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Abstract 

Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of 
electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an 
electrical load classification model using support vector machine (SVM). SVM was chosen to keep the 
computational cost low and be able to implement an embedded system. The SVM model was utilized to classify 
the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It 
utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active 
and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial 
basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly 
accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads 
with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in 
real time with high accuracy and with an acceptable performance in field implementation using an embedded 
system. 

Keywords: energy monitoring; load classification; low frequency sampling; non-intrusive load monitoring; 
support vector machine. 

 

Introduction 

Energy conservation in buildings through energy efficiency optimization is of the utmost importance nowadays, 
as it is part of climate change mitigation [1,2]. The first step of energy conservation is to monitor energy usage 
and to profile electrical energy consumption. Thus, the consumer will get information on how much energy they 
use and why it reaches a particular value. The study by Batra [3] explains that awareness of energy consumption 
associated with real-time energy observation encourages users to change their energy usage behavior, leading 
to more sustainable energy consumption. However, the total energy consumption data alone was reported to 
be ineffective in changing consumers’ energy usage behavior [4]. Energy usage measurement at the appliance 
level is necessary. Although appliance-level energy measurement can yield very accurate results [5], system 
deployment is expensive [4]. For this problem, non-intrusive load monitoring (NILM) exists as a solution. In 
addition to the lower measurement costs, the NILM methodology can be proposed to deduce electrical load 
information and reduce appliance complexity. 

NILM is a method for disaggregating total electrical load from one measurement point into individual appliances 
by using their distinctive characteristics [6]. Load separation can be solved by looking at the load conditions 
when the utility is turned on/off and operated at varying power states. To classify appliances based on these 
situations, a certain classification method is needed based on load characteristics. The challenge of NILM lies in 
determining the characteristics to classify loads. Load characteristics also depend on the frequency of data 
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retrieval. If the data retrieval frequency is high, it is possible to see the load behavior during transient states, 
whereas if the data retrieval frequency is low, it can only see the behavior at steady state events. 

Various NILM approaches have been reported in previous studies. Two common features extracted for 
disaggregating load are V-I trajectory [7-9] and active and reactive power [10-12]. Although using V-I trajectory 
results in a faster computation time [7], the introduction of reactive power in addition to active power has been 
proven to enhance NILM performance [11-13]. The primary objective of NILM is to categorize load based on 
aggregated consumption data. Machine learning has been widely used to solve such problems. In a supervised 
learning approach, not only aggregate consumption data are needed but also appliance-level consumption data 
[14]. The algorithms used in supervised learning NILM include artificial neural network (ANN) [15], deep learning 
neural network [14,16], k-Nearest Neighbors (kNN) [17], and support vector machine (SVM) [7,18]. In 
unsupervised learning, the model can learn without prior knowledge of the existing load. Common algorithms 
used in unsupervised learning NILM are hidden Markov model (HMM) [19], Bayesian network [20], and artificial 
neural network (ANN) [21]. In addition to the above machine learning methods, Ma et al. [22] developed an 
algorithm called Multi-Chain NILM (MC-NILM), which integrates models generated by existing algorithms and 
considers the relation among the models, aiming to improve the disaggregation performance. Kim et al. [23] 
used a temporal bar graph that arranges the operational time and status of the appliances to extract the inherent 
features. Moreover, the use of transfer learning was investigated in [8,24-26]. 

Li et al. [27] proposed an NILM classification model using SVM to detect events generated by electrical 
equipment from aggregated data. Soelami et al. [28] implemented SVM to predict the electricity consumption 
of an entire building, while Haq et al. [29] proposed an architecture to analyze the performance of a micro grid. 
Considering the computational power of the available embedded system, SVM is a suitable method to keep the 
computational cost low.   

In this study, a low-frequency data collection approach was used to classify the load characteristics during steady 
state. This approach was realized by grouping the data based on active and reactive power. Moreover, it was 
assumed that no simultaneous appliance condition changes occur during the data collection period. This 
research focused on the classification of electrical load based on the measurement data of total electric load 
using SVM so that it can be applied in real time using an embedded system with a similar measurement concept 
as in [28,29]. The system was tested in a laboratory room, where the load was categorized into several classes, 
namely air conditioners (AC), light bulbs, uncategorized electronic devices, and their combinations. 

