3,095 research outputs found

    Pick matrix conditions for sign-definite solutions of the algebraic Riccati equation

    Get PDF
    We study the existence of positive and negative semidefinite solutions of algebraic Riccati equations (ARE) corresponding to linear quadratic problems with an indefinite cost functional. The problem to formulate reasonable necessary and sufficient conditions for the existence of such solutions is a long-standing open problem. A central role is played by certain two-variable polynomial matrices associated with the ARE. Our main result characterizes all unmixed solutions of the ARE in terms of the Pick matrices associated with these two-variable polynomial matrices. As a corollary of this result we obtain that the signatures of the extremal solutions of the ARE are determined by the signatures of particular Pick matrices

    Using the Sum of Roots and Its Application to a Control Design Problem

    Get PDF
    scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder. Parametric Polynomial Spectral Factorizatio

    Algebraic aspects of spectral theory

    Full text link
    We describe some aspects of spectral theory that involve algebraic considerations but need no analysis. Some of the important applications of the results are to the algebra of n×nn\times n matrices with entries that are polynomials or more general analytic functions

    Nonlinear supersymmetry in Quantum Mechanics: algebraic properties and differential representation

    Get PDF
    We study the Nonlinear (Polynomial, N-fold,...) Supersymmetry algebra in one-dimensional QM. Its structure is determined by the type of conjugation operation (Hermitian conjugation or transposition) and described with the help of the Super-Hamiltonian projection on the zero-mode subspace of a supercharge. We show that the SUSY algebra with transposition symmetry is always polynomial in the Hamiltonian if supercharges represent differential operators of finite order. The appearance of the extended SUSY with several (complex or real) supercharges is analyzed in details and it is established that no more than two independent supercharges may generate a Nonlinear superalgebra which can be appropriately specified as {\cal N} = 2 SUSY. In this case we find a non-trivial hidden symmetry operator and rephrase it as a non-linear function of the Super-Hamiltonian on the physical state space. The full {\cal N} = 2 Non-linear SUSY algebra includes "central charges" both polynomial and non-polynomial (due to a symmetry operator) in the Super-Hamiltonian.Comment: 28 pages, Latex, minor improvements and removed misprint

    A Shortcut to the Q-Operator

    Get PDF
    Baxter's Q-operator is generally believed to be the most powerful tool for the exact diagonalization of integrable models. Curiously, it has hitherto not yet been properly constructed in the simplest such system, the compact spin-1/2 Heisenberg-Bethe XXX spin chain. Here we attempt to fill this gap and show how two linearly independent operatorial solutions to Baxter's TQ equation may be constructed as commuting transfer matrices if a twist field is present. The latter are obtained by tracing over infinitely many oscillator states living in the auxiliary channel of an associated monodromy matrix. We furthermore compare and differentiate our approach to earlier articles addressing the problem of the construction of the Q-operator for the XXX chain. Finally we speculate on the importance of Q-operators for the physical interpretation of recent proposals for the Y-system of AdS/CFT.Comment: 41 pages, 2 figures; v2: references added; v3: version published in J. Stat. Mec
    corecore