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Abstract

Baxter’s Q-operator is generally believed to be the most powerful tool for the exact diago-
nalization of integrable models. Curiously, it has hitherto not yet been properly constructed
in the simplest such system, the compact spin-1

2
Heisenberg-Bethe XXX spin chain. Here

we attempt to fill this gap and show how two linearly independent operatorial solutions to
Baxter’s TQ equation may be constructed as commuting transfer matrices if a twist field
is present. The latter are obtained by tracing over infinitely many oscillator states living in
the auxiliary channel of an associated monodromy matrix. We furthermore compare and
differentiate our approach to earlier articles addressing the problem of the construction of
the Q-operator for the XXX chain. Finally we speculate on the importance of Q-operators
for the physical interpretation of recent proposals for the Y-system of AdS/CFT.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127599042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1005.3261v2


1 Motivation

Recently there was much progress with integrability in planar four-dimensional gauge the-
ories [1, 2, 3] and AdS/CFT [4, 5]. At variance with the long-held belief that quantum
integrability is confined to low-dimensional systems, the asymptotic Bethe Ansatz solu-
tion of planar N = 4 gauge theory was conjectured by a combination of rigorous results
and assumptions [5]. Further conjectures and arcane techniques led to first proposals [6]
for the full, non-asymptotic spectrum of this gauge theory, as well as its dual superstring
theory on the space AdS5 × S5. The proper interpretation and even the veracity of these
latter proposals remains hotly debated, and in any case there is currently no trace of the
theoretical underpinnings of the employed experimental mathematics. The final equations
obtained take the form of an infinite system of integro-difference equations, based on a
conjectured thermodynamic Bethe Ansatz, which involve an infinite set of “T -functions”.
These may in turn be rewritten for a sometimes more convenient set of “Y -functions”.
In the large volume limit the “T -functions” are to be interpreted as transfer matrices of
an infinite number of excitations, most of them corresponding to bound states. However,
some of the T -functions involve excitations believed to be elementary (mirror-magnons),
while others turn into what looks like the eigenvalues of some Baxter Q-operators.

It is currently totally unclear which operators T and Q possess all these eigenvalues
T and Q. In other words, even if the proposals [6] are made more precise, and turn
out to be correct, the question “What has been diagonalized?” will remain unanswered.
One clearly would like to construct the associated operators, and prove that their mutual
commutativity is based on an underlying Yang-Baxter symmetry.

One very curious feature of AdS/CFT integrability is that the underlying integrable
system is both a quantum sigma-model “living” on a smooth continuous two-dimensional
worldsheet, and at the same time a certain long-range spin chain defined on a discrete
lattice. The two pictures are related by a continuous coupling constant, and one cannot
say that the continuum sigma model is obtained from a discrete spin chain by a continuum
limit. The sigma model is also a spin chain.

For short-range spin chains, the construction of transfer matrix operators T is rather
well understood, see below. However, the general principles of construction of the Baxter
Q-operators, originally introduced in his seminal paper on the 8-vertex model [7], are less
well understood, and appear to be less systematic, even though the subject was intensively
studied for the past twenty years. An important step toward a general algebraic theory of
the Q-operators, particularly relevant for this paper, was made in [8, 9] devoted to confor-
mal field theory where these operators were constructed as traces of certain monodromy
matrices, associated with infinite dimensional representations of the q-deformed harmonic
oscillator algebra. More generally this method applies to any model with Uq(ŝl(2)) symme-
try and it was further generalized for the case of some higher-rank quantized algebras and
super-algebras [10, 11, 12]. However despite all these considerations of rather complicated
models with “q-deformed” symmetries, it appears that there is still no proper construction
in the literature for the Q-operator of the compact XXX chain — the first spin chain ever
solved by Bethe Ansatz [13]. We therefore decided to fill this gap, as a very first neces-
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sary step to vigorously address the much more involved case of AdS/CFT integrability.
Excitingly, we will find that we need infinite dimensional representations to carry out this
construction. These are therefore needed to properly understand the integrable structure
of spin chains with finite dimensional quantum space, a feature which then puts spin chains
on a par with integrable sigma models. We believe that this makes the appearance of spin
chains in the strongly coupled limit of the AdS/CFT sigma model much less surprising.

2 Brief Review of the Spin-1
2
XXX Heisenberg Chain

The one-dimensional Heisenberg spin chain Hamiltonian reads

H = 4

L∑

l=1

(
1

4
− ~Sl · ~Sl+1

)
with ~S =

1

2
~σ , (2.1)

where ~σ are the three Pauli matrices, i.e. ~S is the spin-1
2

representation of su(2). This
Hamiltonian acts on the L-fold tensor product

V = C
2 ⊗ C

2 ⊗ · · · ⊗ C
2

︸ ︷︷ ︸
L−times

, (2.2)

which will be called quantum space throughout the paper. The spin operator ~Sl acts on
the l-th component of the quantum space, and it is clear from (2.1) that we need to specify

the meaning of ~SL+1. Periodic boundary conditions are imposed by defining

~SL+1 := ~S1 . (2.3)

This Hamiltonian may be rewritten as H = 2
∑L

l=1 (Il,l+1 − Pl,l+1) where Il,l+1 and Pl,l+1

are the identity and the spin permutation operators on adjacent sites (l, l+1) of the chain of
length L, respectively. It appears in N = 4 Yang-Mills theory in the scalar field subsector,
where ~S ∈ su(2) ⊂ su(4) ⊂ psu(2, 2|4), as the one-loop approximation of the conformal
dilatation generator D ∈ su(2, 2) ⊂ psu(2, 2|4)

D = L + g2H + O(g4) . (2.4)

Here g2 is related to the ‘t Hooft coupling constant λ by g2 = λ
16π2 . Note that the Hamil-

tonian (2.1) with boundary conditions (2.3) is rotationally invariant, i.e. [H, ~S] = 0.
It is well known that Hans Bethe discovered in 1931 a system of algebraic equations

which yield the exact spectrum of H. This was obtained after making an Ansatz for
the wave function now carrying his name [13]. This so-called coordinate Bethe Ansatz
interprets the state ↑ . . . ↑ with energy eigenvalue E = 0 as the vacuum. Each up-spin ↑ is
an unoccupied lattice site, and each down-spin ↓ is interpreted as a lattice particle, termed
magnon, carrying lattice momentum p. After introducing a rapidity u for each magnon,
where

eip =
u + i

2

u− i
2

⇐⇒ u =
1

2
cot

p

2
, (2.5)
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Bethe’s solution for the eigenvalues E of H in the (conserved) sector of M magnons reads

E = 2
M∑

k=1

1

u2
k + 1

4

, (2.6)

where the M Bethe roots uk have to satisfy the Bethe equations

(uk + i
2

uk − i
2

)L
=

M∏

j=1

j 6=k

uk − uj + i

uk − uj − i
. (2.7)

The eigenvalue U of the lattice translation operator U, which shifts a given spin configu-
ration by one lattice site, is given by

U =

M∏

k=1

uk + i
2

uk − i
2

. (2.8)

There has been a longstanding controversy, starting from a discussion in Bethe’s original
paper, as to whether the obtained spectrum is complete, which still attracts much attention;
here we give only a small sample of references [14, 15, 16, 17]. There are (at least) three
distinct subtleties. The first is, that the map (2.5) leads to infinite rapidities u = ∞ for
zero-momentum magnons where p = 0. Of course this is consistent with both the expression
for the energy (2.6) and the Bethe equations (2.7), but complicates the proper counting
of states. The effect may be traced to the su(2) invariance of H: The highest weight
state of each energy multiplet corresponds to a solution with only finite rapidities. The
descendents of this state are obtained by applying the global su(2) lowering operator. Each
application places a further p = 0 magnon into the chain, corresponding to a completely
symmetrized insertion. A second subtlety is that it is a priori not allowed to increase M
beyond half-filling, i.e. such that M > L/2 (all states must then be descendents). Spurious
states with finite rapidities are nevertheless found. In fact, one “experimentally” finds that
solving the equations

( ũk + i
2

ũk − i
2

)L
=

L−M+1∏

j=1

j 6=k

ũk − ũj + i

ũk − ũj − i
(2.9)

for L−M + 1 roots ũk and plugging the solution into

E = 2
L−M+1∑

k=1

1

ũ2
k + 1

4

(2.10)

yields energies identical to the ones of highest weight states with magnon number M .
However, the root distribution ũk = ũk(α) depends on one arbitrary complex parameter α,
while the energy does not. These “beyond the equation solutions” were discussed in detail
in [18]. The third subtlety, already noted in [13], is that some momenta appear in pairs
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of the form p = p0 ± i∞, which leads via (2.5) to Bethe roots at u = ± i
2
. The physical

picture here is that two magnons form an infinitely tight bound state1, they are “stuck
together”. However, they of course contribute only a finite amount of energy, so (2.6) has
to be interpreted with great care.

It is also quite well known that all these subtleties may be resolved by replacing H by
a “twisted” Hamiltonian Hφ, where φ can be interpreted as an (imaginary) “horizontal
field” in condensed matter parlance, or alternatively as a magnetic flux passing through
the chain looped into a circle

Hφ = 4
L∑

l=1

[1
4
− S3

l S3
l+1 −

1

2
ei

φ
L S+

l S−
l+1 −

1

2
e−i φ

L S−
l S+

l+1

]
, (2.11)

with S±
l = S1

l ± iS2
l . The Bethe Ansatz still works with minor modifications. The formula

for the energy (2.6) and the relations (2.5) remain unaffected, but the Bethe equations
(2.7) are modified to

(uk + i
2

uk − i
2

)L
eiφ =

M∏

j=1

j 6=k

uk − uj + i

uk − uj − i
. (2.12)

This tiny modification resolves all the difficulties we just discussed (for generic values of
the twist). Firstly one now finds all 2L states of the length L spin chain, such that all
rapidities uk are finite. Secondly, there is no “beyond the equator problem” anymore and
M can range over M ∈ {0, 1, . . . , L − 1, L}. In fact one can now rigorously derive the
second Bethe Ansatz, which treats the up-spins as “dual” magnons in the vacuum of the
down-spins. It reads

( ũk + i
2

ũk − i
2

)L
e−iφ =

L−M∏

j=1

j 6=k

ũk − ũj + i

ũk − ũj − i
, (2.13)

E = 2
L−M∑

k=1

1

ũ2
k + 1

4

, (2.14)

and in contradistinction to (2.9),(2.10) there are only L −M dual magnons, as expected.
In fact, the set of equations (2.12) and (2.13) are completely equivalent, each set yields
the full spectrum of all 2L states. Finally there are no more degenerate roots at u = ± i

2

with a priori indefinite energy (2.6) or (2.14). The price to pay is that su(2) invariance of
the spectrum is broken: All multiplets split up2. However, we can think of φ as a small
regulator which may always be removed where physically sensible. Note that such twists
are also natural from the point of view of the AdS/CFT correspondence. They appear in
the scalar sector of the integrable one-loop dilatation operator of the β-deformed twisted
N = 4 gauge theory [19].