Methodology 

The research workflow is illustrated in Figure 1. The collected data were current, voltage, and power factor, 
which were taken from the Electrical Energy Information System (SiElis - Sistem Informasi Energi Listrik) 
implemented at the Energy Management Laboratory, Institut Teknologi Bandung, Bandung, Indonesia. The 
experimental object of this research was a typical university laboratory in a tropical climate. The connected 
electricity load consisted of a computer, lighting, and an air conditioning system. The collected data were 
recorded in a database with a period of one minute. 

The conditions used in this study can be stated as follows. The data collection interval was one minute, the 
system observed in steady state, and the low-frequency features changed both in active and reactive power. 
The data from electric measurement were treated with pre-processing procedures such as data cleaning, feature 
creation, and feature selection. Each data point was given a particular class label that characterizes the 
equipment used, namely light bulbs, air conditioners, uncategorized electronic devices, and their combinations. 
These features were normalized in the same range. Furthermore, kernel selection was an essential step in the 
SVR process modeling. Kernels such as linear, polynomial, RBF, and sigmoid kernels with C and gamma 
parameters were investigated to obtain the best model using a search-cross validation grid. 
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Figure 1 Data-driven building electricity consumption model workflow. 

The first step was to collect data for the training process. Data retrieval was carried out on the light bulbs, air 
conditioners, uncategorized devices and their combinations. In this study ten classes were created. Class 0 was 
the group of uncategorized equipment other than light bulbs and air conditioners. Classes 1, 2, 3, and 4 were 
designated for the number of operating light bulbs respectively. Class 5 refers to the condition when only the 
AC is operating. Furthermore, Classes 6 to 9 are combinations of classes 1, 2, 3, 4, and 5. The value stored in the 
database was the RMS value of the measurement by the power meter. The current, voltage, and power factor 
data were processed to obtain the features of active power and reactive power. 

The value of active power (P) can be calculated by multiplying the current (I), voltage (V), and power factor (PF) 
as in Eq. (1). To obtain the reactive power (Q), the relationship between apparent power and active power was 
used, as in Eq. (2). 

 𝑃 = 𝑉 × 𝐼 × 𝑃𝐹  (1) 

 𝑄 = √(𝑉 × 𝐼)2 − 𝑃2  (2) 

After the training data were prepared, the next stage was to make an appliance classification model to classify 
appliances according to their class. The first stage was to input the model features in the program as training 
data for active power and reactive power that were labeled with the corresponding classes. In this study, six 
types of kernels were used, namely linear, grade-two polynomial, grade-three polynomial, grade-four 
polynomial, RBF, and sigmoid. The multiple kernels were used to increase the likelihood of getting the best 
model. After the kernel was selected, iteration was carried out to find the proper hyperparameter combination 
to maximize the model’s quality. In this study, 18,446 data points were obtained and then divided into two sets. 
For training, 15,566 data points were used, while the remaining 2,880 were used for testing. Furthermore, the 
training data were further divided so that one set was used as test data and the remaining set (k-1) as training 
data with K-fold cross-validation. Thus, there were K iterations for each hyperparameter combination. To find 
the best combination of hyperparameters, a grid search was used for C and gamma values in a range between 
0.01 and 1000. This process was carried out until the highest accuracy was obtained, after which the parameters 
were applied in the SVM model. 

After obtaining the best estimation model, the next step was to carry out validation. The data were tested 
sequentially according to the day of the week to check whether it could estimate the on/off condition of the 
device. Based on the device condition, it is possible to calculate the operating time of the device, namely the on 
and off period multiplied by the average energy per minute. The validated model will then be selected at the 
final stage, using a confusion matrix. 

SVM is a binary classification method equipped with the kernel approach to deal with high-dimensional data. 
Various strategies to address SVMs for multiclassification problems are expressed in [30], including one-versus-
the-rest, pair-wise classification, and the multiclassification formulation. The principle of SVM is to separate 
multiple groups of data using a boundary field that has the best margin, minimum value of which indicates the 
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best boundary plane. Following [7], suppose the input data 𝒙𝑖 ∈ 𝑅𝑛 with 𝑛 is number of features and 𝑖 =

1, 2, . . . , 𝑙 represent the data number. The output vector is 𝒚, with 𝒚 ∈ 𝑅𝑙  and 𝑦𝑖 ∈ {−1,1}. The maximum margin 
can be obtained by solving the problem in Eq. (3) subject to the constraints given by Eq. (4). 

 min
𝑤,𝑏,𝜉 

1

2
|𝐰|2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1   (3) 

 𝑦𝑖(𝐰 ∙ ϕ(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,    ξ ≥ 0,  (4) 

where 𝜙(𝒙𝑖) is the kernel function, 𝐶 is a regularization parameter, and 𝜉 are slack variables. Finally, the 
classification function 𝑓 gives the solution to the classification problem formulated previously.  

