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Abstract—Energy is a limited resource which has to be man-
aged wisely, taking into account both supply-demand matching
and capacity constraints in the distribution grid. One aspect of
the smart energy management at the building level is given by
the problem of real-time detection of flexible demand available.
In this paper we propose the use of energy disaggregation
techniques to perform this task. Firstly, we investigate the use of
existing classification methods to perform energy disaggregation.
A comparison is performed between four classifiers, namely
Naive Bayes, k-Nearest Neighbors, Support Vector Machine and
AdaBoost. Secondly, we propose the use of Restricted Boltzmann
Machine to automatically perform feature extraction. The ex-
tracted features are then used as inputs to the four classifiers
and consequently shown to improve their accuracy. The efficiency
of our approach is demonstrated on a real database consisting
of detailed appliance-level measurements with high temporal
resolution, which has been used for energy disaggregation in
previous studies, namely the REDD. The results show robustness
and good generalization capabilities to newly presented buildings
with at least 96% accuracy.

I. INTRODUCTION

Energy is a limited resource which faces additional chal-

lenges due to recent efficiency and de-carbonization goals

worldwide. An important component of the ongoing pro-

cess is the improvement in the energy management systems

in residential and commercial buildings, which account for

30− 40% of the total energy demand in the developed world

[1]. Buildings are complex systems composed by a different

number of devices and appliances, such as refrigerators, mi-

crowaves, cooking stoves, washing machines etc. However,

there are also a number of sub-systems, e.g. electric heating,

lighting. Even there are many influencing factors in building

energy consumption, some patterns can be clearly identified

and used further to improve demand side management systems

and demand response (DR) programs [2]. Identifying and

aggregating the flexibility resource at the community level can

decrease the end-user energy bill. Concomitantly, as a long-

term benefit, flexibility can lead also to emission reductions,

and lower investments in transmission and distribution grid

infrastructure. Therefore, the role of end-users and their avail-

able flexibility is becoming increasingly important in the Smart

Grid context.

One possible way to detect building flexibility in real-time

is by performing energy disaggregation. Disaggregation refers

to the extraction of appliance level energy signals from an

aggregate, or the whole-building, energy consumption signal.

Often only this aggregated signal is made available via the

smart meter infrastructure to the grid operator, due to privacy

concerns of the end user. This new approach should open new

paths towards better planning and operation of the smart grid,

helping the transition of end-users from a passive to an active

role. In addition, informing the end-user in real-time, or near

real-time, about how much energy is used by each appliance

can be a first step in voluntarily decreasing the overall energy

consumption.

Introduced by W. Hart [3] in the early 1980s, the Non-

Intrusive Load Monitoring (NILM) problem has nowadays

several solutions for residential buildings. Traditional ap-

proaches for the energy disaggregation problem (or NILM

problem) start by investigating if the device is turned on/off

[4], and followed by many steady-state methods [5] and

transient-state methods [5] aiming to identify more complex

appliance patterns. In the same time, advance building energy

managements systems are looking beyond quantification of the

energy consumption by including fusion information such as,

the acoustic sensors to identify the operational state of the ap-

pliances [6], the motion sensors, the frequency of the appliance

used [7], as well as time and appliance usage duration [7], [8].

A more comprehensive discussion about these can be found in

recent reviews, such as [9]–[11]. Moreover, new data analytics

challenges arise in the context of an increasing number of

smart meters, and consequently, a big volume of data, which

highlights the need of more complex methods to analyze

and take benefit of the fusion information [12]. More recent

researches have explored a wide range of different machine

learnings methods, using both supervised and unsupervised

learning, such us sparse coding [8], clustering [13], [14]

or different graphical models (e.g. Factorial Hidden Markov

models (FHMM) [7], Factorial Hidden Semi-Markov Model

(FHSMM) [7], Conditional FHMM [7], Conditional Factorial

Hidden Semi-Markov Model (CFHSMM) [7], additive FHMM

[15] or Bayesian Nonparametric Hidden Semi-Markov Models

[16]) to perform energy disaggregation. Still, there is an

evident challenge to develop an accurate solution that could

perform well for every type of appliance.

