862 research outputs found

    Asian female facial beauty prediction using deep neural networks via transfer learning and multi-channel feature fusion

    Get PDF
    Facial beauty plays an important role in many fields today, such as digital entertainment, facial beautification surgery and etc. However, the facial beauty prediction task has the challenges of insufficient training datasets, low performance of traditional methods, and rarely takes advantage of the feature learning of Convolutional Neural Networks. In this paper, a transfer learning based CNN method that integrates multiple channel features is utilized for Asian female facial beauty prediction tasks. Firstly, a Large-Scale Asian Female Beauty Dataset (LSAFBD) with a more reasonable distribution has been established. Secondly, in order to improve CNN's self-learning ability of facial beauty prediction task, an effective CNN using a novel Softmax-MSE loss function and a double activation layer has been proposed. Then, a data augmentation method and transfer learning strategy were also utilized to mitigate the impact of insufficient data on proposed CNN performance. Finally, a multi-channel feature fusion method was explored to further optimize the proposed CNN model. Experimental results show that the proposed method is superior to traditional learning method combating the Asian female FBP task. Compared with other state-of-the-art CNN models, the proposed CNN model can improve the rank-1 recognition rate from 60.40% to 64.85%, and the pearson correlation coefficient from 0.8594 to 0.8829 on the LSAFBD and obtained 0.9200 regression prediction results on the SCUT dataset

    Evaluating soft biometrics in the context of face recognition

    Get PDF
    2013 Summer.Includes bibliographical references.Soft biometrics typically refer to attributes of people such as their gender, the shape of their head, the color of their hair, etc. There is growing interest in soft biometrics as a means of improving automated face recognition since they hold the promise of significantly reducing recognition errors, in part by ruling out illogical choices. Here four experiments quantify performance gains on a difficult face recognition task when standard face recognition algorithms are augmented using information associated with soft biometrics. These experiments include a best-case analysis using perfect knowledge of gender and race, support vector machine-based soft biometric classifiers, face shape expressed through an active shape model, and finally appearance information from the image region directly surrounding the face. All four experiments indicate small improvements may be made when soft biometrics augment an existing algorithm. However, in all cases, the gains were modest. In the context of face recognition, empirical evidence suggests that significant gains using soft biometrics are hard to come by

    Biometric evidence that sexual selection has shaped the hominin face.

    Get PDF
    We consider sex differences in human facial morphology in the context of developmental change. We show that at puberty, the height of the upper face, between the lip and the brow, develops differently in males and females, and that these differences are not explicable in terms of sex differences in body size. We find the same dimorphism in the faces of human ancestors. We propose that the relative shortening in men and lengthening in women of the anterior upper face at puberty is the mechanistic consequence of extreme maxillary rotation during ontogeny. A link between this developmental model and sexual dimorphism is made for the first time, and provides a new set of morphological criteria to sex human crania. This finding has important implications for the role of sexual selection in the evolution of anthropoid faces and for theories of human facial attractiveness

    Face Shape Variation Among Sundanese People from Western Java, Indonesia

    Get PDF
    The face is an important visual stimulus in daily life and each face identifies a particular person. The bone structure of the skull along with various soft tissues and coloration influence perception of the face. Facial averageness, and bilateral symmetry are the two most commonly used criterion of facial attractiveness, yet, both may be perceived differently based on hormonal status of the person observed. Facial perceptions may also differ according to cultural norms. In this research, we examined variations in face-shape among Sundanese male and female adults aged 18 to 40. We applied geometric-morphometric methods to analyze the landmark-based morphological variations in the frontal and lateral views of subjects’ faces. We identified five types of female frontal face views and four of male. We also identified five types each of female and male lateral face views. The trichion, gonion and gnathion were three most variable landmarks among the face views in our study, and highly determined the shape of the individuals’ faces. Multiple face type variation may refer to many categories of attractive faces since there is no exactly perfect category in the assessment of facial attractiveness by the viewers. Therefore, we believe that the configuration of facial features cannot constitute the sole visual criterion of facial attractiveness

    Facial Beauty Prediction and Analysis based on Deep Convolutional Neural Network: A Review

    Get PDF
    Abstract: Facial attractiveness or facial beauty prediction (FBP) is a current study that has several potential usages. It is a key difficulty area in the computer vision domain because of the few public databases related to FBP and its experimental trials on the minor-scale database. Moreover, the evaluation of facial beauty is personalized in nature, with people having personalized favor of beauty. Deep learning techniques have displayed a significant ability in terms of analysis and feature representation. The previous studies focussed on scattered portions of facial beauty with fewer comparisons between diverse techniques. Thus, this article reviewed the recent research on computer prediction and analysis of face beauty based on deep convolution neural network DCNN. Furthermore, the provided possible lines of research and challenges in this article can help researchers in advancing the state – of- art in future work