 𝑓(𝒙𝑖) = 𝑠𝑔𝑛(∑ 𝐰 ∙ 𝜙(𝒙𝒊) + 𝑏𝑙
𝑖=1 ).  (5) 

Experimental Setup 

Figure 2 shows the measurement system scheme, called SiElis, used in this study, which has a similar 
measurement concept as [28,29]. The intelligent electronic devices (IED) consisted of a power meter, a 
communication interface, and an embedded system as local data concentrators.  

 

Figure 2 SiElis – Electricity Information System Concept. 

The measurement system collects real-time electricity consumption data and sends it to a historical database 
installed on a cloud server. Complete device descriptions are utilized for non-intrusive appliance load monitoring 
purposes, where the IED is responsible for monitoring the energy consumption of the electrical appliance and 
performing load classification without the use of intrusive sensors. The IED system is supported by a cloud server 
to ensure that the information transfer process operates in real time and to store the historical database. 

SVM-NILM 
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(a) (b) 

Figure 3 (a) IED - CT, VT sensor & smart power meter; (b) IED – data concentrator. 

Figures 3(a) and 3(b) depict the implementation of the IEDs inside the building’s electrical panel. Figure 3(a) 
shows the voltage transformer (VT) and current transformer (CT) that took voltage and current measurements 
respectively from the load point to the smart power meter. VT and CT sensors were the main responsible 
measurement devices, recording analog data. Subsequently, the smart power meter measuring devices 
converted the analog to digital data related to several electrical parameters such as the average of three-phase 
currents, the current of each phase, the line-to-line voltage, the line to neutral voltage, the voltage between 
phases, each phase voltage, the average power factor, each phase power factor, and the frequency. 

The data flow of the IED system was as follows. Data from the PM1200 smart power meter were collected using 
a Raspberry Pi 3, as shown in Figure 3(b). It utilized a two-wire half duplex RS485-to-USB converter interface as 
physical layer and a Modbus RTU as communication layer. The data acquisition algorithm in the Raspberry Pi 3 
utilized pymodbus python library programming to capture digital data from the Modbus RTU with respect to 
modbus_id and modbus_address of the smart power meter. Variable digital data for each electrical device were 
formatted and stored in a local MySQL database. Using the TCP/IP protocol and structured query language (SQL), 
the formatted data model was forwarded to the cloud MySQL database for reporting and user interface 
purposes. All the mentioned routines were programmed to send and store the data every minute using cronjob 
in the operating system, as mentioned in IEC Standard 61724, which is between 1 and 10 minutes per monitored 
data [31]. 

Result and Discussion 

The active and reactive power consumption intervals were the chosen features selected to train the model. 
Table 1 shows the power consumption interval of each class from the power meter readings, which included the 
maximum, minimum, and average power. Class 0 was designated for any load conditions where power 
consumption is below the value for Class 1 and above the value for Class 9. Figure 4(a) presents the active and 
reactive power relation for all classes, while Figure 4(b) shows the standardized value. 

The machine-learning models were built on six kernels: second- to fourth-degree polynomial, RBF, and sigmoid. 
The grid search algorithm was employed to find the optimal parameter combination. It searched for the optimal 
C and gamma parameters from 0.01 to 1,000 values. Upon completion, every optimized model passed through 
five-fold cross-validation to evaluate the model’s precision, accuracy, and recall. The optimal model parameters 
and the result of the five-fold cross-validation are summarized in Table 2. 
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Class 
Maximum Minimum Average 

P Q P Q P Q 

1 191.02 159.57 132.08 47.53 166.67 114.89 
2 396.39 336.56 285.77 141.10 336.82 193.63 
3 563.34 344.37 464.44 173.46 506.97 244.29 
4 693.76 330.99 659.11 282.38 671.09 299.21 
5 1,837.90 619.09 1,376.82 409.73 1,783.66 521.65 
6 2,009.34 818.18 1,833.66 465.42 1,953.46 646.25 
7 2,197.15 908.01 1,994.44 558.96 2,119.16 711.85 
8 2,380.35 972.72 2,202.21 624.34 2,290.84 770.22 
9 2,481.77 877.02 2,397.52 724.10 2,458.06 813.04 

 
(a) 

(b) 

Figure 4 PQ-plane: (a) real value (b) standardized value. 

