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Abstract 

Human gait identification has become an active area of research due to increased 

security requirements. Human gait identification is a potential new tool for 

identifying individuals beyond traditional methods. The emergence of motion 

capture techniques provided a chance of high accuracy in identification because 

completely recorded gait information can be recorded compared with security 

cameras.  

The aim of this research was to build a practical method of gait identification and 

investigate the individual characteristics of gait.  

For this purpose, a gait identification approach was proposed, identification results 

were compared by different methods, and several studies about the individual 

characteristics of gait were performed. This research included the following: (1) a 

novel, effective set of gait features were proposed; (2) gait signatures were 

extracted by three different methods: statistical method, principal component 

analysis, and Fourier expansion method; (3) gait identification results were 

compared by these different methods; (4) two indicators were proposed to 

evaluate gait features for identification; (5) novel and clear definitions of gait 

phases and gait cycle were proposed; (6) gait features were investigated by gait 

phases; (7) principal component analysis and the fixing root method were used to 

elucidate which features were used to represent gait and why; (8) gait similarity 

was investigated; (9) gait attractiveness was investigated.  

This research proposed an efficient framework for identifying individuals from 

gait via a novel feature set based on 3D motion capture data. A novel evaluating 

method of gait signatures for identification was proposed. Three different gait 

signature extraction methods were applied and compared. The average 

identification rate was over 93%, with the best result close to 100%.  

This research also proposed a novel dividing method of gait phases, and the 

different appearances of gait features in eight gait phases were investigated. This 

research identified the similarities and asymmetric appearances between left body 

movement and right body movement in gait based on the proposed gait phase 

dividing method. This research also initiated an analysing method for gait features 
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extraction by the fixing root method.  

A prediction model of gait attractiveness was built with reasonable accuracy by 

principal component analysis and linear regression of natural logarithm of 

parameters. A systematic relationship was observed between the motions of 

individual markers and the attractiveness ratings. The lower legs and feet were 

extracted as features of attractiveness by the fixing root method.  

As an extension of gait research, human seated motion was also investigated.  
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Chapter 1 Introduction and literature review 

Section 1: Introduction 

Human gait analysis, the systematic study of human walking, has been developed 

from early descriptive studies to newer studies involving mathematical analysis 

and modelling and has become an important part of human motion analysis. Gait 

analysis has been applied in many areas, including biomechanical, psychological, 

and security disciplines. 

The goal of researchers is to analyse a walker's status based on their gait, such as 

gender, age, and health (Mather & Murdoch 1994; Nigg et al. 1994; Powers & 

Perry 1997; Grabiner et al. 2001; Troje 2002; Zhang et al. 2009; Menant et al. 

2009a). Furthermore, researchers aim to identify individuals (Foster et al. 2003; 

Wang et al. 2003; Han & Bhanu 2005; Sarkar et al. 2005; Chellappa et al. 2007). 

Recently, the use of soft biometrics for recognition has been studied. In (Wang et 

al. 2005), a video analysis framework using soft biometrics signatures such as skin 

tone and clothing colour was used for airport security surveillance. In (Moustakas 

et al. 2010), an efficient framework combining soft biometrics such as "height" 

and "stride length" with gait features was proposed.  

With the development of gait recording techniques, research methods were also 

advanced. The question that was first proposed in the 1970s, 'Can people 

recognise their friends or family by gait' has been developed to 'Can we identify a 

particular person by gait' (Cutting & Kozlowski 1977; Foster et al. 2003; Han & 

Bhanu 2006; Moustakas et al. 2010). Intuitively, we know that individual gaits are 

different and include some personal information. Can gait features were used like 

a 'biometric signature' to identify individuals, similar to the use of DNA or 

handwriting? This question inspired the research aims of this thesis. 
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In this research, a novel approach for identifying individuals was proposed based 

on 3D motion capture data. A novel gait feature set was proposed and evaluated. It 

was investigated the different influences on gait features from gait phases. A novel 

gait phases definition was proposed. The similarity and dissimilarity between the 

left and right sides of the body in gait were investigated. Besides, the relationship 

between gait and attractiveness was analysed and a predictable model for gait 

attractiveness was built.  

Section 2: Literature review 

1.1 History of gait analysis 

Gait is defined as “a particular way or manner of moving on foot". Gait analysis 

was a purely academic discipline in the beginning. Over time, it has been 

transformed into a useful tool in the diverse fields of physiology, clinical medicine 

and security. Psychology research (Johansson 1973) would seem to suggest that 

humans can recognize movement patterns merely from the temporal component. 

Since the first complete description of the gait cycle given by the Weber brothers 

in Germany in 1836 (Weber & Weber 1836), gait studies have revealed gait to be 

related to anatomy, physiology, and biomechanics. From the 1970s to the 1990s, 

many types of gait analysis research focused on different targets. These studies 

attempted to reveal the relationship between gait patterns and gender, age, health, 

wealth, and so on (Mather & Murdoch 1994; Schmitt & Atzwanger 1995; Cho et 

al. 2004; Boston & Sharpe 2005; Chiu & Wang 2007; Bennett et al. 2008; 

Røislien et al. 2009; Menant et al. 2009b; Bockemuhl et al. 2010). The 

biomechanical analysis of gait has been successfully applied in human clinical 

gait analysis (Whittle 1996). 

With the development of motion capture techniques in the last two decades, new 
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research areas have attracted interest. Motion capture techniques provide 3D 

motion data by motion capture system, whereas videos or cameras only provide 

2D image data (3D is abbreviation of three dimensions, 2D is abbreviation of two 

dimensions). Based on 3D gait data, many medical studies sought to investigate 

the difference between healthy individuals and patients with specific diseases 

(Powers & Perry 1997; Rosengren et al. 2009; Zhang et al. 2009). Human 

identification research also received greater attention with the advent of motion 

capture techniques, particularly in the field of security (Ma et al. 2006; Shan et al. 

2008). Other research has sought to recognize human action, such as walking, 

jumping, and running. However, gait analysis based on image data has continued 

since the 1970s (Cutting & Kozlowski 1977; Barton & Lees 1997; Collins et al. 

2002; Keren 2003; Jokisch et al. 2006; Bodor et al. 2009). 

In addition, much progress has been made in computer-vision-based human 

motion analysis. Action animation of computer images and game modelling has 

become more closely related with real gait analysis. Parameterised gait models 

have employed observation-based physical simulation and kinematic principles 

(Bruderlin & Calvert 1989; Granieri et al. 1995). Techniques for creating 

whole-body motions of human and animal characters were applied by generating a 

natural motion and other constraints such as desired joint angles and joint motion 

ranges (Yamane 2003). In some studies, the motion of an animated character was 

created by utilising an existing motion capture database to find a low-dimensional 

space that captures the properties of the desired behaviour, such as jumping, 

running, and walking (Safonova et al. 2004). 

1.2 The content of gait analysis  

Human walking is a simple process that involves a large amount of information. 
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The analysis of quantitative gait data has mainly focused on topics such as 

recognition, identification, animation, pattern analysis, and attractiveness, as well 

as other specific factors.  

1.2.1 Gait animation 

Gait animation has been observed in a variety application fields, including the 

fields of computers, game design, advertising, and simulation. Gait animation has 

attempted to create a virtual human that seems more like a real human. The 

remaining problem of human motion animation is the requirement for reality and 

complexity. Human motion animation ranges from very subtle motions such as a 

smile to whole body motions such as dancing or running. Much previous research 

has focused on modifying and rebuilding existing motions based on motion 

capture data. Motion editing methods have been surveyed in (Gleicher 2001). As 

early as 1978, the generation of synthetic walkers was investigated (Cutting 1978). 

Research related to articulated figure motion expanded the range of possible 

motion (Wiley & Hahn 1997). Generating motion with mood, such as a “tired” 

walk, from a normal motion was studied via Fourier principle methods in 

(Munetoshi et al. 1995). Research attempted to retarget motion to new characters 

by re-establishing the constraints while maintaining the frequency characteristics 

of the original motion (Gleicher 1998). Figures 1.1 and 1.2 illustrate an example 

of animation. 
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Fig 1.1: The Gait with Mood. left: Normal walk; right: Tired walk (Munetoshi et 

al. 1995) 

 

Fig 1.2: The retargeting process, which adapts the motion as the character morphs 

to 60% of its original size (Gleicher 1998). 

1.2.2 Gait attractiveness 

Psychologists have long been interested in how people assess the attractiveness of 

others. Body shape is static, but gait is dynamic. People are continuously 

perceiving gait attractiveness, whether this perception is conscious or not, because, 

in real life, human figures are dynamic most of the time and walking is a common 

movement.  

As early as the 1930s, some researchers were considering the factors influencing 
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gait movement attractiveness (Allport & Vernon 1933; Wolff 1935; Eisenberg & 

Reichline 1939). One study demonstrated that the gaits of dominant women were 

rated as more attractive than those of non-dominant women, but these results were 

not conclusive because of methodological difficulties, such as how to present the 

behavioural component of gait separately (Eisenberg & Reichline 1939). At that 

time, the media used to record gait was motion picture. After the development of 

the point-light kinematic display method, it became possible to establish that 

people can indeed infer various traits of a subject solely on the basis of movement 

cues from gait (Kozlowski & Cutting 1977; Cutting et al. 1978). Some point-light 

research investigated the vulnerability cues in the gaits of target choices for 

assault (Grayson & Stein 1981; Gunns et al. 2002). Experimental results showed 

that the impression of awkward movement as a kinematic gait quality is related to 

both a higher feminine impression as well as a higher likelihood of being a target for 

sexual advances (Sakaguchi & Hasegawa 2006).  

Computer animation technology has also provided new methods of gait analysis 

that have been used to explore gait attractiveness. Johnson and Tassinary (Johnson 

& Tassinary 2007) found that animated walkers were rated as more attractive by 

the opposite sex if they exhibited more sex-typical walking movements. The 

emergence of 3D motion capture techniques has improved the quality of the data 

that can be used to analyse the gait attractiveness of real human walkers. For 

example, Provost, Quinsey & Troje (Provost et al. 2008) used motion capture to 

analyse variations in gait between women at high and low probability of 

conception and the attractiveness ratings that men assigned to these variations. 

They found that the gaits of women not using hormonal birth control were slightly 

more attractive during the luteal stage than in the late follicular stage.  



 7 

1.2.3 Gait pattern analysis and recognition 

Gait is related to a variety of information, including health status, medical disease, 

age, gender, emotion, and so on. Pattern analysis studies the gait patterns of 

particular type of subjects to reveal the relationship between this information and 

gait. Pattern analysis focused on revealing the difference in gait pattern and the 

factors that affect a particular gait pattern, such as elder gait, female/male gait, 

patient gait, and so on. For example, much research has focused on the effect of 

gender on gait (Barclay et al. 1978; Furnham et al. 1997; Troje 2006; Hadid & 

Pietiknen 2009). Gait of healthy subjects and patients has received increasing 

attention since the emergence of the motion capture technique (Thornhill & 

Møller 1997; Allet et al. 2008; Mandeville et al. 2008; Rosengren et al. 2009). In 

medicine, gait research is normally based on a single type of subject to investigate 

the difference between their gait and a normal gait. In 1994, Nigg researched the 

gait characteristics of age and gender (Nigg et al. 1994). Age-related changes in 

gait were researched in 2001 (Grabiner et al. 2001). In 2009, researchers 

investigated the effect of walking surfaces, footwear and age on gait (Menant et al. 

2009a; 2009b).  

Gait recognition is one important part of gait analysis and has attracted much 

attention since the beginning of gait analysis. Gait recognition is a broad topic that 

includes gender recognition, age recognition, medical recognition, action 

recognition, and other recognitions depending on the characteristic used as the 

classification standard. Gait recognition is highly related to pattern analysis. 

Pattern analysis analyses the different patterns of different groups, compared the 

differences in appearance of different groups of walkers, and investigates the 

factors that affect gait. Gait recognition recognises to which group the walker 

belongs. For example, there were some common types of recognition, such as 
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gender recognition, age recognition, and health recognition. 

1.2.3.1 Gender recognition 

Gender recognition systems aim to determine whether the person in a given video 

is a man or a woman. The traditional method of recognition utilises the face, body 

shape or gait pattern (Kozlowski & Cutting 1977; Kerrigan et al. 1998). A recently 

popular identification method is a combination of face and motion (Shan et al. 

2008; Hadid & Pietiknen 2009).  

In (Kozlowski & Cutting 1977), the first major gender recognition experiment was 

performed with six walkers (three females and three males) of approximately the 

same height and weight. This experiment demonstrated that the average gender 

recognition rate of human observers is 63%. Some alterations, such as arm swing, 

walking speed, and occluding portions of the body, do not significantly influence 

the recognition rate. In (Barclay et al. 1978), further study by examining temporal 

and spatial factors demonstrated that successful gender recognition required 

approximately two walking cycles and that the rendering speed has a strong 

influence on recognition. 

The shoulder-hip ratio and hip rotation are important features in gender 

classification by gait. Previous work has indicated that male and female walkers 

differ in terms of lateral body sway, with males tending to swing their shoulders 

from side to side more than their hips and females tending to swing their hips 

more than their shoulders (Kozlowski & Cutting 1977; Mather & Murdoch 1994). 

In the 1990s, there were many studies of gender analysis based on gait (Mather & 

Murdoch 1994; Nigg et al. 1994; Furnham et al. 1997; Kerrigan et al. 1998). In 

2005 (Lian et al. 2005), a min-max modular support vector machine (M3-SVM) 

provided a faster response and higher generalisation accuracy than traditional 

SVMs to solve the gender recognition problem. The M3-SVM module achieved 
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91.53% accuracy, which is better than the 85.77% accuracy achieved by 

traditional SVMs in a training database with 786 male samples and 1,269 female 

samples. In 2008 (Shan et al. 2008), experiments achieved a superior recognition 

performance of 97.2% recognition of gender by a multimodal gender recognition 

system in large data sets. It used canonical correlation analysis and SVM to 

classifier gender. 

1.2.3.2 Age recognition 

Age affects many features of gait, such as step length, speed and double-support 

time (Grabiner et al. 2001; Menant et al. 2009a; 2009b). Pelvic rotations in the 

sagittal, frontal and transverse planes of motion were systematically reduced with 

age (Van Emmerik et al. 2005). Research has demonstrated that older adults who 

were transitionally frail differed substantially from other older adults while 

walking (Kressig et al. 2004). Some research specifically analysed patient age by 

extracting hip features. All patient age groups displayed a reduced range of hip 

flexion/extension, knee flexion extension, maximum hip extension, and hip 

abduction/adduction and a reduced velocity and step length compared to the 

normal elderly group in experiments (Bennett et al. 2008). Many previous studies 

have analysed the effect of age on gait with the effect of gender or disease (Nigg 

et al. 1994; Hijmans et al. 2007; Røislien et al. 2009).  

1.2.3.3 Medical recognition  

The study of gait for medical applications began in the 1990s (Powers & Perry 

1997) and developed rapidly after 2000 as more and more 3D motion data were 

recorded. Medical recognition mostly focused on the difference between patients 

and healthy individuals. The research is usually related to a specific sickness, such 

as CP (Cerebral palsy) or DCD (Developmental Coordination Disorder). Medical 

applications of gait analysis have attracted the interest of many scientists in the 
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last decade, including the comparison of patients and healthy individuals, the 

detection of disease, and the evaluation of the effectiveness of a medical treatment 

(McNally 1998; Newell et al. 2008; Cho et al. 2009; Noort et al. 2009; Zhang et al. 

2009). 

1.2.3.4 Action recognition 

In the specific area of gait recognition, most works have focused on 

discriminating between different human motion types such as running, walking, 

jogging, or climbing stairs (Jenn-Jier et al. 2000). Researchers in (Pollick 2003) 

recognized movement style by extracting features from point light displays. Some 

research addresses the problem of classification of human activities (walk, run, 

skip, march, line-walk, hop, side-walk, side-skip) from video, with a greater than 

92.8% recognition rate by PCA and eigenvector manifold (Masoud & 

Papanikolopoulos 2003).   

Action recognition also included identifying pedestrians from image and videos. 

In (Oren et al. 1997), wavelets were used to obtain a characteristic pedestrian 

template in a single image. In (Rosales & Sclaroff 2000), clustering was employed 

to recognise several silhouette poses. In (Davis & Tyagi 2006), this approach 

determines the shortest video exposures required for low-latency recognition by 

sequentially evaluating a series of posterior ratios for different action classes. 

  

1.2.4 Gait identification 

A highly specific area of gait recognition research is gait identification, which 

identifies individuals. In gait recognition, different subjects are classified among 

different types. Gait identification research aims to identify individuals. It is only 

recently that human identification from gait has been focused and become an 
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active area. Early medical studies demonstrated that individual gaits are unique, 

varying from person to person and difficult to disguise (Murray et al. 1964). 

Cutting and Kozlowski showed that this personal identification ability also 

extends to the recognition of friends (Cutting & Kozlowski 1977). Stevenage et al. 

(Stevenage et al. 1999) demonstrated that humans can identify individuals on the 

basis of their gait signature, without reliance on body shape, in the presence of 

lighting variations and under brief exposures. A novel technique for analysing 

moving shapes is presented using area-based metrics for automatic gait 

recognition (Foster et al. 2003). This technique is also used to discriminate 

between male and female subjects. 

The field of security has also utilised gait analysis techniques. Scientists have 

been investigating the use of gait for personal identification and have tried to 

identify gait signatures that are specific to individuals. Security and biometrics are 

aimed at identifying an individual through their actions. In 1977, the recognition 

of friends had already been researched from a medical/behavioural perspective 

(Cutting & Kozlowski 1977). Later, several attempts were made to investigate the 

gait recognition problem from the perspective of capturing and analysing gait 

signals (Barton & Lees 1997). In 2002 and 2003, the identification of individuals 

was investigated based on walking pattern (Schöllhorn et al. 2002) and area-based 

metrics (Foster et al. 2003). Researchers have attempted to extract gait signature 

(Lakany 2008) or some combinations (Ailisto et al. 2006). Most recent work 

investigating the appropriateness of gait as a biometric for human identification 

has been performed in the context of the HumanID project sponsored by the U.S. 

Defense Advanced Research Project Agency (Boulgouris et al. 2005).  
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1.2.5 Other gait-related analyses 

Other research has analysed the influence of different environments on gait, such 

as walking surface, weight carried, and emotions. Experimental results show that 

the proposed templates are efficient for human identification in indoor and 

outdoor environments (Lam et al. 2007). Research in (Vrieling et al. 2008) 

analysed the difference in the movement of limbs during uphill and downhill 

walking.  

1.3 Research approaches in previous work  

1.3.1 Data recording technique 

The research methods used in gait analysis have undergone continuous 

development. Human gait has been studied by using points of light in a technique 

known as cyclography (Bernstein 1967). In this technique, white tape is attached 

to the limbs of a walker dressed in a black body suit or small incandescent bulbs 

are attached to the joints to yields subjects' projections of the cycles of movements 

over time. Fig 1.3 showed an example of the figure in data recording. 

 

Fig 1.3 Static approximations of the dynamic point-light display (Cutting et al. 
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1978). 

For gait analysis, it is common for high-speed video data to be collected and 

analysed on a frame-by-frame basis. There have been many studies based on video 

data. In those studies, the silhouettes of walkers were identified from the 

background. A silhouette is the image of a person, an object or scene consisting of 

the outline and a basically featureless interior, with the silhouetted object usually 

black (Fig. 1.4). 

  

Fig 1.4 Image sequence-background subtraction-image binarisation and 

normalization (Lam et al. 2007). 

With the advent of motion capture technology, the recording of 3D gait data has 

become another common technique. Data are collected using infrared cameras that 

track the motion of markers that are placed on the crucial points on body segments. 

The markers' X, Y, Z coordinates can be recorded. A real-time model of gait will 

be captured in the motion capture system. Motion capture systems are currently 

represented by two main groups, optical systems and non-optical systems. Optical 

systems require the subject to wear a form-fitting suit with markers that reflect 

light back to the camera’s lens to obtain the markers’ 3D positions. Optical 

systems use multiple cameras to capture the markers’ exact positions. The more 

cameras used, the higher the accuracy of the recorded data will be. An optical 

system usually contains 7-13 cameras. 
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Fig 1.5 Stick figure in a motion capture system with 40 markers. 

Recorded data from a motion capture system unquestionably contain more 

detailed data than that from a video camera. The advantage of video camera data 

is that the database sample could contain hundreds of people because security 

cameras provide data easily. For example, gait recognition research based on 

video images used 114 subjects in (Foster et al. 2003), 126 subjects in (Moustakas 

et al. 2010), and 80 subjects in (Zhang & Troje 2005). 3D motion capture database 

samples normally contain only dozens of subjects because more experiment 

conditions are required. For example, 20 subjects were used in (Rosengren et al. 

2009), 37 subjects were used in (Kennedy et al. 2009), 16 subjects were used in 

(Allet et al. 2008), and 36 subjects were used in (Menant et al. 2009a). Although 

many important studies have been based on video data, research based on 3D data 

has attracted more attention in the last two decades, particularly in the fields of 

medicine and security. 

1.3.2 Data Processing Methods 

In general, a complete analysis approach for gait data includes the representation 

method for gait, the analysis method, and the distinguishing method if portions of 

the research involve recognition or identification. The distinguishing method 

refers to the method used to recognize or identify gait. Representation and 
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analysis methods differ depending on the dimension of the data.  

1.3.2.1 Representation methods 

Basically, there are two major approaches in gait analysis: feature-based 

approaches and model-based approaches (Wang & Singh 2003; Boulgouris et al. 

2005). In feature-based approaches, the extracted features are used to represent 

gait. Silhouettes were commonly used for 2D data (Foster et al. 2003; Wang et al. 

2003; Boulgourisa et al. 2006; Barnich & Van Droogenbroeck 2009). In 3D 

databases, the gait representation was first determined by how many markers were 

used on the subjects. Those markers were attached at joints. Usually, the number 

of markers varied from 10 to 40. Some researchers used indicators of joints: 

degrees of freedom (DOF) (Bockemuhl et al. 2010), joint rotation (Bruijn et al. 

2008), joint angles (Ormoneit et al. 2005) and so on. In model-based approaches, 

mathematical tools such as Fourier expansion and singular value decomposition 

(SVD) were used to represent gait (Troje 2002; Cunado et al. 2003; Ormoneit et al. 

2005). In (Cunado et al. 1999), thigh motion was modelled as a pendulum for 

representation.  

1.3.2.2 Analysis methods 

a. Feature-based approach 

The main component of the feature-based approach is the extraction of gait 

features from gait. It is a common method in gait analysis. Techniques such as 

Fourier transforms, motion energy images, eigenspace transformation, principal 

component analysis, and canonical space transformation are often used to reduce 

data dimensionality and generate features for gait analysis.  

In research based on video image, silhouettes are the primary features (Foster et al. 

2003; Wang et al. 2003; Boulgourisa et al. 2006; Barnich & Van Droogenbroeck 
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2009). In (Boulgouris & Chi 2007), body component-wise in silhouettes was used. 

Feature images or templates in silhouette were used in (Masoud & 

Papanikolopoulos 2003; Lam et al. 2007). Torso length, upper-arm length, 

lower-arm length, thigh length, calf length, and foot length were used in (Han & 

Bhanu 2005). Other methods include gait energy images, proposed in 2006 (Han 

& Bhanu 2006), and composite energy features: clusters of energy filters, to 

identify gait (Dosil et al. 2008). Clothes, footwear, walking surface, emotional 

state, and walking speed can also be features (Boulgouris et al. 2005). 

Initially, these analyses related to view point. Subsequently, researchers gradually 

proposed methods that are view point independent (Zhang & Troje 2005; Bodor et 

al. 2009). Based on motion capture data, more features about body segments are 

chosen. Hip-knee angles were used as features for gait recognition (Barton & Lees 

1997; Cunado et al. 2003). Hip flexion in swing and lower limb joint angles have 

been studied previously (Vrieling et al. 2008). Arm movement has been received 

more attention recently. Swinging arm regions were used for gait phase detection 

(Wang et al. 2009). Arm motion was used in human motion recognition (Ganesh 

& Bajcsy 2008). The features used in previous research show that limbs and hips 

are important in gait recognition based on 3D gait data. Furthermore, joint motion 

trajectories were used to extract gait features as a signature via wavelet (Lakany 

2008). Silhouettes are always used in side-view, and curve spread as an efficient 

descriptor of front-view gait is used in recognition (Soriano et al. 2004). 

3D data captured by motion capture systems can produce more accurate 

identification results because more information is recorded. Many more potential 

features can be chosen: hip flexion in swing, lower limb joint angles in (Vrieling 

et al. 2008); velocity in (Kressig et al. 2004; Bennett et al. 2008; Menant et al. 

2009a); pelvic rotation and thorax in (Bruijn et al. 2008); arm swing in (Ford et al. 

2007); hip-knee angles in (Barton & Lees 1997; Cunado et al. 2003); and motion 
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trajectory in (Wu & Li 2009).  

There are different criterions to extract features for different purposes: gender 

classification, age effect, individual identification, or medical analysis, etc. 

Appendix 1 listed features which have been used in previous research by the 

classification of analysis purpose. 

Gender-related features: Shoulder-hip ratio and hip rotation are considered 

important features of gender in gait research (Barclay et al. 1978; Cutting et al. 