1This happens first for one of the two singlet states of the L = 4 spin chain.
2A spin s multiplet where the magnetic quantum numbers are m = −(2s + 1), . . . , (2s + 1) splits up

such that there still is a degeneracy between any two states whose m differs by a sign flip.
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The magnetic flux φ may be distributed in many possible ways. For instance, as
concerns the energy spectrum of the spin chain, it is equivalent to use instead of (2.11) a
linearly transformed Hamiltonian,

H̃φ = C
(
φ/L

)
Hφ C

(
φ/L

)−1
, C(α) = ei LαS3

L ⊗ ei (L−1)αS3
L−1 ⊗ · · · ⊗ ei αS3

1 , (2.15)

which is given by the original formula (2.1), but with “twisted” boundary conditions

S3
L+1 := S3

1 , S±
L+1 := e∓iφ S±

1 . (2.16)

There is an interesting way to reformulate the Bethe equations (2.12) and (2.13) with
the help of Baxter polynomials defined for each eigenstate by

A−(u) :=
M∏

k=1

(u− uk) , A+(u) :=
L−M∏

k=1

(u− ũk) . (2.17)

Then
(u + i

2

u− i
2

)L
e±iφ = −A∓(u + i)

A∓(u− i)
if u = uk or u = ũk , respectively. (2.18)

On infers that the following equations must hold for each eigenstate and for all u ∈ C:

T (u)A∓(u) = e±iφ
2

(
u +

i

2

)L

A∓(u− i) + e∓iφ
2

(
u− i

2

)L

A∓(u + i) . (2.19)

The reason is that the r.h.s. is a polynomial with roots at u = uk or u = ũk, respectively, so
it must be proportional to A∓(u). We also see that the latter function must be multiplied
by another polynomial T±(u) of degree L. One experimentally finds that this further
polynomial does not depend on ±, i.e. T±(u) = T (u), a fact which will be proven in the
next chapter. So we have from (2.19) and (2.17)

T (u) = 2 cos
φ

2

L∏

k=1

(u− wk) , (2.20)

where the wk are the remaining L roots of the r.h.s. of (2.19).
Equation (2.19) can be regarded as a second order difference equation for an unknown

function A(u), which has two linearly independent solutions A±(u). To see this more
clearly, it is convenient to define the Baxter functions

Q±(u) := e±uφ
2 A±(u) , (2.21)

such that Q±(u) are indeed two linearly independent solutions3 of the difference equation

T (u)Q(u) =

(
u +

i

2

)L

Q(u− i) +

(
u− i

2

)L

Q(u + i) with Q(u) = Q±(u) . (2.22)

3The most general formal solution of (2.22) is then a linear superposition of the form Q(u) =
c+(u)Q+(u) + c−(u)Q−(u). However, unlike the theory of second order differential (as opposed to differ-
ence) equations is that the “constants” c±(u) could a priori be any functions of u with period i.
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This is Baxter’s famous TQ equation for the twisted Heisenberg magnet. As we can see, the
twist has actually disappeared from the equation, and is entirely encoded in the analytic
Ansatz (2.21),(2.17),(2.20) for the solution. Note that the Baxter functions at nonzero
twist φ are not polynomials.

Baxter derived this equation, which holds for all eigenvalues of the commuting T-
and Q-matrices on the operatorial level, in his original solution on the “zero-field” 8-
vertex model [7], which also contains the solution of the “zero-field” XYZ spin chain [20].
Although it seems to be possible to take a limit of his results and apply them to the
untwisted XXX model, this would then only apply to the “zero-field” case φ = 0.

One purpose of this article is to consider the XXX chain with an arbitrary non-zero
field φ 6= 0 and provide an independent construction of the operators T(u) and Q±(u)
satisfying (2.22) such that all their eigenvalues are of the form spelled out in (2.21), (2.17)
and (2.20). Our construction of the Q-operators is conceptually very similar to that of

[8, 9] in c < 1 conformal field theory, based on the Yang-Baxter equation with Uq(ŝl(2))
symmetry. However, here we provide a self-contained and separate consideration of the
XXX model, rather than attempting to take the q2 → 1 limit of the relevant results of
[8, 9].

In the case of the operator T(u) Baxter’s construction actually immediately applies.
His methodology was subsequently developed and systematized by the inverse scattering
methodology of the Leningrad school of mathematical physics. Here we will just briefly
summarize the construction, referring for all further details to the authoritative presenta-
tion [21]. One constructs this operator, termed transfer matrix T(u), as the trace over a
certain monodromy matrix M(u). The latter is in turn built from a “generating object”,
the local quantum Lax operator

Ll(u) =

(
u + iS3

l iS−
l

iS+
l u− iS3

l

)
, (2.23)

which is a 2 × 2 matrix in some auxiliary space C
2 with site-l spin operator (as in (2.1))

valued matrix elements. The monodromy matrix is then built as4

M(u) =

(
ei

φ
2 0

0 e−i φ
2

)
· LL(u) · LL−1(u) · . . . · L2(u) · L1(u) . (2.24)

In view of (2.2) it is an operator acting on the tensor product of the auxiliary space and
the quantum space. Finally, by taking the trace over the two-dimensional auxiliary space,

T(u) = TrM(u) , (2.25)

one constructs the transfer matrix as an operator on the quantum space (2.2). It is easy
to show, see [21], that at the special point u = i

2
the transfer matrix becomes proportional

4Here · denotes 2× 2 matrix multiplication in the two-dimensional auxiliary space. The entries of this
2× 2 matrix act on (2.2).
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to the lattice shift operator (cf. discussion around (2.8)), multiplied by a diagonal matrix,
i.e. one has

U = i−L T( i
2
) e−i φS3

L . (2.26)

The Hamiltonian (2.15) is then obtained from the expansion of the transfer matrix in the
vicinity of the point u = i

2
,

H̃φ = 2L− 2 i
d

du
logT(u)

∣∣∣
u= i

2

. (2.27)

Finally, because of the underlying Yang-Baxter symmetry, to be discussed below, one can
show that transfer matrices with different values of spectral parameters form a commuting
family

[T(u),T(u′)] = 0 , (2.28)

which also contains the Hamiltonian (2.15), obtained from (2.1) by twisting the boundary
conditions (2.16). However, this fact by itself does not directly lead to the solution of
the model. One procedure is to apply the algebraic Bethe Ansatz as explained in [21].
Another, to be developed below, is to also construct the operators Q±(u) as traces over
some monodromy matrices, and to derive the operator version of (2.22)

T(u)Q±(u) =
(
u + i

2

)L
Q±(u− i) +

(
u− i

2

)L
Q±(u + i) , (2.29)

along with a proof that the analyticity of the eigenvalues of the therein appearing operators
is given by (2.21),(2.17),(2.20). Then no Bethe Ansatz is required, and the twisted Bethe
equations (2.12) or (2.13) immediately follow (for more details on this logic, please see
section 3.5 below).

A very interesting issue is the φ → 0 limit of the operators Q±(u) appearing in (2.29).
In this limit, the broken su(2) invariance of the spin chain is recovered. Then the majority
of the eigenvalues of Q±(u) turn into descendents of su(2) highest weight states. From
our discussion following the untwisted Bethe equations (2.7) these will have Bethe roots at
u = ∞, so the operators Q±(u) are expected to diverge, in stark contrast to the eigenvalues
of T(u), which are perfectly finite and smooth in the zero-twist limit. On the other hand,
we can of course retrace the steps leading to the existence of the operator equations (2.29)
by making, in analogy with (2.17), a polynomial Ansatz for linearly independent Baxter
functions5

Q(u) ∼
M∏

k=1

(u− uk), P (u) ∼
L−M+1∏

k=1

(u− ũk). (2.30)

This empirical way had already been explored in [18], but it was erroneously (as we shall
see) stated that P (u) and Q(u) are completely unrelated to the eigenvalues of Q±. By
using the untwisted Bethe (2.7) and dual Bethe (2.9) equations, the latter being the reason
for the power L − M + 1 in the polynomial P (u), we conclude that there must be finite

5Note that the exponential factors in (2.21) disappear at φ = 0. We have used the notation ∼ since
the proper normalization of these functions will turn out to be quite subtle.
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operators Q(u),P(u) which should satisfy the same Baxter equation (2.29) as Q±(u), such
that however (1) their eigenvalue spectrum is su(2) invariant, and (2) their eigenvalues are
indeed of the form in (2.30). It is clear that finding Q(u),P(u) from Q±(u) must indeed
be quite non-trivial, and must involve some kind or “renormalization” of these divergent
operators. It is furthermore a priori quite mysterious how the extra (L −M + 1)-th root
appears in P (u) in (2.30) as compared to the L−M roots of A+(u) in (2.17). These puzzles
will be resolved in chapter 4. In particular, we shall find the resolution to be intimately
connected to the exponential factors in (2.21).

Our article is organized as follows. In the ensuing chapter 3 we will construct the
operators Q± as the trace over an appropriate monodromy matrix. This will require the
introduction of two copies of infinite oscillator Fock spaces, despite the fact that we are
dealing with a finite dimensional spin chain carrying finite dimensional representations of
su(2). In the next chapter 4 we will study the very subtle φ → 0 limit of our construction,
leading to a one-parameter family of linearly independent operators Q(u),P(u) by “renor-
malizing” the previously obtained operators Q±. We will also perform some numerical
study of their spectrum for a few cases, illustrating an interesting pattern between their
respective eigenvalue root distributions. In the following chapter 5 we briefly discuss how
our construction and result differ from a large earlier, complementary literature on the sub-
ject. We end in 6 with a brief list of the many open problems and potential applications
related to our result.

Before proceeding with the construction of the operators Q±, let us however change
notation by “Wick-rotating” the spectral parameter u to

z := −i u . (2.31)

It is true that the u-convention of this review chapter 2 is the most widely accepted notation
in much of the Bethe Ansatz literature, and nearly all of the literature on AdS/CFT
integrability. But the z-convention (2.31) used for the rest of this paper (with the exception
of the numerical work presented in section 4.5 and appendix F, as well as the examples of
small chain lengths in appendix B) prevents all further derivations and manipulations of
functional equations from being cluttered by factors of i. This will then turn (2.29) into6

T(z)Q±(z) =
(
z + 1

2

)L
Q±(z − 1) +

(
z − 1

2

)L
Q±(z + 1) . (2.32)

3 Construction of Q± as Transfer Matrices

3.1 Yang-Baxter equation and commuting transfer matrices

As explained above the Hamiltonian (2.1), with twisted boundary conditions (2.16), is
generated by the spectral parameter-dependent transfer matrices (2.25), which form a

6For simplicity, and with slight abuse of notation, we will not use new symbols for the various operators.
E.g. the transfer matrix in (2.29) is iL times the transfer matrix in (2.32). It should be straightforward
to return to the notation with the spectral parameter u whenever needed by using (2.31).
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commuting family, cf. (2.28). Here we want to construct further important transfer matrices
which nevertheless belong to the same family. To this end one needs to study the possible
solutions of the Yang-Baxter equation

R(x− y)
(
LV (x) ⊗ 1

) (
1 ⊗ LV (y)

)
=
(
1 ⊗ LV (y)

) (
LV (x) ⊗ 1

)
R(x− y), (3.1)

where R(z) is the rational 4 × 4 R-matrix,

R(z) : C
2 ⊗ C

2 → C
2 ⊗ C

2, R(z) = z + P , (3.2)

and the L-operator LV (z) is a 2×2 matrix, acting in the quantum space of a single spin-1
2
,

LV (z) =

(
L11(z) L12(z)
L21(z) L22(z)

)
. (3.3)

Its matrix elements are operator-valued functions of the variable z, acting in an auxiliary
vector space V . The R-matrix acts in a direct product of two-dimensional spaces C