Table 1 Active power data and reactive power for each class. 
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C Gamma Accuracy Precision Recall F-score 

linear 26.367 - 0.997 0.889 0.875 0.882 
poly-2 0.01 48.329 0.997 0.845 0.856 0.850 
poly-3 0.01 26.367 0.991 0.772 0.781 0.776 
poly-4 0.01 26.367 0.982 0.776 0.779 0.777 

sigmoid 1,000 0.034 0.998 0.893 0.879 0.885 
rbf 88.587 2.336 0.998 0.889 0.883 0.885 

Shown in Table 2 are the top-three precisions models: sigmoid (0.893), linear (0.889), RBF (0.889), while RBF 
(0.883) and sigmoid (0.879) were the top two for recall. For the f-score, the models based on RBF and the sigmoid 
kernel had the highest value, at 0.885. Based on the three evaluation parameters, RBF and sigmoid kernel 
competed for the optimal kernel. To determine which of the two should be chosen, further evaluation based on 
accuracy distribution was done in the form of confusion matrices. 

  

(a) (b) 

Figure 5 Confusion matrix modeling results with (a) RBF and (b) sigmoid kernels. 

The confusion matrix represents the distribution of model accuracy for load classes, as depicted in Figure 5. For 
Class 5, Class 6, and Class 8 there were differences in the accuracy distribution between RBF and sigmoid. The 
NILM classification model is expected to provide accurate predictions for each class label. We can observe that 
RBF had a better accuracy distribution than sigmoid, therefore we selected it for deployment in the next research 
phase. Figure 6 shows the decision regions of the SVM model using the RBF kernel. 

 

Figure 6 Normalized decision region modeling result with RBF kernel. 

Table 2 Model validation 
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The model with the RBF kernel was deployed to predict the test data created based on the scenario shown in 
Table 3. Each class operated for a certain period in a day. The model was deployed to estimate the load condition 
based on the scenario above. Based on the above testing scenario, the model successfully predicted the load 
conditions, yielding a precision value of 0.93, recall of 0.91, and an f-score of 0.91. 

Appliances Class State ON State OFF 

Others 0 - - 
Light 1 1 07:00 07:30 
Light 2 1 07:35 08:05 
Light 3 1 08:10 08:40 
Light 4 1 08:45 09:15 

Light 1+2 2 09:20 09:50 
Light 1+3 2 09:55 10:25 
Light 1+4 2 10:30 11:00 
Light 2+3 2 11:05 11:35 
Light 2+4 2 11:40 12:10 
Light 3+4 2 12:15 12:45 

Light 1+2+3 3 12:50 13:20 
Light 1+2+4 3 13:25 13:55 
Light 1+3+4 3 14:00 14:30 
Light 2+3+4 3 14:35 15:05 

Light 1+2+3+4 4 15:10 15:40 
AC 5 12:30 15:50 

Light 1+AC 6 15:55 16:10 
Light 2+AC 6 16:15 16:30 
Light 3+AC 6 16:35 16:50 
Light 4+AC 6 16:55 17:10 

Light 1+2+AC 7 17:15 17:30 
Light 1+3+AC 7 17:35 17:50 
Light 1+4+AC 7 17:55 18:10 
Light 2+3+AC 7 18:15 18:30 
Light 2+4+AC 7 18:35 18:50 
Light 3+4+AC 7 18:55 19:10 

Light 1+2+3+AC 8 19:15 19:30 
Light 1+2+4+AC 8 19:35 19:50 
Light 1+3+4+AC 8 19:55 20:10 
Light 2+3+4+AC 8 20:15 20:30 

Light 1+2+3+4+AC 9 20:35 20:50 

However, since these evaluation parameters do not provide information about the model’s distribution 
accuracy, a confusion matrix showing the model’s performance for each class was required. The confusion 
matrix for the data test is shown Figure 7. Based on Figure 7, the model yielded a satisfactory result given the 
limited number of training data available. Previous work has also attempted to use SVM for NILM purposes [7]. 
The author utilized 16.5kHz V-I data and low-frequency (1-3) Hz apparent power data, but our model achieved 
a similar performance even with a 0.0167Hz sampling rate. Additionally, the proposed approach with a simple 
SVM algorithm means the computational load for real-time application is considerably low. The proposed 
approach makes a compromise in terms of accuracy, with an f-score of 0.91, when compared with a more 
computationally expensive approach as investigated by Moradzadeh et al. [16] with a 0.96 f-score. Our algorithm 
did not perform well when the difference between the load profiles was too small to be detected by the SVM 
algorithm. However, the result of this study is in line with Hu et al. [17], who found that to obtain a light-weight 
NILM algorithm, one needs a low sampling rate. The priority of our approach was a low computation effort and 
acceptable performance in field implementation, therefore the obtained result is acceptable. 