1978; Johnson & Tassinary 2005; Røislien et al. 2009), as is shoulder sway 

(Mather & Murdoch 1994). In 2004, Korean scientists investigated this problem 

with a large sample base (Cho et al. 2004). They used many features such as 

height, leg length, cadence, pelvic width, speed, step width, stride length, hip 

joints, and knee joints. Gait curve, hip rotation and foot progression angle were 

used in (Røislien et al. 2009).  

Age related features: Many features such as step length, speed and 

double-support time were analysed in the gaits of elderly subjects (Menant et al. 

2009a; 2009b). Time to last foot contact, total stopping time, stopping distance, 

number of steps to stop, step length and step width were used in (Menant et al. 

2009b). Step width was also used in (Menant et al. 2009a). Many features are used 

in age analysis, such as velocity in (Kressig et al. 2004; Bennett et al. 2008; 

Menant et al. 2009a); cadence in (Menant et al. 2009a); double-support time in 

(Kressig et al. 2004; Menant et al. 2009a); heel horizontal velocity, shoe-floor 

angle at heel contact, and toe clearance at mid-swing in (Menant et al. 2009a); 

range of hip flexion/extension, range of knee flexion/extension, maximum hip 

extension, and range of hip abduction in (Bennett et al. 2008); gait speed in (Nigg 

et al. 1994; Kressig et al. 2004); stance and swing in (Kressig et al. 2004); ankle 

joint complexes in (Nigg et al. 1994); and pelvis, head, amplitude of segmental, 
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and joint rotations in (Van Emmerik et al. 2005).  

Medical-related features: In medical applications, gait features usually depend 

on the disease analysed. Features that have been studied previously include the 

following: stride length in (Wolf et al. 2006; Allet et al. 2008; Zhang et al. 2009); 

cadence and leg length in (Zhang et al. 2009); joint angle in (Wolf et al. 2006; van 

den Noort et al. 2009); hip angle and knee angle in (Powers & Perry 1997; van 

den Noort et al. 2009); shank angle and number of gait cycles in (Rosengren et al. 

2009); velocity, gait cycle time, stance phase, thigh and knee range, and sagittal 

shank in (Allet et al. 2008); double-support time in (Allet et al. 2008; Turner & 

Woodburn 2008); abduction moment at the knee during gait in (Newell et al. 

2008); lower limb joint in (Schache & Baker 2007); sagittal plane in (Schache & 

Baker 2007; Mandeville et al. 2008); hip abduction, sagittal ROM (range of 

motion), and pelvic frontal ROM in (Kennedy et al. 2009); gait speed in (Turner 

& Woodburn 2008); joint motion trajectories, sagittal angles of the hip, knee, and 

ankle joints in (Lakany 2008); and hip flexion in (Wolf et al. 2006). From this list 

of features, it is clear that different features are chosen as the focus depending on 

the disease. Joints are normally important. In additional, gait analysis for medical 

applications usually uses motion capture data, but some studies have been based 

on 2D images (Cho et al. 2009). 

b. Model-based approach 

A fundamental assumption about a model-based approach is that it should offer 

suitable potential for automatic gait recognition, primarily via computer-based 

vision. Medical studies are used to develop the model. Naturally, the application 

of a model will potentially alleviate the restrictions imposed on statistical 

(area-based) approaches, namely that the extracted metric can be directly 

attributed to human motion (Cunado et al. 2003).  
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The model-based approach used mathematical models to represent and analyse 

gait, not features. In model-based approaches, Hidden Markov Models (HMM) 

(Sundaresan et al. 2003) were used to model each gait sequence in the database set. 

In (Cunado et al. 1999; Yam et al. 2002) researchers aimed to accurately model 

how a subject walks by analysing the motion of the legs. Fourier expansion and 

PCA were used to represent motion in motion retargeting and animation. Fuzzy 

clustering is a method for identifying a fuzzy partition of the sample space, i.e., 

determining the appropriate membership functions. The goal of clustering is to 

automatically find natural groupings in the data, which has been a traditional 

problem in automatic pattern recognition. 

The statistical techniques reviewed here have been used for many years. PCA can 

be used to study the entire temporal gait waveform and can detect pathological 

deviations throughout the gait cycle. As an analysis method, principal component 

analysis was usually applied to data reduction (Troje 2002; Masoud & 

Papanikolopoulos 2003; Wang et al. 2003). Some studies have combined PCA 

with other methods, such as dynamic time warping (Troje 2002) and linear 

discriminant analysis (Cho et al. 2009). Functional data analysis (FDA) was used 

in (Røislien et al. 2009). Wavelets as a signal processing method were used in 

(Lakany 2008). Optimal control models of the human sensorimotor system were 

used in (Sumitra 2008). 

The challenge lies in finding a mathematical model that can connect the high-level 

goals and intentions of a human subject to the low-level movement details 

captured by a computer-based vision system. Much progress has been made in 

computer vision-based human motion analysis since the early days of analysing 

human motion in terms of groups of rigidly moving points (Flinchbaugh & 

Chandrasekaran 1981; Webb & Aggarwa 1982).  
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The advantage is not dependent on a particular feature vector. The disadvantage of 

model-based approaches is typically the computational complexity. Particularly 

recently, feature extraction and model building have been used in concert. It is 

difficult to define a method as purely feature-based or model-based in some cases 

1.3.2.3 Distinguishing methods 

For gait classification and gait identification, distinguishing methods were needed. 

Distinguishing methods have included neural networks in (Barton & Lees 1997), a 

Fourier-based synthesis of gender-specific biological motion for gender 

classification in (Troje 2002), and elliptical Fourier analysis in (Wolf et al. 2006; 

Rosengren et al. 2009). A Bayesian classifier model was used in (Bruijn et al. 

2008; Zhang et al. 2009). The k-nearest neighbour rule was applied to the Fourier 

components in (Cunado et al. 2003). A SVM (support vector machine) was used in 

(Lee & Grimson 2002; Walawalkar et al. 2003; Shan et al. 2008). Several main 

distinguishing methods for gait analysis are introduced below. 

Neutral networks were used to recognise normal walking, a simulation of leg 

length difference and a simulation of leg weight asymmetry to investigate actual 

pathological subjects (Barton & Lees 1997). This research used fast 

Fourier-transformation coefficients of the temporal patterns of the hip-joint angle 

and knee-joint angle curves of a single step to represent the gait pattern (Barton & 

Lees 1997). 

SVM performs classification by constructing an N-dimensional hyperplane that 

optimally separates the data into two categories. SVM models are closely related 

to neural networks. It is an optimal discriminant method based on the Bayesian 

learning theory that has previously been used successfully for gender classification 

(Lee & Grimson 2002; Walawalkar et al. 2003; Shan et al. 2008). 
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Baseline method. Baseline approaches used matching of key gait events to 

identify their specific relationship with gait. A baseline method was proposed by 

the University of South Florida that combined area masks, a vertical line, a 

horizontal line, and a bottom-half line (Foster et al. 2003). Fused motion and static 

spatio-temporal templates of sequences of silhouette images, motion silhouette 

contour templates (MSCTs) and static silhouette templates (SSTs) were used in 

(Lam et al. 2007). Baseline method was used to classify children with cerebral 

palsy in 2009 (Zhang et al. 2009) and for individual gait recognition (Han & 

Bhanu 2005). 

Bayesian classifier method. A naive Bayes classifier assumes that the presence 

(or absence) of a particular feature of a class is unrelated to the presence (or 

absence) of any other feature, given the class variable. An advantage of the naive 

Bayes classifier is that it only requires a small amount of training data to estimate 

the parameters (means and variances of the variables) necessary for classification. 

The Bayesian classifier method has been used in many studies (Zhou et al. 2006; 

Jorge E. Arañaa et al. 2008; Zhang et al. 2009). 

The k-nearest neighbour rule. In pattern recognition, the k-nearest neighbour 

algorithm (k-NN) is a method for classifying objects based on the closest training 

examples in the feature space. k-NN is a type of instance-based learning, or lazy 

learning, in which the function is only approximated locally and all computation is 

deferred until classification. k is a positive integer, typically small. The k-nearest 

neighbour algorithm is amongst the simplest of all machine learning algorithms: 

an object is classified by a majority vote of its neighbours, with the object being 

assigned to the class most common amongst its k-nearest neighbours (Coomans & 

Massart 1982; Dasarathy 1991; Shakhnarovich et al. 2005). Euclidean distance is 

usually used as the distance metric for continuous variables. The k-nearest 

neighbour rule is a popular choice for its simplicity and flexibility in many gait 
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studies (Collins et al. 2002; Foster et al. 2003; Preece et al. 2009).  

1.4 Difficulties and Problems in Previous Research 

Motion capture techniques have emerged in the last two decades. Previously, all 

gait analysis research was based on video images. Video-based information is 

influenced by light, view point, and background. After the development of the 

point-light kinematic display method, the various traits of a subject could be 

inferred solely on the basis of movement cues of gait (Kozlowski & Cutting 1977; 

Cutting et al. 1978). Most gait biometrics employ features derived from side-view 

videos because limb swings are more pronounced from the side than from the 

front. However, side-view observations are often impractical and incompatible 

with the ability of humans to recognize others from front-view gait.  

Too many features could be extracted. One difficulty is that the dimensionality 

of the feature space is much higher than the number of sample spaces in the 

database. There was no convention to extract features as a gait signature until now. 

In some studies, features were extracted by mathematical methods, such as 

general tensor discriminant analysis (Tao et al. 2007), eigenspace transformation 

with canonical space transformation (Huang et al. 1999), wavelet-based multiscale 

analysis (Khandoker et al. 2007), and the baseline method for human 

identification (Collins et al. 2002; Moustakas et al. 2010). Human body segments 

have also been used to extract features. The extraction of leg angles based on 

regression analysis has been used as a gait signature (Yoo et al. 2002). Hip angle, 

angular velocity between human walking and passive dynamic walking have been 

studied (Preece et al. 2009). In another study, seven components (head, arm, trunk, 

thigh, front leg, back leg, and feet) were used as features in silhouette gait 

recognition (Li et al. 2007; Li et al. 2008). Inter-individual variations of hip-joint 
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motion in normal gait was investigated in 1997 (Dujardin et al. 1997). Speed as a 

gait feature has been studied in (Schmitt & Atzwanger 1995; Chiu & Wang 2007). 

The analysis of quantitative gait data has traditionally been a challenging target. 

From a technical perspective, the main challenges can be summarised as follows. 

Data reduction. A gait dataset may consist of kinematic, kinetic, 

electromyographic, metabolic and anthropometric variables (Chau 2001). 

Additional parameters such as joint angles, velocities, moments and powers were 

obtained during the processing of gait data. The need for data reduction is critical. 

However, there are few guiding rules for determining which variables actually 

contain useful information. Traditional reduction methods such as factor analysis 

naively assume linear relationships among gait variables. Due to the issue of 

dimensionality (Bellman 1961), better presentation methods are needed to 

summarise massive gait time series and to allow quantitative identification 

(Mulder et al. 1998). Although some mathematical methods such as principle 

component analysis and singular value decomposition have been applied, an 

effective, simple data reduction method is still difficult to construct.  

Temporal dependence. Data collected during walking at a self-selected pace has 

a quasi-periodic temporal dependence (Chau 2001). The gait time series is 

difficult to model as the traditional assumption of stationary does not hold (West 

& Griffin 1999). For computation and comparison, the temporal curves are usually 

parameterised by some time-independent variables, such as peak amplitude, mean 

value or value at the occurrence of some gait events. Moreover, gait parameters 

defined on the basis of able-bodied gait signals can be difficult to extract from 

pathological gait signals (Whittle & Jefferson 1989).  

Distance between curves. To verify differences due to specific factors such as 

age or stride rate and to quantify changes due to different individuals, similarities 
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and differences between gait waveforms need to be investigated (Chau 2001). 

Complex mathematical derivations have been undertaken to measure differences 

between gait curves (Leurgrans et al. 1993). However, to date, there is no 

generally agreed upon distance definition for gait curves, making it difficult to 

quantitatively compare entire gait waveforms. 

Nonlinear relationships. Gait variables generally interact in a complex non-linear 

fashion, an observation attributable to the intrinsic non-linear dynamics of human 

movement (Wagenaar & van Emmerik 1996). An example is the relationship 

between electromyographic (EMG) signal characteristics and muscle force (Davis 

1997). Relationships between gait variables are often difficult to describe 

analytically, and often only subjective descriptions are available (Watts 1994). In 

this case, researchers must identify new ways to represent and analyse gait data.  

1.5 Summary and critical analysis 

Since the beginning of gait analysis, interest in gait recognition and individual 

identification has increased significantly. The prior studies described above 

strongly support the potential of gait as a useful biometric cue. Researchers were 

eager to investigate whether gait could be an individual identification 

characteristic similar to traditional method such as fingerprints and DNA. If so, it 

will affect the field of security and access control significantly.   

Biometrics for security has been extensively researched over the last four decades. 

Biometric measures include the unique physical or behavioural characteristics of 

individuals for recognition. Common physical biometrics includes fingerprints, 

hand or palm geometry and retina, iris, or facial characteristics. Behavioural 

characteristics include, among others, signature, voice (which also has a physical 

component), keystroke pattern and gait (Moustakas et al. 2010). Most other 
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biometric techniques require physical contact or proximity to the recording probe. 

By contrast, gait of a person walking has advantage that it can be captured at a 

distance without requiring the cooperation or consent of the observed subject. 

Some studies have used markless motion capture systems to analysis human 

movement (Corazza et al. 2005; Sundaresan & Chellappa 2005; Mündermann et al. 

2006). In addition, gait also has the advantage of being difficult to hide, steal, or 

fake (Boulgouris et al. 2005). However, there were still some remaining problems 

in previous research. For example, gait signatures were the combination of gait 

features with other soft biometrics features for identification with motion capture 

data; some question such as which features should be extracted and why, which 

has been insufficiently addressed in studies.These problems will be listed and 

analyzed in below.  

1.5.1 Gait identification based on 3D motion capture is inadequate 

In recent years, there has been growing interesting in gait analysis of walking 

habit based on 3D motion data with the advent of motion capture techniques. 

Historically, video-image-based research has been an important part of individual 

identification due to the widespread presence of security cameras. There have 

been many gait-recognition analyses in the field of medicine, as well as other 

studies related to gender or age. However, studies identifying individuals based on 

3D gait data have been limited compared with the large amount of research based 

on 2D image data and previous gait recognition research. The 2D gait data derived 

from video images is easily influenced by view point, camera position, weather 

(when outside), and other factors. Gait data derived from video images includes 

only the silhouettes of walkers, which results in the loss of some gait information. 

Gait data recorded by a motion capture system has the advantage of yielding 

complete gait information that is view point independent; it also increases the 
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complexity of analysis due to the higher dimension of data. The focus on gait 

identification has increased at international conferences.  

1.5.2 Many previous studies have combined gait features with 

other characteristics 

Some individual identification studies have combined gait and other 

characteristics as gait signature. For example, in (Moustakas et al. 2010), gait 

features were combined with soft biometrics such as height and stride length for 

identification; in (Chellappa et al. 2007; Liu & Sarkar 2007; Shan et al. 2008; 

Hadid & Pietiknen 2009), gait features were combined with facial features for 

recognition. These methods increased the recognition rate and were successful at 

tracking a particular subject when that subject did not change his characteristics, 

for example, finding a lost person in a place with a high stream of people. The 

advantage of these methods increased recognition rate. However, it only works on 

tracking particular subject when that subject didn't change his characteristics 

imposed, for example, finding some lost person in some place with high stream of 

people. It does not work for security requirement, for example, tracking some 

suspicious person who may intend to hide himself by changing his appearance. 

People may still keep similar way of walking even they changed their appearance. 

This is the gait pattern of individuals. In this research, gait features for 

identification will be extracted only from gait, without combination with other soft 

biometrics, such as height, stride length, or facial features. In this research, the 

difference between individual gaits and individual identities will be investigated 

only by gait itself. An efficient set of gait features was proposed in this research, 

and individual identification was applied by three different methods. 
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1.5.3 The reason of which gait features were proposed and why is 

unclear 

Extracting gait features as a gait signature is a common method in gait analysis. 

Many previous studies attempted to extract gait signatures to identify individuals 

or explain the differences in gait patterns. Until now, there has been no convention 

for extracting features as a gait signature based on motion capture data. Obviously, 

the answer to this question should be different for different purposes. There are 

different ways to extract features for specific purposes: gender classification, age 

effect, individual identification, or medical analysis, etc. Previous studies have 

used various features as a signature to analyse gait, to assign subjects to different 

groups, or even to identify individuals. However, the reasons for choosing these 

features have received very little attention (Preece et al. 2009). Thus, it is unclear 

which gait features should be extracted to represent gait and why. The evaluation 

of the proposed gait features is also lacking. In this research, this question will be 

answered by using several methods. In addition, a novel analysis and evaluation 

tool for gait features was proposed.  

1.5.4 The research on the relationship between gait attractiveness 

and accurate 3D motion data is lacking 

Static bodies and faces have long been used to study attractiveness and similarity 

for a long time. Rates of gait attractiveness have been studied in different subject 

samples, such as women at high and low probability of conception (Provost et al. 

2008). Relatively little research has been done into what makes some normal gaits 

more attractive than others. In this research, the relationship between gait 

attractiveness and body markers was investigated. The similarities and asymmetric 
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appearances between the left body and the right body in the gait cycle were 

investigated. 

Gait analysis is a complex problem. Gait identification is of special importance for 

security. This research included gait identification, feature analysis for 

identification, gait analysis of attractiveness, and a similarity analysis of gait 

based on 3D motion data. This research also investigated identification methods, 

gait factors that influence individuals and features that should be extracted for 

identification by steps. The features in this research were extracted only from gait, 

the evaluation methods of features were proposed, and the reasons why these 

features should be extracted were analyzed. 

1.6 Outline of Research Work 

1.6.1 Research objective and Scope 

The prime objectives of this research are to create a novel method to identify 

individuals by gait and to analyse the differences between individual gaits. 

In this research, the identification question was investigated based on 3D gait data. 

A systematic approach that included a novel gait feature set was proposed to 

identify individuals, and the identification results were compared with several 

different methods for extracting gait signatures. The factors that make gait so 

personal were analysed. For the purpose of analysing the factors for identification, 

gait features in gait cycle and gait phase were investigated to identify which 

features should be extracted to represent gait and why. Then, the similarities and 

asymmetries of gait, and gait attractiveness were investigated As an extension of 

gait research, human seated motion was also investigated by comparing an 

Ergokinetic chair with a standard office chair with motion capture technique.  
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This research could be summarised by four areas: gait identification, gait analysis 

for identification, similarity in gait, and gait attractiveness. 

The specific objectives are: 

 to propose a novel set of gait features that is suitable for identifying 

individuals and that can be extracted only from gait. 

 to identify individuals via three different gait signature extraction methods: 

statistics method, principle component analysis, and Fourier expansion 

method. 

 to analyse the influence of gait phases on individuals. 

 to answer the question 'which features should be extracted to represent gait 

and why'. 

 to compare the similarities and differences between the left half of the body 

and the right half of the body in gait.  

 to analyse the relationship between gait attractiveness and movement from 

different body segments. 

 to investigate the differences in seated motion in an Ergokinetic chair and a 

standard chair. 

1.6.2 Research findings and applications 

Research findings were stated in four areas: gait identification, gait analysis for 

identification, similarity in gait, and gait attractiveness. 

1.6.2.1 Gait identification 

Gait data were normalized by linear interpolation and gait cycle.  
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It is found that the novel set of gait features is effective for identification and 

represents individual gaits very well. The identification results given by the three 

different methods all achieved very high accuracy. 

It is found that using average gait as the base gait for identification increased the 

accuracy, in contrast to using random gait as the base gait. 

1.6.2.2 Gait analysis for identification 

Two indicators, Consistence degree and Variation degree (defined in Section 

3.1.4), were proposed to evaluate gait features for identification. 

It is found that features on y-axis are of greater importance for gait than features 

on z-axis. The Wrist Speed ratio is important for gait. The Head_Topspine angle 

and Topspine_Root angle are relatively independent of other gait features.  

It is found that the fixing root method is an effective method for revealing which 

part of the human body is more important for distinguishing one person from 

other people. It is found that motion from the left lower arm, lower legs and feet, 

and hip are suitable as features for gait recognition. 

Novel gait phases and a gait cycle definition were proposed. Two indicators were 

proposed to evaluate the influence of gait phases on gait features. 

It is found that one type of gait features is influenced greatly by gait phases. These 

features are highly related with walking action, such as knee angles and Heel_toe 

angles on z-axis. Gait phases do not greatly influence the other type of gait 

features, which includes elbow angles, Heel_toe angles on y-axis, and 

Wrist_shoulder angles on y-axis. 

It is found that arm-related features exhibit greater freedom/individuality than 

leg-related features, and gait features on y-axis exhibit more freedom/individuality 
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than gait features on z-axis. 

It is found that the posture at which the tibia is vertical or perpendicular to the 

ground varied greatly for different subjects during the gait cycle. The posture at 

which maximum knee flexion occurred varied less for different subjects in the gait 

cycle. The variation in the double-support phase length was intermediate relative 

to the variation in these two postures. 

1.6.2.3 Similarity in gait 

In 74.29% of the 35 subjects, the first half-cycle is longer than the second 

half-cycle. The average length of the first half-cycle is 1.44% longer than that of 

the second half-cycle. The difference between the first half-cycle and the second 

half-cycle varied from -8.93% to 7.2% of the gait cycle. 

It is found that elbow movement (while the opposite leg is the supporting leg), 

wrist movement on y-axis (whether the support leg is on the same or opposite 

side), and foot movement on y-axis (whether the leg is the swing leg or support 

leg) usually exhibited asymmetry in the gait cycle. 

It is found that wrist movement on y-axis exhibited more asymmetry than foot 

movement on y-axis. 

Body movement on y-axis and elbow movement while the leg on the opposite side 

is the support leg are most likely to be the most asymmetrical body parts in gait. 

1.6.2.4 Attractiveness in gait 

It is found that a systematic relationship was identified between the motions of 

individual body markers and the attractiveness rating. A prediction model for the 

attractiveness rating was built. 

It is found that gait attractiveness is much more correlated with the average speed 
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of each body segment than with the average acceleration of each body segment in 

the gait. 

It is found that the extraction of the lower legs and feet by the fixing root method 

is effective as features of attractiveness. The prediction results for gait 

attractiveness derived from only ten lower leg and foot markers were compared 

with the results derived from all 40 markers. The comparative analysis 

demonstrated that the results could be predicted slightly better by using only lower 

leg and foot markers than by using all 40 markers. 

After the analysis of walking motion, human seated motion was investigated. 

Compared to the same motion in the standard office chair, subjects seated on the 

Ergokinetic chair are not required to bend their hips as much and also had more 

flexibility about hips and legs when completing general actions such as standing 

and typing. 

1.7 Structure  

The structure of the thesis is organised as follows:  

Chapter 1 introduces the background, reviews the content of gait analysis, the 

research methods used in previous studies, problems and research aims/objectives. 

Chapter 2 explains the methodologies used in this research. It introduces the 

motion capture system, the gait data captured, and the mathematical methods 

used. 

Chapter 3 is an analysis of gait signature for identification via a feature-based 

method based on gait normalisation by linear interpolation. A set of gait features 

was proposed to represent gait. Three different methods were used to extract gait 

signatures for identification: statistics method, PCA, and Fourier expansion 
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method. 

Chapter 4 is the gait phase and gait cycle analysis. It proposed a novel definition 

of gait phases compared with traditional gait phases. The influences of gait phase 

on gait features were investigated. The differences between gait phases of 

individuals were compared. 

Chapter 5 provides an explanation for the use of some features to represent gait 

for identification. It provides a solution for which features should be extracted. 

The fixing root method was proposed to reveal more information from the relative 

motion of body parts. 

Chapter 6 is a similarity and asymmetry analysis of gait. The left body movement 

and right body movement were compared in each of the corresponding gait phases. 

The most asymmetrical body parts of individuals in gaits were investigated. 

Chapter 7 is an analysis of gait attractiveness, including model building and 

verification. Lower legs and feet were extracted as features of attractiveness by 

the fixing root method and proved effective as features of attractiveness.  

Chapter 8 is an extension of gait research. It investigated human seated motion on 

an Ergokinetic chair and a standard office chair. 

Chapter 9 is a conclusion of all of the chapters. It summarises the results in this 

research from six fields: gait identification, gait feature analysis, gait cycle and 

phases analysis, similarity analysis in gait, gait attractiveness analysis, and human 

seated motion on different chairs.  
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Chapter 2 Methodology  

There were some remaining problems in previous gait identification research. The 

first is the combination of gait features with other soft biometrics features for 

identification with motion capture data. The other is a question of which features 

should be extracted and why, which has been insufficiently addressed in studies. 

The features used in gait classification in medical or pattern analysis based on 

motion capture data were referred to because of the lack of gait identification 

based on motion capture data in previous studies. In this research, a novel feature 

set only related to gait for identification was proposed to represent gait firstly, then 

those features were analyzed to answer if they can represent the individuality of 

gait. After that, statistics method, PCA, and Fourier expansion were used to 

extract gait signatures for identification based on normalized gait cycle. k-NN 

algorithm was used to identify subjects, and identification results were compared 

based on different ways. 

Furthermore, this research aimed to address which features should be extracted to 

represent gait and why. The relative motions from different body segments to the 

Root were analysed via the fixing root method. The Root is located on the back at 

the upper middle of the pelvis. In this method, the Root was supposed to be 

virtually fixed by having all subjects walk on a treadmill to identify more factors 

in individual gait patterns by analysing the relative motion of body segments 

instead of the trajectory of the whole body moving. For gait recognition, Principal 

Component Analysis was used to analyse the distribution of markers.  

