Energy is a limited resource which has to be managed wisely, taking into
account both supply-demand matching and capacity constraints in the
distribution grid. One aspect of the smart energy management at the building
level is given by the problem of real-time detection of flexible demand
available. In this paper we propose the use of energy disaggregation techniques
to perform this task. Firstly, we investigate the use of existing
classification methods to perform energy disaggregation. A comparison is
performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors,
Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted
Boltzmann Machine to automatically perform feature extraction. The extracted
features are then used as inputs to the four classifiers and consequently shown
to improve their accuracy. The efficiency of our approach is demonstrated on a
real database consisting of detailed appliance-level measurements with high
temporal resolution, which has been used for energy disaggregation in previous
studies, namely the REDD. The results show robustness and good generalization
capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US