Table 3 Test scenario. 
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Figure 7 Confusion matrix of the deployed model. 

Although the model performed very well, estimation errors were found for Classes 3, 6, and 8. Data that should 
have been classified as Class 3 were estimated as Class 2, as indicated by the 0.88 and 0.12 values. The confusion 
matrix value of 0.5 for Class 6 indicated that half of its data were incorrectly estimated as Class 7, which resulted 
in a value of 0.75. For Class 8, some of the data were incorrectly identified as Class 7, reducing the confusion 
value to 0.75. By referring to Table 3 and Figure 7, we can conclude that the model was unable to differentiate 
between classes when they were different by one light bulb. Classes 3-4, 6-7, and 8-9 were all different by only 
a single light bulb. 

Conclusions 

In this research, load conditions resulting from electrical appliances consisting of an air conditioner, light bulbs, 
uncategorized devices, and their combinations were classified into ten classes. The classification modeling by 
using a support vector machine obtained the optimal result by using an RBF kernel using parameters C = 88.587 
and gamma = 2.336, with accuracy = 0.998, precision = 0.88, recall = 0.88, and f-score = 0.88. The model with 
the RBF kernel was deployed to predict the test data created based on a test. The model could predict the load 
condition with a precision of 0.93, recall of 0.91, and an f-score of 0.91, which are promising results. However, 
due to small differences, the model was unsuccessful in distinguishing classes that only differed by a single light 
bulb. 

The proposed approach with an SVM algorithm means the computational cost for real-time application is 
considerably low, while the characteristics of the appliances in the form of active power and reactive power 
could be used as features for a classification model with a low data count frequency (0.0167 Hz or 1 minute). 
With a low data count frequency, the appliances can be classified by taking advantage of the feature changes in 
a steady state. The results proved that the proposed method can be applied in real time with acceptable 
performance in field implementation using an embedded system. 

Acknowledgements 

This research was partially supported by a research grant from the Center for Research on Energy Policy ITB, and 
a research grant from the Ministry of Research and Technology/National Research and Innovation Agency of 
Indonesia.  



Edi Leksono, et al.  118 

 

References 

[1] Chel, A. & Kaushik, G., Renewable Energy Technologies for Sustainable Development Of Energy Efficient 
Building, Alexandria Engineering Journal, 57(2), pp. 655-669, Jun. 2018. doi: 10.1016/J.AEJ.2017.02.027. 

[2] Mi, Z., Guan, D., Liu, Z., Liu, J., Viguié, V., Fromer, N. & Wang, Y., Cities: The Core of Climate Change 
Mitigation, J Clean Prod, 207, pp. 582-589, Jan. 2019. doi: 10.1016/J.JCLEPRO.2018.10.034. 

[3] Batra, N., Parson, O., Berges, M., Singh, A. & Rogers, A., A Comparison of Non-Intrusive Load Monitoring 
Methods for Commercial and Residential Buildings, CoRR, vol. abs/1408.6, 2014. 

[4] Gopinath, R., Kumar, M., Joshua, C.P.C, & Srinivas, K., Energy Management Using Non-Intrusive Load 
Monitoring Techniques – State-Of-The-Art and Future Research Directions, Sustain Cities Soc, 62, no. June, 
p. 102411, 2020, doi: 10.1016/j.scs.2020.102411. 

[5] Nalmpantis, C. & Vrakas, D., Machine Learning Approaches for Non-Intrusive Load Monitoring: From 
Qualitative to Quantitative Comparation, Artif Intell Rev, 52(1), pp. 217-243, Jun. 2019. doi: 
10.1007/S10462-018-9613-7/TABLES/3. 