In order to analyse the factors that affect individuality in gait, gait features were 

investigated by gait phase and gait cycle. The similarities and asymmetric 

appearances between left body and right body in gait were investigated as well. 
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In addition, the relationship between gait and gait attractiveness was investigated. 

This analysis aids in understanding the differences in gait between individuals. 

One gait attractiveness prediction model was built with an acceptable error rate.   

2.1 Experiment and laboratory  

3D motion capture techniques make it possible to record vast amounts of 

spatiotemporal human body motion data and to study human gait kinetics and 

kinematics in the 3D space and time domain with an accuracy of spacial and 

temporal resolutions of 1 mm and 1 ms, respectively. In this research, detailed and 

accurate data were captured by 3D motion capture system.  

The laboratory has a digital motion analysis system (Fig. 2.1). Gait data were 

recorded by an optical motion capture system. The system used in this research is 

an Eagle motion capture system, which was constructed with seven digital 

cameras, the Eagle Hub, to which all of the cameras were connected and which 

uplinks to a computer terminal, and EVaRT Real Time software. This software 

was used for recording, processing, displaying and post-processing data from the 

camera system. In general, a motion capture session can be summarised by four 

steps: 

a. Studio set-up, setting cameras for multiple captures 

b. Calibration of capture 

c. Template and capture of human movement 

d. Clean-up data in post-processing. 
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Fig 2.1 Motion capture laboratory 

The capture volume was 2 meters wide, 4 meters long and 2.2 meters high and 

was surrounded by seven cameras. Each subject wore a motion capture suit with 

40 reflective markers placed on crucial body segment/joint locations as illustrated 

in Fig. 7. There are different marker sets in the EVaRT software, depending on the 

action analysed or the software that the data will be transferred to. The system can 

capture motions like walking, jumping, running, and dancing with extreme 

accuracy, to the nearest 2 mm, at up to 200 frames per second. In this research, 40 

markers were used to capture gaits, and 31 markers were used for seated motion 

analysis. Fig 2.2 shows the positions of the 40 markers, and Fig 2.3 shows the 

positions of the 31 markers.  
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Fig. 2.2 The positions of the 40 markers on the human body (Evart 5.0 User's 

Manual) 
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Fig. 2.3a. Back view of custom marker placement for seated motion (Evart 5.0 

User's Manual) 
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Fig. 2.3 b Front view of marker locations for seated motion (Evart 5.0 User's 

Manual) 
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Fig. 2.3 c – Side view of marker locations for seated motion (Evart 5.0 User's 

Manual) 
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2.2 Data Captured 

Gait data from 35 male students at a British university (Mean age = 26.77, SD = 

5.79) recruited via flyers posted around campus were recorded for identification. 

All motion data were captured indoors. In these experiments, subjects were told to 

walk freely and naturally at normal speed from one end of the capture volume to 

the other. 28 subjects, each of them have one gait file limited by experiment 

conditions; the other 7 subjects, each of them have 6 gait files recorded at different 

time. Each gait files contained one or two gait cycles. The recorded Root marker 

(on the back at the upper middle of pelvis) speed for subjects ranged from 

913.91mm/s to 2450.33mm/s with a mean of 1552.52mm/s.  

Gait data for attractiveness were recorded from 30 male students at a British 

university (Mean age = 20.83, SD = 3.12) recruited via flyers posted around 

campus. Subjects walked at normal speed, from one end of the capture volume to 

the other, and then to walk back. One gait file was recorded for each subject. The 

recorded Root marker (on the back at the upper middle of pelvis) speed for 30 

subjects ranged from 666.16 mm/s to 1255.48 mm/s with a mean of 1005.84mm/s. 

x axis represented the walking direction, y axis represented the axis perpendicular 

to x axis, and x-y plane represented the floor plane. z axis represented the 

subject’s height direction, the axis which is vertical to floor plane. 

2.3 Methods 

In this research, gait data for identification were first normalized. One gait cycle 

that started at the same posture was picked from each of the subjects' gait files. 

Then, one complete gait cycle was normalized to the same frame numbers by 

linear interpolation.  
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Gait identification was tested by extracting gait signatures from gait features. In 

this part, a novel gait feature set was proposed, and individuals were then 

identified via three different gait signature extraction methods. The identification 

results were then compared. The three different gait signature extraction methods 

were the following: statistics method, PCA, and Fourier expansion. The 

distinguishing method was the k-NN algorithm. PCA is a common analysis 

method used to reduce the data dimension in gait recognition (Masoud & 

Papanikolopoulos 2003; Zhang & Troje 2005; Cho et al. 2009; Wu & Li 2009; 

Bockemuhl et al. 2010). Fourier expansion and Fourier coefficients were used in 

previous gait analysis (Troje 2002; Wolf et al. 2006). As distinguishing methods, 

k-NN algorithm is used for identification (Collins et al. 2002; Foster et al. 2003; 

Preece et al. 2009).  

Second, gait features were analysed for identification. Other individual differences 

were studied in the investigation of the influence of gait phase. One gait cycle was 

divided into eight gait phases. The appearances of different gait features in gait 

phases were compared. The question 'which features should be extracted to 

represent gait and why' were answered by PCA and the fixing root method. The 

fixing root method is a method to achieve relative motion by coordinate 

transforming. It will be introduced more detailed in Chapter 5. 

Then, the similarities and asymmetries in gait were analysed. The most 

asymmetrical body part in gait was investigated for individuals. The relationship 

between gait attractiveness and human body segments was investigated. A linear 

model was built for the logarithm of gait attractiveness and the logarithm of the 

makers’ speed by PCA and linear regression. Furthermore, gait features for 

attractiveness were extracted by PCA and the fixing root method. Ten significant 

markers of the 40 markers for gait attractiveness were selected by the fixing root 

method. These 10 markers successfully represented all 40 markers with almost 
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identical accuracy.  

Finally, human seated motion was also investigated as an extension of gait 

research.   

The methods used in each chapter are different, depending on the aim of each 

chapter. Thus, the methods used in each chapter are introduced in detail in each 

chapter. This chapter gives a brief analysis of the methods used throughout the 

research. 

The next part briefly introduces the mathematical methods used in the research.  

a. Principle Component Analysis. (used in Chapters 3, 5, and 7) 

PCA is used to reduce the dimensionality of a dataset with correlated variables 

while retaining as much of the variance of the dataset as possible and transforming 

the dataset into a new dataset with independent variables.  

b. linear regression. (used in Chapter 7) 

In statistics, linear regression is an approach to modelling the relationship between 

a scalar variable y and one or more variables denoted X. In linear regression, data 

are modelled with linear functions, and unknown model parameters are estimated 

from the data. Such models are called linear models.  

c. linear interpolation. (used in Chapter 3) 

Linear interpolation is a method of curve fitting with linear polynomials. It is 

heavily employed in mathematics (particularly numerical analysis) and numerous 

applications, including computer graphics. It is a simple form of interpolation. 

Linear interpolation is often used to fill the gaps in a table.  

d. Fourier expansion. (used in Chapter 3) 

In mathematics, a Fourier series decomposes periodic functions or periodic signals 
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into the sum of a (possibly infinite) set of simple oscillating functions, namely 

sines and cosines (or complex exponentials).  

e. k-NN algorithm. (used in Chapter 3) 

In pattern recognition, the k-nearest neighbour algorithm (k-NN) is a method for 

classifying objects based on closest training examples in the feature space. An 

object is classified by a majority vote of its neighbours, with the object being 

assigned to the class most common amongst its k-nearest neighbours 

PCA and linear regression were completed by SPSS 16.0, and others were 

completed by Matlab 2009b. 
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Chapter 3 Gait Signature for Identification via 

Feature-based Methods 

In this chapter, a novel set of gait features purely extracted from gait as gait 

features were first proposed to represent gait. The features were then analysed to 

determine if they could represent personal gait. Then, statistics methods, PCA, and 

Fourier expansion were used to extract gait signatures for identification based on a 

normalized gait cycle. A k-NN algorithm was used to identify subjects, and 

identification results were compared based on different methods.  

The data are derived from a gait cycle normalized by linear interpolation. Many 

previous studies did not incorporate this step. The advantage of normalized gait is 

that subjects have the same gait cycle, same initial gait pose, and same frame 

numbers in one gait cycle, which improves the accuracy of individual gait 

identification. 

3.1 Methods 

3.1.1 Linear Interpolation and normalization of gait cycle. 

Gait data included 35 subjects. For 28 subjects, only one gait file was recorded 

due to the limitations of the experimental conditions; for the other 7 subjects, 6 

gait files were recorded at different times. Each gait file contained one or two gait 

cycles. x axis represented the walking direction, y axis represented the axis 

perpendicular to x axis, and x-y plane represented the floor plane. z axis 

represented the subject’s height direction, the axis which is vertical to floor plane 

(showed in Fig 3.1). 

The gait files contained different lengths for different subjects. The gait data used 



 47 

Z axis 

One gait cycle 

Next left toe-off posture 

Y axis 
X axis 

Left toe-off posture 

in this research were constrained to one gait cycle, which started at the same 

posture and ended at the same posture to avoid extra data that could disturb the 

accuracy of the identification. Thus, gait cycle normalization included two steps. 

The first step is to identify a complete gait cycle in a subject’s gait with the same 

gait starting pose. The gait cycle in this research started from the left toe-off 

posture to the next left toe-off posture (the next left toe-off posture is not included 

in this gait cycle). The gait cycle is shown in Fig 3.1. The second step is to make 

the gait cycle includes the same number of frames.  

 

 

Fig. 3.1 One complete gait cycle 

In the original walking data, gait cycles have different numbers of frames because 

the subjects walked at different speeds. This caused some difficulties when 

comparing the gaits of two subjects with respect to gait cycle and phase. To 

analyse gait data more specifically and compare the gait cycle, piecewise linear 

interpolation was used to normalize the gait cycle.    

Based on the linear interpolation of each set of two adjacent frames, the gait cycle 

was normalized, and each complete gait cycle has the same number of frames for 
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each subject. Linear interpolation is a method of curve fitting with linear 

polynomials. In the original recording data, one gait cycle may have 60-150 

frames. After linear interpolation, one gait cycle has 1500 frames. Time was 

denoted in a gait cycle as T in the original data, and time in that gait cycle is still T 

after linear interpolation. The detailed interpolation progress is described below. 

i was denoted for markers, j for subjects; i is from 1 to 40, and j is from 1 to 35. t 

means frame.  

Within a gait file for any marker i, the coordinate is (X, Y, Z), the gait cycle in the 

recorded data is [ 11, ntt ), the number of frames in this gait cycle is n, and n is 

different, depending on j. [ 11, ntt ) means 1t  is included in the gait cycle, and 1nt  

is not included in the gait cycle. 1nt  is the same posture (the left toe-off posture), 

with 1t  in the next gait cycle. The new gait cycle after linear interpolation is 

[ 15011, tt


), which means 1t


 is included in the gait cycle, and 1501t


 is not included 

in the gait cycle. The number of frames in the gait cycle after interpolation is 1500. 

1501t


 is at the same time as 1nt , and 1t


 is at the same time as 1t . intt  was 

denoted as the frame interval (time interval between two frames) in the recorded 

data. intt


 was denoted as the frame interval in data after interpolation, and thus  

intint 1500 ttnT

             (3.1) 

So, 
1500

int
int

tn
t





                (3.2) 

The x, y, z coordinates were interpolated separately. X indicates the marker's 

coordinate in the x-axis. X can be denoted as  tXX  ; in this function, t 

indicates the frame in the recorded data, and X was denoted as  tXX


  after 
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interpolation. t


 indicates the frame in the data after interpolation. In the 

recorded data, t= 1t ,.., 1nt ; in the data after interpolation, t


= 1t


,..., 1501t


.  

For any two adjacent frames ft  to 1ft , X0 and X1 were denoted as 

)(0 ftXX   and )(1 1 ftXX . f indicates the frame number in the recorded data, 

f=1:n. 

If t


 was supposed to be a continuous function, num0 is the new frame number in 

t


 after interpolation for frame ft . Then,  

)()(0 0numf tXtXX


 , for linear interpolation. 

ft  is at the same time as 0numt


.  

ft  is frame number f at time   int1 tf  ; 0numt


 is frame number num0 at time 

  int10 tnum


 . 

So, 

 intint )10()1( tnumtf


           (3.3) 

According to equation (3.2) and (3.3), equation (3.4) was derived. 

 ,1
)1(1500

0 



n

f
num           (3.4) 

num1 was denoted as the frame number in t


 after interpolation for frame 1ft . 

Then,  

)()(1 11 numf tXtXX


   

Similarly, equation (3.5) was derived. 
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,1
1500

1 



n

f
num                 (3.5) 

Because t


 was supposed to be a continuous function, num0 and num1 are not 

necessarily integers. 

K0 was used as the first interpolated frame number (integer) from frame ft  

( 0numt


) to frame 1ft  ( 1numt


) after interpolation. k1 was used as the last 

interpolated frame number (integer) from frame ft  ( 0numt


) to frame 1ft  ( 1numt


) 

in the gait cycle after interpolation. 

If num0 is an integer, then 100  numk ;    

 otherwise, )0(0 numceilk  .           (3.6) 

 )0(numceil  means the closest integer that is just above num0. 

If num1 is an integer, then 11 numk  ,  

 otherwise, 1)1(1  numceilk .          (3.7) 

Subsequently, )(tX


 will be calculated for all integers from k0 to k1.  

)(tX  was supposed to be linear in the interval between ft  to 1ft .  

So )(tX = )(tX


, when t=f:f+1, t


=num0:num1.  

The expression of function )(tX


 was denoted in a usual representation of a line, 

ctrtX 


)( . 

Because )(0 0numtXX


  and )(1 1numtXX


 , then 

cnumrX  00 , cnumrX  11  
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So 
01

01

numnum

XX
r




 , 00 numrXc  .      (3.8) 

 

Thus, the function expression of )(tX


 was derived in frames k0 to k1 by 

equations (3.8), (3.4) and (3.5), and the values of k0 and k1 were given by 

equations (3.6) and (3.7). Therefore, the value of )(tX


 can be obtained when t


 

are all the integers from k0 to k1. 

)(kX


 was denoted as ckrkX )(


; 1:0 kkk   indicates all of the integer 

numbers from k0 to k1. 

)(kX


, 1:0 kkk   are the new frames and x-coordinate data after interpolation of 

the recorded data frame ft  to 1ft . 

f  is from 1 to n, in the same way all the gait cycle was interpolated by steps 

 21,tt ,  32 ,tt , ...,  1, nn tt . The new gait data were then obtained in frame 1 to 

frame 1501. One gait cycle is frame 1 to frame 1500; frame 1501 is the start frame 

in the next gait cycle. The new gait cycle data are )(kX


; k is 1 to 1500. 

For coordinates Y and Z, the interpolation process is similar to that given above. 

3.1.2 Definition of gait signature and gait feature 

The terms gait feature and gait signature have been frequently used in previous 

studies. However, the concepts of gait feature and gait signature are not clear. 

Some features that have been used as gait features in some studies (such as step 

length and width) have been used as gait signatures in other studies. Some features 

such as clothing colour and hair colour were defined as 'soft signatures'. Some 
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variables extracted by mathematical methods were referred to as gait features in 

some studies and gait signatures in other studies. To distinguish between these two 

terms, a clear concept was given in this research. 

Gait features were used represent gait. They state the characteristics in gait. Gait 

feature data were analysed instead of gait data in feature-based method research. 

In previous studies, whether silhouette in video data or angles, the DOFs in 

motion capture data were all gait features based on this definition. In this research, 

gait features were identified as 14 angles and 1 ratio from gait characteristics.  

Gait signatures were used to achieve individual identification. Gait signatures are 

variables extracted from gait features. The gait signature is the specific statement 

of personality that makes one subject's gait different with another subject's gait. It 

is the basis of the distinguishing method. In this research, gait signatures were 

achieved from three extraction methods for gait features.  

3.1.3 Selection of gait features 

In previous studies, gait features were proposed directly and, in most cases, 

without an analysis and evaluation process. There has rarely been an analysis of 

why these gait features were proposed or an evaluation process of whether these 

gait features were suitable for representing gait as the basis for identification. 

At the beginning of this research, a set of over 20 gait features was proposed as a 

first step. These gait features are listed below: 

1. Head-Topspine angle, 

2. Topspine-Root angle, 

3-4. Elbow angle (left and right), 
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5-6. Shoulder angle (left and right), 

7-8. Knee angle (left and right), 

9-10 Ankle angle 

11-12. Heel-toe angle on y-axis (left and right), 

13-14. Heel-toe angle on z-axis (left and right), 

15-16. Wrist-root distance on y-axis (left and right), 

17-18. Wrist--root distance on z-axis (left and right), 

19-20. Wrist angle 

21. Ratio of Wrist speed (left) to Wrist speed (right). 

These gait features were proposed not only on the basis of observations of 

individual differences in gait from videos of subjects’ gaits but also because of 

features used in previous studies. Subsequently, analysis and filters were applied 

to these features.  

Shoulder angle, ankle angle, and wrist angle were removed because the 

differences in these features between subjects are not significant. The wrist-root 

distances on y-axis and z-axis were replaced by wrist-shoulder angles on y-axis 

and z-axis for consistency with other angle variables. The wrist-shoulder and 

heel-toe angles were separated into the y-axis and z-axis to separate the influence 

of walking action and individual gait habits. The definitions of y axis and z axis 

were shown in Fig 3.1. x axis denoted the walking direction, y axis is the direction 

from right body to left body, z axis is height direction. An individual gait can be 

assumed to be constructed by walking action and the individuality of the subject. 

The body movement on the z-axis is obviously highly influenced by the walking 

action itself, although the height of the foot in the gait remains a part of the 
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individual gait pattern. The separation of the y-axis and z-axis is appropriate for 

identifying features that are more closely related to individual gait habits than 

walking action.  

Gait speed is a common feature in previous studies (Grabiner et al. 2001; Menant 

et al. 2009a; 2009b). It is an effective feature for evaluating the gait of the elderly 

or some patients. There is a noticeable difference between particular types of 

subjects, for example, between the elderly and the young. However, it is not a 

suitable feature for individual identification. The gait features proposed in this 

research are not speed-related.  

Therefore, a new set of 15 gait features was established. The Head-Topspine angle 

describes the habit of the head to look up or down in the gait. The Topspine-Root 

angle describes the habit of the upper part of the body in the gait. The Elbow angle 

describes the habit of the elbow movement in the gait. Heel-Toe angle on y-axis 

described the habit of how wide the toe is swung away from heel. From top view, 

Heel-toe angle on y-axis was defined as plus when toe is outside heel, and was 

defined as minus when toe is inside heel. Heel-toe angle on z-axis described the 

habit of how cliffy the foot is in gait. From side view, Heel-toe angle on z-axis 

was defined as plus when toe is above heel, and was defined as minus when toe is 

under heel. Wrist-shoulder angle on y-axis described the habit of how far away 

from body the wrist is in gait. From top view, Wrist-shoulder angle on y-axis was 

defined as plus when wrist is outside shoulder, and was defined as minus when 

wrist is inside shoulder. Wrist-shoulder angle on z-axis described the habit of how 

high the wrist is in gait. From side view angle, Wrist-shoulder angle on z-axis was 

defined as plus when wrist is in front of shoulder, and was defined as minus when 

wrist is behind shoulder. Ratio of Wrist speed (left) to Wrist speed (right) 

described the habit of the different movement of left wrist and right wrist. This 

feature was used because of the phenomenon which was found that most subject’s 
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two arms swung in different speed. It is not related to walking speed since it is a 

ratio of left wrist speed to right wrist speed. 

After filtering, the 15 features listed below were chosen as gait features in this 

research. 

 

Number Gait Features 

1 Head-Topspine angle 

2 Topspine-Root angle 

3 left Elbow angle 

4 right Elbow angle 

5 left Knee angle 

6 right Knee anglet 

7 left Heel-toe angle on y-axis 

8 right Heel-toe angle on y-axis 

9 left Heel-toe angle on z-axis 

10 right Heel-toe angle on z-axis 

11 left Wrist-shoulder angle on y-axis 

12 right Wrist-shoulder angle on y-axis 

13 left Wrist-shoulder angle on z-axis 

14 right Wrist-shoulder angle on z-axis 

15 Wrist speed ratio (left wirst speedto right wrist speed) 

Table 3.1 List of gait features 

There were some abbreviations about feature 7-14. 

7. left Heel_toe angle on y-axis (abbreviated as Left Heel_toe_y) 

8. right Heel_toe angle on y-axis (abbreviated as Right Heel_toe_y) 

9. left Heel_toe angle on z-axis (abbreviated as Left Heel_toe_z) 

10. right Heel_toe angle on z-axis (abbreviated as Right Heel_toe_z) 

11. left Wrist_shoulder angle on y-axis (abbreviated as Left Wrist_shoulder_y) 

12. right Wrist_shoulder angle on y-axis (abbreviated as Right Wrist_shoulder_y) 
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13. left Wrist_shoulder angle on z-axis (abbreviated as Left Wrist_shoulder_z) 

14. right Wrist_shoulder angle on z-axis (abbreviated as Right Wrist_shoulder_z) 

Fig. 3.2 showed definition of these features. 

 

Feature 14: right 

Wrist_shoulder_z 

(minus) 

     Z axis                                                                                     

    Z axis                                                                                           

------Feature 2: Topspine_Root angle                         

------Feature 3: left Elbow angle                             

------Feature 1: Head_Topspine angle                        

-------Feature 6: right Knee angle                              

X axis                                   

-------Feature 9: left Heel_toe _z (minus)                     

X axis                                 

-------Feature 9: left Heel_toe _z (plus)                   

-------Feature14: right Wrist_shoulder_z (plus)                
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Fig. 3.2 Side view of feature 1, 2, 3, 6, 9 and 14. Feature 4, 5, 10, and 13 were 

defined as the same way of feature 3, 6, 9, and 14, respectively.  

Wrist_shoulder_z was denoted as plus when wrist is in front of shoulder, and as 

minus when wrist is behind shoulder. The natural posture of wrist is when this 

angle is 0. Heel_toe_z was denoted as plus when Toe is above heel, and as minus 

when Toe is under heel. The natural posture of wrist is when this angle is 0.  
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Fig. 3.3 Top view of feature 7 and 12. Feature 8 and 11 were defined as the same 

way of feature 7 and 12, respectively. 

Wrist_shoulder_y was denoted as plus when wrist is outside shoulder, and as 

minus when wrist is inside shoulder. Heel_toe_y was denoted as plus when Toe is 

outside heel, and as minus when Toe is inside heel. 
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3.1.4 Two indicators to evaluate gait features 

To analyse the gait features quantitatively, two indicators were designed to 

evaluate gait features. If a gait feature can be used to distinguish individuals, it 

should be noticeably different for different people but stable in the same subject at 

different gaits. To evaluate if these gait features are suitable, two indicators were 

designed: 'Consistence degree' and 'Variation degree'. The consistence degree 

evaluates if the gait feature is stable in different gaits for the same subject. The 

variation degree evaluates if the gait feature is noticeably different in different 

individuals. 

Four variables were used to represent these two indicators: the SD of the mean, 

the SD of the SD, the SD of the max, and the SD of the min. For any feature of 

any gait, the mean is the mean value of this gait feature in this gait; the SD is the 

standard deviation of the mean, which measures dispersion; the max is the 

maximum value; the min is the minimum value.  

In the consistence degree for any gait feature, the 'SD of the mean' measures the 

dispersion of the mean value of the gait feature in different gaits of the same 

subject; the 'SD of the SD' measures the dispersion of the SD of the gait feature in 

different gaits of the same subject; the 'SD of the max' measures the dispersion of 

the maximum of the gait feature in different gaits of the same subject; the 'SD of 

the min' measures the dispersion of the minimum of the gait feature in different 

gaits for the same subject. 

In the variation degree for any gait feature, the 'SD of the mean' measures the 

dispersion of the mean value of the gait feature for different people; the 'SD of the 

SD' measures the dispersion of the SD of the gait feature for different people; the 

'SD of the max' measures the dispersion of the maximum of the gait feature for 
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different people; the 'SD of the min' measures the dispersion of the minimum of 

the gait feature for different people. 

As an ideal gait feature for gait identification, the consistence degree should be 

small and the variation degree should be large. In section 3.2.1, the evaluation 

results for the Consistence degree and the Variation degree of these 15 gait 

features demonstrated that these gait features were ideal and suitable for 

identification. 

3.1.5 Gait signature extraction methods 

In this research, 15 gait features were proposed as most significant variables to 

represent gait, and gait signatures were extracted from gait features to identify 

individuals. Gait signatures bear the individuality of gait for each subject, and one 

subject has one unique set of gait signature for identification purpose. Three 

different methods were applied to extract gait signatures. 

3.1.5.1 Statistics method 

Statistics method to extract gait signature is the first extraction method in this 

chapter. Two sets of gait signature were used: the first set is (mean, SD of mean) 

of gait features as gait signatures, the second set is (mean, SD of mean, maximum, 

minimum) of gait features as gait signatures. This method was used in section 

3.2.2.1 and 3.2.2.2. 

3.1.5.2 PCA method 

PCA was applied as second extraction method. PCA was used on 1500 frames of 

one gait cycle. For each subject j, features is a matrix F which contain 1500*15 

dimensions. 1500 is frame number, 15 is feature number. 