2 ⊗C
2

and the operator P permutes the factors in this product. Note that the R-matrix (3.2) is
GL(2)-invariant

R(z) = (G⊗G)R(z) (G⊗G)−1, G ∈ GL(2), (3.4)

where G is any non-degenerate 2 × 2 matrix.
The solutions of (3.1) which we will use in this paper are rather simple. The first one

is a well-known generalization of (2.23),

L(z) =

(
z + J3 J−

J+ z − J3

)
= z I + 2

3∑

k=1

Sk Jk, (3.5)

where J± = J1 ± iJ2 and J3 are the generators of the sl(2) algebra
[
J3,J±

]
= ±J± ,

[
J+,J−

]
= 2J3 . (3.6)

In the second form of L(z) in (3.5) we used the 2× 2 spin operators Sk appearing in (2.1).
Note that for the L-operator (3.5) equation (3.1) holds on the algebraic level in virtue of the
commutation relations (3.6). To obtain a specific solution one needs to choose a particular
representation of these commutation relations. For further reference define the highest
weight representions of sl(2), with highest weight vector v0, defined by the conditions

J+v0 = 0, J3v0 = j v0 , (3.7)

where j is the spin. The (2j + 1)-dimensional representations with integer or half-integer
spin, i.e. 2j ∈ Z≥0, will be denoted by πj , while infinite-dimensional representations with
arbitrary complex spin 2j ∈ C with be denoted as π+

j .
For each solution of (3.1) one can define a transfer matrix

TV (z) = Tr V

(
D LV (z) ⊗ LV (z) ⊗ · · · ⊗ LV︸ ︷︷ ︸

L−times

)
, (3.8)
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where the tensor product is taken with respect to the quantum spaces C2, while the operator
product and the trace is taken with respect to the auxiliary space V . The boundary twist
operator D, specially suited for our purposes, is defined by

[D, L11(z) ] = [D, L22(z) ] = 0, DL12(z) = eiφ L12(z)D, DL21(z) = e−iφ
L21(z)D ,

(3.9)
where Lij(z), i, j = 1, 2, denotes matrix elements of LV (z). Note that D is an operator in
the auxiliary space; it acts trivially in quantum space7. For the solution (3.5) one easily
finds

D = eiφJ3

. (3.10)

Substituting the last expression together with (3.5) into the definition (3.8) and taking the
trace over the standard (2j + 1)-dimensional representations πj, one obtains an infinite set
of transfer matrices

Tj(z) = Tr πj

(
M(z)

)
, (3.11)

built from the monodromy matrices

M(z) = eiφJ
3

L(z) ⊗ L(z) ⊗ · · · ⊗ L(z)︸ ︷︷ ︸
L−times

, 2j ∈ Z≥0, (3.12)

and labelled by the value of the spin j = 0, 1
2
, 1, 3

2
, . . . ,∞. Note in particular that8

T(z) ≡ T 1

2

(z) (3.13)

coincides, up to a trivial rescaling of the argument z = −iu, with the transfer matrix
T(u) defined in (2.25). The transfer matrices (3.11) depend on the spectral variable z and
(implicitly) on the twist parameter φ.

Standard arguments based on the Yang-Baxter equation immediately imply that the
operators Tj(z) belong to a commuting family, since one derives from (3.1) in generalization
of (2.28) that9

[T(z),Tj(z
′)] = 0, 2j ∈ Z≥0 . (3.14)

The presence of the boundary twist (3.10) in the definition (3.11) does not affect the
commutativity thanks to the properties (3.9) and (3.4).

In similarity to (3.11) we may define transfer matrices

T+
j (z) = Tr π+

j

(
M(z)

)
, 2j ∈ C, (3.15)

7Actually, all considerations presented in this paper are valid for a more general case, when the operator
D acts non-trivially in the quantum space. The only additional condition is that it should commute with
the diagonal elements Mjj(z), j = 1, 2 of the monodromy matrix (3.12). For example the twist could be
of the form φ = α + βS3

tot, where α and β are c-numbers. This type of twist originally arose in [22] in
considerations of commuting T-operators in CFT.

8As opposed to (2.23) and (2.24), the 2 × 2 matrices L(z) in (3.12) act on the corresponding copy of
C2 in the quantum space (2.2).

9One can prove that the more general relations [Tj(z),Tj′ (z
′)] = 0 with 2j, 2j′ ∈ Z≥0 also hold.
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where M(z) is the same as in (3.12), but now the trace is taken over an infinite-dimensional
representation10 π+

j with an arbitrary, possibly complex spin j. This representation is
spanned by the vectors {vk}∞k=0 , with the following action of the generators

J3 vk = (j − k) vk, J− vk = vk+1, J+ vk = k (2j − k + 1) vk−1 . (3.16)

The convergence of the trace in (3.15) requires one to assume that Imφ < 0. For a generic
value of j ∈ C the representation (3.16) is irreducible. However when j takes non-negative
(half) integer values 2j ∈ Z≥0 this representation becomes reducible. The matrices π+

j (J+),
π+
j (J−) and π+

j (J3) then acquire a block-triangular form with two diagonal blocks. One of
these is finite-dimensional, being equivalent to the (2j + 1)-dimensional representation πj ,
and the other one is infinite-dimensional, and coincides with the highest weight represen-
tation π+

−j−1. Hence on the level of traces one easily obtains11

Tj(z) ≡ T+
j (z) −T+

−j−1(z) , 2j ∈ Z≥0 . (3.17)

3.2 Functional relations

Our immediate aim is to study various algebraic properties of the transfer matrices (3.11)
and (3.15), and, in particular, to derive all functional equations they satisfy. In the context

of integrable models, related to the quantized Kac-Moody algebra Uq(ŝl(2)), this problem
has been previously solved in [8, 9]. Here we will apply a similar approach. The detailed
considerations of [8, 9] are devoted to conformal field theory and cannot be straightfor-
wardly used for the lattice XXX-model. Moreover, the latter model is related to a rather
subtle limit q2 → 1 in the relevant q-deformed constructions of [8, 9], and requires ad-
ditional considerations. Nevertheless one should expect that the general structure of the
functional relations, independent of the value of the deformation parameter q, must remain
intact in the q2 → 1 limit by continuity arguments. In particular, one should expect from
Eq.(2.45) of [8] that the transfer matrix T+

j (z), defined in (3.15) above, factorizes into a
product

f(φ)T+
j (z) = Q+(z + j + 1

2
)Q−(z − j − 1

2
) , where f(φ) = 2 i sin

φ

2
, (3.18)

of two Baxter Q-operators Q±(z), which should satisfy

[Tj(z),Q±(z′)] = 0, [Q+(z) ,Q−(z′)] = 0 , [Q±(z) ,Q±(z′)] = 0 . (3.19)

They clearly extend the commuting family (3.14), and should satisfy the TQ-equation
(2.32). Below we will prove that this is indeed true in our case and give the corresponding
definitions of the operators Q±(z).

10In general this representation is not unitary, but this is not relevant to our present construction.
11By the methods of appendix C the relation (3.17) may also be analytically continued to complex j,

such that Tj(z) stays finite in the φ → 0 limit.
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Before going into this proof let us demonstrate that the relation (3.18) alone leads to
a simple derivation of all functional relations, involving various “fusion” transfer matrices
Tj(z) and Q-operators [8, 9]. For this reason Eq. (3.18) can be regarded as a universal
fusion relation — once it is derived, no further algebraic work is required.

Substituting (3.18) into (3.17) one obtains

f(φ)Tj(z) = Q+(z+j+ 1
2
)Q−(z−j− 1

2
)−Q−(z+j+ 1

2
)Q+(z−j− 1

2
) , 2j ∈ Z≥0 . (3.20)

For j = 0 (trivial representation) one clearly has

T0(z) = zL I , (3.21)

where I is the identity operator on the quantum space, which hereafter will be omitted. In
this case (3.20) reduces to

Q+(z + 1
2
)Q−(z − 1

2
) −Q−(z + 1

2
)Q+(z − 1

2
) = f(φ) zL . (3.22)

Using the last relation together with the expression (3.20) for T 1

2

(z) ≡ T(z) one imme-

diately derives the TQ-equation (2.32). Note that the relation (3.22) can be regarded as
the (quantum) Wronskian relation for the second order difference equation (2.32), ensuring
linear independence of the two solutions Q+ and Q−. Furthermore, (3.20) clearly indicates
that the operators Q± should be considered to be more fundamental than the transfer
matrices, since the latter are a quadratic superposition of the former.

In fact, we can consider (3.20) as the most fundamental fusion relation of the model,
from which all other relations follow. The mechanism by which this happens is quite
simple. Let us define, for any commuting quantity Q±

A,

TAB ≡ Q+
[AQ−

B] , (3.23)

where the square brackets indicate antisymmetrization and the indices A,B denote very
generally a collective set of discrete indices and/or continuous variables. The latter are
related to linear combinations of the the spectral parameter z and some representation
labels such as the spin j. We immediately infer the identities

T[AB Q±
C] = 0 , T[AB TC]D = 0 . (3.24)

These two types of equations are a compact way to respectively write Baxter’s equation
(2.32) as well as all fusion relations (3.25) such as the ones of [23]:

Tj(z + 1
2
)Tj(z − 1

2
) =

(
z + j + 1

2

)L (
z − j − 1

2

)L
+ Tj+ 1

2

(z)Tj− 1

2

(z), j = 0, 1
2
, 1, . . .

(3.25)
A generalization of these relations, which appears to be new, appears in appendix A.
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3.3 Factorization of the L-operator

As noted before, we want to construct the Q-operators as transfer matrices (3.8) built from
suitable L-operators, solving the Yang-Baxter equation (3.1). We shall soon see that the
required L-operators indeed exist. They are easily obtained via some special reductions of
(3.5). In preparation of this calculation we need to recall some well-known realizations of
the sl(2) commutation relations (3.6) in terms of the harmonic oscillator algebra

H : [h, a±] = ±a±, [a−, a+] = 1, h = a+a− + 1
2
. (3.26)

The Fock representation F of this algebra is spanned on the vectors {vk}∞k=0 ,

F : a+ vk = vk+1, a− vk = k vk−1, h vk = (k + 1
2
) vk . (3.27)

The value of the quadratic Casimir operator of the algebra sl(2)

C2 ≡ ~J2 = (J3)2 + 1
2

(
J+ J− + J− J+

)
(3.28)

for the highest weight representations (3.7) is given by

πj(C2) = π+
j (C2) = j(j + 1) . (3.29)

Below we will use the fact that for the infinite-dimensional representation π+
j the sl(2)-

generators
Ja
j = π+

j (Ja), a = {3,+,−}, (3.30)

can be realized through the oscillator algebra (3.26)

J−
j = a+ , J+

j =
(
2 j − a+ a−

)
a− , J3

j = j − a+ a− , (3.31)

or alternatively as

J−
j = a+

(
2 j − a+ a−

)
, J+

j = a− , J3
j = j − a+ a− , (3.32)

where the operators a+, a− are taken in the Fock representation (3.27). These realizations
are commonly known as Holstein-Primakoff representations; they can be readily verified.
Indeed, having in mind the Fock representation (3.27), one can easily see that the formulae
(3.31) are essentially verbatim transcriptions of the matrix elements (3.16) in the oscillator
notations. The second realization (3.32) is obtained from (3.31) by a simple similarity
transformation12, and, therefore gives the same trace in (3.15)13.

