32 research outputs found

    The separation problem for regular languages by piecewise testable languages

    Full text link
    Separation is a classical problem in mathematics and computer science. It asks whether, given two sets belonging to some class, it is possible to separate them by another set of a smaller class. We present and discuss the separation problem for regular languages. We then give a direct polynomial time algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a BΣ1(<)B{\Sigma}1(<) sentence can witness that the languages are indeed disjoint. The proof is a reformulation and a refinement of an algebraic argument already given by Almeida and the second author

    On factorisation forests

    Get PDF
    The theorem of factorisation forests shows the existence of nested factorisations -- a la Ramsey -- for finite words. This theorem has important applications in semigroup theory, and beyond. The purpose of this paper is to illustrate the importance of this approach in the context of automata over infinite words and trees. We extend the theorem of factorisation forest in two directions: we show that it is still valid for any word indexed by a linear ordering; and we show that it admits a deterministic variant for words indexed by well-orderings. A byproduct of this work is also an improvement on the known bounds for the original result. We apply the first variant for giving a simplified proof of the closure under complementation of rational sets of words indexed by countable scattered linear orderings. We apply the second variant in the analysis of monadic second-order logic over trees, yielding new results on monadic interpretations over trees. Consequences of it are new caracterisations of prefix-recognizable structures and of the Caucal hierarchy.Comment: 27 page

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, ISI \subseteq S and SE=S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Cliquewidth and dimension

    Full text link
    We prove that every poset with bounded cliquewidth and with sufficiently large dimension contains the standard example of dimension kk as a subposet. This applies in particular to posets whose cover graphs have bounded treewidth, as the cliquewidth of a poset is bounded in terms of the treewidth of the cover graph. For the latter posets, we prove a stronger statement: every such poset with sufficiently large dimension contains the Kelly example of dimension kk as a subposet. Using this result, we obtain a full characterization of the minor-closed graph classes C\mathcal{C} such that posets with cover graphs in C\mathcal{C} have bounded dimension: they are exactly the classes excluding the cover graph of some Kelly example. Finally, we consider a variant of poset dimension called Boolean dimension, and we prove that posets with bounded cliquewidth have bounded Boolean dimension. The proofs rely on Colcombet's deterministic version of Simon's factorization theorem, which is a fundamental tool in formal language and automata theory, and which we believe deserves a wider recognition in structural and algorithmic graph theory

    A Proof of the Factorization Forest Theorem

    Full text link
    We show that for every homomorphism Γ+S\Gamma^+ \to S where SS is a finite semigroup there exists a factorization forest of height \leq 3 \abs{S}. The proof is based on Green's relations.Comment: 4 page

    Algebraic Characterization of FO for Scattered Linear Orderings

    Get PDF
    We prove that for the class of sets of words indexed by countable scattered linear orderings, there is an equivalence between definability in first-order logic, star-free expressions with marked product, and recognizability by finite aperiodic semigroups which satisfy some additional equation

    Complementation of Rational Sets on Countable Scattered Linear Orderings

    Get PDF
    In a preceding paper (Bruyère and Carton, automata on linear orderings, MFCS'01), automata have been introduced for words indexed by linear orderings. These automata are a generalization of automata for finite, infinite, bi-infinite and even transfinite words studied by Büchi. Kleene's theorem has been generalized to these words. We prove that rational sets of words on countable scattered linear orderings are closed under complementation using an algebraic approach

    Locally countable pseudovarieties

    Get PDF
    The purpose of this paper is to contribute to the theory of profinite semigroups by considering the special class consisting of those all of whose finitely generated closed subsemigroups are countable, which are said to be locally countable. We also call locally countable a pseudovariety V (of finite semigroups) for which all pro-V semigroups are locally countable. We investigate operations preserving local countability of pseudovarieties and show that, in contrast with local finiteness, several natural operations do not preserve it. We also investigate the relationship of a finitely generated profinite semigroup being countable with every element being expressible in terms of the generators using multiplication and the idempotent (omega) power. The two properties turn out to be equivalent if there are only countably many group elements, gathered in finitely many regular J -classes. We also show that the pseudovariety generated by all finite ordered monoids satisfying the inequality 1 6 x n is locally countable if and only if n = 1
    corecore