relationship Between Sampling Rate and Hidden Markov Models Accuracy in Non-intrusive Load Monitoring

    Get PDF
    Providing domestic energy consumers with a detailed breakdown of their electricity consumption, at the appliance level, empowers the consumer to better manage that consumption and reduce their over- all electricity demand. Non-Intrusive Load Monitoring (NILM) is one method of achieving this breakdown and makes use of one sensor which measures overall combined electricity usage. As all appliances are measured in combination in NILM this consumption must be disaggregated to extract appliance level consumption. Machine learning techniques can be adopted to perform this disaggregation with various levels of accuracy, with Hidden Markov Model (HMM) derivatives ordering among the most accurate results. This work investigates how sensor sampling rate affects disaggregation accuracy obtained through HMM

    Energy Disaggregation for Real-Time Building Flexibility Detection

    Get PDF
    Energy is a limited resource which has to be managed wisely, taking into account both supply-demand matching and capacity constraints in the distribution grid. One aspect of the smart energy management at the building level is given by the problem of real-time detection of flexible demand available. In this paper we propose the use of energy disaggregation techniques to perform this task. Firstly, we investigate the use of existing classification methods to perform energy disaggregation. A comparison is performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors, Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted Boltzmann Machine to automatically perform feature extraction. The extracted features are then used as inputs to the four classifiers and consequently shown to improve their accuracy. The efficiency of our approach is demonstrated on a real database consisting of detailed appliance-level measurements with high temporal resolution, which has been used for energy disaggregation in previous studies, namely the REDD. The results show robustness and good generalization capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US

    Unsupervised training methods for non-intrusive appliance load monitoring from smart meter data

    No full text
    Non-intrusive appliance load monitoring (NIALM) is the process of disaggregating a household’s total electricity consumption into its contributing appliances. Smart meters are currently being deployed on national scales, providing a platform to collect aggregate household electricity consumption data. Existing approaches to NIALM require a manual training phase in which either sub-metered appliance data is collected or appliance usage is manually labelled. This training data is used to build models of the house- hold appliances, which are subsequently used to disaggregate the household’s electricity data. Due to the requirement of such a training phase, existing approaches do not scale automatically to the national scales of smart meter data currently being collected.In this thesis we propose an unsupervised training method which, unlike existing approaches, does not require a manual training phase. Instead, our approach combines general appliance knowledge with just aggregate smart meter data from the household to perform disaggregation. To do so, we address the following three problems: (i) how to generalise the behaviour of multiple appliances of the same type, (ii) how to tune general knowledge of appliances to the specific appliances within a single household using only smart meter data, and (iii) how to provide actionable energy saving advice based on the tuned appliance knowledge.First, we propose an approach to the appliance generalisation problem, which uses the Tracebase data set to build probabilistic models of household appliances. We take a Bayesian approach to modelling appliances using hidden Markov models, and empirically evaluate the extent to which they generalise to previously unseen appliances through cross validation. We show that learning using multiple appliances vastly outperforms learning from a single appliance by 61–99% when attempting to generalise to a previously unseen appliance, and furthermore that such general models can be learned from only 2–6 appliances.Second, we propose an unsupervised solution to the model tuning problem, which uses only smart meter data to learn the behaviour of the specific appliances in a given house-hold. Our approach uses general appliance models to extract appliance signatures from ?a household’s smart meter data, which are then used to refine the general appliance models. We evaluate the benefit of this process using the Reference Energy Disaggregation Data set, and show that the tuned appliance models more accurately represent the energy consumption behaviour of a given household’s appliances compared to when general appliance models are used, and furthermore that such general models can per- form comparably to when sub-metered data is used for model training. We also show that our tuning approach outperforms the current state of the art, which uses a factorial hidden Markov model to tune the general appliance models.Third, we apply both of these approaches to infer the energy efficiency of refrigerators and freezers in a data set of 117 households. We evaluate the accuracy of our approach, and show that it is able to successfully infer the energy efficiency of combined fridge freezers. We then propose an extension to our model tuning process using factorial hidden semi-Markov models to model households with a separate fridge and freezer. Finally, we show that through this extension our approach is able to simultaneously tune the appliance models of both appliances.The above contributions provide a solution which satisfies the requirements of a NIALM training method which is both unsupervised (no manual interaction required during training) and uses only smart meter data (no installation of additional hardware is required). When combined, the contributions presented in this thesis represent an advancement in the state of the art in the field of non-intrusive appliance load monitoring, and a step towards increasing the efficiency of energy consumption within households

    Low-Power Appliance Monitoring Using Factorial Hidden Markov Models

    Get PDF
    To optimize the energy utilization, intelligent energy management solutions require appliance-specific consumption statistics. One can obtain such information by deploying smart power outlets on every device of interest, however it incurs extra hardware cost and installation complexity. Alternatively, a single sensor can be used to measure total electricity consumption and thereafter disaggregation algorithms can be applied to obtain appliance specific usage information. In such a case, it is quite challenging to discern low-power appliances in the presence of high-power loads. To improve the recognition of low-power appliance states, we propose a solution that makes use of circuit-level power measurements. We examine the use of a specialized variant of Hidden Markov Model (HMM) known as Factorial HMM (FHMM) to recognize appliance specific load patterns from the aggregated power measurements. Further, we demonstrate that feature concatenation can improve the disaggregation performance of the model allowing it to identify device states with an accuracy of 90% for binary and 80% for multi-state appliances. Through experimental evaluations, we show that our solution performs better than the traditional event based approach. In addition, we develop a prototype system that allows real-time monitoring of appliance states