[6] Hosseini, S.S., Agbossou, K., Kelouwani, S., & Cardenas, A., Non-Intrusive Load Monitoring Through Home 
Energy Management Systems: A Comprehensive Review, Renewable and Sustainable Energy Reviews, 79, 
no. May, pp. 1266–1274, 2017, doi: 10.1016/j.rser.2017.05.096. 

[7] Wang, A.L., Chen, B.X., Wang, C.G. & Hua, D., Non-Intrusive Load Monitoring Algorithm Based on Features 
Of V–I Trajectory, Electric Power Systems Research, 157, pp. 134-144, Apr. 2018. doi: 
10.1016/J.EPSR.2017.12.012. 

[8] Liu, Y., Wang, X.  & You, W., Non-Intrusive Load Monitoring by Voltage–Current Trajectory Enabled Transfer 
Learning, IEEE Trans Smart Grid, 10(5), pp. 5609-5619, Sep. 2018. doi: 10.1109/TSG.2018.2888581. 

[9] Baets, L.D., Develder, C., Dhaene, T. & Deschrijver, D., Detection of Unidentified Appliances In Non-Intrusive 
Load Monitoring Using Siamese Neural Networks, International Journal of Electrical Power & Energy 
Systems, 104, pp. 645-653, Jan. 2019. doi: 10.1016/J.IJEPES.2018.07.026. 

[10] Bonfigli, R., Principi, E., Fagiani, M., Severini, M., Squartini, S. & Piazza, F., Non-intrusive Load Monitoring 
by Using Active and Reactive Power in Additive Factorial Hidden Markov Models, Appl Energy, 208, pp. 
1590-1607, Dec. 2017. doi: 10.1016/J.APENERGY.2017.08.203. 

[11] Valenti, M., Bonfigli, R., Principi, E. & Squartini, S., Exploiting the Reactive Power in Deep Neural Models for 
Non-Intrusive Load Monitoring, Proceedings of the International Joint Conference on Neural Networks, vol. 
2018-July, Oct. 2018, doi: 10.1109/IJCNN.2018.8489271. 

[12] Wittmann, F.M., Lopez, J.C. & Rider, M.J., Nonintrusive Load Monitoring Algorithm Using Mixed-Integer 
Linear Programming, IEEE Transactions on Consumer Electronics, 64(2), pp. 180-187, May 2018. doi: 
10.1109/TCE.2018.2843292. 

[13] Houidi, S., Auger, F., Sethom, H.B.A., Fourer, D. & Miègeville, L., Multivariate Event Detection Methods for 
Non-Intrusive Load Monitoring in Smart Homes and Residential Buildings, Energy Build, 208, 109624, Feb. 
2020. doi: 10.1016/J.ENBUILD.2019.109624. 

[14] Zheng, Z., Chen, H. & Luo, X., A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear 
Appliances, Sustainability 2018, 10(4), 1001, Mar. 2018. doi: 10.3390/SU10041001. 

[15] Lin, Y.H., & Hu, Y. C., Electrical Energy Management Based on a Hybrid Artificial Neural Network-Particle 
Swarm Optimization-Integrated Two-Stage Non-Intrusive Load Monitoring Process in Smart Homes, 
Processes 2018, 6(12), p. 236, Nov. 2018, doi: 10.3390/PR6120236. 

[16] Moradzadeh, A., Mohammadi-Ivatloo, B., Abapour, M., Anvari-Moghaddam, A., Farkoush, S.G. & Rhee, 
S.B., A practical solution based on Convolutional Neural Network for Non-Intrusive Load Monitoring, J 
Ambient Intell Humaniz Comput, 12(10), pp. 9775-9789, Oct. 2021. doi: 10.1007/S12652-020-02720-
6/TABLES/5. 

[17] Hu, M., Tao, S., Fan, H., Li, X., Sun, Y. & Sun, J., Non-Intrusive Load Monitoring for Residential Appliances 
with Ultra-Sparse Sample and Real-Time Computation, Sensors, 21(16), pp. 1-18, 2021. doi: 
10.3390/s21165366. 

[18] Hernandez, A.S., Ballado, A.H. & Heredia, A.P.D., Development of a Non-Intrusive Load Monitoring (NILM) 
with Unknown Loads using Support Vector Machine, 2021 IEEE International Conference on Automatic 
Control and Intelligent Systems, I2CACIS 2021 - Proceedings, pp. 203-207, Jun. 2021. doi: 
10.1109/I2CACIS52118.2021.9495876. 



