5,028 research outputs found

    Enhancing Mobility Applications Through Bluetooth Communications

    Get PDF
    In the world of short and medium-range wireless technologies, Bluetooth has recently come to the forefront of innovation. Within the next five years its market presence, especially in its Low Energy variation, is expected to nearly double across all market segments. The technology is quickly and steadily gaining importance for a wide range of applications with a specific focus on Internet of Things (IoT) devices. The growing availability and variety of such devices constitute an untapped potential that we plan on exploiting. Our focus in this thesis is to understand Bluetooth’s capabilities and explore its potential in mobile contexts. One specific field where this technology remains unexplored is Vehicular Ad Hoc Networks (VANETs). Because of the need to implement and moderate vehicular communications, the topic of Intelligent Transportation Systems (ITSs) is now trending more than ever. In this thesis we propose two ways we can benefit from Bluetooth in a mobile environment. Firstly, we consider the technology as a communication medium to investigate how di↵erent mobilities a↵ect the link performance between two devices. To do this, we define a set of communication experiments, in our case between two vehicles, to analyse how Bluetooth Low Energy (BLE) is a↵ected by varying speed, distance and traffic conditions. We find that the maximum communication range between two devices can go beyond 100m and that a robust connection, capable of handling sudden signal losses or interference, can be achieved up to a distance of 50m. The experiments were conducted using a proof-of-concept mobile application for o↵-the-shelf smartphones that can be used to transmit data over multiple hops in various Vehicle-to-Everything (V2X) scenarios. Secondly, we consider Bluetooth discovery capabilities as an information medium by using a connectionless approach to analyse di↵erent mobility frameworks. As there is an increasing need for vehicles and objects to become aware of their context, we implement Bluetooth as a sensing system to provide contextual information about its surroundings. Our challenge is to find out to what extent we can exploit the Bluetooth discovery and beaconing scheme for this purpose. We collect and analyse a dataset of Bluetooth Classic and BLE discoveries and evaluate their respective characteristics and ability to provide context-aware information from a vehicular perspective. By examining data recorded about encountered devices, such as quantity, quality of signal and device class information, we infer distinctive Bluetooth behaviours related to context and application. For this purpose, we propose a set a features to train a classification model to recognize di↵erent driving environments (i.e. road classes). Investigating the performance of our classifier, we were able to predict up to three classes (highway, city, extra-urban) by using only Bluetooth discovery data and no geographical information. This outcome gives promising results targeted at low energy and privacy-friendly applications and can open up a wide range of research directions. In conclusion, in this thesis we present two ways of applying Bluetooth to mobile contexts for deploying novel human mobility applications

    On Mobile Bluetooth Tags

    Full text link
    This paper presents a new approach for hyper-local data sharing and delivery on the base of discoverable Bluetooth nodes. Our approach allows customers to associate user-defined data with network nodes and use a special mobile application (context-aware browser) for presenting this information to mobile users in proximity. Alternatively, mobile services can request and share local data in M2M applications rely on network proximity. Bluetooth nodes in cars are among the best candidates for the role of the bearing nodes.Comment: submitted to FRUCT-17 conference (http://fruct.org

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving
    • …
    corecore