 61 

























1500

15,

1500

2,

1500

1,

2

15,

2

2,

2

1,

1

15,

1

2,

1

1,

......

...............

...............

......

......

jjj

jjj

jjj

fff

fff

fff

F  

Then the principle components (PC1, PC2,..) were achieved after applying PCA 

on F. The number of PCs depended on each subject. Then, for any subject j, 

ij

i

ij fCoePC ,

15

1

,11 


,  ij

i

ij fCoePC ,

15

1

,22 


, ...      (9) 

in that i means feature i, ijf ,  means gait feature's data of subject j, feature i. 

Those coefficients ijCoe ,1 , ijCoe ,2  of PCs represented the contribute degree of 

each gait features on this subject's gait in one gait cycle. The first two principle 

components were kept for all 35 subjects since the numbers of PCs are not same. 

For any feature i, the coefficients of PC1 and PC2, ijCoe ,1 , ijCoe ,2  were used 

as gait signature. This method was used in section 3.2.2.3. 

3.1.5.3 Fourier expansion method 

A periodic function )(xf can be expanded to the sum of an infinite series of sines 

and cosines. The expansion expression of )(xf  is: 







1

0 )sincos(2)(
n

nn nxbnxaaxf . 

The coefficients na  and nb  is determined by equations as below: 

  



 nxdxxfan cos)(1 ,  n=0,1,2,...... 

  



 nxdxxfbn sin)(1 ,   n=1,2,....... 
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For each feature i, Fj,i(t) was denoted as function expression of this feature for 

subject j. Fj,i(t) can be decomposed into a second order Fourier expansion as 

equation (3.10) 

        errtFtFtFtFFtF ijijijijijij  2cos42sin3cos2sin10)( ,,,,,,                          

                 (3.10)   

The coefficients in equation (3.10) are determined by: 





2))((0 , dttFF ij , 

  



 tdttFF ij sin)(11 , , 

  



 tdttFF ij cos)(12 , , 

  



 tdttFF ij 2sin)(13 , , 

  



 tdttFF ij 2cos)(14 , .                                                

So each feature has gait signatures with 5 vectors )4,3,2,1,0( ,,,,, ijijijijij FFFFF . 

This method was used in section 3.2.2.4. 

3.1.6 k-NN to identify 

In pattern recognition, the k-nearest neighbour algorithm (k-NN) is a method for 

classifying objects based on closest training examples in the feature space. k is 

usually a positive integer, typically small. If k = 1, then the object is simply 

assigned to the class of its nearest neighbour. If there were more than one nearest 

neighbours, the object is assigned to the class which appeared the most times. The 

best choice of k depends upon the data. Generally, larger values of k reduce the 

effect of noise on the classification. After choosing gait signatures, Euclidean 

distance was used as distance between gait signatures of different subjects. For 

each feature, the subject which has the minimum distance to tested subject was 
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denoted as the nearest neighbour of tested subject on feature i. Gait feature set 

included 15 features, so the tested subject has 15 nearest neighbours for all gait 

features. At last, the tested subject will be identified as the subject who appeared 

most times in these 15 nearest neighbours. If there is no such subject, the tested 

subject will be noted as unable to identify. 

The Euclidean distance in three different methods between gait signatures of 

different subjects were introduced as below: 

By statistics method, for any feature i, if using (mean, SD of mean) as gait 

signature, the distance between subject A and subject B in indicator i is 

 2

,,

2

,, )()( iBiAiBiA SDSDmeanmean  .   

If using (mean, SD of mean, maximum, minimum) as gait signatures, the distance 

between subject A and subject B in indicator i is  

2

,,

2

,,

2

,,

2

,, )minmin()maxmax()()( iBiAiBiAiBiAiBiA SDSDSDSDSDSDmeanmean 

By PCA method, gait signatures were denoted these as  
ijij CoeCoe ,, 2,1 , j means 

subject j, and i means feature i. The distance between subject A and subject B in 

feature i is  

2

,,

2

,, )22()11( iBiAiBiA CoeCoeCoeCoe  . 

By Fourier expansion method, gait signatures were )4,3,2,1,0( ,,,,, ijijijijij FFFFF . 

The distance between subject A and subject B in feature i is 

2

,,

2

,,

2

,,

2

,,

2

,, )44()33()22()11()00( iBiAiBiAiBiAiBiAiBiA FFFFFFFFFF  .  

The identification process is the following steps: 

 Selecting one complete gait cycle from each gait file and each subject.  
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 Using linear interpolation to get same format gait cycle to normalize those 

gait cycles. 

 using 15 gait features to describe a gait cycle. 

 Using statistics method, PCA, Fourier expansion method to extract gait 

signatures.  

 Choosing base gait (random or average gait) and using K-NN algorithm to 

identify. 

 Comparing identify results with different gait signatures and different data 

sample setup. 

3.2 Results 

3.2.1 Evaluation of gait features 

The computing results showed that these gait features were suitable for distinguish 

individuals. Table 3.2 showed the Consistence degree and Variation degree of 15 

gait features. Figures about the gait features are shown from id 1 to id 7 in 

Appendix 2. It is obvious that the gait features varied little between different gait 

files for the same subject, whereas varied much between different subjects. 
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Gait 

Features 

SD of mean SD of SD SD of max SD of min 

Consis

tence 

Variati

on 

Consiste

nce 

Variati

on 

Consiste

nce 

Variati

on 

Consiste

nce 

Variati

on 

1 2.16   8.54   0.56    1.46    2.33    8.21    2.11    8.97   

2 0.56   2.89   0.17    0.81    0.78    3.06    0.54    3.66   

3 0.88   12.43   0.98    3.53    1.18    13.29   2.30    13.23   

4 1.04   11.01   1.32    3.01    1.44    11.32   2.95    12.02   

5 0.96   9.59   0.67    3.80    1.09    8.80   1.56    13.87  

6 0.71   11.33   0.58    4.49    0.99    10.29   1.37    17.33   

7 1.45   6.81   1.06    1.81    3.65    10.09   2.58    9.92   

8 1.76   7.53   0.78    2.45    4.52    11.98   2.21    7.40   

9 0.95   3.89   0.94    3.13    1.23    7.56   2.45    7.44   

10 0.90   2.90   0.84    2.99    1.58    6.41   2.72    6.73   

11 0.74   2.97   0.41    1.76    1.00    3.99   1.03    4.01   

12 0.69   3.38   0.39    1.97    0.87    3.32   0.80    5.44   

13 0.94   5.83   1.09    4.14    2.43    8.05   1.23    8.97   

14 0.99   5.83   1.56    4.20    2.69    9.23   2.21    7.91   

15 0.21   0.80   0.36    1.81    1.25    12.25   0.05    0.13   

Table 3.2 Consistence degree and Variation degree of 15 gait features 

It is obviously that 15 gait features have low value in Consistence degree and high 

value in Variation degree. From the measure of dispersion, it showed that these 

gait features varied little in different gait for the same subject, and varied highly 

for different people.  

3.2.2 Identification results 

3.2.2.1 Using (mean, SD of mean) of features as gait signatures  

The identification results were compared between random one gait cycle as base 

gait and average gait cycle as base gait.  

First, random gait cycle was used as base gait, and random gait cycle as testing 
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gait. The data sample is for all 35 subjects with some subjects have different gait 

cycles to choose from. In this way the identification was conducted for 252 times.  

The accuracy of identification is above 95%. Only 2% is unable to identify. 3% is 

wrong identifying results. 

Secondly, average gait cycle was used as base gait, and random gait cycle as 

testing gait. All 6 gait cycles of the tested subject were used to get an average gait 

as base gait. Data sample is still 35 subjects as well. The identification was 

conducted for 252 times also, and the accuracy of identification is 99%, nearly 

100%.  

Attempts were also made trying to use less gait cycles to get average gait as base 

gait. When using 3 gait cycles to get average gait, the accuracy of identification 

reduced to 97.22%. When using 5 gait cycles to get average gait, the accuracy of 

identification is 99.60%. The different results were shown in Table 3.3. 

Average gait 

as base gait 

identification rate 

Average gait of 3 

gait cycles 

Average gait of 5 

gait cycles 

Average gait of 

6 gait cycles 

97.22% 98.41% 99.60% 

Table 3.3 the identification results by different average gait as base gait 

3.2.2.2 Using (mean, SD of mean, maximum, minimum) of features as 

gait signatures  

Same steps were used as 3.2.2.1. The computing time increased since using more 

variables. The identify results were almost same. The accuracy of identification is 

around 95% when using random gait as base gait, nearly 100% when using 

average gait as base gait. 

3.2.2.3 Using coefficients of PCs as gait signatures  

PCA as a effective data reduction method was frequently used in gait analysis 
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(Forbes & Fiume 2005). In (Das et al. 2006), a two-stage PCA extracting gait 

features was used for recognition. PCA and DTW (dynamic time warping) based 

classifier method were used in 2009 (Wu & Li 2009). PCA and LDA(linear 

discriminant Analysis) were used for recognizing patients (Cho et al. 2009). PCA 

is used to reduce the dimensionality of a data set with correlated variables, while 

retaining as much variance of the data set as possible, and transforming the data 

set into a new data set with independent variables.  

First, random gait was used as base gait and random gait cycle as testing gait. 

PCA was performed on 1500 frames for each subject. 2-5 PCs were obtained 

which occupied 85.6% to 91.2% variance for different subjects. So the 2 first PCs 

were kept for all subjects. Coefficients of PC1 and PC2 in equation (3.9) were 

used in k-NN algorithm. The accuracy of identification is 93.25%. Second, 

average gait were used as base gait and random gait cycle as testing gait. The 

accuracy of identification is 98.80%. 

3.2.2.4 Using Fourier expansion coefficients as gait signatures  

Fourier expansion and Fourier coefficients were used in gait animation and 

recognition before (Gleicher 1998; Troje 2002; Ormoneit et al. 2005). Human 

motion can be transferred from a walk to a run or changed the motion mood with 

emotion by Fourier expansions (Munetoshi et al. 1995). The Fourier series has 

many such applications in electrical engineering, vibration analysis, acoustics, 

optics, signal processing, image processing, quantum mechanics, econometrics, 

thin-walled shell theory, etc. In mathematics, a Fourier series decomposes any 

periodic function or periodic signal into the sum of a (possibly infinite) set of 

simple oscillating functions, namely sines and cosines (or complex exponentials). 
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The study of Fourier series is a branch of Fourier analysis. Fourier series were 

introduced by Joseph Fourier (1768–1830) for the purpose of solving the heat 

equation in a metal plate. 

In this section, Fourier expansion was used on gait features, and then used Fourier 

coefficients of expansion as gait signature for k-NN algorithm to identify. 

The identification is 252 times. The accuracy of identification is above 97% when 

random gait was used as base gait. The accuracy increased to 99% when average 

gait of subject was used as base gait.  

3.2.2.5 Comparison of different method of extracting gait signatures  

Table 3.4 showed the compared results of three extracting gait signature method. 

Statistics method already got very high identify rate with the simplest calculated 

dimension. Fourier expansion method got the best result while using random gait 

as base gait. While using average gait as base gait, all of these three methods 

achieved very high accuracy. In general, the result of average gait as base gait is 

better than result of random gait as base gait. 

Base gait 
identify rate 

Statistics PCA Fourier expansion 

random gait 95.24% 93.25% 96.43% 

average gait 99.60% 98.80% 99.60% 

Table 3.4 Identification results of three extracting gait signature method 

3.2.3 Using less features to identify 

It is to repeat the identify process with less features. 10 features were used without 

features 11-15. It was in order to test the effect on identification about some 

features proposed in this research. Identification was conducted 252 times also. 

The results were worse. Accuracy of identification decreased from 95% to 83%. 
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This was conducted by using statistics method and random gait as base gait. 

3.2.4 Correct identification rate in the case of data sample doesn't 

include testing subject 

In part 3.2.2.1 to 3.2.2.2, that is the case which data sample include testing subject, 

and to test if this identification method could right identify that subject. While the 

testing subject even does not exist in data sample, will it be correctly shown not in 

this data sample or will be denoted as a wrong person? For verifying this problem, 

a series of identification were used. The data sample is 34 subjects for now, 

excluding the subject which used to test. The results showed 60% correct 

identified that testing gait didn't exist in sample data while using statistics method 

with (mean, SD of mean) as gait signatures; and 82.54% correct identified that 

testing gait didn't exist in sample data while using statistics method with (mean, 

SD of mean, max, min) as gait signatures. These identification rates were based on 

random gait as base gait. While using average gait as base gait (average 6 gait 

cycles), the correct identifying rate of testing gait didn't exist in sample data 

increased to 85.71% with (mean, SD of mean) as gait signatures , and 94.05% 

with (mean, SD of mean, max, min) as gait signatures. 

3.3 Summary 

3.3.1 Novel gait features proposed 

A novel, effective set of gait features which contained 14 angles and one ratio was 

proposed to represent individuals’ gait. Some features in this set were used in 

previous research, such as elbow angles, knee angles. Some features in this set 

were proposed firstly in this research, such as Wrist_shoulder_y/z angles, 
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Heel_toe_y/z angles, and Wrist speed ratio. Angles were decomposed to y-axis 

and z-axis to represent gait instead of joint angles only, and a new feature was 

used -- Wrist speed ratio.  

These 15 gait features were evaluated by Consistence degree and Variation degree. 

Table 3.2 showed the Consistence degree and Variation degree of 15 gait features. 

It showed that these gait features kept stable in different gait files of the same 

subjects, and varied much for different people. So these 15 gait features were 

suitable for individual identification. The identification results also showed that 

the new set of gait features is very efficient for gait recognition. It could represent 

individual gait very well.  

3.3.2 High accuracy in identification results 

3.3.2.1 Effective framework for gait identification 

In this chapter, a systematic, practical framework was proposed with high 

accuracy to identify individuals. The identification result in Table 3.4 is better than 

previous reported research. The recognition rate was about 75% in 114 subjects in 

(Foster et al. 2003), 82.5% in 74 subjects in (Wang et al. 2003), the highest 

recognition rate was 98.8% with best view point (from 45 degree front view) with 

80 walkers’ 2D image sequence in (Zhang & Troje 2005). The identification 

framework in this paper included four steps: normalization of gait data, computing 

gait features, extracting gait signatures from features, and distinguishing by k-NN 

algorithm.  

3.3.2.2 Comparison of three proposed methods of extracting gait 

signatures 

Three different methods were applied to extract gait signatures. Those different 
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methods included: 

 Statistics method. Using (mean, SD of mean value), or (mean, SD of mean 

value, maximum, minimum) as gait signatures. 

 PCA method. Using coefficients on PCs of features as gait signatures. 

 Fourier expansion method. Using Fourier coefficients as gait signatures. 

The highest accuracy of identify was nearly 100% while using average gait as 

base gait, above 95% while using random one gait as base gait. Statistics method 

already achieved very high identification rate with the simplest algorithm. Fourier 

expansion method achieved the best result while using random gait as base gait. 

PCA method extracted the principle feature combination in 15 features for each 

subject. It means that the different weights for 15 features on subjects in gait cycle 

were used to identify. From the results of identification, it was found that Statistics 

method is better than PCA method. It suggested that the difference of these gait 

features in different subjects did better for identification than the difference of 

weights of features in different subjects. Another possible reason of this result is 

that the removed PCs caused the lower identification results (the removed PCs 

caused data loss). However, the accuracy rate is still very close in these two 

methods.  

Fourier expansion method showed best result, while statistics method occupied 

least time in computing.   

3.3.2.3 Average gait as base gait is better than random gait as base 

gait 

In general, the identification results which used average gait of subjects as base 

gait is better than results which used random gait of subjects as base gait. While 

using average gait as base gait, all of these three extraction methods achieved very 
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high accuracy. It was found that the more gait cycles were averaged as base gait, 

the higher the accuracy of identification was obtained (shown in Table 3.3). 

Besides, using average gait as base gait can also increase the correct identification 

rate when the subjects is not in data sample than using random gait as base gait. 

While using average gait as base gait (average 6 gait cycles), the correct 

identifying rate of testing gait didn't exist in sample data increased from 60% to 

85.71% with (mean, SD of mean) as gait signatures , and from 82.54% to 94.05% 

with (mean, SD of mean, max, min) as gait signatures. For an identifying 

individual method, there are two functional requirements. One is that the method 

can pick the correct one when the subject is in data sample. The other one is that 

the method can identify the subject not there when the subject is not in data 

sample. This method resolved the first requirement very well. There were very 

little reported literatures about the second requirement. It is hard to comment the 

result about the second requirement in this research. It is obviously that using 

average gait as base gait can increase the rightly identifying rate when the subjects 

is not in data sample than using random gait as base gait.  

3.3.3 Normalized gait data and data sample 

The gait data was normalized for one gait cycle by linear interpolation. Each gait 

cycle has the same frame numbers after interpolation, as well as same starting 

posture. It improved the accuracy in individual identification. 

The data sample in this paper included 35 subjects. It is quite small due to 

experiment limitation, however 35 subjects’ gait data is a decent sample space for 

individual identification research based on 3D motion data. In previous research, 

20 subjects were used in (Rosengren et al. 2009), 37 subjects were used in 

(Kennedy et al. 2009), 16 subjects were used in (Allet et al. 2008), and 36 subjects 
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were used in (Menant et al. 2009a). Although the accuracy should decrease when 

data sample gets much bigger in theory, this identification method is still a 

significant progress in gait identification research. The other specific property of 

this data base is that it contained only young, male subjects. The gender and age 

effects played no part in identification. In a data sample contained very similar 

subjects, very high identification results were achieved. If the data sample were 

increased to include all subjects with different age and gender, this identification 

method will prove even more efficient in theory.  

In this chapter, the coherent good results showed the new gait features and 

identification methods are very effective for gait identification. In next two 

chapters, gait features were investigated for the purpose of identification. In 

Chapter 4, the influence on gait features from gait phases and gait cycle were 

investigated to reveal the secret of the personality of walkers. In Chapter 5, it 

provided solutions about the question 'which and why these features should be 

extracted to represent gait'. 
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Chapter 4 Gait Phase and Gait cycle analysis 

Many studies have been dedicated to gait phase. The role of phase has been 

investigated by gait classification and recognition (Bissacco et al. 2007). Gait 

phase was used for recognition via a method of phase synchronisation and 

period-based gait trajectory matching in 2010 (Mori et al. 2010). Some research 

has focused on analysing three-dimensional kinematics and dynamics in certain 

gait phases, such as the stance phase or swing phase (Doriot & Cheze 2004; 

Emborg et al. 2011). Determining how to detect and recognise gait phase has also 

attracted much interest (Senanayake & Senanayake 2010; 2010; Wang et al. 2010). 

Gait phase detection in real time requires the accurate timing of feedback as a 

practical method. An acceptable standard method has not yet been achieved to 

produce a reliable and accurate system, although many gait phase detection 

algorithms have been proposed. The aim of this study was to investigate the 

influence of gait phase on gait features and the difference between the gait phases 

of individuals.  

Certain gait phases, such as the double support phase, have been the focus of 

study in previous research. Double support time has been shown to be an 

important feature in the elderly’s gait and gait balance (Gabell & Nayak 1984; 

Allet et al. 2008; Turner & Woodburn 2008). 

4.1 Gait phase Classification 

4.1.1 Gait cycle and phases in previous research  

A normal gait consists of two main phases, the stance phase and swing phase. It is 

defined by one same leg's moving motion. The stance phase includes two periods 
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of double support and one single support phase. The swing phase is actually the 

other leg's single support phase. Thus, in each gait cycle, there are two periods of 

double support and two periods of single support. The double support phase is the 

period during which both feet are on the ground. The stance phase and swing 

phase or single support phase are typically the main phases. There are more 

detailed phases which were divided in the stance phase and swing phase. Previous 

studies applied various methods of dividing gait phases. 

4.1.1.1 Seven phases in gait cycle 

In (Perry 1999; M.Nordin & Frankel 2001), one gait cycle was divided into seven 

phases: Initial Contact (IC), Mid Stance (MSt), Terminal Stance (TSt), Pre Swing 

(PSw), Initial Swing (ISw), Mid Swing (MSw) and Terminal Swing (TSw). The 

IC phase is called the loading response in some early literature (Gage 1990; Perry 

1990).  

 

Fig. 4.1 Example of gait cycle in (M.Nordin & Frankel 2001) 

Those phases were defined as follows: 

 IC (loading response): As its name suggests, this phase begins with initial 

contact, the instant the foot contacts the ground. (Normally, the heel contacts 

the ground first. In patients who demonstrate pathological gait patterns, the 

entire foot or the toes contact the ground initially.)  IC ends when the 

contralateral toe is lifted, when the opposite extremity leaves the ground. 
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Thus, loading response corresponds to the gait cycle's first period of double 

limb support. 

 Midstance: begins with contralateral toe off and ends when the centre of 

gravity is directly over the reference foot.  

 Terminal stance: begins when the centre of gravity is over the supporting foot 

and ends when the contralateral foot contacts the ground. During terminal 

stance, at approximately 35% of the gait cycle, the heel rises from the ground. 

 Preswing: begins when the contralateral toe makes initial contact and ends at 

toe off, at approximately 60 per cent of the gait cycle. Thus, preswing 

corresponds to the gait cycle's second period of double limb support. 

 Initial swing: begins at toe off and continues until maximum knee flexion 

occurs. 

 Midswing: This is the period during which maximum knee flexion is reached 

and lasts until the tibia is vertical or perpendicular to the ground. 

 Terminal swing: begins when the tibia is vertical and ends at initial contact. 

4.1.1.2 Eight phases in gait cycle 

Eight phases are divided in a gait cycle in (Kerrigan et al. 1998): Initial Contact, 

Loading Response, Midstance, Terminal Stance, Pre-swing, Initial Swing, 

Mid-Swing and Terminal Swing. Fig. 4.2 illustrates these eight phases. 
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Fig. 4.2 The eight phases of the gait cycle (Kerrigan et al. 1998) 

The first three phases in 4.1.1.1 were divided into four phases in section 4.1.1.2. 

The initial contact phase was added as the first phase in the gait cycle.  

In (Inman & et al. 1981), the gait cycle is divided into eight phases as shown in 

Fig. 4.3. This division of phases is similar to that shown in Fig. 4.2. 

 

Fig. 4.3 Gait cycle over time (Inman & et al. 1981) 
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4.1.1.3 Four phases in gait cycle 

One gait cycle is divided into four phases in (Pappas et al. 2001). These phases are 

defined as follows: 

 Stance phase: the period when the foot is with its entire length in contact with 

the ground (angular velocity = 0). 

 Heel-off phase: the period following the stance phase during which the front 

part of the foot is in contact with the ground and its heel is not. 

 Swing phase: the period when the foot is in the air (not in contact with the 

ground) and swings forward. 

 Heel-strike phase: the period following the swing phase, which begins with 

the first contact of the foot with the ground (usually the heel, but not 

necessarily) and ends when the entire foot touches the ground. 

4.1.2 Gait cycle and phases in this research  

The traditional definition of the gait cycle is the time interval or sequence of 

motion occurring from heelstrike to heelstrike of the same foot (DeLisa 1998).  

Gait cycle consists of a right stance phase and a right Swing phase. The right 

stance phase included two double support phases and a right single support phase. 

This way of dividing the gait cycle is good for tracking the same foot's trajectory 

from motion tracking view; however, the gait cycle is not a centrosymmetric 

movement cycle. The gait cycle is defined by one same foot's stance phase and 

swing phase. The stance phase occupies almost 65% of the gait cycle, and the 

swing phase only occupies approximately 35% of the gait cycle.  

In this study, the gait cycle was divided to analyse the movement of the human 

body movement during the gait cycle and compared the functions of the two legs 
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according to each respective single support phase. The gait cycle was divided in 

terms of supporting legs and swing legs. Thus, in this chapter, a different gait 

cycle and gait phases dividing method was proposed. Fig. 4.3 is a clearer gait 

cycle example than Fig. 4.1. Fig. 4.3 shows one gait cycle and one more phase 

over time. The traditional gait cycle lasts from the right initial contact posture to 

the next right initial contact posture. It is composed of a right stance phase (double 

support phase--right single support phase--double support phase) and right swing 

phase (left single support phase and double support phase). The gait cycle in this 

study lasts from the left toe-off posture to the next left toe-off posture, which 

begins with right single support, followed by double support, and left single 

support, and ends with double support. They gait cycle in this study is completely 

symmetrical about the middle of the cycle, as illustrated in Fig. 4.4. 

The gait cycle in Fig. 4.4 is divided into two symmetrical half cycles. The first 

cycle is composed of the right single support phase and double support phase, and 

the second cycle is composed of the left single support phase and double support 

phase. The two legs’ functions are completely corresponding. Thus, the 

similarities and differences between the legs with respect to each single support 

phase and swing phase are easy to discern. The similarities and differences 

between the left and right sides of the human body can be determined by 

comparing the first and second cycle.  
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Fig. 4.4 Gait cycle and gait phase used in this research 

A new gait cycle was defined as discussed above. The gait cycle starts with the 

right leg as the support leg, and the posture is left toe off; the cycle is completed at 

the next same posture. Each single support phase was divided into three shorter 

phases. Thus, the gait cycle features 8 gait phases. These gait phases as defined in 

detail as follows: 

 1. Left initial swing: begins with the left toe off of the ground and ends at the 

posture at which maximum left knee flexion occurs. 

 2. Left mid-swing phase: begins at the posture in which maximum left knee 

flexion occurs and ends at the posture at which the left tibia is vertical or 

perpendicular to the ground. 