    Human gait identification and analysis

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Human gait identification has become an active area of research due to increased security requirements. Human gait identification is a potential new tool for identifying individuals beyond traditional methods. The emergence of motion capture techniques provided a chance of high accuracy in identification because completely recorded gait information can be recorded compared with security cameras. The aim of this research was to build a practical method of gait identification and investigate the individual characteristics of gait. For this purpose, a gait identification approach was proposed, identification results were compared by different methods, and several studies about the individual characteristics of gait were performed. This research included the following: (1) a novel, effective set of gait features were proposed; (2) gait signatures were extracted by three different methods: statistical method, principal component analysis, and Fourier expansion method; (3) gait identification results were compared by these different methods; (4) two indicators were proposed to evaluate gait features for identification; (5) novel and clear definitions of gait phases and gait cycle were proposed; (6) gait features were investigated by gait phases; (7) principal component analysis and the fixing root method were used to elucidate which features were used to represent gait and why; (8) gait similarity was investigated; (9) gait attractiveness was investigated. This research proposed an efficient framework for identifying individuals from gait via a novel feature set based on 3D motion capture data. A novel evaluating method of gait signatures for identification was proposed. Three different gait signature extraction methods were applied and compared. The average identification rate was over 93%, with the best result close to 100%. This research also proposed a novel dividing method of gait phases, and the different appearances of gait features in eight gait phases were investigated. This research identified the similarities and asymmetric appearances between left body movement and right body movement in gait based on the proposed gait phase dividing method. This research also initiated an analysing method for gait features extraction by the fixing root method. A prediction model of gait attractiveness was built with reasonable accuracy by principal component analysis and linear regression of natural logarithm of parameters. A systematic relationship was observed between the motions of individual markers and the attractiveness ratings. The lower legs and feet were extracted as features of attractiveness by the fixing root method. As an extension of gait research, human seated motion was also investigated.This study is funded by the Dorothy Hodgkin Postgraduate Awards and Beijing East Gallery Co. Ltd

    A Comprehensive Study on Face Recognition Biases Beyond Demographics

    Full text link
    Face recognition (FR) systems have a growing effect on critical decision-making processes. Recent works have shown that FR solutions show strong performance differences based on the user's demographics. However, to enable a trustworthy FR technology, it is essential to know the influence of an extended range of facial attributes on FR beyond demographics. Therefore, in this work, we analyse FR bias over a wide range of attributes. We investigate the influence of 47 attributes on the verification performance of two popular FR models. The experiments were performed on the publicly available MAADFace attribute database with over 120M high-quality attribute annotations. To prevent misleading statements about biased performances, we introduced control group based validity values to decide if unbalanced test data causes the performance differences. The results demonstrate that also many non-demographic attributes strongly affect the recognition performance, such as accessories, hair-styles and colors, face shapes, or facial anomalies. The observations of this work show the strong need for further advances in making FR system more robust, explainable, and fair. Moreover, our findings might help to a better understanding of how FR networks work, to enhance the robustness of these networks, and to develop more generalized bias-mitigating face recognition solutions.Comment: Under review in IEEE Transactions on Technology and Societ

    Human metrology for person classification and recognition

    Get PDF
    Human metrological features generally refers to geometric measurements extracted from humans, such as height, chest circumference or foot length. Human metrology provides an important soft biometric that can be used in challenging situations, such as person classification and recognition at a distance, where hard biometric traits such as fingerprints and iris information cannot easily be acquired. In this work, we first study the question of predictability and correlation in human metrology. We show that partial or available measurements can be used to predict other missing measurements. We then investigate the use of human metrology for the prediction of other soft biometrics, viz. gender and weight. The experimental results based on our proposed copula-based model suggest that human body metrology contains enough information for reliable prediction of gender and weight. Also, the proposed copula-based technique is observed to reduce the impact of noise on prediction performance. We then study the question of whether face metrology can be exploited for reliable gender prediction. A new method based solely on metrological information from facial landmarks is developed. The performance of the proposed metrology-based method is compared with that of a state-of-the-art appearance-based method for gender classification. Results on several face databases show that the metrology-based approach resulted in comparable accuracy to that of the appearance-based method. Furthermore, we study the question of person recognition (classification and identification) via whole body metrology. Using CAESAR 1D database as baseline, we simulate intra-class variation with various noise models. The experimental results indicate that given enough number of features, our metrology-based recognition system can have promising performance that is comparable to several recent state-of-the-art recognition systems. We propose a non-parametric feature selection methodology, called adapted k-nearest neighbor estimator, which does not rely on intra-class distribution of the query set. This leads to improved results over other nearest neighbor estimators (as feature selection criteria) for moderate number of features. Finally we quantify the discrimination capability of human metrology, from both individuality and capacity perspectives. Generally, a biometric-based recognition technique relies on an assumption that the given biometric is unique to an individual. However, the validity of this assumption is not yet generally confirmed for most soft biometrics, such as human metrology. In this work, we first develop two schemes that can be used to quantify the individuality of a given soft-biometric system. Then, a Poisson channel model is proposed to analyze the recognition capacity of human metrology. Our study suggests that the performance of such a system depends more on the accuracy of the ground truth or training set
    corecore