    Non-parametric modeling in non-intrusive load monitoring

    Get PDF
    Non-intrusive Load Monitoring (NILM) is an approach to the increasingly important task of residential energy analytics. Transparency of energy resources and consumption habits presents opportunities and benefits at all ends of the energy supply-chain, including the end-user. At present, there is no feasible infrastructure available to monitor individual appliances at a large scale. The goal of NILM is to provide appliance monitoring using only the available aggregate data, side-stepping the need for expensive and intrusive monitoring equipment. The present work showcases two self-contained, fully unsupervised NILM solutions: the first featuring non-parametric mixture models, and the second featuring non-parametric factorial Hidden Markov Models with explicit duration distributions. The present implementation makes use of traditional and novel constraints during inference, showing marked improvement in disaggregation accuracy with very little effect on computational cost, relative to the motivating work. To constitute a complete unsupervised solution, labels are applied to the inferred components using a Res-Net-based deep learning architecture. Although this preliminary approach to labelling proves less than satisfactory, it is well-founded and several opportunities for improvement are discussed. Both methods, along with the labelling network, make use of block-filtered data: a steady-state representation that removes transient behaviour and signal noise. A novel filter to achieve this steady-state representation that is both fast and reliable is developed and discussed at length. Finally, an approach to monitor the aggregate for novel events during deployment is developed under the framework of Bayesian surprise. The same non-parametric modelling can be leveraged to examine how the predictive and transitional distributions change given new windows of observations. This framework is also shown to have potential elsewhere, such as in regularizing models against over-fitting, which is an important problem in existing supervised NILM

    Non-intrusive load monitoring techniques for activity of daily living recognition

    Get PDF
    Esta tesis nace con la motivación de afrontar dos grandes problemas de nuestra era: la falta de recursos energéticos y el envejecimiento de la población. Respecto al primer problema, nace en la primera década de este siglo el concepto de Smart Grids con el objetivo de alcanzar la eficiencia energética. Numerosos países comienzan a realizar despliegues masivos de contadores inteligentes ("Smart Meters"), lo que despierta el interés de investigadores que comienzan a desarrollar nuevas técnicas para predecir la demanda. Así, los sistemas NILM (Non-Intrusive Load Monitoring) tratan de predecir el consumo individual de los dispositivos conectados a partir de un único sensor: el contador inteligente. Por otra parte, los grandes avances en la medicina moderna han permitido que nuestra esperanza de vida aumente considerablemente. No obstante, esta longevidad, junto con la baja fertilidad en los países desarrollados, tiene un efecto secundario: el envejecimiento de la población. Unos de los grandes avances es la incorporación de la tecnología en la vida cotidiana, lo que ayuda a los más mayores a llevar una vida independiente. El despliegue de una red de sensores dentro de la vivienda permite su monitorización y asistencia en las tareas cotidianas. Sin embargo, son intrusivos, no escalables y, en algunas ocasiones, de alto coste, por lo que no están preparados para hacer frente al incremento de la demanda de esta comunidad. Esta tesis doctoral nace de la motivación de afrontar estos problemas y tiene dos objetivos principales: lograr un modelo de monitorización sostenible para personas mayores y, a su vez, dar un valor añadido a los sistemas NILM que despierte el interés del usuario final. Con este objetivo, se presentan nuevas técnicas de monitorización basadas en NILM, aunando lo mejor de ambos campos. Esto supone un ahorro considerable de recursos en la monitorización, ya que únicamente se necesita un sensor: el contador inteligente; lo cual da escalabilidad a estos sistemas. Las contribuciones de esta tesis se dividen en dos bloques principales. En el primero se proponen nuevas técnicas NILM optimizadas para la detección de la actividad humana. Así, se desarrolla una propuesta basada en detección de eventos (conexiones de dispositivos) en tiempo real y su clasificación a un dispositivo. Con el objetivo de que pueda integrarse en contadores inteligentes. Cabe destacar que el clasificador se basa en modelos generalizados de dispositivos y no necesita conocimiento específico de la vivienda. El segundo bloque presenta tres nuevas técnicas de monitorización de personas mayores basadas en NILM. El objetivo es proporcionar una monitorización básica pero eficiente y altamente escalable, ahorrando en recursos. Los procesos Cox, log Gaussian Cox Processes (LGCP), monitorizan un único dispositivo si la rutina está estrechamente ligada a este. Así, se propone un sistema de alarmas si se detectan cambios en el comportamiento. LGCP tiene la ventaja de poder modelar periodicidades e incertidumbres propias del comportamiento humano. Cuando la rutina no depende de un único dispositivo, se proponen dos técnicas: una basada en gaussianas mixtas, Gaussian Mixture Models (GMM); y la otra basada en la Teoría de la Evidencia de Dempster-Shafer (DST). Ambas monitorizan y detectan deterioros en la actividad, causados por enfermedades como la demencia y el alzhéimer. Únicamente DST usa incertidumbres que simulan mejor el comportamiento humano y, por tanto, permite alarmas en caso de un repentino desvío. Finalmente, todas las propuestas han sido validadas mediante la evaluación de métricas y la obtención de resultados experimentales. Para ello, se han usado medidas de escenarios reales que han sido recopiladas en bases de datos. Los resultados obtenidos han sido satisfactorios, demostrando que este tipo de monitorización es posible y muy beneficioso para nuestra sociedad. Además, se ha dado a lugar nuevas propuestas que serán desarrolladas en el futuro. Códigos UNESCO: 120320 - sistemas de control medico, 332201 – distribución de la energía, 120701 – análisis de actividades, 120304 – inteligencia artificial, 120807 – plausibilidad, 221402 – patrones

    Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine

    Get PDF
    Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system

    Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine

    Get PDF
    Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system
    corecore