 3. Left initial contact phase: begins at the posture at which the left tibia is 

vertical or perpendicular to the ground and ends at the posture at which the 

left heel makes initial contact with the ground. 

 4. Right pre-swing phase (Double support phase): begins at the posture at 
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which the left heel makes initial contact with the ground and ends at the right 

toe off posture.  

 5. Right initial swing phase: begins at the posture with the right toe off the 

ground and ends at the posture at which maximum right knee flexion occurs. 

 6. Right mid-swing phase: begins at the posture at which maximum right knee 

flexion occurs and ends at the posture at which the right tibia is vertical or 

perpendicular to the ground. 

 7. Right initial contact phase: begins at the posture at which the right tibia is 

vertical or perpendicular to the ground and ends at the posture at which right 

heel initial contact ground. 

 8. Left pre-swing phase (Double support phase): begins at the posture at 

which the right heel makes initial contact with the ground and ends at the left 

toe off posture. 

The single support phase begins with the toe off posture and ends with this foot's 

initial contact posture according to this method of dividing gait cycle phases and 

methods in previous research. The double support phase is the same according 

both dividing methods. The difference between this method and the previous 

method is the gait phases in the single support phase. For example, the gait cycle 

starts with the right leg as the support leg. In the previous method, the right single 

support phase (left swing phase) was divided according to variations in the 

supporting leg‘s stance phase: loading response, mid-stance, terminal stance, etc. 

Additionally, the right swing phase was divided according to variations of the 

right leg's swing phase. Obviously, the phases in the right single support phase do 

not correspond to the right swing phases because two different criteria are used. In 

the dividing method used in this study, the right single support phase is divided 

according to variations of the left leg's swing phase: left initial swing phase, left 
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mid-swing phase, left initial contact phase. Moreover, the right swing phase is 

divided according to variations in the right leg's swing phase: right initial swing 

phase, right mid-swing phase, right initial contact phase. Therefore, the phases in 

the right single support phase correspond to the phases in the right swing phase. 

Using this method of dividing gait phases, the gait cycle is symmetrical about the 

middle of the cycle. This method is not only suitable for comparing the 

corresponding stance/swing phases of the two feet, it is also suitable for analysing 

the similarity in gait between the left and right sides of the body. These eight 

phases compose two symmetrical half cycles of the swing/stance leg. 

One complete gait cycle were selected for every subject which started in the same 

gait pose. Then, the gait cycle was normalized to the same frame numbers by 

linear interpolation. The details of the normalisation process were introduced in 

section 3.1.1. 

The subjects were 35 males recruited from a British university. They were told to 

walk freely. Walking data were recorded by a motion capture system with 7 

cameras. Forty markers were used for motion capture (Fig. 2.2).  The camera 

recording speed was 120 frames/s for seven subjects, and 60 frames/s for other 28 

subjects. 

The same gait features discussed in chapter 4 were used to describe the subjects' 

gait. Thus, 15 features listed below were obtained. Any posture can be represented 

as TFFFp ),,,( 1521  . 

1. Head-Topspine angle, 

2. Topspine-Root angle, 

3-4. Elbow angle (left and right), 

5-6. Knee angle (left and right), 
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7-8. Heel-Toe angle on y-axis (left and right), 

9-10. Heel-Toe angle on z-axis (left and right), 

11-12. Wrist-Shoulder angle on y-axis (left and right), 

13-14. Wrist-Shoulder angle on z-axis (left and right), 

15. Ratio of Wrist speed (left) to Wrist speed (right). 

4.2 Data Analysis 

The mean, SD of the mean value, maximum, and minimum were calculated in 

using the 15 gait features. The aim in this chapter is to analyse how gait phases 

affect these features. The time at which the maximum and minimum values of the 

features appeared in the gait cycle were investigated. The value of gait features 

varied even for the same subject. Emotion, gait speed, environment and many 

other factors will affect the value of gait features. Sometimes, a walker may 

change gaits on purpose. However, certain habits or so-called gait patterns are 

more difficult to change than the gait features' value, e.g., which phase will the 

subject lift his or her foot to the highest level from the ground during the gait 

cycle, swing his or her arms to the point farthest away from his or her body, raise 

his or her head to look around, etc. The coordinate mode of the whole body during 

the gait cycle is more difficult to change. The coordinate mode is the individual 

gait pattern which was investigated for the purpose of gait identification. In this 

study, the gait cycle was divided into 8 gait phases; each gait phase has an exact 

definition and meaning. Thus, the extrema of the gait features revealed the phase 

in which each subject's gait pattern appeared.  

In Chapter 3, the values of gait features were analysed. In this chapter, the gait 

features' variation with respect to time is analysed. To analyse the time at which 
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gait features' extrema occur, two pairs of variables were used to evaluate the 

extremum distribution. For any feature i, the frame number with maximum iF  

and the frame number with minimum iF  were calculated and denoted as 

),( min,max, ii FrameFrame ; the phase number with maximum iF  and the phase 

number with minimum iF  were calculated and denoted as 

),( min,max, ii PhasePhase . ),( min,max, ii FrameFrame  will be abbreviated as 

 minmax ,FrFr , and ),( min,max, ii PhasePhase  will be abbreviated as  minmax ,PP . 

These two pairs of variables were compared between different gait cycles of 

different subjects. The first pair of variables is  minmax ,FrFr . The second pair of 

variables is  minmax ,PP .  minmax ,FrFr  is too small in dimension to be applied in 

practice. In theory, the time at which gait features’ extrema appear should be 

limited to a small time interval because the gait cycle of each individual has its 

own pattern. However, it is very often found that  minmax ,FrFr  varies even for 

the same person. Moreover, it is nearly impossible that  minmax ,FrFr  is the same 

among different people, as demonstrated by the calculated results.  minmax ,FrFr  

is nearly unrepeatable for each gait. Thus, some improvements were made to 

evaluate the gait features' extremum distribution. 

Instead of using frame numbers to denote when the maximum and minimum value 

of a feature occurred in the gait phases, a percentage denoted as 

)__( minmax, PFPF  was used. For example, if the maximum value of a gait feature 

occurred at Frame Number 135, and the phase it belonged to is from Frame 

Number 100 to 200, then the max_ PF  will be 35%. Thus, )__( minmax, PFPF  
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was used instead of  minmax ,FrFr . max_ PF  denotes the percentage of a gait 

phase completed when maxFr  occurs. The same applies for minFr . For example, 

for subject j, feature i, maxFr  is n and minFr  is m, the gait phase during which 

maxFr  occurs is from frame a to frame b, and the gait phase during which minFr  

occurs is from c to d. Thus, %100_ max 





ab

an
PF , and %100_ min 






cd

cm
PF .  

Gait phases were divided by the legs' movement function. The number of frames 

contained in one gait phase varied between different subjects. Thus,  minmax ,PP  

could be different even if  minmax ,FrFr  is the same. )__( minmax, PFPF  avoided 

the problem of using frame numbers, which are too small and have no specific 

meanings; on the other hand, it provided a useful tool to study the locations at 

which the maximum and minimum values of gait features occurred during the gait 

phases and made the comparisons between different subjects much easier. 

)__( minmax, PFPF  provided more detailed temporal information in conjunction 

with  minmax ,PP . 

In the next sections, )__( minmax, PFPF  and  minmax ,PP  will be analysed of 15 

features one by one.  

4.2.1. Head-Topspine angle and Topspine-root angle 

Head-top spine angle and top spine-root angle were observed to be stable over one 

gait cycle. Fig. 4.5 is a typical figure for these two angles. For most subjects, this 

figure shows that the angle curve does not change very much with time. The red 

curve indicates the head-top spine angle, and the blue curve indicates the top 

spine-root angle. x axis denotes frame numbers, y axis denotes angles, and the 
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vertical line in figure denotes the dividing frame between gait phases. 

 

Fig. 4.5 Head-Topspine angle and Topspine-Root angle  

The detailed values of the gait features were calculated in Chapter 4, and the 

average SD on all 70 gait files is only 1.75 for Head-Topspine angle, 1.12 for 

Topspine-Root angle. Because these two data sets did not show very much 

variation between different gait phases, the data regarding )__( minmax, PFPF  and 

 minmax ,PP  for the two sets will not be analysed any further. 

4.2.2. Knee angle 

The left knee angle and right knee angle were calculated. The knee angle is 

defined by three markers: the thigh, knee and heel. Typical knee angle curves are 

illustrated in Fig. 4.6. x axis denotes frame numbers, y axis denotes angles, and 

the vertical line in figure denotes the dividing frame between gait phases. 

 

Fig. 4.6 Knee angles (red: left knee angles, blue: right knee angles) 
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The shapes of the curves of other subjects are similar to those shown in Fig. 4.6. 

The details of the curves are different between subjects according to their different 

walking habits.  

By the definition of gait phases, minFr  of the left knee angle must be the posture 

in which gait phase 2 (left mid-swing phase) started and minFr  of the right knee 

angle must be the posture in which gait phase 6 (right mid-swing phase) started. 

Thus, for the knee angles, only the gait phase and the percent of the gait phase 

completed when maxFr  is reached need to be calculated.  

maxP  of the left knee angle is concentrated in phase 3. Excluding 2 subjects whose 

maxP  occurred in phase 4, there were 94.29% of 35 subjects whose maxP  occurred 

in phase 3. maxP  of the right knee angle is concentrated in phase 7 or 8. The 

details of maxP  are listed in Table 4.1. The column named 'per cent of subject' 

indicates the percentage of the subjects whose maximum or minimum occurred in 

the corresponding gait phases of all of the subjects.  

left knee angle 

P max  per cent of subject 

3 94.29% 

4 5.71% 

right knee angle 

P max  per cent of subject 

7 80.00% 

8 20.00% 

Table 4.1 The distribution of maxP  of knee angle.  

Only max_ PF  will be considered because min_ PF  is equal to zero. The minima 

in the left knee angles all occurred in the starting frame of phase 2; the minima in 

the right knee angles all occurred in the starting frame of phase 6. Table 4.2 shows 

the data gathered for all subjects. 
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id 
Left Knee Right Knee 

P_max P_F max P_max P_F max 

1 3 90.57% 7 76.65% 

2 3 87.25% 7 87.18% 

3 3 75.38% 7 89.40% 

4 3 98.46% 7 99.29% 

5 3 80.28% 7 79.11% 

6 4 0.00% 8 0.00% 

7 3 95.51% 7 81.72% 

8 3 74.39% 7 77.50% 

9 3 87.50% 7 82.08% 

10 3 97.08% 7 97.20% 

11 3 69.92% 8 2.31% 

12 3 71.05% 7 98.73% 

13 3 90.97% 7 73.51% 

14 3 73.81% 7 77.96% 

15 3 89.68% 8 2.62% 

16 8 10.65% 8 0.93% 

17 3 89.41% 7 94.44% 

18 4 3.30% 7 90.36% 

19 3 85.59% 7 40.00% 

20 3 71.43% 7 55.38% 

21 3 80.67% 8 2.01% 

22 3 73.98% 7 48.81% 

23 3 81.60% 7 56.25% 

24 3 66.18% 7 80.00% 

25 3 60.32% 8 1.70% 

26 3 77.57% 7 76.29% 

27 3 67.01% 8 6.85% 

28 3 81.90% 7 47.79% 

29 3 64.03% 7 51.67% 

30 3 84.26% 7 81.82% 

31 3 32.94% 7 50.81% 

32 3 93.55% 7 97.44% 

33 3 71.72% 7 52.03% 

34 3 75.86% 7 58.57% 

35 3 77.98% 7 62.71% 

Table 4.2 max_ PF  distribution of Knee angles 
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4.2.3. Elbow angle  

The elbow angle is defined by the bicep, elbow and wrist. While the knee angle is 

an indicator for leg motion during the gait cycle, the elbow angle is an indicator 

for arm motion during the gait cycle. Elbow angle curvesed they show much 

greater variations in shape between different subjects than knee angle curves. This 

is illustrated in Fig. 4.7. 

 

Fig. 4.7 Elbow angles (red: left elbow angles, blue: right elbow angles) 

The elbow angles were calculated to investigate the habits of arm motion 

exhibited while walking. The motions of the arms are less focused than those of 

the knees which showed in Table 4.3. In other words, elbow angles have more 

freedom with respect to gait phases than knee angles.  

The maximum left elbow angles maxP  were concentrated in phases 4 and 5. The 

minimum left elbow angles were concentrated in phase 7 and 8. The percentage of 

subjects whose  minmax ,PP  for left elbow angles occurred in the most 

concentrated gait phases was (57.14%, 48.57%). The maximum right elbow 

angles maxP  were concentrated in phases 1 and 8. The minimum right elbow 

angles were focused in phases 3 and 8. The percentage of subjects whose 

maximum and minimum right elbow angles occurred in the most concentrated gait 

phases was (54.29%, 65.71%). The most concentration degree was used to denote 
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indicates the probability of maxP  occurring in the most concentrated gait phase 

for all subjects, and the probability of minP  occurring in the most concentrated 

gait phase for all subjects. The most concentration degree is (57.14%, 48.57%) for 

left elbow angle, and (54.29%, 65.71%) for right elbow angle. 

left elbow angle 

P max per cent of subject P min per cent of subject 

4 57.14% 8 48.57% 

5 25.71% 7 37.14% 

8 5.71% 2 5.71% 

2 5.71% 1 2.86% 

3 2.86% 3 2.86% 

1 2.86% 6 2.86% 

right elbow angle 

P max per cent of subject P min per cent of subject 

1 54.29% 3 65.71% 

8 28.57% 8 20.00% 

5 8.57% 2 8.57% 

7 5.71% 1 2.86% 

6 2.86% 5 2.86% 

Table 4.3 The distribution of  minmax ,PP  of elbow angles  

The )__( minmax, PFPF  values of the elbow angles are listed in Table 4.4. 
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id 
Left elbow angle Right elbow angle 

P_max P_min F_P max F_P min P_max P_min F_P max F_P min 

1  5 7 21.62% 55.69% 8 2 91.93% 22.08% 

2  4 8 77.06% 18.22% 1 3 0.00% 61.74% 

3  5 7 60.61% 37.75% 1 4 16.95% 13.19% 

4  4 7 91.32% 42.14% 1 4 13.24% 7.85% 

5  4 8 95.48% 15.53% 1 3 34.67% 95.07% 

6  5 2 22.41% 87.61% 7 1 50.00% 50.00% 

7  4 7 85.57% 17.20% 1 3 0.00% 41.03% 

8  4 3 90.25% 60.37% 8 4 76.41% 1.69% 

9  4 2 79.60% 19.45% 5 3 52.46% 87.50% 

10  5 8 0.00% 16.94% 8 4 90.50% 7.85% 

11  4 8 50.60% 24.07% 8 3 88.89% 51.22% 

12  4 8 81.55% 11.24% 1 3 18.21% 98.42% 

13  5 8 21.19% 2.63% 8 4 87.89% 21.55% 

14  8 7 99.48% 32.80% 7 3 89.78% 73.81% 

15  4 7 96.73% 64.74% 5 8 18.42% 55.90% 

16  3 1 65.00% 0.00% 1 3 0.00% 65.00% 

17  4 7 75.81% 20.37% 8 2 74.79% 93.10% 

18  5 7 3.90% 65.06% 1 3 0.00% 1.27% 

19  4 7 90.00% 40.00% 6 3 73.64% 29.73% 

20  5 7 8.90% 55.38% 1 3 0.00% 3.17% 

21  4 8 81.13% 1.51% 1 3 0.00% 25.21% 

22  4 7 91.62% 47.62% 8 3 56.90% 21.95% 

23  4 8 56.40% 12.17% 1 3 0.00% 62.40% 

24  4 8 45.85% 26.56% 1 3 0.00% 83.09% 

25  4 8 49.44% 40.85% 1 3 0.00% 60.32% 

26  4 8 47.41% 0.00% 1 3 0.00% 77.57% 

27  4 8 49.53% 43.95% 1 3 0.00% 67.01% 

28  4 8 62.28% 12.58% 1 3 0.00% 81.90% 

29  2 8 87.11% 5.58% 8 4 43.26% 26.13% 

30  5 8 11.43% 3.74% 8 4 80.84% 11.27% 

31  8 6 66.96% 55.48% 8 2 73.13% 82.59% 

32  1 7 0.00% 51.28% 5 3 18.58% 15.05% 

33  4 8 71.10% 5.05% 1 3 0.00% 87.59% 

34  2 7 38.68% 27.14% 1 3 0.00% 45.52% 

35  5 8 6.16% 0.55% 1 3 0.00% 15.60% 

Table 4.4 )__( minmax, PFPF  distribution of elbow angles 
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4.2.4. Heel-toe angle on y-axis and z-axis  

This feature is related to the habits expressed by a walker's feet during the gait 

cycle. 

4.2.4.1 Heel_toe_y angles 

The curves of the heel-toe angles on the y-axis were rarely similar among the 35 

subjects. In some cases, they showed nearly the same shape but different position. 

In other cases, their shapes were also different (Fig. 4.8).  

 

Fig. 4.8 Heel-toe angle on y-axis (red: left Heel_toe_y, blue: right Heel_toe_y) 

The phase in which the maximum left heel-toe angle on y-axis is concentrated in 

phases 1 and 8. The minimum left heel-toe angle on y-axis is concentrated in 

phase 1. The percentage of maximum and minimum angles  minmax ,PP  occurring 

in these phases is (51.43%, 45.71%). Thus, the most concentration degree is 

(51.43%, 45.71%) for left heel-toe angle on y-axis. 

Such angles for the right foot were calculated as well. The maximum heel-toe 

angle on the y-axis belongs is concentrated in phase 5. The phases during which 



 93 

the minimum angle occurred are less concentrated. The most concentration degree 

is (74.29%, 31.43%) for right heel-toe angle on y-axis. 

The right heel_toe_y angles were more concentrated than their left counterparts 

with respect to maxP  and minP . The maximum heel_toe_y angles were more 

concentrated than the minimum heel_toe_y angles. The minimum right heel_toe_y 

angles were distributed over several different phases. This result indicates that 

minP  has a weaker relationship with the gait phases than maxP  and also suggests 

that minP  varies more greatly among different individuals than maxP , and the left 

heel_toe_y angles are more characteristic of individiduality than the right angles. 

 

left heel_toe 

angle on y-axis 

P max per cent of subject P min per cent of subject 

1 51.43% 1 45.71% 

8 20.00% 8 20.00% 

3 14.29% 4 14.29% 

2 11.43% 2 8.57% 

4 2.86% 5 8.57% 

  6 2.86% 

right heel_toe 

angle on y-axis 

P max per cent of subject P min per cent of subject 

5 74.29% 8 31.43% 

6 11.43% 1 22.86% 

7 11.43% 4 17.14% 

8 2.86% 6 17.14% 

  5 8.57% 

  2 2.86% 

Table 4.5  minmax ,PP  distribution of Heel_toe_y axis  

Table 4.6 showed the distribution of )__( minmax, PFPF . 
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id 

Left heel_toe_y angle Right heel_toe_y angle 

P_ma

x 

P_mi

n 
F_P max F_P min 

P_ma

x 

P_mi

n 
F_P max F_P min 

1 4 1 8.33% 25.18% 8 5 5.83% 6.31% 

2 2 4 6.83% 77.06% 5 8 46.58% 99.53% 

3 8 1 99.59% 66.95% 7 1 76.82% 0.00% 

4 3 1 66.92% 16.53% 5 6 37.27% 80.97% 

5 8 2 99.51% 76.56% 5 6 12.24% 73.41% 

6 8 1 99.56% 0.00% 6 8 9.16% 99.56% 

7 3 1 84.62% 16.35% 5 8 25.81% 99.59% 

8 8 1 99.49% 0.00% 7 5 20.00% 20.00% 

9 2 1 91.81% 42.96% 6 4 0.00% 72.00% 

10 8 1 99.59% 71.34% 7 5 65.73% 33.33% 

11 3 1 88.62% 0.00% 6 4 8.21% 88.05% 

12 1 1 87.72% 0.00% 6 4 7.94% 44.64% 

13 8 2 99.47% 80.93% 5 6 22.03% 81.91% 

14 3 1 83.81% 39.62% 5 6 39.05% 74.22% 

15 2 4 0.00% 21.03% 5 1 64.91% 85.92% 

16 8 2 99.54% 54.59% 7 1 87.01% 55.44% 

17 1 1 83.90% 0.00% 5 1 60.20% 33.05% 

18 1 5 83.46% 59.09% 5 1 72.73% 0.00% 

19 1 1 85.62% 0.00% 5 2 57.14% 0.00% 

20 1 1 86.18% 0.00% 5 1 55.48% 42.76% 

21 1 1 86.18% 0.00% 5 8 42.86% 99.50% 

22 1 5 71.71% 21.17% 5 4 52.55% 6.70% 

23 1 8 50.70% 24.34% 5 8 60.98% 99.47% 

24 1 5 66.67% 43.55% 5 8 62.10% 99.48% 

25 1 8 92.00% 31.49% 5 1 67.38% 56.00% 

26 1 8 42.95% 33.33% 5 8 45.97% 99.50% 

27 1 6 50.00% 36.98% 5 8 68.49% 99.60% 

28 1 8 66.67% 12.58% 5 8 43.44% 99.37% 

29 1 4 50.00% 66.83% 5 4 40.44% 25.63% 

30 3 8 84.26% 90.65% 5 6 26.43% 19.62% 

31 2 8 5.12% 100.00% 5 4 42.31% 32.68% 

32 1 8 71.88% 92.37% 5 6 67.26% 67.18% 

33 1 4 59.32% 43.93% 5 1 48.91% 0.00% 

34 1 4 57.79% 38.58% 5 8 55.56% 52.43% 

35 1 1 99.27% 0.00% 5 8 53.42% 87.98% 
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Table 4.6 )__( minmax, PFPF distribution of Heel_toe_y axis  

4.2.4.2 Heel_toe_z angles 

The heel-toe angles on z-axis indicate foot placement on the z-axis while walking. 

The curves of the heel-toe angles on the z-axis are similar, which is unlike the 

irregularity observed for angles on the y-axis, likely because the former angles are 

more affected by the act of walking itself. 

 

Fig. 4.9 Heel-toe angle on z-axis  (red: left Heel_toe_z, blue: right Heel_toe_z) 

maxP  of left Heel-toe angle was concentrated on phase 3. minP  of left Heel-toe 

angle was concentrated on phase 1, or 8. maxP  and minP  of the right Heel-toe 

angles are concentrated in phase 7 and phase 5, respectively. The subjects’ 

heel-toe angles showed a very high concentration of minP  and maxP  in these 

phases. Table 4.7 and Table 4.8 present the detailed results obtained for 

 minmax ,PP  and )__( minmax, PFPF  details, respectively. 

The maximum and minimum distributions of the left heel_toe_z angles are similar 

to those observed for the knee angles. This result suggests that the variation in the 

heel_toe_z angles over time is very closely related to the gait phases, especially 

minP  of the right heel_toe_z angles. The minimum heel_toe_z angle indicates that 

the toe is at the lowest level along the heel plane because it is negative. The 
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concentrate degree is (88.57%, 80.00%) for left heel_toe_z angles, and (82.86%, 

100%) for right ones. 

The heel-toe angle on z-axis is highly correlated with the gait phases. The value of 

this gait feature varied between individuals; however, the time variation of this 

gait feature is mostly determined by act of walking.  

 

left heel_toe 

angle on z axis 

P max per cent of subject P min per cent of subject 

3 88.57% 1 80.00% 

4 11.43% 8 20.00% 

right heel_toe 

angle on z axis 

P max per cent of subject P min per cent of subject 

7 82.86% 5 100% 

8 17.14%   

Table 4.7  minmax ,PP  distribution of Heel_toe_z axis  
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id 
Left heel_toe_z angle Right heel_toe_z angle 

P_max P_min F_P max F_P min P_max P_min F_P max F_P min 

1 3 1 91.19% 50.36% 7 5 77.25% 6.31% 

2 3 8 87.25% 99.53% 7 5 87.18% 19.18% 

3 3 1 62.81% 50.00% 7 5 89.40% 40.40% 

4 4 1 7.44% 33.88% 8 5 7.22% 37.27% 

5 3 8 80.28% 99.51% 7 5 79.11% 12.24% 

6 4 1 0.00% 50.00% 7 5 99.26% 41.38% 

7 3 1 96.15% 17.31% 7 5 81.72% 44.09% 

8 3 8 75.00% 99.49% 7 5 77.50% 20.00% 

9 3 8 87.50% 99.53% 7 5 82.08% 21.31% 

10 3 1 97.08% 28.66% 8 5 7.44% 49.63% 

11 3 1 69.92% 33.33% 8 5 2.31% 18.39% 

12 3 1 98.95% 38.01% 7 5 98.73% 33.33% 

13 3 8 87.74% 99.47% 7 5 88.08% 40.68% 

14 3 1 84.29% 19.81% 7 5 89.78% 20.00% 

15 4 1 1.87% 42.96% 8 5 2.62% 29.82% 

16 3 8 78.75% 99.54% 7 5 87.66% 32.81% 

17 3 1 89.41% 50.00% 7 5 94.44% 20.41% 

18 4 1 3.30% 49.61% 7 5 66.27% 59.09% 

19 3 1 85.59% 56.85% 7 5 10.00% 36.73% 

20 3 1 54.76% 57.24% 7 5 23.08% 40.41% 

21 3 1 79.83% 43.42% 7 5 66.67% 41.96% 

22 3 1 73.98% 42.76% 7 5 48.81% 52.55% 

23 3 1 81.60% 33.80% 7 5 56.25% 42.28% 

24 3 1 66.18% 33.33% 7 5 80.00% 42.74% 

25 3 1 60.32% 36.80% 8 5 1.70% 51.06% 

26 3 1 77.57% 42.95% 7 5 76.29% 28.23% 

27 3 1 67.01% 33.33% 8 5 6.85% 36.99% 

28 3 1 81.90% 33.33% 7 5 47.06% 42.62% 

29 3 1 64.03% 37.65% 7 5 51.67% 39.71% 

30 3 1 65.74% 50.00% 7 5 81.82% 41.43% 

31 3 1 41.76% 19.74% 7 5 50.81% 26.92% 

32 3 8 93.55% 99.58% 7 5 74.36% 19.47% 

33 3 1 71.72% 39.83% 7 5 69.92% 48.18% 

34 3 1 75.86% 57.14% 7 5 59.29% 34.34% 

35 3 1 78.90% 49.64% 7 5 62.71% 53.42% 

Table 4.8 )__( minmax, PFPF distribution of Heel_toe_z axis 
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4.2.5. Wrist-shoulder angles on y-axis and z axis 

These 4 features represent the habits associated with arm motion during the gait 

cycle.  