In this paper, the aim is to perform real-time flexibility

detection using energy disaggregation techniques. Therefore,

the key methodological contribution of this paper is a machine

learning based tool for exploiting the building energy disaggre-

gation capabilities in an online manner. Our contributions can



be summarized as follows. Firstly, we investigate the use of

classification methods to perform energy disaggregation. Con-

sequently, a comparison is performed between four widely-

used classification methods, namely Naive Bayes (NB), K-

Nearest Neighbors (KNN), Support Vector Machine (SVM)

and AdaBoost. Secondly, we introduce a Restricted Boltzmann

Machine (RBM) to perform automatic feature extraction in

order to improve the performance of the four classification

methods discussed. We validate our proposed approach by

using a real measurement database, specifically conceived for

energy disaggregation, i.e. the REDD [17].

The remaining of this paper is organized as follows. Sec-

tion II introduces the problem description. Section III describes

our proposed approach for the energy disaggregation problem.

In Section IV the experimental validation of the proposed

methods is detailed and Section V concludes the paper.

II. PROBLEM FORMULATION AND METHODOLOGY

This section details the problem definition targeted in this

paper. In one unified framework, we split the problem into two

parts, where first the energy disaggregation problem is solved,

and then an identification procedure is carried out to analyze

the potential of building demand flexibility.

The proposed solution for energy disaggregation is ad-

dressed using four different classification methods. More for-

mally, let us define an input space D and an output space

(label space) B. The question of learning is reduced to the

question of estimating a functional relationship of the form

C : D → B, that is a relationship between inputs and outputs.

A classification algorithm is a procedure that takes the training

data as input and outputs a classifier C. The goal is then to

find a C which makes as few errors as possible. Intuitively,

the learned classifier should be based on enough training

examples, fit the training example and should be simple.

Moreover, classification can be thought of as two separate

problems: binary classification and multi-class classification.
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Fig. 1. Energy disaggregation

In our specific case, the B space is given by the electrical

devices in the building, and the D space is given by the

aggregated electrical energy consumption of the building.

In Figure 1 the flow diagram of the energy disaggregation

procedure is depicted. Firstly, using data from n buildings we

derive a corresponding model for each device inside them.

Furthermore these binary classification models are used to

automatically classify, whether a given device is active at any

specific moment in time, by using the building’s total electrical

energy consumption profile.

III. PROPOSED METHODS

In this section, we firstly briefly describe the four classifica-

tion methods to perform energy disaggregation, these methods

being part of the supervised learning paradigm. Secondly, we

introduce the mathematical details of the Restricted Boltzmann

Machine used to perform automatic features extraction, this

method being part of the unsupervised learning paradigm.

A. Classification methods

For the classification problem, plenty of deterministic or

probabilistic algorithms are known, where every observation

is analyzed into a set of quantifiable properties, such as Naive

Bayes [18], Support Vector Machine [19], AdaBoost [20],

Random Forest Trees and so on. Prior studies tried to de-

termine the most accurate classification method, as is shown

in [21], but currently there is not a general consensus in the

favor of a particular method.
1) Naive Bayes: is one of the most simple classification

method based on a strong independence assumptions between

the input features. Despite these relatively naive assumptions,

with a training phase extremely easy to implement and fast

computational time, Naive Bayes classifiers often outperform

more sophisticated alternatives.
2) k-Nearest Neighbors: is a non-parametric method used

for classification. The standard version of KNN used in

this paper performs successively two steps. Specifically, the

clusters are construct by partitioning the k-nearest neighbors

based on a distance measure (i.e. Euclidean distance), followed

by an update rule, such that the majority of those k-nearest

neighbors decide the class of the next observations.
3) AdaBoost: it stands for Adaptive Boosting, and is a ma-

chine learning algorithm, which was proposed in the computa-

tional learning theory field by Y. Freund and R. Schapire [20].