12One can also take

J−
j = a+

(
2 j − a+ a−

)γ
, J+

j =
(
2 j − a+ a−

)1−γ
a− , J3

j = j − a+ a− .

with arbitrary 0 ≤ γ ≤ 1. Here we only use the values γ = 0, 1.
13This is also true for 2j ∈ Z≥0, when (3.31) and (3.32) become reducible and on the level of traces both

lead to the same formula (3.17)
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Due to the invariance of the R-matrix (3.4), the solutions of (3.1) are defined up to
linear transformations

LV (z) → F LV (z)G, F,G ∈ GL(2) , (3.33)

where F and G are arbitrary non-degenerate 2 × 2 matrices. In other words, the transfor-
mation (3.33) does not affect the validity of the Yang-Baxter equation (3.1).

Using the realization (3.31), let us write explicitly the L-operator (3.5) in the represen-
tation π+

j ,

Lj(z) = π+
j (L(z)) =

(
z + j − a+a− a+

(2j − a+a−) a− z − j + a+a−

)
. (3.34)

Its matrix elements depend on two parameters z and j. It is convenient to define new
variables

z± = z ± (j + 1
2
) . (3.35)

Consider the limit
z → ∞, j → ∞, z+ = fixed , (3.36)

and define

L+(z+) = lim
j→∞

(
1 0
0 − 1

2j

)
Lj(z+ − j − 1

2
) =

(
z+ − h a+

−a− 1

)
, (3.37)

where h is defined in (3.26). Similarly, for fixed z− define

L−(z−) = lim
j→∞

Lj(z− + j + 1
2
)

(
1
2j

0

0 1

)
=

(
1 a+

a− z− + h

)
. (3.38)

The particular transformations of the form (3.33), used in the definitions (3.37) and (3.38),
do not affect the validity of the Yang-Baxter equation (3.1). Therefore, the new operators
L±(z) will automatically satisfy (3.1) in virtue of the commutation relations of the oscillator
algebra. Of course this may also be verified by direct, elementary calculations. It should be
mentioned that these two L-operators are not really new objects, and appeared earlier in
different contexts. They are e.g. known to yield the Lax operators of the so-called “discrete
self-trapping chain” [24, 25].

A typical problem frequently arising in the theory of integrable system is the “fusion”
of different solutions of the Yang-Baxter equation. This is a standard way to understand
relationships between various solutions and to obtain new ones. It turns out that in our
case the consideration of the product of L+(z) and L−(z′) does not lead to any new non-
trivial solutions. It however allows to discover remarkable factorization properties of the
operator Lj(z), which will be explained below.

Consider the direct product H
⊗2 of two oscillator algebras (3.26). Let {a±

1 ,h1} and
{a±

2 ,h2} denote the two associated mutually commuting sets of generators. Below we will
use the following similarity transformation acting in this direct product

ã±
k = ea

+

1
a
−

2 a±
k e−a

+

1
a
−

2 , k = 1, 2. (3.39)
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Obviously, the transformed operators ã±
1,2 obey exactly the same commutation relations as

a±
1,2. In particular, the operators ã±

1 commute with ã±
2 . Explicitly one has,

ã−
1 = a−

1 − a−
2 , ã+

1 = a+
1 , (3.40)

ã−
2 = a−

2 , ã+
2 = a+

1 + a+
2 . (3.41)

Consider the product

L(z) = L
(1)
− (z−)L

(2)
+ (z+) =

(
1 a+

1

a−
1 z− + h1,

)(
z+ − h2 a+

2

−a−
2 1

)
, (3.42)

where the superscripts (1) or (2) indicate that the corresponding L-operators belong re-
spectively to the first or the second oscillator algebra. By elementary calculations one can
bring this product to the form

(
1 a+

1

a−
1 z− + h1,

)(
z+ − h2 a+

2

−a−
2 1

)
= ea

+

1
a
−

2

(
1 0
a−
1 1

)(
z + J3

j J−
j

J+
j z − J3

j

)
e−a

+

1
a
−

2 .

(3.43)
where h1,2 = a+

1,2 a
−
1,2 + 1

2
and the sl(2) generators J3

j , J
+
j and J−

j are realized as in (3.31)
but employing the operators a±

2 ,

J−
j = a+

2 , J+
j =

(
2 j − a+

2 a−
2

)
a−
2 , J3

j = j − a+
2 a−

2 . (3.44)

Introducing operator valued matrices

B+ =

(
1 a+

0 1

)
, B− =

(
1 0
a− 1

)
, (3.45)

one can re-write (3.43) in a compact form

L(z) = L
(1)
− (z − j − 1

2
)L

(2)
+ (z + j + 1

2
) = ea

+

1
a
−

2 B
(1)
− L

(2)
j (z) e−a

+

1
a
−

2 , (3.46)

where the superscripts (1) and (2) have the same meaning as in (3.42). Similarly one
obtains

L(z) = L
(1)
+ (z + j + 1

2
)L

(2)
− (z − j − 1

2
) = ea

+

1
a
−

2 L
(1)
j (z) B

(2)
+ e−a

+

1
a
−

2 , (3.47)

Writing the last identity in full, one gets

(
z+ − h1 a+

1

−a−
1 1

)(
1 a+

2

a−
2 z− + h2

)
= ea

+

1
a
−

2

(
z + J3

j J−
j

J+
j z − Jj

)(
1 a+

2

0 1

)
e−a

+

1
a
−

2 , (3.48)

where the sl(2) algebra is now realized as in (3.32) with a±
1

J−
j = a+

1

(
2 j − a+

1 a−
1

)
, J+

j = a−
1 , J3

j = j − a+
1 a−

1 . (3.49)
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3.4 Construction of the Q-operators

We are now ready to explicily define the operators Q±(z) as transfer matrices. To do
this we will use our general definition (3.8) of a transfer matrix for the L-operators L±(z)
defined in (3.37) and (3.38). Solving (3.9) one gets the same boundary operator in both
cases,

D± = e−iφh, (3.50)

where h is defined in (3.26). In this way we define operators

Q±(z) = Z−1 e±
i
2
φ z Tr F

(
M±(z)

)
, (3.51)

where
M±(z) = e−iφh L±(z) ⊗ L(z)± ⊗ · · · ⊗ L±(z)︸ ︷︷ ︸

L−times

. (3.52)

Note that we have changed the normalization of (3.51) in comparison with (3.8) by intro-
ducing z-dependent exponents and a constant factor

Z(φ) = Tr F

(
e−iφh

)
=

1

2i sin φ
2

. (3.53)

where the subscript F indicates that the traces are taken over Fock space (3.27). By
construction the operators (3.51) will automatically commute with T(z) as a consequence
of the Yang-Baxter equation (3.1) and properties (3.4) and (3.9),

[T(z),Q±(z′)] = 0 . (3.54)

The operators Q±(z) can be obtained from each other by negation of the twist φ. It is
not difficult to show that

Q+(z, φ) = R Q−(z,−φ) R , R = σx ⊗ σx ⊗ · · · ⊗ σx , (3.55)

where R is the spin reversal operator in the quantum space.
Let us now prove the factorization equation (3.18). Consider the quantity defined by

the first equality in (3.46),

L(z) = L
(1)
− (z − j − 1

2
)L

(2)
+ (z + j + 1

2
) . (3.56)

where superscripts (1) and (2) have the same meaning as in (3.42). This is a product
of two L-operators with different auxiliary spaces (each being a copy of the Fock space),
which, of course, satisfies the Yang-Baxter equation itself. It can be regarded as a single
L-operator, whose auxiliary space is the tensor product of two Fock spaces. Therefore, one
can apply our general formula (3.8) to define the transfer matrix

TL(z) = Tr F1F2

(
e−iφ (h1+h2)L(z) ⊗ L(z) ⊗ · · · ⊗ L(z)︸ ︷︷ ︸

L−times

)
, (3.57)
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where we have substituted D± defined in (3.50). It is not difficult to see that using (3.56)
one can rearrange factors under the trace such that (3.57) reduces to a product of two
operators (3.51),

TL(z) = Z(φ)2 e−iφ (j+
1
2
)Q−(z − j − 1

2
)Q+(z + j + 1

2
). (3.58)

Similarly, using the second expression for L(z) from (3.46) one obtains

TL(z) = e−iφ (j+
1
2
)
TB−

T+
j (z), (3.59)

where
TB−

= Tr F

(
e−iφh B− ⊗ B− ⊗ · · · ⊗ B−︸ ︷︷ ︸

L−times

)
. (3.60)

Note that the presence of the similarity transformation in (3.46) does not affect the calcu-

lation of the trace since the operator ea
+

1
a
−

2 commutes with h1 + h2 in the boundary twist.
The matrix B−, defined in (3.45), is triangular. The calculation of the trace in (3.60) is
trivial, since B− depends only on a−, it gives

TB−
= Z(φ) I , (3.61)

where I is the unit operator in the quantum space. Combining everything, one arrives at
the factorization formula (3.18), though with swapped order of Q+ and Q− in the product.
Repeating the same reasonings, but this time starting from the equation (3.47), one obtains
(3.18) exactly as written, which proves the commutativity of Q+ and Q−, stated in (3.19).

Let us stress that one should explicitly show that also the last equation in (3.19) is
satisfied by the operators constructed above. This can be proven in the usual way starting
from the Yang-Baxter equation in C2 ⊗ osc⊗ osc. The existence of an intertwiner in this
case has been shown in [25] in the course of a study of the DST chain, which is a certain
bosonic hopping model. The further investigation of this and related issues will be reported
elsewhere [26].

For the benefit of the reader, we will present for small chain lengths L = 1, 2 the explicit
forms of the finite twist φ operators T, Q± as well as their eigenvalues in appendix B.

3.5 Bethe equations without a Bethe Ansatz

It is interesting that our factorization formulas (3.43) and (3.48) allow to solve the twisted
Heisenberg model without the somewhat tedious Bethe Ansatz technique, be it a coordi-
nate, algebraic or functional Bethe “Ansatz”! In fact, no Ansatz (German for “try and see
whether it works”) for some wavefunction is ever made. One instead derives the funda-
mental operator relation (3.20) as done in the last section. The full hierarchy of operatorial
Baxter and fusion equations immediately follows, as we explained in the course of the dis-
cussion of (3.24). In particular, one immediately derives the operatorial Baxter equation
(2.32) from (3.20) with auxiliary spin j = 1

2
.
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As shown above all T- and Q-operators belong to the same commuting family and
therefore can be simultaneously diagonalized by a z-independent similarity transformation.
Thus the eigenvalues will have the same analytic properties in the variable z as the matrix
elements of the corresponding operators. By construction all T-operators are polynomials
in z, while the Q-operators are polynomials multiplied by the simple z-dependent exponents
(see (3.51)) so that their eigenvalues are exactly of the form (2.21), (2.17). Furthermore,
all the functional equations can be considered in the basis where all operators are diagonal
and can be replaced by their eigenvalues corresponding to the same eigenstate. In other
words the functional equations can be treated as scalar equations for the eigenvalues. For
instance, substituting (2.21), (2.17) into (3.22) one obtains

e
i
2
φA+(z + 1

2
)A−(z − 1

2
) − e−

i
2
φA−(z + 1

2
)A+(z − 1

2
) = f(φ) zL . (3.62)

Let zk be a zero of A+(z), i.e, A+(zk) = 0. Using this fact in the last equation one obtains,

e−
i
2
φA−(zk)A+(zk − 1) = (zk − 1

2
)L, e

i
2
φA+(zk + 1)A−(zk) = (zk + 1

2
)L, (3.63)

Dividing these equations by each other one arrives at one set of the Bethe equations (2.18).
The other set is derived similarly.