4.2.5.1 Wrist_shoulder_y angles 

The curve shapes of the wrist-shoulder angles on y-axis were rarely similar, as 

shown in Fig. 4.10.  

 

Fig. 4.10 Wrist_shoulder angles on y-axis (red: left Wrist_shoulder_y, blue: right 

Wrist_shoulder_y) 

Compared with the features concerning the legs, the wrist-shoulder angles have 

fewer limits. Moreover, compared with the wrist-shoulder angles on the z-axis, the 

wrist-shoulder angles on the y-axis have more freedom on individuality.  

maxP  and minP  of the wrist-shoulder angles on the y-axis are not concentrated in 

any phase. They are distributed in as many as 6 or 7 phases. The highest degree of 

concentration of the left Wrist_shoulder_y angles is only (34.29%, 31.43%) and 

that of the right angles is (45.71%, 37.14%). Table 4.9 showed  minmax ,PP  
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distribution of Wrist_shoulder_y angles. )__( minmax, PFPF distribution of 

Wrist_shoulder_y angles were show in Appendix 3. 

 

 

left 

Wrist_shoulder 

angle on y-axis 

P max per cent of subject P min 
per cent of 

subject 

8 34.29% 6 31.43% 

2 31.43% 4 28.57% 

3 17.14% 7 17.14% 

1 14.29% 5 14.29% 

5 2.86% 1 2.86% 

  2 2.86% 

  8 2.86% 

right 

Wrist_shoulder 

angle on y-axis 

P max per cent of subject P min 
per cent of 

subject 

4 45.71% 8 37.14% 

6 34.29% 2 25.71% 

5 5.71% 1 22.86% 

1 5.71% 3 8.57% 

2 2.86% 6 5.71% 

3 2.86%   

7 2.86%   

Table 4.9  minmax ,PP  distribution of Wrist_shoulder_y angles  
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4.2.5.2 Wrist_shoulder_z angles 

The curve shapes of the wrist-shoulder angles on the z-axis are similar in most 

cases. There were few subjects have significant difference in curve shapes, as 

shown in Fig. 4.11.  

 

Fig. 4.11 Wrist_shoulder angles on z-axis (red: left Wrist_shoulder_z, blue: right 

Wrist_shoulder_z) 

The minimum and maximum wrist_shoulder_z angles were more concentrated 

than the angles on the y-axis. Nearly half of all subjects' maxP  occurred in phase 7 

(left wrist_shoulder_z) and phase 3 (right wrist_shoulder_z), and minP  occurred 

in phase 4 (left wrist_shoulder_z). Details regarding  minmax ,PP  and 

)__( minmax, PFPF  are shown in Table 4.10 and Appendix 3, respectively. 

The concentration degree is (45.71%, 42.86%) for left wrist_shoulder_z angles, 

and (54.29%, 34.29%) for the right angles. The maximum and minimum 

wrist_shoulder_z angles were more concentrate than the wrist_shoulder_y angles 

in gait phases. This finding indicates that the features exhibit a greater degree of 
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freedom/individuality on the y-axis than on the z-axis. 

)__( minmax, PFPF distribution of Wrist_shoulder_z angles were listed in Appendix 

3. 

 

left 

Wrist_shoulder 

angle on z axis 

P max per cent of subject P min per cent of subject 

7 45.71% 4 42.86% 

6 28.57% 3 34.29% 

8 22.86% 2 8.57% 

4 2.86% 8 5.71% 

  1 5.71% 

  5 2.86% 

right 

Wrist_shoulder 

angle on z axis 

P max per cent of subject P min per cent of subject 

3 54.29% 8 34.29% 

2 22.86% 7 22.86% 

4 17.14% 6 20.00% 

1 2.86% 1 17.14% 

8 2.86% 3 2.86% 

  4 2.86% 

Table 4.10  minmax ,PP  distribution of Wrist_shoulder_z angles 

 

4.2.6. Wrist-speed ratio 

The wrist-speed ratio is a novel feature which was proposed in this research and is 

defined as the ratio of the left wrist speed to the right wrist speed. Through motion 

capture data, it was found that most subjects swung their left arms and right arms 

at different speeds. Some subjects swung their left wrist much faster than their 

right wrist. The figure plotted for this feature shows a step line curve, as shown in 

Fig. 4.12.  
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Fig. 4.12 Wrist speed ratio (left wrist speed/right wrist speed) 

 minmax ,PP  of the wrist speed ratio showed a reasonable degree of concentration. 

The maximum wrist speed ratio was distributed in 3 phases: phases 6, 5,and 4. 

The minimum wrist speed ratio was less concentrated. 

Wrist speed ratio 

P max per cent of subject P min per cent of subject 

6 57.14% 2 42.86% 

5 22.86% 8 31.43% 

4 20.00% 1 22.86% 

  6 2.86% 

Table 4.11  minmax ,PP  distribution of Wrist speed ratio (left/right) 

)__( minmax, PFPF distribution of Wrist speed ratio (left/right) were shown in 

Appendix 3. 

 

4.2.7 Gait phase length 

The percentage represented by each phase in the gait cycle is only an approximate 

value; there are no fixed rules for defining this value. This percentage varied 

among individuals. The gait phase length was also indicative of the walking habits 

of the subjects. The stance phase usually lasts approximately 65% of the cycle, the 

swing phase approximately 35% and each period of the double support phase 

approximately 10%.  
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In a previous study (Inman & et al. 1981), the right single support phase lasts 30% 

of the gait cycle, the left single support phase 40% of the gait cycle, and each 

double support phase 15% of the gait cycle. In (M.Nordin & Frankel 2001), the 

stance phase was observed to last 65% of the gait cycle and swing phase 35% of 

the gait cycle. This means that the single support phase last 35% of the gait cycle 

because one foot’s swing phase is the other foot's single support phase. In (Perry 

1992), it was observed that the stance phase lasts 60% of the gait cycle, the swing 

phase lasts 40% of the gait cycle, and the double support phase lasts 10% of the 

gait cycle. 

In this study, more detailed results were obtained. The duration of the right single 

support phase (36.24%) is nearly the same as that of the left single support phase 

(35.33%). The average duration of the double support phase is 14.22%. In other 

words, the left swing phase lasts 36.24% of the gait cycle and the right swing 

phase lasts 35.33% of the gait cycle. The right stance phase lasts 64.67% of the 

gait cycle. These results are more similar to those reported in (M.Nordin & 

Frankel 2001). The durations of the right single support phase (36.24%) and the 

following double support phase (14.48%) are slightly longer than those of the 

single support phase (35.33%) and the following double support phase (13.95%). 

Table 4.12 presents the average gait phases length, average single support length 

and average double support length. Table 4.13 presents the lengths of all gait 

phases for the 35 subjects. 
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Fig. 4.13 Phase length of 35 subjects 

 

 phases 
R. Single Support 

Double 

Support  
L. Single Support 

Double 

Support  

1 2 3 4 5 6 7 8 

average 

length 

9.13

% 
18.10% 

9.02

% 
14.48% 

8.01

% 

19.5

1% 

7.81

% 
13.95% 

36.24% 14.48% 35.33% 13.95% 

Table 4.12 Average phase length over one gait cycle 
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1 2 3 4 5 6 7 8 

9.27% 16.00% 10.60% 16.00% 7.40% 14.73% 11.13% 14.87% 

6.53% 18.53% 9.93% 18.60% 4.87% 16.87% 10.40% 14.27% 

7.87% 15.40% 13.27% 12.13% 6.60% 18.60% 10.07% 16.07% 

8.07% 14.47% 8.67% 16.13% 10.73% 15.07% 9.33% 17.53% 

10.13% 17.07% 9.47% 14.73% 6.53% 17.80% 10.53% 13.73% 

9.07% 15.60% 10.20% 16.47% 7.73% 16.73% 9.07% 15.13% 

6.93% 15.27% 10.40% 12.93% 6.20% 19.73% 12.40% 16.13% 

9.20% 16.47% 10.93% 15.73% 7.67% 16.33% 10.67% 13.00% 

9.00% 19.53% 6.93% 16.67% 8.13% 18.53% 7.07% 14.13% 

10.47% 15.00% 9.13% 16.13% 9.00% 14.60% 9.53% 16.13% 

9.40% 19.27% 8.20% 16.73% 5.80% 18.67% 7.53% 14.40% 

11.40% 13.27% 12.67% 15.53% 8.60% 16.80% 10.47% 11.27% 

7.67% 17.13% 10.33% 15.47% 7.87% 18.80% 10.07% 12.67% 

7.07% 16.40% 14.00% 13.27% 7.00% 17.07% 12.40% 12.80% 

9.47% 15.07% 10.33% 14.27% 7.60% 17.60% 10.40% 15.27% 

12.87% 13.07% 10.67% 16.27% 8.53% 13.93% 10.27% 14.40% 

7.87% 21.27% 5.67% 16.53% 6.53% 22.93% 3.60% 15.60% 

8.47% 21.00% 5.27% 14.13% 10.27% 21.73% 5.53% 13.60% 

9.73% 20.00% 7.40% 14.67% 6.53% 24.53% 4.67% 12.47% 

10.13% 21.53% 8.40% 11.07% 9.73% 23.67% 4.33% 11.13% 

10.13% 19.73% 7.93% 14.13% 7.47% 23.53% 3.80% 13.27% 

10.13% 20.00% 8.20% 11.93% 9.13% 23.40% 5.60% 11.60% 

9.47% 18.67% 8.33% 14.07% 8.20% 21.20% 7.47% 12.60% 

9.40% 19.00% 9.07% 13.67% 8.27% 21.47% 6.33% 12.80% 

8.33% 20.47% 8.40% 11.87% 9.40% 20.73% 5.13% 15.67% 

10.40% 18.40% 7.13% 15.47% 8.27% 20.47% 6.47% 13.40% 

9.20% 20.33% 6.47% 14.27% 9.73% 20.73% 2.73% 16.53% 

9.20% 18.93% 7.00% 15.20% 8.13% 21.87% 9.07% 10.60% 

10.80% 17.07% 9.27% 13.27% 9.07% 22.20% 4.00% 14.33% 

10.93% 18.60% 7.20% 14.20% 9.33% 21.07% 4.40% 14.27% 

5.07% 19.53% 11.33% 13.67% 6.93% 20.07% 8.27% 15.13% 

8.53% 21.00% 6.20% 14.07% 7.53% 21.73% 5.20% 15.73% 

7.87% 19.60% 9.67% 11.53% 9.13% 20.80% 8.20% 13.20% 

10.27% 19.13% 9.67% 13.13% 6.60% 19.53% 9.33% 12.33% 

9.13% 21.53% 7.27% 12.93% 9.73% 19.33% 7.87% 12.20% 

Table 4.13 Gait phase lengths of 35 subjects 
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Fig. 4.13 shows the length of each phase for the 35 subjects. Phases 4 and 8 are 

double support phases, phases 1-3 are left swing phase/right single support phase, 

and phases 5-7 are right swing phases/left single support phase. Fig. 4.13 and 

Table 4.13 reveal notable differences within different subjects with respect to 

these variables. Some people prefer to stand on two legs for longer periods than 

others. Some people prefer to use a more near-vertical angle when their feet are in 

contact with the floor. By these characteristics that are hidden in people's walking 

habits, a specific individual's gait cycle can be described. For example, the double 

support phase length was often used to describe the features of elders' gait. 

Normally, this length should be longer in elders than in younger walkers. 

Although the subjects in this data sample were all young adults, the double 

support phase length still differed greatly, from 10.6% to 18.60%. The right single 

support phase length varied from 31.20% to 40.07%, and the left single support 

phase length varied from 32.00% to 39.07%. 

Table 4.14 shows the SD of each gait phase of the 35 subjects. The gait phase 

length varied much more in phases 6, 7, and 2, 3 than in phases 1, 5. This means 

that in the single support phase, the length from the toe-off posture to the posture 

in which maximum knee flexion occurs varied less between different subjects. In 

other word, the time at which the tibia is vertical or perpendicular to the ground 

varied more between different subjects. This produced a high variation in the gait 

phase length of phases 2, 3 and 6, 7 because the posture in which tibia is vertical 

or perpendicular to the ground occurs at the end of gait phases 2 and 6 and at the 

beginning of gait phases 2 and 7. 

 

Gait phase 1 2 3 4 5 6 7 8 

SD 1.50  2.41  2.06  1.73  1.36  2.81  2.73  1.69  

Table 4.14 SD of each gait phase length 
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4.3 Summary  

4.3.1 Database of normalized gait data 

In this study, the gait data were normalized by linear interpolation and were 

compared based on gait cycle and gait phases. Each gait cycle featured the same 

frame numbers for all subjects, which eliminated the effect of walking speed on 

different subjects. Walking speed is not a stable feature for individual 

identification because it is too easy to change. The gait pattern over the gait cycle 

is more stable than speed for a single subject. In this chapter, the location of 

certain postures that occurred during the gait cycle is the main focus. The 

normalized gait cycle made it easy to compare those locations in the 

corresponding gait cycles and phases of different subjects.  

4.3.2 Clear gait cycle and gait phases definition 

In previous research, the gait cycle was defined by the movement of one same 

foot; thus, the gait cycle was constructed according to one foot's stance phase and 

the same foot's swing phase. There were different ways of dividing the gait cycle 

into several phases. Seven phases and eight phases have been used in previous 

research. The name and definition of each gait phase may be different, but the 

phases also share much in common. Certain postures, such as the toe off posture 

and initial contact posture, were typically used as to separate gait phases. The 

criteria for defining gait phases are the variation in the supporting leg’s movement 

in the stance phase and the variation in the swinging leg in the swing phase. The 

advantage of these criteria is that they allow for the analysis of a single one same 

foot's movement over the gait cycle. The disadvantage is that the gait phases are 

not symmetrical about the middle of the cycle because it is divided by different 
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criteria in stance phase and swing phase. Thus, it is difficult to analyse the 

corresponding movement of each support leg and swing leg.  

In this study, novel definitions of the gait cycle and gait phases were proposed 

(section 4.1.2). The goal was to compare body’s movement according to the 

corresponding stance phases/swing phases of two feet, instead of tracking the 

same foot's movement, as in previous research. The cycle was divided into eight 

phases: left initial swing phase, left mid-swing phase, left initial contact phase, 

double support phase (right pre-swing phase), right initial swing phase, right 

mid-swing phase, right initial contact phase, double support phase (left pre-swing 

phase). Each of the eight gait phases was clearly defined in section 4.1.2. These 

eight phases composed two half cycles symmetrical about the middle of the whole 

gait cycle.  

4.3.3 Proposed indicators about the influence from gait phases  

In the last chapter, 15 gait features were proposed to identify individuals. The 

identification results are better than those in previous reported research. In this 

chapter, the variation in the gait features over time is analysed. To investigate the 

time at which the gait features' maximum and minimum values occurred, two 

pairs of indicators were proposed to evaluate the extremum distribution. These 

indicators are denoted as  minmax ,PP  and )__( minmax, PFPF .  

Using these two pairs of indicators, the extremum distributions of the gait features 

on gait phases were analysed. These indicators were used to evaluate how the gait 

features of the various phases varied. 
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4.3.4 Some gait features have more individuality  

According to the distribution of ( maxP , minP ), gait features can be divided into two 

kinds. One kind of gait feature is highly correlated with the act of walking, which 

means that the ( maxP , minP ) of such features are influenced very much by the gait 

phases. These features include the knee angles and heel_toe angles on z-axis 

because gait phases are defined by leg movement. The difference in these gait 

features between individuals affected the values of these features but not their 

appearance in the gait phases. The other kind of gait feature is not strongly 

influenced by gait phase. Such features include the elbow angles, heel_toe angles 

on y-axis, and wrist_shoulder angles on y-axis. The features associated with 

movement along the y-axis exhibit a higher degree of freedom and are more 

characteristic of individuality. The swinging of the arms connotes more 

individuality/freedom than the swinging of the legs during walking. 

Thus, regarding the influence of gait phase on gait features, two important results 

were obtained: features associated with arm movement are more indicative of 

individuality than those associated with leg movement; and features associated 

with movement along the y-axis are more characteristic of individuality than those 

associated with movement along the z-axis. 

4.3.5 Gait phase length between individuals 

The lengths of the gait phases in one gait cycle vary because subjects' walking 

habits are different. More-detailed phase data for different subjects were obtained 

compared to those obtained in previous research. With respect to the average 

phase length, the right single support phase lasted 36.24% of the gait cycle, the 

left single support phase lasted 35.33% of the gait cycle, and the average double 
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support phase lasted 14.22% of the gait cycle. Table 4.16, shows that the average 

right single support phase lasts 0.91% longer than the average left single support 

phase. The average length of phase 4 is 0.53% longer than the average length of 

phase 8. 

The gait phase length varied greatly between different individuals. The double 

support phase length varied from 10.6% to 18.60%. The right single support phase 

length varied from 31.20% to 40.07%. The left single support phase length varied 

from 32.00% to 39.07%. Table 4.17 shows that the gait phase length varied much 

more in phases 6, 7, and 2, 3 than in phases 1, 5. This finding suggests that the 

time at which the tibia is vertical or perpendicular to the ground varied greatly 

between different subjects. The time at which maximum knee flexion occurred 

varied less between different subjects. The range of variation in the double support 

phase length was between the variations in these two postures.  
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Chapter 5 Gait analysis about Gait features via PCA 

and fixing root method 

In chapter 3, two indicators were proposed to evaluate whether certain gait 

features were suitable for identification. These two indicators were referred to as 

Consistence degree and Variation degree. Consistence degree was used to evaluate 

whether a certain gait feature could remain stable between different gait cycles of 

the same subject. Variation degree was used to evaluate whether a certain gait 

feature varies noticeably between different people. These two indicators provided 

a novel quantitative tool to evaluate gait features, answering the question "why 

should these features be extracted from the gait", instead of only proposing a few 

gait features to use. 

Although there have been many previous studies on the determination of which 

bodily features are the most important in gait analysis, the question regarding 

which features should be extracted from the human gait has not been convincingly 

answered. Previous studies rarely analysed or evaluated the reason why certain 

gait features are used, although many different gait features have been proposed in 

feature-based research. The analysis in Chapter 3 inspired the solution about how 

to evaluate the proposed gait features. In Chapter 4, the effects of gait phases on 

gait features were studied. In this chapter, the answer to the question "which 

should these features be extracted to represent gait and why" will be further 

investigated. 

The analysis of gait features described in this chapter aimed to find which gait 

features should be extracted and analyse the effect of different body segments on 

gait. This analysis was divided into two parts. First, the average gait and PCA 

were used to analyse gait features. Second, the fixing root method and PCA were 
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used to analyse the significance of the relative motion of different body segments 

with respect to gait. 

5.1 Methods 

5.1.1 Average gait 

The data sample included 35 subjects: 28 subjects each had one gait file, and 7 

subjects each had six gait files, which were captured at different times. After 

normalization by linear interpolation (section 3.1.1), each gait cycle featured the 

same frame numbers. Thus, 70 normalized gait cycles were obtained in total. The 

average gait is the mean gait of these 70 gait cycles. 

The average gait was denoted as averageG _ . It is a complete gait cycle, which 

includes 1500 frames. The 15 gait features ( iF ) proposed in Chapter 3 were 

calculated for the average gait averageG _ . Gait features for the average gait was 

denoted as follows: 

)_,...,_,_(_ 1521 averageFaverageFaverageFaverageF   

where averageFi _ , (i=1:15) indicates feature i for average gait averageG _ .  

Thus, averageF _  is a 1500x15 matrix. 

5.1.2 PCA on average gait 

PCA is a useful and common data reduction method and was applied to 

averageF _  to investigate the relationship between different gait features. The 
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principle component kPC  is a linear combination of averageFi _ . 





15

1

, _
i

ikik averageFCPC         (5.1), k is determined by the PCA results. 

This revealed the common weights of the 15 gait features over one gait cycle. 

Principal component analysis (PCA) is a mathematical procedure that uses an 

orthogonal transformation to convert a set of observations of possibly correlated 

variables to a set of values of uncorrelated variables called principal components. 

The number of principal components is less than or equal to the number of 

original variables. This transformation is defined such that the first principal 

component has as high a variance as possible (that is, it accounts for as much of 

the variability in the data as possible), and each succeeding component in turn has 

the highest variance possible under the constraint that it be orthogonal to 

(uncorrelated with) the preceding components. Principal components are 

guaranteed to be independent if the data set is jointly normally distributed. PCA is 

sensitive to the relative scaling of the original variables.  

PCA was invented in 1901 by Karl Pearson (Pearson 1901). Today, it is mostly 

used as a tool in exploratory data analysis and for creating predictive models. PCA 

can be performed by the eigenvalue decomposition of a data covariance matrix or 

singular value decomposition of a data matrix, usually after mean centring the 

data for each attribute. The results of a PCA are usually discussed in terms of 

component scores (the transformed variable values corresponding to a particular 

case in the data) and loadings (the weight by which each standardised original 

variable should be multiplied to obtain the component score). 
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5.1.3 Fixing Root method 

In a separate study, the data sample was composed of 30 subjects. These subjects 

were thirty male students from a British university whose mean age was 20.83. 

The marker set was composed of 40 makers, as shown in Fig. 2.2. The subjects 

were told to walk freely and naturally at normal speed, from one end of the 

capture volume to the other, and to then walk back. The recorded Root marker (on 

the back of the upper middle of the pelvis) speed for the 30 subjects ranged from 

666.16 mm/s to 1255.48 mm/s, with a mean of 1005.84 mm/s. The gait data for 

each subject covered one to two cycles without normalization. 

Fixing root method is that through some coordinate transforming, subjects can be 

considered as walking at the starting point all the time, as if they have a fixed root. 

Root marker was assumed to be virtually fixed, almost as if the subjects were 

walking on a treadmill (but not exactly the same), which helped to analyse the 

relative motion of body segments instead of the trajectory of the whole body’s 

movement. The root marker was located on the walker’s lower back at the upper 

centre of the pelvis; see Fig. 2.2. 

 zyxtM j

i ,,:  was used to denote the coordinates of the marker i on subject j at 

frame number t. The Root marker was the 24th marker for every subject. 

 zyxM j ,,:124  denotes the initial coordinates of the Root marker for subject j. 

When Root marker was fixed, every marker's new coordinates were obtained 

using the following formula.  

        
end

jjj

i

j

i

ttij

zyxMzyxtMzyxtMzyxtMfix

,,1;40,,1;30,,1

,,:1,,:,,:,,: 2424

 


         (5.2) 

After obtaining the new coordinates of the markers, the speed and acceleration of 
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all 39 markers were calculated except for the Root marker for every frame. Then, 

average speed of all frames was obtained for every marker for each subject. It was 

denoted as 
j

iMs , where j denotes the subject number, and i denotes the marker 

number. Then, the following matrix was obtained: 

3930

30

40

30

2

30

1

2

40

2

2

2

1

1
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1

2

1

1

___


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







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







MsMsMs

MsMsMs

MsMsMs

Ms









                               (5.3) 

Ms  is the average speed matrix of the 39 markers (except Root) for the 35 

subjects. Thus, only 39 markers were left instead of 40 markers. The 24th marker 

(Root) was removed because its displacement, speed and acceleration were all 

zero after fixing the Root marker. An example of a subject’s gait after fixing the 

Root marker is shown in Fig. 5.1. 

 

     

Fig. 5.1 An example of a subject with fixed Root marker 

5.1.4 PCA with Fixing Root method 

The method of fixing the Root marker was applied to obtain more information 

about the subjects’ gaits. Gait speed is always one of the features used in gait 
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analysis. The relative motion of different body segments may reflect more useful 

information than walking speed. For this reason, the fixing root method was used. 

The effect of walking speed was nearly eliminated after fixing the Root markers, 

thus gait data should focus on relative movement of each segment of the human 

body and reflect the signature of each gait pattern. 

PCA analysis was applied on 
___

Ms  to investigate which markers are the most 

important as gait features. This revealed the relationship between the 40 markers 

on the 30 subjects. With the PCA results, it can be analysed that which segments 

are the most important to relative motion during the gait cycle. 

5.2 Results 

5.2.1 PCA on average gait 

Four principle components were extracted after applying PCA on averageF _ . 