AdaBoost method solves the classification problem using a

linear combination of many weak classifiers into a single

strong classifier. Acting as an expert, boosting often does not

suffer from overfitting and it is worth to investigate in the

context of our challenging dataset.
4) Support Vector Machine (SVM): is introduced by Vapnik

in 1995 [19] and becomes very popular for solving problems in

classification, regression, and novelty detection. An important

characteristic of SVM is that the determination of the model

parameters corresponds to a convex optimization problem, and

so any local solution is also a global optimum. This guarantee

comes with some computational cost but also with a better

robustness.

B. Restricted Boltzmann Machine

Restricted Boltzmann Machine is a two-layer generative

stochastic neural network which is capable to learn a prob-

ability distribution over its set of inputs [22]. Such a model



does not allow intra-layer connections between the units, and

it allows just inter-layer connections. In fact, any unit from

one layer has undirected connections to all the units from the

other layers. Up to now, various types of restricted Boltzmann

machines are already developed and successfully applied in

different applications [23]. Despite their differences, almost

all of these architectures preserve RBMs characteristics. To

formalize a restricted Boltzmann machine, and its variants,

three main ingredients are required, namely an energy func-

tion providing scalar values for a given configuration of the

network, the probabilistic inference and the learning rules

required for fitting the free parameters.

Thus, a RBM consists in two binary layers, the visible

layer, v = [v1, v2, .., vnv
], in which each neuron represents

one dimension (feature) of the input data and the hidden

layer, h = [h1, h2, .., hnh
], which represents hidden features

extracted automatically by the RBM model from the input

data, where nv is the number of visible neurons and nh is

the number of the hidden neurons. Each visible neuron i is

connected to any hidden neuron j by a weight, i.e. Wij . All

these weights are stored in a matrix W ∈ Rnv×nh , where R is

the set of real numbers, in which the rows represent the visible

neurons and the columns the hidden ones. Finally, each visible

neuron i has associated a bias ai which is stored in a vector

a = [a1, a2, .., anv
]. Similarly, the hidden neurons have biases

which are stored in a vector b = [b1, b2, .., bnh
]. Further on, we

will note with Θ = {W,a,b} a set which represent the union

of all free parameters of a RBM (i.e. weights and biases).

Formally, the energy function of a RBM for any state {v,h}
can be computed by summing over all possible interactions

between neurons, weights and biases, as folows:

E(v, h) = −
nv∑

i=1

nh∑

j=1

vihjWij −
nv∑

i=1

viai −
nh∑

j=1

hjbj (1)

where the term
∑ nv

i=1

∑
nh
j=1vihjWij is given by the to-

tal energy between the neurons from different layers, while∑ nv
i=1viai represents the energy of the visible neurons and∑ nh
j=1hjbj is the energy of the hidden neurons.

The inference in a RBM means to determine two conditional

distributions. For any hidden or visible neuron this can be done

just by sampling from a sigmoid function, as shown below:

p(hj = 1|v,Θ) =
1

1 + e−(bj+
∑ nv

i=1viwij)
(2)

p(vi = 1|h,Θ) =
1

1 + e
−(ai+

∑ nh
j=1hjwij)

(3)

To learn the parameters of a RBM model there are more

variants in the literature (e.g. persistent contrastive diver-

gence, parallel tempering [24], fast persistent contrastive di-

vergence [25]). Almost all of them being derived from the

Contrastive Divergence (CD) method proposed by Hinton

in [26]. For this reason, in this paper, we briefly describe and

use just the original CD method. CD is an approximation of the

maximum likelihood learning, which is practically intractable

in a RBM. Thus, while in maximum likelihood the learning

phase minimizes the Kullback-Leiber (KL) measure between

the distribution of the input data and the model approximation,

in CD the learning follows the gradient of:

CDn ∝ DKL(p0(x)||p∞(x))−DKL(pn(x)||p∞(x)) (4)

where, pn(.) represents the resulting distribution of a Markov

chain running for n steps. Furthermore, the general update rule

of the free parameters of a RBM model is given by:

ΔΘτ+1 = ρΔΘτ + α(∇Θτ+1 − ξΘτ ) (5)

where τ , α, ρ, and ξ represent the update number, learning

rate, momentum, and weights decay, respectively, as thor-

oughly discussed in [27]. Moreover, ∇Θτ+1 for each free

parameter may be computed by deriving the energy function

from Equation 1 with respect to that parameter, as detailed

in [26], yielding:

∇wij ∝ 〈vihj〉0 − 〈vihj〉n (6)

∇ai ∝ 〈vi〉0 − 〈vi〉n (7)

∇bj ∝ 〈hj〉0 − 〈hj〉n (8)

with 〈·〉n being the distribution of the model obtained after n
steps of Gibbs sampling in a Markov Chain which starts from

the original data distribution 〈·〉0.