We would like to mention one simple but important corollary of the quantum Wronskian
relation (3.62). It concerns exact strings, i.e., groups of zeroes {z1, z2, . . . , zℓ} equidistantly
spaced with the interval 1,

zk+1 = zk + 1, k = 1, . . . , ℓ− 1, (3.64)

where ℓ is called the length of the string. It is obvious from (3.62) that neither of the
polynomials A±(z) could have exact strings of the length greater then two. Indeed, the
only such zeroes can be at z = ±1

2
, thus A±(z) might only have (possibly multiple) 2-strings

at z = ±1
2
. The same analysis extends to the zero-field case as well. Note, in particular,

that the long strings on the imaginary axis of the variable u = iz, shown in fig. 1 in section
4.5, are not exact.

4 Removing the Twist: The φ → 0 Limit

In the previous chapter 3 we have used a regulator φ to obtain finite quantities when
taking traces over infinite dimensional oscillator spaces. It is interesting that this natural
quantity φ corresponds precisely to the spin chain with magnetic flux discussed in the
review chapter 2. In the present chapter we will deal with the operation of taking this
regulating flux away. This involves a significant symmetry enhancement to a global SU(2)
symmetry of the spectrum of the Heisenberg chain, “weakly” broken by the twist. Moreover
we would like to make contact with the results of [18], see also the attempt in [27], as well as
the findings in [28]. It is interesting to explicitly work out the operators Q± for small spin
chain lengths L. This is done in appendix B. In line with their construction, the operators
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Q± will diverge as the regulating φ is removed, and we will need to “renormalize” them.
The reason is simply that the sum over oscillator states ceases to converge, as maybe
explicitly verified on the examples in appendix B. Let us begin by studying the structure
of divergencies of T+

j and Q±.

4.1 Divergencies in the zero twist limit

It is interesting to understand the singularity structure14 of T,T+ and Q± in the limit
where the twist φ is sent to zero, and su(2) invariance is recovered. In preparation, we
will prove in appendix C that Tj(z;φ) is finite in the zero-twist limit for arbitrary complex
values of z and j, which is a priori not obvious. It is trivially finite for 2j ∈ Z+, since in this
case there is near complete cancellation between two infinite sums, the remainder being
a sum over 2 j + 1 terms. As for T+

j (z;φ), one can immediately say that its eigenvalues
diverge15 at most as φ−L in the zero-twist limit. However, we found evidence that the
actual divergence is much milder, namely16

T+
j (z;φ) → φ−2JO(z, j) , (4.2)

with some matrix O(z, j). Here J is defined as

J (J + 1) = ~S2
tot . (4.3)

This being a quadratic equation, there are two solutions for J , and one has to choose the
one such that the spectrum of 2J belongs to Z≥0.

In any case, we already showed that the operator T+
j (z) is a “composite object”, and

thus perhaps not too interesting. Much more relevant is the zero-twist limit of its fun-
damental constituents Q±(z±). As we discussed in the review chapter 2, we do expect
these operators to become singular, as Bethe roots at infinity physically indicate su(2)

descendent states. Their naive divergent behavior is φ−(L
2
±S3), but their actual divergence

is again empirically found to be much milder

Q±(z±;φ) → φ−(J±S3)O±(z±) . (4.4)

In particular their action on lowest and highest weight states is finite in the zero-twist limit
for Q+ and Q−, respectively. One can check on small-length examples that O±(z) defined

14 We do not have proofs for the singular behavior of the operatorsT+ andQ± discussed in the following.
Our statements are based on observations on spin chains of small length L = 2, . . . , 5.

15 Note that
∞∑

n=0

e−xn nl ≃ (l − 1)!x−(l+1) (4.1)

in the x → 0 limit.
16 It is not clear to us whether O(z, j) can be meaningfully interpreted as a “renormalized” transfer

matrix. E.g. we do not know whether this operator is su(2) invariant. An alternative, more symmetric
definition would be T+

j (z;φ) → φ−J O(z, j) φ−J .
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in this way is not su(2) invariant. An su(2) invariant operator Q(z) may be defined as

Q(z) = lim
φ→0

(J ∓ S3)!

(2J )!
(∓φ)

1

2
(J±S3)Q±(z;φ)(∓φ)

1

2
(J±S3) , (4.5)

where it may be observed that the eigenvalues of Q are polynomials in z normalized as
z2J + . . . . We see that both Q± lead to the same Baxter operator Q, see also [28]. This is
technically easy to understand since Q± are related to each other by a spin-flip combined
with reversion of the twist φ → −φ. An su(2) invariant operator like Q at φ = 0 is
obviously invariant under this transformation. However, this means that in the limit we
are “loosing” one of the two linearly independent operators of the twisted case.

4.2 Q-operator in the zero twist limit

In this section we will propose another way to define the Q-operator in the zero-twist limit.
This second way is certainly less explicit than (4.5), but is more suitable for rigorously
proving finiteness, as well as su(2)-invariance of the resulting Q-operator. The renormalized
Q(z) can be very naturally defined by “renormalizing” Q±(z), namely17

Qz0(z) ≡ lim
φ→0

Q±(z;φ)Q−1
± (z0;φ). (4.6)

The resulting Q still carries a dependence on the “subtraction point” z0. In this sense (4.6)
defines a one parameter family of Q-operators. Qz0(z) in (4.6) satisfies Baxter’s equation.
This is easily seen since Baxter’s equation is linear in Q, and, at fixed values of φ, Tj(z;φ)
and Q±(z;φ) commute among themselves. It is important to stress that the Q-operators
defined in (4.6) are su(2) invariant. The proof of this fact is left to appendix D. su(2)
invariance is the underlying reason why in (4.6) both Q+ and Q− lead to the same Q. Let
us also point out that the obtained Q-operator will turn into the identity operators for
z = z0, an observation which will be used later.

The fact that (4.6) is a finite quantity is easy to understand. Indeed one can safely
discuss the finiteness issue at the level of eigenvalues. Any given (fixed) eigenvalue of Q±(z)
will be of the form

q±(z, φ) = φ−k ( q̃±(z) + O(φ) ) , (4.7)

for some integer k. The ratio
q±(z;φ)

q±(z0;φ)
, (4.8)

will be finite in the limit. Of course (4.6) requires detQ±(z0;φ) 6= 0, this is just the
statement that z0 cannot be choosen to be a Bethe root. The zero twist limit of (4.8)

17Notice that Qz0(z) = Q(z0)
−1Q(z). Something similar appears in Baxter’s original work [7]. In [7]

Baxter built two solutions to his equation, termed QL,QR. These two matrices do not commute with
the T matrix and do not commute among themselves (they satisfy QL(u)QR(v) = QL(v)QR(u)). The
operator Q(u) ≡ QR(u)Q

−1
R (u0) = QL(u)Q

−1
L (u0) is introduced to cure these two problems. We find this

similarity quite interesting.
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is a polynomial in z normalized to be one for z = z0. The degree of this polynomial
can be worked out using su(2) invariance of Qz0(z) and the fact that Q+ and Q− are
finite (because the Bethe roots stay finite) in the zero twist limit for, respectively, lowest
and highest weight states. Moreover notice that the exponential in (2.21) can be simply
replaced by one in the limit (4.6).

We finish this section by noticing that any two Qz0(z) defined in (4.6) are linearly
dependent since

Qz0(z1)Qz′
0
(z2) −Qz0(z2)Qz′

0
(z1) = 0 . (4.9)

In the next section we will discuss how to obtain another one-parameter family of solutions
to Baxter’s equation, which will turn out to be linearly independent to the ones we just
obtained in (4.6).

4.3 P-operator (as a T-operator) in the zero twist limit.

In the previous section we identified a one-parameter family Qz0(z) of solutions to the
Baxter equation in the zero twist limit. As already discussed in section 2, Baxter’s equation
possesses two linearly independent solutions. Accordingly, let us now obtain a second,
linearly independent family of solutions, which we will denote by Pz0(z). While constructed
in a different way, it is identical to the one obtained in [27], and is based on the same
observation18. We will relate this second one-parameter family of operators to Q±(z;φ).
The observation made in [27] is that

Pz0(z) ≡ T z0−z−1
2

( z0+z
2

) , (4.10)

satisfies Baxter’s equation. z0 is then the label of the one-parameter family. Notice that
in this equation there is no twist and Pz0(z) is an su(2) invariant operator.

For Pz0(z) to be defined for any complex z, the T-operator has to be constructed
for any complex value of the spin. Different approaches to this problem are reviewed in
appendix C. They include the construction proposed in [27], the trace functional approach
introduced in [29] and the approach of the present paper (see also [28]).

It is instructive to explicitly write (4.10) using the fundamental relation (3.20)

Pz0(z) ≡ lim
φ→0

f−1(φ) (Q−(z;φ)Q+(z0;φ) −Q−(z0;φ)Q+(z;φ)) , (4.11)

and to take a closer look at the mechanism by which the eigenvalues of Pz0(z) become
polynomials of the degrees found in [18]. A proof is encoded in the zero twist limit of the
generalized Wronskian equation analyzed in the next section, here we will merely give some
heuristic argument. In contradistinction to the Qz0(z)-operator, the Pz0(z)-operator has
been defined as the difference of two quantities. Finiteness of (4.11) is then a consequence
of the cancellation of many divergent contributions from the two terms. This means that

18 To avoid confusion, we note that our P was called Q in [27]. However, its eigenvalues coincide, up to
overall state-dependent normalization, with the polynomials P in [18].
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in the φ expansion of (4.11) the exponential factors appearing in (3.51) and (2.21) play
an important role. Their major role is to increase the degree of polynomiality of the
P-operator as compared to the naively expected one.

As opposed to the one-parameter family of Q-operators, any two P-operators at dif-
ferent values of the parameter z0 are linearly independent. This is the underlying reason
behind the appearence of an extra root in the P-operator’s eigenvalues: in the zero twist
limit the P-operator contains the Q-operator but not vice versa. Let us next analyze this
in more detail.

4.4 Generalized Wronskian for P and Q

Thanks to the insights gained in the previous two sections, we will now study the relation
between the Q-operators and P-operators given in (4.6) and (4.11). It is interesting to
notice that they can be consistently defined for any value of the twist φ. Inspired by (4.6),
(4.11), let us define

Pz0(z;φ) ≡ f−1(φ) (Q−(z;φ)Q+(z0;φ) −Q+(z;φ)Q−(z0;φ)) , (4.12)

Qz0(z;φ) ≡ 1

2

(
Q−(z;φ)Q−1

− (z0;φ) + Q+(z;φ)Q−1
+ (z0;φ)

)
) . (4.13)

The explicit form of f(φ) is not important here, the important thing is that it is the same
function that appears in the fundamental relation. As already shown, both Qz0(z;φ) and
Pz0(z;φ) satisfy Baxter’s equation19 and are finite in the zero twist limit. Here we want
to stress that they satisfy generalized Wronskian relations. It can be shown by direct
substitution, using the fundamental relation (3.20), that

Tj(z;φ) = Pz0(z + j + 1
2
;φ)Qz0(z− j − 1

2
;φ)−Pz0(z− j− 1

2
;φ)Qz0(z + j + 1

2
;φ) . (4.14)

A question that naturally arises is the meaning of the parameter z0. It is interesting to
notice that Tj(z;φ) in (4.14) does not depend on the choice of z0. On the other hand, in
the very same way as (3.23), (3.20) have an intrinsic sl(2) invariance20 which rotates Q± as
a doublet, Tj(z;φ) in (4.14) is left unchanged under rotations21 of Qz0(z;φ) and Pz0(z;φ).
It turns out that these two invariances of (4.14) are not unrelated. It is easy to see that
(
Pz′

0
(z;φ)

Qz′
0
(z;φ)

)
=

(
α̂ β̂

γ̂ δ̂

)(
Pz0(z;φ)
Qz0(z;φ)

)
=

(
Qz0(z

′
0;φ) Pz′

0
(z0;φ)

Nz′
0
(z0;φ) Qz′

0
(z0;φ)

)(
Pz0(z;φ)
Qz0(z;φ)

)
, (4.15)

where

Nz′
0
(z0;φ) =

f(φ)

4

(
1

Q−(z′0;φ)Q+(z0;φ)
− 1

Q−(z0;φ)Q+(z′0;φ)

)
. (4.16)

19 Baxter’s equation is the same for all these operators and does not contain the twist explicitly. Its
information is hidden in the analytic structure of the solution we want to obtain.