The results of principle components are shown in Table 5.1. Four principle 

components occupied 95.16% of the variance in the gait data before PCA, 

meaning that these four principle components can represent the original gait data 

very well.  
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Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared 

Loadings 

Total % of 

Variance 

Cumulat

ive % 

Total % of 

Varianc

e 

Cumulat

ive % 

1 6.29  41.95  41.95  6.29  41.95  41.95  

2 3.77  25.12  67.07  3.77  25.12  67.07  

3 2.99  19.91  86.98  2.99  19.91  86.98  

4 1.23  8.18  95.16  1.23  8.18  95.16  

Extraction Method: Principal Component Analysis. 

Table 5.1 Four principle components of average gait 

Thus, equation (5.1) becomes (5.3): 





15

1

, _
i

ikik averageFCPC ,  k=1:4       (5.3) 

Table 5.2 shows the coefficients kiC ,  for kPC , in equation (5.3), and Table 5.3 

shows the coefficients kiC ,  after sorting in descending order for each kPC . 
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Features 
Coefficients of Principle Components 

Pc1 Pc2 Pc3 Pc4 

1 0.68  0.22  0.06  0.64  

2 0.57  0.60  0.15  0.49  

3 0.48  -0.42  -0.73  0.23  

4 0.03  0.98  -0.19  -0.01  

5 0.52  -0.37  0.75  0.04  

6 -0.81  -0.18  0.45  0.24  

7 -0.71  -0.14  -0.50  -0.30  

8 0.76  0.26  -0.10  -0.35  

9 0.42  -0.61  0.66  -0.08  

10 -0.78  -0.04  0.61  0.00  

11 -0.91  0.17  -0.18  0.23  

12 0.89  -0.19  0.31  -0.21  

13 -0.11  0.78  0.56  -0.26  

14 0.06  -0.96  -0.22  0.12  

15 0.91  0.14  -0.26  -0.23  

Extraction Method: Principal Component Analysis.  

a. 4 components extracted.  

Table 5.2 The coefficients of Principle Components  

 

 

 

 



 119 

 

Coefficients of Principle Components in descending order 

Feature Pc1 Feature Pc2 Feature Pc3 Feature Pc4 

Left Wrist_shoulder_y -0.91  Right Elbow 0.98  Left Knee 0.75  Head_Topspine 0.64  

Wrist_speed_ratio 0.91  Right Wrist_shoulder_z -0.96  Left Elbow -0.73  Topspine_Root 0.49  

Right Wrist_shoulder_y 0.89  Left Wrist_shoulder_z 0.78  Left Heel_toe_z 0.66  Right Heel_toe_y -0.35  

Right knee -0.81  Left Heel_toe_z -0.61  Right Heel_toe_z 0.61  Left Heel_toe_y -0.30  

Right Heel_toe_z -0.78  Topspine_Root 0.60  Left Wrist_shoulder_z 0.56  Left Wrist_shoulder_z -0.26  

Right Heel_toe_y 0.76  Left Elbow -0.42  Left Heel_toe_y -0.50  Right knee 0.24  

Left Heel_toe_y -0.71  Left knee -0.37  Right knee 0.45  Wrist_speed_Ratio -0.23  

Head_topspine 0.68  Right Heel_toe_y 0.26  Right Wrist_shoulder_y 0.31  Left Wrist_shoulder_y 0.23  

Topspine_Root 0.57  Head_Topspine 0.22  Wrist_speed_ratio -0.26  Left Elbow 0.23  

Left Knee 0.52  Right Wrist_shoulder_y -0.19  Right Wrist_shoulder_z -0.22  Right Wrist_shoulder_y -0.21  

Left Elbow 0.48  Right knee -0.18  Right Elbow -0.19  Right Wrist_shoulder_z 0.12  

Left Heel_toe_z 0.42  Left Wrist_shoulder_y 0.17  Left Wrist_shoulder_y -0.18  Left Heel_toe_z -0.08  

Left Wrist_shoulder_z -0.11  Wrist_speed_ratio 0.14  Topspine_Root 0.15  Left knee 0.04  

Right Wrist_shoulder_z 0.06  Left Heel_toe_y -0.14  Right Heel_toe_y -0.10  Right Elbow -0.01  

Right Elbow 0.03  Right Heel_toe_z -0.04  Head_Topspine 0.06  Right Heel_toe_z 0.00  

Table 5.3 Coefficients of Principle Components in descending order 
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In PCA analysis, the most important criteria to determine the number of 

components to retain is the interpretability criteria. The rules for the 

interpretability criteria determine whether the variables in a component share the 

same conceptual meaning, and variables in different components seem to be 

measure different constructs; moreover, the results reveal a “simple” structure, 

which means that most of the variables have relatively large coefficients with 

respect to only one component, and most of the components have relatively large 

coefficients with respect to some variables and small coefficients for the 

remaining variables. 

The PCA results meet the above criteria very well. Table 5.3 shows that Pc1 

focused on Wrist_shoulder_y, Wrist speed ratio, Right Knee, Heel_toe_y, Right 

Heel_toe_z, Head_Topspine, and Topspine_Root.  

Pc2 focused on Right Elbow, Wrist_shoulder_z, Left Heel_toe_z, Topspine_Root, 

and Right Heel_toe_z.  

Pc3 focused on Left Knee, Left Elbow, Heel_toe_z, and Left Wrist_shoulder_z.  

Pc4 focused on Head_Topspine and Topspine_Root. 

Pc1 is the most important principle component, which occupied 41.95% of the 

total variance. It has the most gait features for which the absolute value of kiC ,  is 

above 0.5 on kPC . This suggests that Pc1 is a composite indicator for the gait 

cycle and focuses on features associated with y-axis and the Wrist speed ratio. 

Pc2 occupied 25.12% of the total variance and focused on features associated with 

z-axis and Right Elbow. Pc3 occupied 19.91% of the total variance and focused on 

Left Knee, Left Elbow, and Left Wrist_shoulder_z, which suggests that Pc3 is an 

indicator that describes the features about the left side of the body.  

Pc4 is the last principle component, which occupied only 8.18% of the total 

variance. It is clear that Pc4 is determined mainly by the two relatively stable gait 

features Head_Topspine and Topspine_Root. 

5.2.2 PCA by Fixing Root method 

PCA was used to find the most important markers in the 
___

Ms  matrix. Based on 
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the markers' speed 
___

Ms  after fixing the Root marker, 7 principal components 

were obtained, which occupied 89.36% of the total variance (Table 5.4). There 

were three principal components that occupied over 10% of the total variance, 

which together accounted for 67.04% of the total variance.   

Total Variance Explained 

Comp

onent 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Total 
% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 
Cumulative % 

1 15.32 39.27 39.27 15.32 39.27 39.27 

2 6.88 17.65 56.92 6.88 17.65 56.92 

3 3.95 10.12 67.04 3.95 10.12 67.04 

4 3.04 7.79 74.83 3.04 7.79 74.83 

5 2.53 6.48 81.32 2.53 6.48 81.32 

6 1.74 4.46 85.78 1.74 4.46 85.78 

7 1.40 3.58 89.36 1.40 3.58 89.36 

Extraction Method: Principal Component Analysis. 

Table 5.4 Seven principle components obtained by fixing root method 

By comparing the highest coefficients of the first three principal components 

obtained by PCA, the results were presented in Table 5.5. The markers that appear 

to be important in Pc1 are clearly those associated with the motions of lower left 

arm. These markers include the biceps, pinky, wrist, thumb, etc. In the coefficients 

of Pc2, it is found that the markers focus on the lower legs. In the coefficients of 

Pc3, all four hip segment markers were related to the top in terms of coefficient 

value. The distinct and concentrated distribution of the markers that have the 

highest coefficients for the principal components is extraordinary. PCA was 

performed also on these gait data without fixing the Root marker. Only two 

principal components were obtained; the first captured 83.09% of the total 

variance, and the second captured 12.14% of the total variance. The 10 markers 

with the highest coefficient values in Pc1 were inspected (Table 5.6) and found 

that the distribution was not as concentrated as that shown in Table 5.5. Thus, it 

shows that the fixing root method is effective method to find the relationship 

among human body and gait; moreover, the significance of the lower left arms 
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(biceps, pinky, wrist and thumb), lower legs (knee, heel, ankle, toe and foot), and 

hips was revealed using this method. This analysis was performed only to study 

the subjects' gait and not for any other classification purposes. The results suggest 

that arms, legs and hips could be extracted as gait signatures for gait recognition. 

Table 5.5 Markers with ten highest coefficients in PC1, PC2 and PCA3 

determined by fixing Root marker 

Midback 0.998 

Midback_offset 0.998 

Root 0.998 

BackRght_hip 0.998 

FrontRight_hip 0.998 

Top_spine 0.997 

BackLeft_hip 0.997 

FrontLeft_hip 0.997 

FrontRight_shoulder 0.996 

FrintLeft_shoulder 0.996 

Table 5.6 Markers with ten highest coefficients in PCA1 determined without 

fixing Root marker 

PC1 PC2 PCA3 

Left_Thumb 0.85 RightMid_Foot 0.77 BackRight_Hip 0.78 

Left_Wrist 0.82 Left_Toe 0.72 FrontLeft_Hip 0.75 

Left_Pinky 0.80 Right_Ankle 0.72 FrontRight_Hip 0.69 

BackRight_Head 0.88 Right_heel 0.71 BackLeft_Hip 
0.67 

Right_Bicep 0.79 LeftMid_Foot 0.68 MidBack_Offset 
0.63 

BackLeft_Head 0.77 Left_Heel 0.67 Right_Thigh 
0.31 

FrontLeft_Shoulder 0.77 Left_Ankle 0.66 Low_Back 
0.28 

Left_Bicep 0.77 Right_toe 0.64 Left_Elbow 0.18 

Mid_Back 0.77 Left_Knee 0.59 Left_Toe 0.17 

Top_Spine 0.75 Right_Knee 0.56 LeftMid_Foot 0.16 
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5.3 Summary 

In this chapter, a solution was provided to the question, “Which features should be 

extracted to represent gait and why?” Via principle component analysis, the 

question was investigated beyond the scope of the analysis in section 3.2.1. The 

analysis was divided into two parts. First, PCA was performed on the average gait 

of 35 subjects to investigate the influence of the gait features proposed in Chapter 

3 on the gait cycle. Second, PCA was performed for the 30 subjects according to 

the markers' speed to analyse the effect of the relative motion of different body 

segments on gait with the fixing root method. 

5.3.1 The different effects of gait features on gait cycle 

As mentioned in section 5.2.1, the average gait was one gait cycle containing 1500 

frames. PCA was applied on the 15 gait features of the average gait. The PCA 

results reveal the different weights of these 15 gait features on the one gait cycle.  

According to the PCA results, the features associated with y-axis and the Wrist 

speed ratio are most important in the gait cycle, followed by the features 

associated with z-axis, the features associated with the movement of the left side 

of the body, and finally Head_Topspine and Topspine_Root. The features 

associated with y-axis include left Wrist_shoulder_y, right Wrist_shoulder_y, and 

left Heel_toe_y. The features associated with z-axis include left Wrist_shoulder_z, 

right Wrist_shoulder_z, left Heel_toe_z, and right Heel_toe_z. These results are 

consistent with those presented in Chapter 4. It was found that the features 

associated with y-axis have more freedom/individuality than those features 

associated with z-axis, as described in Chapter 4. The analysis described in this 

chapter also revealed that the y-axis features are more important to gait than the 

z-axis features.  

PCA results also suggest that the gait features separately associated with y and z 

axes are important (Wrist_shoulder_y/z, Heel_toe_y/z); the Wrist Speed ratio is 

also important. These features describe the walking habits of the lower arms and 

lower legs.  

Head_Topspine and Topspine_Root angle are relatively independent of the other 
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gait features.  

5.3.2 The different influence of body segments on gait 

In section 5.2.2, the Root marker was assumed to be fixed and used PCA to 

investigate the relative motion of different body segments to reveal the most 

important gait features. In Pc1, the three variables with the largest coefficients 

were concentrated in the lower left arm, followed by other variables concentrated 

around the left shoulder. In Pc2, all 10 variables associated with the lower legs and 

feet were among the top 10 variables exhibiting large coefficients.  Meanwhile in 

Pc3, all four variables associated with the hip exhibited the largest coefficients, 

followed by the variable MidBack_Offset; all of the remaining variables with 

coefficients are less than or equal to 0.31 which can be ignored. The PCA results 

of this study provide a simplified structure to reveal the most important 

features/characteristics of gait, and which are the movement associated with the 

lower left arm, lower legs and hip.   

PCA has been used for gait analysis on many occasions, for example in (Carriero 

et al. 2009; Muniz & Nadal 2009; Samantha et al. 2010), but no reported literature 

has been found to apply PCA to investigate the relative motion of all body 

segments with respect to a specific body point. Although there are previous 

studies that have applied PCA to gait on a treadmill (Das et al. 2006), the normal 

gait for people walking naturally on the ground is different from that for people 

walking on a treadmill. The gait in this section is absolute relative motion that 

cannot be achieved by walking on a treadmill because there is no absolutely fixed 

point on the human body. By the fixing Root method, the influence of walking 

speed was removed, and gait data were fully focused on the relative movement of 

each body segment; therefore, there was a greater chance of finding the most 

natural gait features.    

Many previous studies on gait feature extraction are based on video images, and 

features used for gait recognition are usually identified around a silhouette 

(Boulgouris et al. 2005), for example, moving shapes are used to obtain a 

sequence of silhouettes of walking subjects (Foster et al. 2003). Using 3D motion 

capture data, detailed gait features regarding body segments’ movement and 
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rotation could be obtained; for example, hip-knee angles were used as features for 

gait recognition (Barton & Lees 1997; Cunado et al. 2003), and hip flexion in 

swinging and lower limb joint angles were studied (Vrieling et al. 2008). Leg 

motion has been identified as a core feature for gait recognition (Das et al. 2006). 

Arm motion has recently received more attention; for example, the swinging of 

the arms was used for gait phase detection (Wang et al. 2009), the effect of arm 

swinging on the local and global stability of steady-state gait were studied (Bruijn 

et al. 2010), and through extra features produced from the motion of the arms, gait 

recognition has been considerably enhanced (Tafazzoli & Safabakhsh 2010). The 

results of these previous studies are consistent with the findings from PCA and the 

fixing Root method. Furthermore, the findings in section 5.2.2 provide analytical 

support for choosing the motion of the left lower arm, lower legs and feet, and 

hips as features for gait recognition. 

In the last chapters, gait identification, the analysis of gait feature extraction and 

evaluation, and the analysis of gait phases were performed. All of these analyses 

were performed for the purpose of gait identification. In the next two chapters, 

further content regarding gait will be analysed. In chapter 6, the similarity 

between the left and right sides of the human body with respect to gait will be 

investigated. In chapter 7, gait attractiveness will be discussed.   
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Chapter 6 Similarity Analysis in Gait Cycle  

In the past 20 years, a large portion of literature has explored associations between 

fluctuating asymmetry and human health, attractiveness, intelligence and other 

qualities. Fluctuating asymmetry (FA) refers to the observation of a random 

deviation from perfect symmetry in the bilateral structures of bilaterally 

symmetric organisms (Palmer & Strobeck 1986; Palmer 1994; Watson & 

Thornhill 1994). Research aimed at finding links between FA and human health 

has been achieved some success. FA has been proved to be positively associated 

with a number of chromosomal abnormalities and genetic diseases, including 

cleft-lip, Down’s syndrome, fragile X syndrome, and scoliosis (Thornhill & 

Møller 1997). However, some studies have found that there are no consistent 

associations between FA and other health measure, including fitness (VO 2 max), 

blood pressure (BP), and lung function (Tomkinson & Olds 2000). FA has also 

been shown to be unrelated to the frequency and severity of diseases (Hume & 

Montgomerie 2001; Rhodes et al. 2001). 

The association between FA and attractiveness has been a common theme among 

FA analyses. It is believed that small deviations from bilateral symmetry could be 

used as an index of a potential partner's suitability. A number of studies have 

suggested that a symmetric human face is more attractive than an asymmetric face 

(Grammer & Thornhill 1994; Thornhill & Gangestad 1995; Rhodes et al. 1998). 

However, other studies have reported opposite results. Symmetry was actually 

more associated with less attractiveness than was asymmetry because perfect 

facial symmetry appears abnormal, whereas asymmetry is normal (Langlois et al. 

1994; Swaddle & Cuthill 1995; Kowner 1996). The role of FA has also been 

extended to the whole body. Some studies have suggested that more symmetric 

human males are more attractive or are able to attract more sexual partners 

(Thornhill & Gangestad 1994; Brown et al. 2008). Some other studies found 

evidence that suggested a role of symmetry in the perception of the attractiveness 

of the human female body (Tovée et al. 2000). 

Human fluctuating asymmetry in sports receives less attention. Previous research 

has shown that higher FA is associated with poorer locomotor trait design and 
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performance in several species, including humans (Thomas 1993; Manning & 

Pickup 1998; Møller et al. 1999).  

In this chapter, the similarities and asymmetric appearances were investigated of 

gait. The same set of gait features in Chapter 3 was used. The gait cycle and gait 

phase definitions in Chapter 4 were also used. The left body movement and right 

body movement was compared in each of the corresponding gait phases. The most 

asymmetric body part of individuals in their gaits was also investigated. 

6.1 Methods 

6.1.1 Data sample 

The subjects included 35 male students at a British university recruited via flyers 

that were posted around campus. The gait data were normalized to the gait cycle 

using linear interpolation. The data sample is the same as described in Chapter 4. 

The definitions of gait cycle and gait phases are also the same as in Chapter 4. 

Eight gait phases were divided in one gait cycle (Fig 4.4). The gait cycles were 

divided into two half cycles. Each half cycle contained four gait phases. The first 

half of the cycle corresponds to the right leg as the supporting leg and the left leg 

as the swinging leg. The second half of the cycle corresponds to the left leg as the 

supporting leg and the right leg as the swing leg. The first half of the cycle was 

denoted as cycle 1 and the second half of the cycle was denoted as cycle 2. 
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Fig. 4.4 Gait cycle and gait phase used in this research 

Cycle 1 was constructed of a R. single support phase/L. swing phase and one 

double support phase (phase 4). Cycle 2 was constructed of a L. single support 

phase/Right swing phase and one double support phase (phase 8). 

Cycle 1 started at the left toe off posture and ended on the right toe off posture; 

cycle 2 started at the right toe off posture and ended at the following left toe off 

posture. 

6.1.2 Similarity measures 

Feet, ankles, knee, hands, wrists, and elbows were the common factors 

investigated in previous research (Gangestad & Thornhill 1997; Tovée et al. 2000). 

Knee angles and elbow angles have been analysed in many studies in the literature 

on gait (Zhang et al. 2009; Menant et al. 2009b).  

Combined with gait phase, the relationship between the left and right parts of the 

human body during walking can be analysed. Gait cycle is a similar regularly 

repeating action. In this research, the length of cycle 1 and cycle 2 was first 

compared. The length of a half cycle refers to the percentage of the half cycle 

occupied in one complete gait cycle. Next, the 15 gait features were investigated. 

Because the research aim is to identify the similarity between the left and right 

body in gait cycle, the features of the left body during cycle 1 should be compared 

with the features of the right body during cycle 2. For example, for knee angles, 

the left knee angle in cycle 1 should be compared with right knee angle in cycle 2 

because the left leg is the swing leg in cycle 1 and the right leg is the swing leg in 

cycle 2. To compare the two legs' appearances as the swing leg, the left knee angle 

in cycle 1 and the right knee angle in cycle 2 should be compared. Thus, features 

that express the same function or the same situation should be compared.  

For the same reason, left Heel_toe_y in cycle 1 and right Heel_toe_y in cycle 2 

were compared as the swing legs' features. left Heel_toe_z in cycle 1 and right 

Heel_toe_z in cycle 2 were compared. Left Heel_toe_y in cycle 2 was compared 

with right Heel_toe_y in cycle 1 as the support legs' features. Left Heel_toe z in 

cycle 2 and right Heel_toe z in cycle 1 were also compared for the support legs' 

features. Left knee angles in cycle 2 and right knee angles in cycle 1 were not 

considered, as there was not much difference in the support phase. The left leg is 
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the support leg in cycle 2, and the right leg is the support leg in cycle 1. 

Wrist_shoulder_y and Wrist_shoulder_z are similar to Heel_toe_y and Heel_toe_z. 

Left Wrist_shoulder_y and left Wrist_shoulder_z in cycle 1 describe the left arm’s 

movement while the right leg is the support leg. These features correspond to right 

Wrist_shoulder_y and right Wrist_shoulder_z in cycle 2, which describe the right 

arm’s movement while the left leg is the support leg. In other words, it describes 

arm movement while the opposite leg is the support leg. Left Wrist_shoulder_y 

and left Wrist_shoulder_z in cycle 2 describe the left arm’s movement while the 

left leg is the support leg, and right Wrist_shoulder_y and right Wrist_shoulder_z 

in cycle 1 describe the right arm’s movement while the right leg is the support leg. 

Left Wrist_shoulder_y/z in cycle 2 and right Wrist_shoulder_y/z in cycle 1 

describes arm movement while the leg of the same side is the support leg. 

Elbow angles are similar to Wrist_shoulder angles. Head_Topspine angle, 

Topspine_Root angle, and Wrist speed ratio were not considered because these 

three features cannot be divided into left or right body. 

Eleven indicators of comparison were used, as listed below. Left 1 signifies the 

left feature in cycle 1, and right 2 signifies the right feature in cycle 2. Thus, 

Elbow angle (left 1: right 2) signifies the left Elbow angle in cycle 1: right Elbow 

angle in cycle 2. 

1. Elbow angle (left 1: right 2) 

2. Elbow angle (left 2: right 1) 

3. Knee angle (left 1: right 2) 

4. Heel_toe_y (left 1: right 2) 

5. Heel_toe_y (left 2: right 1) 

6. Heel_toe_z (left 1: right 2) 

7. Heel_toe_z (left 2: right 1) 

8. Wrist_shoulder_y (left 1: right 2) 

9. Wrist_shoulder_y (left 2: right 1) 

10. Wrist_shoulder_z (left 1: right 2) 

11. Wrist_shoulder_z (left 2: right 1) 
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6.2 Results 

6.2.1 Gait phase difference between cycle 1 and cycle 2 

Table 4.16 shows the detailed data of each of the gait phases of the 35 subjects. 

The average length of cycle 1 was 50.72% of the gait cycle, and the average 

length of cycle 2 was 49.28% of the gait cycle. Cycle 1 occupied almost the same 

percentage as cycle 2. Of the 35 subjects, 74.29% exhibited a longer cycle 1 

compared with cycle 2. The average length of cycle 1 was 1.44% longer than 

cycle 2. The difference between cycle 1 and cycle 2 varied from -8.93% to 7.2% 

of the gait cycle. 

6.2.2 Similarity/asymmetry between body parts that played the 

same function in gait 

The correlation coefficients between the 11 comparisons in section 6.1.2 were 

calculated. The averages of the absolute values of the correlation coefficients for 

35 subjects are listed in Table 6.1 in descending order. The results for all subject 

are shown in Table 6.2. The table shows that Elbow angle (left 1: right 2), 

Wrist_shoulder_y (left 1: right 2), Wrist_shoulder_y (left 2: right 1), and 

Heel_toe_y (left 1: right 2) had lower correlation coefficients than other features. 

The most similar features were Heel_toe_z (left 2: right 1), Heel_toe_z (left 1: 

right 2), and Knee angles (left 1: right 2).  

 

Feature Correlation coefficients 

Heel_toe_z(left 2:right 1) 1.00  

Heel_toe_z(left 1:right 2) 0.99  

knee(left 1:right 2) 0.98  

Elbow(left 2:right 1) 0.91  

Wrist_shoulder_z(left 2:right 1) 0.90  

Wrist_shoulder_z(left 1:right 2) 0.85  

Heel_toe_y(left 2:right 1) 0.74  

Heel_toe_y(left 1:right 2) 0.69  

Wrist_shoulder_y(left 2:right 1) 0.69  

Wrist_shoulder_y(left 1:right 2) 0.68  

Elbow(left 1:right 2) 0.66  

Table 6.1 Average correlation coefficients of the 35 subjects 
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Comparison of the swing leg as the left or right leg: 

The Comparison of the swing leg as the left or right leg is described by Knee (left 

1: right 2), Heel_toe_y (left 1: right 2), and Heel_toe_z (left 1: right 2). Knee (left 

1: right 2) and Heel_toe_z (left 1: right 2) are highly similar, with correlation 

coefficients nearly equal to 1. Heel_toe_y is less similar, with a correlation 

coefficient of only 0.69. These results signify that Knee movement and foot 

movement on the z-axis are highly similar between the left and right leg as the 

swing leg. Foot movement on the y-axis displayed an asymmetry between the left 

leg and the right leg as the swing leg. 

Comparison of the support leg as the left or right leg: 

The Comparison of the support leg as the left or right leg is described by 

Heel_toe_y (left 2:right 1) and Heel_toe_z (left 2:right 2). Heel_toe_z (left 1:right 

2) are highly similar, with correlation coefficients are all nearly equal to 1 for 

most subjects. Heel_toe_y is less similar, with a correlation coefficient of only 

0.74. These results signify that foot movement on the z-axis is highly similar 

between the left and right leg as the support leg and that foot movement on the 

y-axis is asymmetric between the left and right leg as the support leg. 