IV. EXPERIMENTAL RESULTS

In this section we analyze and validate our proposed ap-

proach using a real-world database, namely The Reference
Energy Disaggregation Dataset (REDD), described by Kolter

and Johnson in [17]. This data was chosen as it is an open

dataset1 collected specifically for evaluating energy disaggre-

gation methods. It contains aggregated data recorded from six

buildings over few weeks sampled at 1 second resolution,

together with the specific data for all appliances of each

building at 3 seconds resolution.

In the first set of experiments, we study the performance

of the classification methods (i.e. Naive Bayes, K-Nearest

Neighbors, Support Vector Machine and AdaBoost) for detect-

ing the activation of four appliances (i.e. refrigerator, electric

heater, washer-dryer, dishwasher), specifically chosen for their

ability to provide demand-side flexibility. Furthermore, in the

second stage we demonstrate the improvement in the accuracy

of the classification after a Restricted Boltzmann Machine is

used for automatic feature extraction. Finally, assuming the

aforementioned four appliances shiftable in time, we discuss

the possible benefits of real-time flexibility detection.

The experiments were performed in the MATLAB R© envi-

ronment using the methods described in Section III. For the

classification methods we have used the optimized parameters

from the machine learning toolbox (e.g. SVM with radial

kernel function). For each appliance we have built a separate

binary classification model for every classification method.

The input at every moment in time is given by a window of 10

consecutive time steps from the aggregated building consump-

tion, while the output was represented by the activation of the

1http://redd.csail.mit.edu/, Last visit November 5th, 2015



appliance (i.e. on/off status). In all the experiments performed,

we have trained the models on 5 buildings (i.e. 2, 3, 4, 5, and

6) and we have tested the models on a different building (i.e.

1). Also, as recommended in [14], we have applied a median

filter of 6 samples to make the data smoother.

For the feature extraction procedure we have implemented

RBMs with the following parameters: 20 hidden neurons

and 10 visible neurons (representing the time window of 10

consecutive time steps). After a short fine tuning procedure,

the learning rate was set to 10−2, the momentum was set

to 0.5, and the weight decay was set to 0.0002. We trained

the RBM models for 25 epochs, and after that we have

used the probabilities of the hidden neurons as inputs for the

classification methods.

In order to characterize as fairly as possible the accuracy

of the models proposed to classify the appliance activation we

have calculated the classifier accuracy as follows:

Accuracy =

∑n
i=1 Aii∑n

i=1

∑n
j=1 Aij

(9)

where A is the confusion matrix (also known as a contingency

table or an error matrix), Aii represents the positive true value

and the denominator represents the total number of data used

in the classification procedure. This quantifies the proportion

of the total number of instances that were correctly classified.

A. Energy disaggregation

In this subsection, we first perform a comparison between

the four classification methods, namely Naive Bayes (NB), k-

Nearest Neighbors (KNN), Support Vector Machine (SVM)

and AdaBoost (AB). Table I summarizes the classification

accuracy for different building electrical components, such as

refrigerator, electric heater, washer-dryer and dishwasher. For

a better insight into the results, an example of the energy

consumption for the appliances corresponding to building 1

(the test data) is depicted in Figure 3.

TABLE I
RESULTS SHOWING ACCURACY [%] FOR EACH OF NAIVE BAYES, KNN,
SVM AND ADABOOST TO CLASSIFY AN APPLIANCE VERSUS ALL DATA.