20Note that this sl(2) is not identical to the manifest su(2) of our Heisenberg magnet under study.
21In appendix E we review how Qz0(z;φ) and Pz0(z;φ) transform under sl(2) rotations of Q± as a

doublet. The fact that a u(1)⊗ Z2 inside sl(2) acts freely on Qz0(z;φ) and Pz0(z;φ) results in equations
(4.12) and (4.13) not being invertible for Q±.
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We have α̂ δ̂− β̂ γ̂ = 1, which is consistent with the sl(2) rotation. This identity is a special
case of the following interesting relation

Nz0(z
′
0;φ)Pz′(z;φ) = Qz0(z;φ)Qz′

0
(z′;φ) −Qz0(z

′;φ)Qz′
0
(z;φ) . (4.17)

Note that Nz0(z
′
0;φ) vanishes in the zero twist limit, in line with equation (4.9). Let us

stress the implications of this fact from the point of view of equation (4.15). In the zero
twist limit varying z0 corresponds to triangular rotations of P and Q. In particular, it
means that the z0 freedom corresponds to the normalization of Q, but does not affect its
Bethe roots. For P the freedom in the parameter z0 corresponds to adding the Q-operator
to the P-operator. From the point of view of the Bethe roots distribution it corresponds
to the position of one of the roots of P. It is indeed obvious from equation (4.12) that
Pz0(z0;φ) = 0. The positions of the other Bethe roots then depend parametrically on the
position of the root z0. Note that the eigenvalues of (4.12) and (4.13) in the zero twist
limit will be

Qz0(z) =

M∏

k=1

z − zk
z0 − zk

, Pz0(z) = (2M + 1)

M∏

k=1

(z0 − zk)

L−M∏

k=0

(
z − z̃k(z0)

)
, (4.18)

where z̃0(z0) = z0.

4.5 Numerical results on the root distributions of Q(u) and P (u)

In the previous sections22 we obtained for twist φ = 0 a one-parameter family of a pair of
operators {Q(u),P(u)}. On the level of eigenvalues, this free complex parameter changes
the overall normalization of the polynomial eigenvalues Q(u) in (2.30), and both the nor-
malization and the position of the roots of the polynomial eigenvalues P (u) in (2.30). Let
us numerically study the positions of the roots of these two complementary polynomials
for various interesting classes of states. Here clearly the overall normalization does not
matter, and we can use the parameter to shift one of the L−M + 1 roots of P (u) to any
position in the complex u plane we fancy.

We will focus here only on the case where both L and M are even. Let us start
with the polynomial Q(u). From the definition it is a polynomial of degree M with roots
being the solutions of Bethe equations (2.7). With every Bethe root uk we identify an
integer nk, the so-called mode number, which labels different solutions. Every solution is
then characterized by its set of mode numbers. To keep the discussion as transparent as
possible we will focus only on specific choices of this set. Namely, we will consider two-cut
solutions by taking symmetric distribution of roots on the complex plane with all mode
numbers equal |nk| = n for k = 1, . . . ,M . The method of finding such solutions can be
found in [30] (see Appendix F for details). With the algorithm given there we are however

22Recall that for the numerical studies of this section we will return from the z-plane to the Wick-rotated
u-plane via (2.31).
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Figure 1: The two-cut root distribution of the polynomials Q(u) (purple squares) and P (u)
(blue dots). Here L = 60, M = 22 and |nk| = 1 for all k.

only able to find solutions of (2.7) when restricting to M
L

< 1
2
, i.e. below half-filling. In

order to then also find the dual roots from (2.9), which corresponds to the polynomial
P (u), we have to find a different method. The idea is to use the generalized Wronskian
relation (4.14) with φ = 0 and j = 0. Then the left hand side of (4.14) is exactly uL, and
the problem of finding the polynomial P (u) reduces to a linear problem for its L−M + 2
coefficients. Having the polynomial, finding its roots is a trivial numerical task.

Using the methods presented above, we were able to find many different configurations.
One typical example is given in figure 1, see also [31] and [32]. Here the length is L = 60 and
the number of Q-roots is M = 22. As we mentioned before, there is a freedom in choosing
the position of one of the roots of the polynomial P (u). We took it to be ũ0 = 023. As was
pointed out in [30], the positions of the roots of the polynomial Q(u) are well described by
the predictions from the thermodynamic limit – they lie almost on a “spectral curve”. On
the other hand, the roots of the polynomial P (u) are located on a dual configuration of
cuts (see fig. 40 in [30]). It means that Q and P establish two different ways of slicing up
the complex plane, with cuts originating from the branch points given by thermodynamic
calculations.

We will end our discussion of Q- and P-roots with a few comments on the mode numbers
nk relevant to the above examples. In order to define these, the untwisted Bethe equations
(2.7) need to be rewritten in logarithmic form

L log
uk + i

2

uk − i
2

+ 2 π i nk =
∑

j 6=k

log
uk − uj + i

uk − uj − i
, (4.19)

where the summation is over all roots of either the Q- or the P-polynomial. We can
immediately check that for the Q-roots presented in fig. 1 the mode numbers are +1 for
the roots with positive real part and −1 for the ones with negative real part. The same is

23In the Appendix F we will also show results for other choices.
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true for the P-roots, but in this case there are also other roots which are purely imaginary
and form a so-called condensate, which is nothing but a giant string in the standard
terminology of the Bethe Ansatz (to be precise, in the case of fig. 1 it is a combination of
two strings shifted by i

2
). As explained at the end of section 3.5 the strings are not exact,

however their roots very closely approach the (half) integer positons on the imaginary axis
(the roots at u = ± i

2
are exact). The mode numbers for the roots in the strings, are

not well defined due to the ambiguity of defining logarithms of real negative arguments,
appearing in r.h.s. of (4.19).

5 Relation to Earlier Work

5.1 Historical note.

The concept of the Q-operator had been introduced by Baxter in his seminal paper [7] on
the symmetric 8-vertex model and further developed in this context in [33, 34] and more
recently in [35, 36]. Baxter’s idea received a major boost in [8], in an attempt to understand
the integrable structure of conformal field theory, which is related to the continuum limit
of the integrable XXZ model. Renewed attention to the Q-operator arose independently
in the context of the discovery of non-compact integrable Heisenberg magnets in the high
energy scattering problem of QCD [37, 38]. The emergence of integrability in the spectral
problem of planar N = 4 and in AdS/CFT [1, 2, 3, 4], not yet understood beyond the
one-loop level, is the motivation behind our fresh look at the Q-operator in this article.

In the present chapter we will very briefly review what was previously known about
the Q-operator for the XXX spin j Heisenberg magnet in order to compare with our
findings above. In the comparison between different approaches to the problem it seems
to be important to distinguish between compact magnets (2j ∈ Z≥0) and non-compact
magnets, where typically either 2j = −1,−2, . . . (discrete series representations of su(1, 1)
or sl(2,R)), or else j takes on certain continuous values (principal and supplementary
series representations). The quantum space is indeed very different in the compact and
non-compact cases, as it is finite dimensional in the former, and infinite dimensional in the
latter for any length L of the chain.

5.2 Non-compact magnets

In the case of non-compact magnets two main ways to built Baxter’s Q-operator(s) have
been proposed. These are related, but this fact has not yet been properly investigated.
The first way is based on the connection between Bäcklund transformations in the theory
of classical integrable systems and Baxter’s Q-operator for quantum integrable systems.
Sklyanin et al. (see [39] and references therein), inspired by [40], proposed a way to build
the Q-operator as an integral operator for models governed by the sl(2) invariant R-
matrix. It is constructed as the trace over some monodromy built from Lax operator
intertwining operators connected with the Toda, DST (discrete self-trapping) and XXX
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models, respectively. An explicit construction for the XXX model has been proposed in
[41].

The second way is based on some factorization properties of matrix elements (related
but different to operator factorization of this paper) of R-matrices and L-operators, which,
apparently, was first employed in [42] in the context of the chiral Potts model [43, 44, 45].
This approach allows to explicitly calculate matrix elements of the Q-operator as a simple
product involving only two-spin factors. The same method was later used in [40] for the
Toda model then in a series of papers [46] studying various aspects of the factorization of
R-matrices, associated with the XXX model. It would be interesting to clarify the exact
relationship (if any) between the factorization in these works and the one used in this
paper.

5.3 Compact magnets

Among the compact magnets XXX1/2 is the most studied, beginning with Bethe’s original
work [13]. Here we will restrict to this case. While a lot is known about the Q-functions,
i.e. the eigenvalues of the Q-operator(s), much less is known about the construction of the
latter as a trace over a suitable monodromy matrix for XXX1/2.

In [18], inspired by [9], Baxter’s equation, at the level of eigenvalues, had been consid-
ered. For a given eigenvalue of the T-operator acting on some h.w.s, two linearly inde-
pendent polynomial solutions of Baxter’s equation were found. These two solutions were
called P and Q in [18], and are generically distinguished by their degree of polynomiality in
the spectral parameter. It was furthermore shown that the lower degree polynomial Q can
always be added to the higher degree polynomial P , leading to a one parameter freedom
in the root distribution of the higher degree polynomial.

Subsequently Pronko built a one-parameter family of Q-operators in [27], which we
denoted in section 4.3 P-operators. However, as explicitly written in equation (4.10), the
one-parameter family of P-operators is nothing but the set of all T-operators after a linear
redefinition of their spectral parameter and spin. Thus the construction in [27], following
[7], finally boils down to the construction of Tj(u) for general, complex values of the spin
j ∈ C. As discussed in appendix C there are various seemingly different but ultimately
equivalent procedures to achieve this.