  

119   Development of Non-Intrusive Load Monitoring 
DOI: 10.5614/j.eng.technol.sci.2023.55.2.1 

Manuscript Received: 20 January 2023 
Revised Manuscript Received: 28 February 2023 
Accepted Manuscript: 17 March 2023 

  

[19] Salem, H., Sayed-Mouchaweh, M. & Tagina, M., Unsupervised Bayesian Non-Parametric Approach for Non-
Intrusive Load Monitoring Base on Time Of Usage, Neurocomputing, 435, pp. 239–252, May 2021, doi: 
10.1016/J.NEUCOM.2020.12.096. 

[20] Mostafavi, S. & Cox, R. W., An Unsupervised Approach in Learning Load Patterns for Non-Intrusive Load 
Monitoring, Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and 
Control, ICNSC 2017, pp. 631–636, Aug. 2017, doi: 10.1109/ICNSC.2017.8000164. 

[21] Brucke, K., Arens, S., Telle, J.S., Steens, T., Hanke, B., Maydell, K.v. & Agert, C., A Non-Intrusive Load 
Monitoring Approach for Very Short-Term Power Predictions in Commercial Buildings, Appl Energy, 292, p. 
116860, Jun. 2021, doi: 10.1016/J.APENERGY.2021.116860. 

[22] Ma, H., Jia, J., Yang, X., Zhu, W. & Zhang, H., Mc-Nilm: A Multi-Chain Disaggregation Method for Nilm, 
Energies (Basel), 14(14), pp. 1–14, 2021, doi: 10.3390/en14144331. 

[23] Kim, H. & Lim, S., Temporal Patternization of Power Signatures for Appliance Classification in Nilm, Energies 
(Basel), 14(10), 2021, doi: 10.3390/en14102931. 

[24] Houidi, S., Fourer, D., Auger, F., Sethom, H.B.A., & Miègeville, L., Comparative Evaluation of Non-Intrusive 
Load Monitoring Methods Using Relevant Features and Transfer Learning, Energies (Basel), 14(9), pp. 1–
28, 2021, doi: 10.3390/en14092726. 

[25] D’Incecco, M., Squartini, S., & Zhong, M., Transfer Learning for Non-Intrusive Load Monitoring, IEEE Trans 
Smart Grid, 11(2), pp. 1419–1429, Mar. 2020, doi: 10.1109/TSG.2019.2938068. 

[26] Li, Y., Liu, Y., Zhang, Z., Shi, F., Li, G. & Wang, K., Non-intrusive Load Monitoring Method Based on Transfer 
Learning and Sequence-to-point Model, Proceedings - 2021 IEEE Sustainable Power and Energy Conference: 
Energy Transition for Carbon Neutrality, iSPEC 2021, pp. 2366–2370, 2021, doi: 
10.1109/ISPEC53008.2021.9735675. 

[27] Li, Y., Yang, Y., Sima, K., Li, B., Sun, T., & Li, X., Non-Intrusive Load Monitoring Based on Harmonic 
Characteristics, Procedia Comput Sci, 183, pp. 776–782, 2021, doi: 10.1016/j.procs.2021.02.128. 

[28] Soelami, F.X.N, Utama, P.H.K, Haq, I.N., Pradipta, J., Leksono, E. & Wasesa, M., Data Driven Building 
Electricity Consumption Model Using Support Vector Regression, Journal of Engineering and Technological 
Sciences, 53(3), 2021, doi: 10.5614/j.eng.technol.sci.2021.53.3.13. 

[29] Haq, I.N., Kurniadi, D., Leksono, E. & Yuliarto, B., Performance Analysis of Energy Storage in Smart Microgrid 
Based on Historical Data of Individual Battery Temperature and Voltage Changes, Journal of Engineering 
and Technological Sciences, 51(2), pp. 149–169, 2019, doi: 10.5614/j.eng.technol.sci.2019.51.2.1. 

[30] Awad, M. & Khanna, R., Support Vector Machines for Classification,in Efficient Learning Machines, Berkeley, 
CA: Apress, 2015, pp. 39–66. doi: 10.1007/978-1-4302-5990-9_3. 

[31] Zhang, P., Li, W., Li, S., Wang, Y. & Xiao, W., Reliability Assessment of Photovoltaic Power Systems: Review 
of Current Status and Future Perspectives, Appl Energy, 104, pp. 822–833, Apr. 2013, doi: 
10.1016/j.apenergy.2012.12.010. 

 

 

 