Appliance NB KNN SVM AdaBoost
refrigerator 52.18% 67.36% 67.45% 87.13%

electric heater 93.01% 97.79% 98.84% 94.74%
washer dryer 92.04% 96.17% 78.27% 95.56%
dishwasher 97.52% 98.11% 97.74% 97.77%

Furthermore, to improve the classification performance, we

have employed the automatic features extraction procedure

by using the Restricted Boltzmann Machine as described in

SectionIII-B. Next, the extracted features are used as inputs

for the classification methods. We have tested and validated

this approach on the same electrical appliances as before, as

shown in Table II. It can be observed that in all situations, the

use of RBMs has improved the accuracy for each classifier.

This culminates with an improvement of around 30% for the

case of the refrigerator classified with KNN, from 67.36%

initial accuracy, up to 96.72% accuracy after the use of RBM.
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Fig. 2. An example of energy consumption in Building 1 over 30 minutes
for refrigerator, electric heater, washer dryer and dishwasher.

TABLE II
RESULTS SHOWING ACCURACY [%] FOR EACH OF NÄıVE BASE, KNN,

SVM AND ADABOOST WITH RBM EXTENSION, TO CLASSIFY AN

APPLIANCE VERSUS ALL DATA.

Appliance NB-RBM KNN-RBM SVM-RBM AB-RBM
refrigerator 64.78% 96.72% 84.45% 91.02%

electric heater 99.13% 99.81% 99.86% 99.84%
washer dryer 99.14% 97.31% 89.23% 99.27%
dishwasher 97.64% 98.43% 98.67% 97.82%

It is worth mentioning, that the imbalanced number of data

points in every class suggests that a more deeper data mining

analysis may be useful. In term of computational complexity

the training time varies from the range of few seconds in the

case of KNN up to few minutes in the case of SVM. In the

testing phase, to classify all the data points considered (i.e.

745868 instances per year per appliance) each of the methods

has ran in approximately 1 second, except SVM which ran in

4-5 seconds. Overall, this yields an execution time of a few

microseconds per data point making the approach suitable for

a large range of real-time applications.

B. Flexibility detection

The energy disaggregation results may be used further

in a large number of applications, as reported in 2015 by

the US Department of Energy in an extensive report [28]

which aims to characterize the actual performance of energy

disaggregation solutions used in both the academic research

and in commercial products.

Most importantly, our results may be used to detect in

real-time the building flexibility available. We observed that

approximately 17% of the total energy consumption for build-

ing 1 is used by the four disaggregated appliances, such

as refrigerator 11.72%, electric heater 5.08%, washer-dryer

0.0007% and dishwasher 0.9% respectively. More statistical

details about these appliances for building 1 are presented

in Table 3. A visual examination of the results, assuming

that all the four appliances studied have smart time-shifting

capabilities, and a detection accuracy of over 96% in all

the experiments, show a significant peak reduction. As by

example, in Figure 3 the inflexible load is represented by the



TABLE III
GENERAL CHARACTERISTICS OF THE BUILDING 1 APPLIANCES USED IN

THE EXPERIMENTS.

Mean Standard deviation

refrigerator 56.41 86.65
electric heater 24.44 148.16

wash dryer 0.11 0.96
dishwasher 4.30 43.54

difference between the total energy consumption signal and

the sum of our disaggregated signals over 24 hours. In this

case, we may observe that the average buildings flexibility is

23.21%.
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Fig. 3. An example of electrical energy consumption in buildings over one
day for inflexible load and flexible load (refrigerator, electric heater, washer
dryer and dishwasher).

V. CONCLUSION

In this paper a novel tool capable to perform accurate energy

disaggregation for real-time flexibility detection is proposed. A

comparison between four existing classification methods was

performed. Aiming at enhancing the quality of such estimates

as well as at increasing the accuracy of energy disaggregation,

a method for automatic features extraction is proposed, using

Restricted Boltzmann Machines. By incorporating the RBM

for feature extraction, each of the classification methods, i.e.

Naive Bayes, k-Nearest Neighbors, Support Vector Machine

and AdaBoost, has outperformed its non-preprocessed coun-

terpart. The experimental validation performed on the REDD

dataset shows that KNN- RBM has the best trade-off between

accuracy and speed.
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