In [47] and [25] Pronko tried to build two “basic” Q± instead of a one parameter family
of Q-operators. He succeeded in doing this for the Toda chain and the DST “discrete self
trapping” chain, respectively. Still it is important to keep in mind that his construction,
apart from the fact that it was applied to a different class of models, remains conceptually
different from the one proposed in this work. The idea in [27, 47, 25] is to build some oper-
ator satisfying Baxter’s equation. In contradistinction, in the present paper we aim at the
fundamental relation (3.20). The factorization formulas (3.43), (3.48) are the crucial step
in doing this. The relation between the two constructions deserves further investigations.
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6 Conclusions and Open Problems

In this work we have demonstrated that the complete understanding of the “simplest” of
all integrable quantum models, the compact spin-1

2
XXX Heisenberg model, requires the

introduction of non-compact oscillator representations. After this is done, a very inter-
esting factorization of the compact quantum Lax-operator takes place, cf. (3.43), (3.48).
This fact may then be used to quickly find a very elegant solution of the model in terms of
the full set of operatorial (as opposed to mere equations for their eigenvalues) functional
relations between a large class of commuting families of transfer matrices, which natu-
rally includes two linearly independent Baxter Q-operators. An added benefit is that all
transfer matrices, including the Baxter Q-operators, are explicitly constructed as traces
over suitable monodromy matrices. The latter is particularly important, as the analytic
structure of the solutions to the hierarchy does not have to be guessed, but is clear from
the construction. In this sense we consider our approach a first sketch of what needs to
be done in order to understand the solution of the AdS/CFT spectral problem proposed
in [6], where the analytic structure of the solutions of the infinite set of functional integral
equations obtained from the TBA approach has to be guessed and then imposed by hand.

Apart from this technical advantage of a direct construction on the operatorial level, we
believe that there will eventually be an interesting physical interpretation of our procedure.
Baxter Q-operators enter the T-system of AdS/CFT as “boundary values”. Furthermore,
it is clear that the auxiliary channel in which the bosonic excitations we need for our con-
struction are propagating is closely related to the “mirror direction” in the TBA approach.
A similar analogy was recently pointed out in [48]. We believe that these kinds of funda-
mental short-range excitations are suitable for replacing the long-range “mirror magnons”
of AdS/CFT.

An important feature of our approach is that a magnetic flux (horizontal field, or twist)
has to be applied in order to ensure convergence of the Baxter Q-operators. This suggests
that in some sense the theory with the flux is more natural, and the untwisted case is a
somewhat singular limit. It is possible that this feature also lifts to the AdS/CFT case.
As was stated in the introduction, in AdS/CFT the twisted theory also appears to be
integrable [19], but much less is known about it. In particular, its finite-size structure is
very puzzling, see e.g. [49]. In any case, from our point of view it is still not clear whether
one can construct Baxter Q-operators in the absence of horizontal fields directly as a trace
over some monodromy matrix.

Clearly our approach should be extended to the compact sl(n) and the supersymmetric
sl(n|m) cases, as well as the non-compact magnets, with the goal of treating the symmetry
algebra su(2, 2|4) of AdS/CFT [26]. In particular it will be interesting to relate our method
to the Baxter Q-operator construction developed for non-compact spin chains in [46].

Finally we would like to mention yet another interesting research direction in the theory
of Q-operators. It concerns their connection to the spectral theory of differential equations
[50, 51, 52]. It recently found new applications in the theory of BPS states of a large class
of d = 4, N = 2 field theories [53], as well as in the (mysteriously) closely related theory of
classical string solutions for certain strongly coupled Wilson loops in N = 4 gauge theory
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[54]. Lastly this spectral theory also appeared in the description of the massive Sine(h)-
Gordon model [55]. For the XXX model the connection to differential equations arises in
the c = 1 CFT limit [56], which is closely related to the Kondo model [57].
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A Functional relations

Using the defining relations for T and T in (3.23) and (3.20), one finds

TAB = f(φ)TA−B−1
2

(A+B
2

) . (A.1)

A more explicit form of the left equation in (3.24) reads

TCB Q±
A = TAB Q±

C + TCA Q±
B . (A.2)

Choosing
A = z , B = z + z′ + j + 1

2
, C = z + z′ − j − 1

2
, (A.3)

one gets

Tj(z + z′)Q±(z) =T1
2
(j−z′−

1
2
)

(
z + 1

2
(z′ − j − 1

2
)
)
Q±

(
z + z′ + j + 1

2

)
+

T1
2
(j+z′−

1
2
)

(
z + 1

2
(z′ + j + 1

2
)
)
Q±

(
z + z′ − j − 1

2

)
. (A.4)

Analogously the right equation in (3.24) reads

TCBTAD = TAB TCD + TCA TBD . (A.5)

With the choice

A = z′ + j′ + 1
2
, D = z′ − j′ − 1

2
, C = z + j + 1

2
B = z − j − 1

2
, (A.6)

one gets

Tj(z)Tj′(z
′) =T z−z′+j−j′−1

2

(
z+z′+j+j′+1

2

)
T z−z′−j+j′−1

2

(
z+z′−j−j′−1

2

)
+

T z′−z+j′+j
2

(
z′+z+j′−j

2

)
T z−z′+j+j′

2

(
z+z′+j−j′

2

)
. (A.7)
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B Explicit results for small chain lengths

In this appendix, where we revert to the notation24 with the spectral parameter u = iz,
cf. (2.31), we will present the results for Q−(u), Q+(u) and T(u) for the smallest possible
chain lengths25 L = 1, 2. All matrix elements of Q−(u), Q+(u) are easily computed
from (3.51). For the convenience of the reader we will present the “Wick-rotated” (i.e.
written in the u-plane) Lax operators for the Baxter Q-operators. Recall also the definition
z± = z ± (j + 1

2
) in (3.35). They read, with h = a+ a− + 1

2
as defined in (3.26),

L−(u) =

(
1 a+

i a− u + ih

)
. (B.1)

and

L+(u) =

(
u− ih i a+

−a− 1

)
. (B.2)

The definitions of L± given above differ from the definitions L± given in (3.37), (3.38) in
the main text. The two definitions are related in this way

L−(iz) =

(
1 0
0 i

)
L−(z) , L+(iz) =

(
i 0
0 1

)
L+(z) . (B.3)

The conventions used in this appendix are such that the eigenvalues of Q± have the form
exp (±φ

2
u)(up + . . . ), where p is some integer. Notice that the position of the diagonal

matrix (left or right) in (B.3) can be compensated by an oscillator algebra automorphism.
In particular this means that left and right multiplication became equivalent after the trace
is taken. This in nothing but restating the U(1) invariance of Q±. The Baxter operators
(3.51) become in the u-notation

Q±(u;φ) ≡ e±
φ
2
u

TrF(e−i φ h)
TrF

(
e−i φ h L±

L(u) ⊗ · · · ⊗ L±
1 (u)

)
. (B.4)

The matrix elements of the transfer matrix T(u) are then obtained, for j = 1
2
, from (3.20).

It is easy to check that the direct construction based on (2.24), (2.25) leads to the same
results. We will also write down the L = 1, 2 eigenvalues Q−(u), Q+(u) and T (u) of these
operators.

It is easy to check that the operators below indeed satisfy the j = 0 and j = 1
2

cases of
the Wronskian relation (3.20) translated to u-space

2 i sin
φ

2
uL =Q+(u +

i

2
)Q−(u− i

2
) −Q+(u− i

2
)Q−(u +

i

2
), (B.5)

2 i sin
φ

2
T(u) =Q+(u + i)Q−(u− i) −Q+(u− i)Q−(u + i). (B.6)

24The reason is that the Bethe equations are most commonly written in the u-plane.
25 Note that while it is not possible to define a nearest neighbor Hamiltonian for a L = 1 “chain”, the

definitions (2.24),(2.25) for the transfer matrix and (3.51) for the Baxter operators still make sense.
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B.1 Length L = 1

B.1.1 Q
−
(u)

e−
φ
2
u

(
1 0

0 u + 1
2

cot φ
2

)

e−
φ
2
u

{
1 , u +

1

2
cot

φ

2

}

B.1.2 Q+(u)

e
φ
2
u

(
u− 1

2
cot φ

2
0

0 1

)

e
φ
2
u

{
1, u− 1

2
cot

φ

2

}

B.1.3 T(u)
(

2u cos φ
2
− sin φ

2
0

0 2u cos φ
2

+ sin φ
2

)

{
2u cos

φ

2
− sin

φ

2
, 2u cos

φ

2
+ sin

φ

2

}

B.2 Length L = 2

B.2.1 Q
−
(u)

e−
φ
2
u




1 0 0 0

0 u + 1
2

cot φ
2

1
2

cot φ
2

+ i
2

0

0 1
2

cot φ
2
− i

2
u + 1

2
cot φ

2
0

0 0 0 u2 + u cot φ
2

+ 1

2 sin2 φ
2

− 1
4




e−
φ
2
u

{
1 , u +

1

2
cot

φ

4
, u− 1

2
tan

φ

4
, u2 + u cot

φ

2
+

1

2 sin2 φ
2

− 1

4

}

B.2.2 Q+(u)

e
φ
2
u




u2 − cot φ
2
u + 1

2 sin2 φ
2

− 1
4

0 0 0

0 u− 1
2

cot φ
2

−1
2

cot φ
2
− i

2
0

0 −1
2

cot φ
2

+ i
2

u− 1
2

cot φ
2

0
0 0 0 1
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e
φ
2
u

{
1 , u− 1

2
cot

φ

4
, u +

1

2
tan

φ

4
, u2 − u cot

φ

2
+

1

2 sin2 φ
2

− 1

4

}

B.2.3 T(u)



(
2u2 − 1

2

)
cos φ

2
− 2u sin φ

2
0 0 0

0
(
2u2 + 1

2

)
cos φ

2
−e

iφ
2 0

0 −e−
iφ
2

(
2u2 + 1

2

)
cos φ

2
0

0 0 0
(
2u2 − 1

2

)
cos φ

2
+ 2u sin φ

2




{(
2u2 − 1

2

)
cos

φ

2
− 2u sin

φ

2
,

(
2u2 +

1

2

)
cos

φ

2
+ 1,

(
2u2 +

1

2

)
cos

φ

2
− 1,

(
2u2 − 1

2

)
cos

φ

2
+ 2u sin

φ

2

}

C Analytic continuation of the trace

In this appendix we will review three ways of defining traces for complex spin. The first
way, used in our construction in the main body of the paper, involves introducing a twist
φ as a regulator and then takes φ → 0 while subtracting infinities. The second way has
been introduced in [29] under the name “trace functional”. The third way has been used
by Pronko in [27]. We will now show the equivalence of these three constructions. In the
case of the first two, this had already been noticed in [28].

Let us first fix the set-up for the analysis. Denote by O any one of the 2L × 2L matrix
elements of the monodromy matrix, see (3.12). O is some expression written in terms of
the su(2) generators J0,J± acting in the auxiliary space (we will also use the notation Jl

k).
It is clear from u(1) invariance that any such O has a definite grading under J0, namely:

[J0,O] = s(O)O . (C.1)

If s(O) 6= 0, then its trace will vanish for any complex value of the spin. So let us consider
the case s(O) = 0. In this case O can be rewritten as

O → F (J0, ~J2), (C.2)

where F is some function.

C.1 Twist regularization and φ → 0 limit

Let us consider
Tr π+

j

(
e−i φJ0O

)
− Tr π+

−j−1

(
e−i φJ0O

)
, (C.3)
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where the trace is taken over the infinite dimensional Verma module. We will show that
this quantity is finite in the φ → 0 limit.

To proceed it is useful to realize the highest weight representation explicitly in a Fock
space. The latter is an infinite module π+

l for any l. It thus contains the information about
the spin in our realizations of the generators, see (3.31) and (3.32). As just discussed, we
will take O as in (C.2). Then (C.3) becomes

∞∑

n=0

(
e−iφ(n−j)F (n− j, j(j + 1)) − e−iφ(n+j+1)F (n + j + 1, j(j + 1))

)
. (C.4)

Introducing f(n−ν) ≡ F (n−j, j(j+1)), where ν = j+ 1
2
, and we suppress the dependence

on the Casimir j(j + 1), (C.4) can be rewritten as

e−iφ
2

∞∑

n=0

(
e−iφ(n−ν)f(n− ν) − e−iφ(n+ν)f(n + ν)

)
. (C.5)

Consider the case f(s) = sk for some integer k. Then (C.5) reads

e−iφ
2

(
i
∂

∂φ

)k ∞∑

n=0

(
e−iφ(n−ν) − e−iφ(n+ν)

)
= e−iφ

2

(
i
∂

∂φ

)k
(
ei

φ
2

sin νφ

sin φ
2

)
. (C.6)

This expression is finite in the φ → 0 limit for any k, ν. This concludes the proof of the
finiteness of Tj(z; 0)

C.2 Trace functional

We now want to show that the procedure of evaluating traces over complex spin of the
previous section is the same as the one used in [29] and termed “trace functional”. It has
the property that26

Tr functional
ν etJ0 ≡ sinh(t ν)

sinh t
2

. (C.7)

This formula plays the role of a generating function for the traces of (J0)
k. To show the

equivalence with the definition of the previous section it is enough to consider (C.3) with
O = 1 and −iφ = t. This gives

sinh(t ν)

sinh t
2

, (C.8)

and completes the proof of equivalence.

26 For convenience of the reader the notation used here is related to the one used in [29] in the following
way: x = 2 ν, H = 2J0, z = t

2 . See [29] for the complete set of defining properties of (C.7).
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C.3 Other approaches

We will now show that there is a third way to define traces over complex spin, used in [25].
It is equivalent to the previous two procedures. Now the definition of the trace is

Tr Pronko
ν O(Jl

k) ≡
∫

dµ(γ, γ̄)O(γl ∂

∂γk
)

(γ · γ̄)2ν−1

Γ(2ν)
, (C.9)

where

dµ(γ, γ̄) ≡ e−γ·γ̄
2∏

k=1

dγkdγ̄k
2πi

, γ · γ̄ ≡ γ1γ̄1 + γ2γ̄2 . (C.10)

As discussed before only the zero weight part of O(Jl
k) will contribute to the trace, cf. (C.1).

To make contact with the previous analysis we compute

Tr Pronko
ν etJ0 =

∫
dµ(γ, γ̄) e

t
2

(

γ1 ∂

∂γ1
−γ2 ∂

∂γ2

)

(γ · γ̄)2ν−1

Γ(2ν)

=
1

Γ(2ν)

∫
dµ(γ, γ̄)

(
e
t
2 γ1 γ̄1 + e

t
2 γ2 γ̄2

)2ν−1

=
sinh(t ν)

sinh t
2

. (C.11)

This last equation shows the equivalence with the other two definitions of trace.

D su(2) covariance properties

In this appendix we will study some su(2) transformation properties of Q±. Thanks to the
identity

eγ S−

(
1 a+

a− z− + a+ a−

)
= e−γ a+

(
1 a+

a− z− + a+ a−

)
eγ a+

, (D.1)

where

eγ S−

=

(
1 0
γ 1

)
, (D.2)

the trace of a monodromy matrix built from
(

1 a+

a− z− + a+ a−

)
, (D.3)

will satisfy the equation

eγ S−

tot Q−(z−) = Q−(z−) . (D.4)

This is a formal equation because for the trace to give a finite result one needs to introduce
a regulator e−i φ a+ a−

, and this operator does not commute with e± γ a+ . Still one can write

eγ S−

tot Q−(z−;φ) = Q−(z−;φ) (I + O(φ)) . (D.5)
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In a similar way one can show that

Q+(z+;φ) eγ S+
tot = Q+(z+;φ) (I + O(φ)) . (D.6)

On the other hand Q± are u(1) invariant for any value of the twist, namely

eγ S3
tot Q±(z±;φ) e−γ S3

tot = Q±(z±;φ) . (D.7)

Using the previous identities one can show that

e~γ
~Stot Q±(z1±;φ)Q−1

± (z2±;φ) e−~γ ~Stot = Q±(z1±;φ)Q−1
± (z2±;φ) (I + O±(φ)) . (D.8)

The proof is trivial using that Q±(z1, φ) and Q−1
± (z2, φ) commute. So the su(2) invariance

in the φ → 0 limit follows.

E More on sl(2) transformation properties of Wron-

skian

Let us investigate how Qz0(z;φ) and Pz0(z;φ) transform under rotations of Q±. One has

(
Q+

Q−

)
→
(
α β
γ δ

)(
Q+

Q−

)
, with α δ − β γ = 1 . (E.1)

One then finds

Pz0(z;φ) → Pz0(z;φ) , Qz0(z;φ) → Qz0(z;φ) + Pz0(z;φ)O
(

α β
γ δ

)

(z0;φ) . (E.2)

The explicit form of O is not important here, just notice that O vanishes for
(
α β
γ δ

)
=

(
α 0
0 α−1

)
,

(
α β
γ δ

)
=

(
0 i α−1

i α 0

)
=

(
0 i
i 0

) (
α 0
0 α−1

)
, (E.3)

which is the reason why equations (4.12), (4.13) cannot be inverted for Q±. This freedom
corresponds to the normalization of Q± and to the discrete operation of exchanging Q+

with Q−.

F Numerics

In this appendix we want to present more details on the method used in section 4.5 for
finding the two-cut root distributions for both the Q and the P polynomials. We will
perform it in two steps. Firstly, we will find all roots of the polynomial Q(u) using the
method presented in [30]. Then, using the information about the polynomial Q(u) we will
find P (u) from the generalized Wronskian relation (4.14). We will end this appendix with
a few figures presenting different aspects of the problem.
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According to [30], in order to find roots of the polynomial Q(u) for given M and L ∼ M ,
we have to take as a starting point a slightly modified system. Let us fix the number of
excitations M , and choose the length of the spin chain L′ ≫ L such that M

L′
≪ 1

2
. One

finds that the approximate root distribution in this case is given in terms of the roots zk
of Hermite polynomials as

uk =
1

2πnk

(
L + izk

√
2L + O(1)

)
. (F.1)

Here, zk are the solutions of H(zk) = 0, where by H we denoted a Hermite polynomial. To
simplify our considerations we will investigate only the simplest two-cut solution with mode
numbers given by nk = 1, for k = 1, . . . , M

2
, and nk = −1, for k = M

2
+ 1, . . . ,M . Knowing

the approximate solution, we can use it as a starting point for the Newton method. This
way we can find the solution of (2.7) with desired precision for any M and much larger
L′. Unfortunately, this method does not work for the configurations close to half-filling
because then the approximation (F.1) is not good enough, and the Newton algorithm no
longer converges. However, to overcome this difficulty, we can treat the root distribution as
a function of the length, while keeping the magnon number M fixed. Assuming in addition
that the root distributions for slightly differing L’s should be numerically close, we can
use the solution found for a given length as initial data for Bethe equations with smaller
length. This way we get a sequence of configurations with fixed M and decreasing L,
corresponding to increasing filling M

L
. This procedure is sufficient to produce the solutions

of Bethe equations with excitation numbers very close to half-filling. In particular, we can
get the configuration presented in figure 1 in the main text.

In order to get the root configuration of the P-polynomials we will use (4.14) with j = 0
and in the φ → 0 limit. At the left hand side we then have only uL, while at the right hand

side we can substitute Q(u) =
∏M

2

i=1(u
2−u2

i ). Here we denoted by ui all roots with positive
real parts found at the previous stage. We assume the polynomial P (u) to be of the form
P (u) = (u− ũ0)

∑L−M
i=0 ai u

i where we factorized out (u− ũ0) in order to use the freedom
of P (u) which we discussed in the main text. We can indeed always construct a solution of
the untwisted Wronskian in the form P ′(u) = P (u) + αQ(u) by choosing α such that any
given ũ0 become a root of P ′. This way we can find a one-parameter family of solutions
numerated by ũ0. Now for given ũ0 we substitute the polynomial P (u) of the mentioned
form into the Wronskian relation. This way we will end up with the set of L − M + 1
linear equations, where the coefficients ai, i = 0, . . . , L−M will play the role of unknowns.
The solution of this linear equations is easy to find. It leaves us only with the problem of
finding the roots of P (u), which we can perform numerically. Using the methods presented
above we are able to find configurations for chosen values of L and M below half-filling.
Additionally, we may observe the behaviour of the solution for different ũ0, see also [32].
In the main text we presented only the ũ0 = 0 case. In figure 2 we illustrate the root
configurations also for other values.
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Figure 2: Root distribution of Q(u) (purple squares) and P (u) (blue dots) with various ũ0

for L = 60 and M = 16. (a) ũ0 = 0, (b) ũ0 = 1, (c) ũ0 = 4. Reading this figure from the
bottom one can see that when |ũ0| is decreased the two condensates shown in (c) start to
approach each other (b) and eventually assemble on one line (a). It is interesting to note
that for even length L the two condensates pass through each other without “touching”
(like in the figure), while for odd L they “scatter”, thereby producing double roots on the
imaginary axis for ũ0 = 0.
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for the integrable DST model,” J. Phys. A 33 (2000) 171 solv-int/9908002.

[25] A. E. Kovalsky and G. P. Pronko, “Baxter Q-operators for the integrable discrete self-
trapping chain,” Theoretical and Mathematical Physics, vol. 142, issue 2, pp. 259-269,
nlin/0203030.

[26] In preparation.

[27] G. P. Pronko, “On the Baxter’s Q operator for the XXX spin chain,” Commun. Math.
Phys. 212 (2000) 687, hep-th/9908179.

[28] C. Korff, “A Q-operator for the twisted XXX model,” J. Phys. A : Math. Gen. 39
(2006) 3203, math-ph/0511022.

[29] H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, “A recursion formula for
the correlation functions of an inhomogeneous XXX model,”, hep-th/0405044.

[30] T. Bargheer, N. Beisert and N. Gromov, “Quantum Stability for the Heisenberg Fer-
romagnet,” New J. Phys. 10 (2008) 103023, 0804.0324 [hep-th].

[31] N. Beisert, J. A. Minahan, M. Staudacher and K. Zarembo, “Stringing spins and
spinning strings,” JHEP 0309 (2003) 010, hep-th/0306139.

[32] N. Gromov and P. Vieira, “Complete 1-loop test of AdS/CFT,” JHEP 0804 (2008)
046, 0709.3487 [hep-th].

[33] R. J. Baxter, “Eight vertex model in lattice statistics and one-dimensional anisotropic
Heisenberg chain. 2. Equivalence to a generalized ice-type lattice model,” Annals Phys.
76, 25 (1973).

[34] R. J. Baxter,, “Exactly Solved Models in Statistical Mechanics,”, Academic Press
(1982).

[35] K. Fabricius and B. M. McCoy, “New Developments in the Eight Vertex Model,” J.
Statist. Phys. 111 (2003) 323, cond-mat/0207177. • K. Fabricius and B. M. Mc-
Coy, “New Developments in the Eight Vertex Model II. Chains of odd length,”
cond-mat/0410113. • K. Fabricius, “A new Q-matrix in the Eight-Vertex Model,”
J. Phys. A 40 (2007) 4075, cond-mat/0610481.

[36] V. V. Bazhanov and V. V. Mangazeev, “Eight-vertex model and non-stationary Lamé
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