Comparison of arm movement while the opposite leg is the support leg: 

It is described by Elbow (left 1: right 2), Wrist_shoulder_y (left 1: right 2), and 

Wrist_shoulder_z (left 1: right 2). Wrist_shoulder_z (left 1: right 2) exhibited a 

higher similarity, with a correlation coefficient of 0.85. Wrist_shoulder_y (left 1: 

right 2) displayed less similarity, with a correlation coefficient of 0.68. Elbow (left 

1: right 2) had the lowest similarity in all features, with a correlation coefficient of 

0.66. These results signify that elbow movement is highly asymmetric between the 

swing of the left and right arms while the opposite leg is the support leg. Wrist 

movement on the y-axis was also asymmetric between the swing of the left and 

right arms while the opposite leg is the support leg. Wrist movement on the z-axis 

was similar between the swing of the left and right arms while the opposite leg is 

the support leg. 

Comparison of arm movement while the leg of the same side is the support 

leg: 

It is described by Elbow (left 2: right 1), Wrist_shoulder_y (left 2: right 1) and 
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Wrist_shoulder_z (left 2: right 1). Elbow (left 2: right 1) and Wrist_shoulder_z 

(left 2: right 1) had a high similarity, with correlation coefficients 0.91 and 0.90. 

Wrist_shoulder_y (left 2: right 1) had a less similar correlation coefficient of 0.69. 

These results indicate that elbow movement and wrist movement on the z-axis are 

similar between left and right arm swing while the leg of the same side is the 

support leg. Wrist movement on the y-axis displayed an asymmetry between the 

left and right arm's swing while the leg of the same side was the support leg.  

The comparison of gait features: 

From the analysis above, Wrist_shoulder_y was largely asymmetric between the 

left and right sides. Heel_toe_y exhibited a decent asymmetry between the left and 

right sides. Wrist_shoulder_z had little asymmetry between the left and right sides. 

Heel_toe_z and Knee were highly similar between the left and right sides. 

Elbow angle is an interesting feature. Elbow (left 2: right 1) had high similarity, 

but Elbow (left 1: right 2) had the most asymmetry. This result signifies that left 

elbow movement and right elbow movement are very similar when the leg of the 

same side is the support leg but that they are very asymmetric when the opposite 

leg is the support leg. 
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id 

Elbow angles 
Knee 

angle 
Heel_toe_y Heel_toe_z 

Wrist_shoulde

r_y 

Wrist_shoulde

r_z 

Left1:

right2 

Left2:

right1 
knee 

Left1:

right2 

Left2:

right1 

Left1:

right2 

Left2:

right1 

Left1:

right2 

Left2:

right1 

Left1:

right2 

Left2:

right1 

1 0.90  0.33  0.95  0.74  0.72  0.96  1.00  0.67  -0.04  0.87  0.59  

2 -0.32  0.98  0.99  0.95  0.27  0.98  0.99  -0.10  -0.16  0.92  0.98  

3 -0.37  0.95  1.00  0.48  0.91  1.00  1.00  0.98  0.48  0.82  0.96  

4 0.64  0.89  0.96  -0.77  -0.48  0.97  0.99  0.99  0.99  1.00  1.00  

5 0.98  0.98  0.96  0.20  0.97  0.98  0.99  0.86  1.00  0.98  1.00  

6 -0.36  -0.77  0.99  0.00  0.82  0.99  1.00  -0.96  0.47  -0.49  0.37  

7 0.62  0.91  0.99  -0.86  -0.21  0.98  0.99  0.42  -0.77  0.89  0.84  

8 0.49  0.98  0.99  0.73  -0.60  0.99  1.00  -0.06  0.84  -0.74  1.00  

9 -0.86  0.86  0.99  0.36  0.44  0.99  1.00  0.28  -0.63  -0.33  0.98  

10 0.62  0.99  0.99  0.86  -0.53  1.00  1.00  0.27  -0.92  0.93  1.00  

11 0.84  1.00  0.97  0.36  0.74  0.98  0.99  0.65  0.98  0.97  1.00  

12 0.95  0.99  0.99  0.55  0.43  0.99  1.00  -0.47  0.07  0.93  1.00  

13 0.87  0.98  0.99  0.91  0.98  0.99  1.00  -0.82  -0.69  0.94  0.96  

14 -0.52  0.73  1.00  0.22  0.69  1.00  1.00  -0.41  -0.95  -0.93  0.55  

15 -0.96  -0.66  0.99  0.57  0.97  0.99  0.99  0.59  0.12  0.45  -0.19  

16 0.52  0.98  0.88  0.49  0.08  0.95  1.00  0.81  0.79  0.62  0.98  

17 0.92  0.95  0.99  0.76  0.97  0.99  1.00  0.93  0.92  0.94  0.93  

18 0.93  0.81  0.98  0.96  0.92  0.99  1.00  0.95  0.95  0.99  0.91  

19 0.71  0.97  0.97  0.54  0.99  0.97  0.99  0.53  0.51  0.78  1.00  

20 0.70  0.96  1.00  0.75  0.99  1.00  1.00  0.54  0.52  0.94  0.99  

21 0.93  0.96  0.99  0.58  0.93  0.99  1.00  0.56  0.71  0.98  1.00  

22 0.82  0.98  1.00  0.83  0.96  1.00  1.00  0.44  0.47  0.98  0.99  

23 0.77  0.98  1.00  0.99  0.91  1.00  1.00  0.99  1.00  1.00  0.99  

24 0.46  0.98  1.00  0.98  0.98  1.00  1.00  0.99  1.00  1.00  0.98  

25 0.49  0.94  0.99  0.95  0.96  0.99  1.00  0.92  0.99  0.98  0.96  

26 0.43  1.00  0.99  0.98  0.83  0.99  1.00  0.96  1.00  0.99  1.00  

27 0.30  0.93  1.00  0.94  0.91  1.00  1.00  0.93  1.00  0.97  0.93  

28 0.59  0.97  1.00  0.96  0.94  1.00  1.00  0.91  0.99  1.00  0.98  

29 0.74  0.94  0.99  1.00  0.91  0.99  1.00  -0.12  -0.95  0.99  0.98  

30 0.63  0.96  1.00  0.55  -0.41  0.99  1.00  0.97  0.96  0.96  0.93  

31 0.38  0.60  0.97  0.31  -0.70  0.99  1.00  0.99  0.98  -0.27  0.70  

32 0.82  0.95  1.00  0.47  0.18  1.00  1.00  0.85  -0.06  0.62  0.97  

33 0.93  0.99  1.00  0.87  0.88  1.00  1.00  0.28  -0.03  0.82  1.00  

34 -0.06  0.94  0.92  0.93  0.90  0.94  0.99  0.67  0.94  0.81  0.92  

35 0.63  0.96  0.99  0.80  0.94  0.99  1.00  0.77  0.39  0.93  0.99  

Table 6.2 Correlation coefficients of features between the left body and the right 

body 
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6.2.3 Similarity/asymmetry differences among individuals 

In the last section, the general similarities and asymmetries in gait were analysed. 

For individuals, the appearance of similarity and asymmetry differs. In Table 6.3, 

the 'max' column contains the maximum correlation coefficient value of the 

features, the 'min' column contains the minimum correlation coefficient value of 

the features, the 'min of abs value' contains the minimum absolute value of 

correlation coefficients of features, and the 'interval' column contains the distance 

between the max and min values. Table 6.3 is sorted by the 'interval' column in 

descending order. 

Except Knee (left 1: right 2), Heel_toe_z (left 1: right 2), and Heel_toe_z (left 2: 

right 1), all of the features have individuals with nearly no correlation regarding 

the respective feature. The values of the min of absolute correlation coefficients 

varied from 0.00 to 0.33 for these features. For Wrist_shoulder_y, Elbow, 

Wrist_shoulder_z (left 1: right 2), and Heel_toe_y, there were some subjects for 

which these features were highly positively, some subjects for which these 

features were highly negatively correlated, and some subjects for which there was 

nearly no correlation among these features. For Wrist_shoulder_z (left 2: right 1), 

this feature was highly positively correlated for some subjects and nearly 

uncorrelated for some subjects, but there were no subjects with a highly negative 

correlation for this feature. For the features Knee and Heel_toe_z, almost all of the 

subjects were highly positively correlated.  

 

Features max min min of abs value interval 

Wrist_shoulder_y(left 1:right 2) 0.99  -0.96  0.06  1.95  

Wrist_shoulder_y(left 2:right 1) 1.00  -0.95  0.03  1.95  

elbow(left 1:right 2) 0.98  -0.96  0.06  1.94  

Wrist_shoulder_z(left 1:right 2) 1.00  -0.93  0.27  1.93  

Heel_toe_y(left 1:right 2) 1.00  -0.86  0.00  1.85  

elbow(left 2:right 1) 1.00  -0.77  0.33  1.77  

Heel_toe_y(left 2:right 1) 0.99  -0.70  0.08  1.69  

Wrist_shoulder_z(left 2:right 1) 1.00  -0.19  0.19  1.19  

knee(left 1:right 2) 1.00  0.88  0.88  0.12  

Heel_toe_z(left 1:right 2) 1.00  0.94  0.94  0.06  

Heel_toe_z(left 2:right 1) 1.00  0.99  0.99  0.01  

Table 6.3 Similarity/asymmetry differences among different subjects 
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6.2.4 The most asymmetric body parts in gait  

Table 6.4 shows the feature with minimal correlation for each subject. The 

minimal correlation is that which has the minimum absolute value of correlation 

coefficients. The table shows the most asymmetric body parts in gait for each 

subject. For example, for subject 1, the minimal correlation appeared for 

Wrist_shoulder_y (left 2: right 1), which means wrist movement on y-axis 

between the left and right sides were the most asymmetric while the leg of the 

same side was the support leg in gait.  

id min correlation Feature 

1 -0.04  Wrist_shoulder_y(left 2:right 1) 

2 -0.10  Wrist_shoulder_y(left 1:right 2) 

3 -0.37  elbow(left 1:right 2) 

4 -0.48  Heel_toe_y(left 2:right 1) 

5 0.20  Heel_toe_y(left 1:right 2) 

6 0.00  Heel_toe_y(left 1:right 2) 

7 -0.21  Heel_toe_y(left 2:right 1) 

8 -0.06  Wrist_shoulder_y(left 1:right 2) 

9 0.28  Wrist_shoulder_y(left 1:right 2) 

10 0.27  Wrist_shoulder_y(left 1:right 2) 

11 0.36  Heel_toe_y(left 1:right 2) 

12 0.07  Wrist_shoulder_y(left 2:right 1) 

13 -0.69  Wrist_shoulder_y(left 2:right 1) 

14 0.22  Heel_toe_y(left 1:right 2) 

15 0.12  Wrist_shoulder_y(left 2:right 1) 

16 0.08  Heel_toe_y(left 2:right 1) 

17 0.76  Heel_toe_y(left 1:right 2) 

18 0.81  elbow(left 2:right 1) 

19 0.51  Wrist_shoulder_y(left 2:right 1) 

20 0.52  Wrist_shoulder_y(left 2:right 1) 

21 0.56  Wrist_shoulder_y(left 1:right 2) 

22 0.44  Wrist_shoulder_y(left 1:right 2) 

23 0.77  elbow(left 1:right 2) 

24 0.46  elbow(left 1:right 2) 

25 0.49  elbow(left 1:right 2) 

26 0.43  elbow(left 1:right 2) 

27 0.30  elbow(left 1:right 2) 

28 0.59  elbow(left 1:right 2) 

29 -0.12  Wrist_shoulder_y(left 1:right 2) 

30 -0.41  Heel_toe_y(left 2:right 1) 

31 -0.27  Wrist_shoulder_z(left 1:right 2) 

32 -0.06  Wrist_shoulder_y(left 2:right 1) 

33 -0.03  Wrist_shoulder_y(left 2:right 1) 
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34 -0.06  elbow(left 1:right 2) 

35 0.39  Wrist_shoulder_y(left 2:right 1) 

Table 6.4 The most asymmetric body part in the gait cycle for each subject 

There were 9 subjects, 25.71% of all of the subjects, for which the most 

asymmetric body part appeared as Wrist_shoulder_y (left 2: right 1). There were 8 

subjects, 22.86% of all of the subjects, for which the most asymmetric body part 

appeared as Elbow (left 1: right 2). The distribution of the most asymmetric body 

part for all of the subjects is shown in Table 6.5.  

Wrist movement on the y-axis while the leg of the same side is the support leg, 

elbow movement while the opposite leg is the support leg, and wrist movement on 

the y-axis while the opposite leg is the support leg are the most possible 

asymmetric body parts in gait. Foot movement of the swinging leg on the y-axis 

and foot movement of the support leg on the y-axis are the least asymmetric body 

parts in gait. There were no subjects for whom the most asymmetric body part was 

Knee, Heel_toe_z, or Wrist_shoulder_z (left 2: right 1). 

Body movement on the y-axis (Wrist_shoulder_y, Heel_toe_y), and Elbow 

movement while the opposite leg is the support leg were highly likely to be the 

most asymmetric body part in gait.  

 

feature with greatest asymmetry in gait 
subject 

numbers 

percentage among 

all subjects 

Wrist_shoulder_y(left 2:right 1) 9 25.71% 

elbow(left 1:right 2) 8 22.86% 

Wrist_shoulder_y(left 1:right 2) 7 20.00% 

Heel_toe_y(left 1:right 2) 5 14.29% 

Heel_toe_y(left 2:right 1) 4 11.43% 

elbow(left 2:right 1) 1 2.86% 

Wrist_shoulder_z(left 1:right 2) 1 2.86% 

Table 6.5 The distribution of the most asymmetric body parts in gait for all 

subjects 
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6.3 Summary 

6.3.1 Similarity/asymmetry between the left body and the right 

body when performing the same function 

The similarity and asymmetry between the left body and right body movement in 

gait were investigated. For 74.29% of the 35 subjects, cycle 1 was longer than 

cycle 2. The average length of cycle 1 was 1.44% longer than cycle 2. The 

difference between cycle 1 and cycle 2 varied from -8.93% to 7.2% of the gait 

cycle. 

The similarity/asymmetry between the left body and right body was calculated 

according to four parts: leg movement as the swing leg, leg movement as the 

support leg, arm movement while the opposite leg is the support leg, and arm 

movement while the leg of the same side is the support leg. The 

similarity/asymmetry between the left and right body in arm movement while the 

opposite leg is the support leg refers to the similarity comparison between left arm 

movement in cycle 1 and right arm movement in cycle 2. The 

similarity/asymmetry between the left and right body in arm movement while leg 

of the same side is the support leg refers to the similarity comparison between left 

arm movement in cycle 2 and right arm movement in cycle 1. 

Leg movement as the swing leg: Knee movement and foot movement on the 

z-axis are highly similar between the left leg and the right leg as the swing leg. 

Foot movement on the y-axis displayed an asymmetry between the left leg and the 

right leg as the swing leg. 

Leg movement as the support leg: Foot movement on the z-axis was highly 

similar between the left leg and the right leg as the support leg, and foot 

movement on the y-axis displayed an asymmetry between the left leg and the right 

leg as the support leg. 

Arm movement while the opposite leg is support leg: Elbow movement 

displayed a high asymmetry between the left and right arm swing while the 

opposite leg was the support leg. Wrist movement on the y-axis also had an 

asymmetry, and wrist movement on the z-axis was similar between the left and 
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right arm swing while the opposite leg was the support leg. 

Arm movement while the leg of same side is the support leg: Elbow movement 

and wrist movement on the z-axis were similar between the left and right arm 

swing while leg of the same side was the support leg. Wrist movement on the 

y-axis was asymmetric between the left and right arm swing while the leg of the 

same side was support leg. 

From the above results, elbow movement while the opposite leg was the support 

leg, wrist movement on the y-axis both when the opposite and same-side legs 

were support legs, and foot movement on the y-axis for both the swing leg and the 

support leg showed an asymmetry in the gait cycle.  

Elbow movement while the leg of the same side was support leg, wrist movement 

on the z-axis for both the opposite and same-side leg as the support leg, foot 

movement on the z-axis for both the swing and support leg, and knee movement 

showed high a similarity in the gait cycle. 

Wrist movement on the y-axis had less similarity than foot movement on the 

y-axis.  

6.3.2 The similarity/asymmetry of gait features 

From the point of view of the proposed gait features, Wrist_shoulder_y had a high 

asymmetry between the left and right sides. Heel_toe_y had a decent asymmetry 

between the left and right sides. Wrist_shoulder_z had little asymmetry between 

the left and right sides. Heel_toe_z and Knee were highly similar between the left 

and right sides. 

Elbow (left 2: right 1) had a high similarity, but Elbow (left 1: right 2) displayed 

the greatest asymmetry. This result signifies that left elbow angle and right elbow 

angle are very similar when the leg of the same side is the support leg, but they are 

very asymmetric when the opposite leg is the support leg. 

For different subjects, the similarity/asymmetry appearance varied very little for 

the features Knee and Heel_toe_z (almost all were highly positive correlated), 

they varied highly for Wrist_shoulder_y, Elbow, Heel_toe_y, and 

Wrist_shoulder_z when the opposite leg was the support leg (from a highly 
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negative correlation to a highly positive correlation), and they varied from 

uncorrelated to highly negatively correlated for Wrist_shoulder_z when the leg of 

the same side was the support leg. 

6.3.3 The most asymmetric body part for individuals in gait 

There were 9 subjects, 25.71% of all of the subjects, for which the most 

asymmetric body part appeared for Wrist_shoulder_y (left 2: right 1). Wrist 

movement on the y-axis while leg of the same side was the support leg was most 

frequently identified as the most asymmetric body part in gait.  

Wrist movement on the y-axis while leg of the same side was the support leg, 

elbow movement while the opposite leg was the support leg, and wrist movement 

on the y-axis while the opposite leg was the support leg were the body parts most 

likely to be asymmetric in gait.  

Foot movement on the y-axis for the swing leg and foot movement on the y-axis 

as the support leg were the least likely body parts to be asymmetric body part in 

gait.  

There were no subjects for whom the most asymmetric body part in gait was Knee, 

Heel_toe_z, or Wrist_shoulder_z (left 2: right 1). 

Body movement on the y-axis (Wrist_shoulder_y and Heel_toe_y), and Elbow 

movement while the opposite leg is the support leg were the most likely body 

parts to be asymmetric in gait.  

In Chapter 4 and 5, it is found that features on the y-axis had more individuality 

than features on the z-axis, and arm-related features had more individuality than 

leg-related features. The results of the similarity analysis of gait are consistent 

with the conclusions in the last two chapters. Wrist movement on the y-axis had 

more asymmetry than foot movement on the y-axis. Wrist movement on the z-axis, 

foot movement on the z-axis, and knee movement are very similar in gait. In 

addition, elbow movement while the opposite leg is the support leg also had high 

asymmetry in gait. In next Chapter, the relationship between gait attractiveness 

and body segments was investigated.   
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Chapter 7 Gait Attractiveness and Gait Features for 

Attractiveness 

Facial and bodily attractiveness has received a great deal of attention in 

psychology, particularly from evolutionary psychologists who suggest that the 

cognitive mechanisms for perceiving attractiveness of the opposite sex are 

species-typical, sexually selected adaptations for finding high quality mates 

(Thornhill & Gangestad 1999; Fink & Penton-Voak 2002; Rhodes et al. 2003). 

For example, faces and bodies that display higher left-right symmetry (an 

indicator of biological quality) are perceived as more attractive (Thornhill & 

Gangestad 1994; Gangestad & Thornhill 1997; Rhodes et al. 2005; Brown et al. 

2008), as are faces and bodies that exhibit greater sex-typicality (Rhodes et al. 

2003; Brown et al. 2008).  

One possible influence on male gait attractiveness is gait speed. Research suggests 

that males with a higher social status tend to walk faster (Jahoda et al. 1933; 

Schmitt & Atzwanger 1995). If high status men walk faster, then it follows that 

faster male gaits should be more attractive to females because social status is one 

of the most important aspects of what makes a male attractive to females (Davies 

& Shackelford 2008).  

In the current study, the detailed and accurate data provided by 3D motion capture 

were utilised to investigate whether a systematic relationship exists between the 

motions of individual body markers and gait attractiveness. It was also examined 

that which body marker movements are the most important in determining gait 

attractiveness. Finally, it was investigated that whether it is the speed or the 

acceleration of body markers that is most correlated with gait attractiveness 

ratings. PCA and linear regression were used to choose some particular markers as 

features determining the attractiveness value of gait by the fixing root method. 

The effectiveness about the features extracted for attractiveness was verified by 

comparing the results with those results by all markers.  
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7.1 Methods 

7.1.1 Subjects and data acquisition  

The subjects included 30 male students at a British university (mean age = 20.83, 

SD = 3.12) who were recruited via flyers posted around campus. Gait data were 

collected by a seven camera motion capture system from Motion Analysis at a rate 

of 60 frames per second. The capture volume was 2 meters wide, 4 meters long 

and 2.2 meters high. Each subject wore a form-fitting motion capture suit, with 40 

reflective markers placed on crucial body segment/joint locations, as illustrated in 

Fig. 2.2 and below: TopHead, FrontLeft_Head, BackLeft_Head, …, Leftmidfoot, 

Lefttoe. Subjects were told to walk freely and naturally at normal speed, from one 

end of the capture volume to the other, and then to walk back. The recorded Root 

marker (on the back at the upper middle of pelvis) speed for 30 subjects ranged 

from 666.16 mm/s to 1255.48 mm/s with a mean of 1005.84 mm/s. 

1. Top_head 

2. FrontLeft_head 

3. BackLeft_head 

4. FrontRight_head 

5. BackRight_head 

6. Right_shoulder 

7. Right_bicep 

8. Right_elbow 

9. Right_wrist 

10. Right_pinky 

11. Right_thumb 

12. Left_shoulder 

13. Left_bicep 

14. Left_elbow 

15. Left_wrist 

16. Left_pinky 

17. Left_thumb 

18. Top_spine 
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19. FrontRight_shoulder 

20. FrontLeft_shoulder 

21. Mid_back 

22. MidBack_offset 

23. Low_back 

24. Root 

25. BackRight_hip 

26. BackLeft_hip 

27. FrontRight_hip 

28. FrontLeft_hip 

29. Right_thigh 

30. Right_knee 

31. Right_ankle 

32. Right_heel 

33. Rightmid_foot 

34. Right_toe 

35. Left_thigh 

36. Left_knee 

37. Left_ankle 

38. Left_heel 

39. Leftmid_foot 

40. Left_toe 

The recorded data for each subject were the coordinates of 40 markers in the 3D 

space at each frame (60 frames per second) during walking. These data, after 

post-processing, were presented to evaluators to assess the gait attractiveness of 

each walker. The walkers were presented in random order in a 3D stick figure 

format (Fig. 7.1). The gait motion video was presented using EVaRT software 

from Motion Analysis on the computer screen using a 360 degree rotation feature, 

such that different viewing angles could be viewed by the evaluators. The 

evaluators were 32 female students from a British university (mean age = 20.28, 

SD = 3.38). They rated the attractiveness of each gait by drawing a vertical line on 

a 100 mm scale ranging from “unattractive” to “attractive”. Because Cronbach's α, 

a measure of agreement between raters, was reasonable (0.78), gait attractiveness 
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ratings were averaged for each walker. Table 7.1 showed the gait attractiveness 

value of each subject. 

 

 

 

Fig. 7.1 Gait cycle of stick person (id16) 

 
 

subject id 1 2 3 4 5 6 7 8 

attractiveness 

value 
32.60  40.60  29.67  40.27  45.97  45.50  29.10  49.13  

subject id 9 10 11  12  13  14  15  16  

attractiveness 

value 
40.10  42.83  32.97  32.23  36.57  42.07  33.23  46.13  

subject id 17  18  19  20  21  22  23  24  

attractiveness 

value 
34.80  49.37  50.53  42.67  47.50  44.20  37.90  42.50  

subject id 25  26  27  28  29  30  

attractiveness 

value 
43.97  42.40  42.80  39.70  36.77  49.90  

Table 7.1 Attractiveness value of 30 subjects. 

i

jM  is denoted as number j marker attached to ID number i subject, 

401,301  ji . For example, 3

1M  refers to the first mark of id_3, which is 

the Tophead marker of subject id_3. Thus, for each frame, there is a set 

 ii MM 401 ,, .  i

jz

i

jy

i

jx

i

j MMMM ,, , representing the 3D coordinates of 
i

jM  on 

the x, y, and z axes. 

i

jMs , 401,301  ji  is denoted as the speed of 
i

jM , and 
i

jMs  is defined 

by equation (6.1). 

      )1.7(
222 i

jz

i

jy

i

jx

i

j MsMsMsMs   
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In this equation, i

jxMs  is i

jM marker’s speed along the x-axis, and i

jyMs  and 

i

jzMs  are i

jM  marker’s speed along the y-axis and the z-axis, respectively.  

i

jMs  is defined as the average i

jMs  for all frames; thus, a matrix 
____

Ms  was 

obtained to state average marker speeds as follows.  
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In the same way, i

jMacc  and 
i

jMacc  are denoted as i

jM  marker’s acceleration 

and average acceleration. In this case, i

jMacc  is defined by equation (7.2). 

      )2.7(
222 i

jz

i

jy

i

jx

i

j MaccMaccMaccMacc   

Therefore, the matrix 
_______

Macc  contains the average marker accelerations as 

follows.  

_______

Macc
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Finally, a data set was denoted to contain every subject’s gait attractiveness 

average rating,  

  1309.49,,6.40,6.32 
T

attract   

7.1.2 Principle component analysis 

These data were then analysed in steps. First, the principal component analysis 

was conducted, and two principal components were obtained. Based on the two 

principal components, a linear regression analysis was carried out to produce a 
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linear expression of the attractiveness ratings in terms of the speeds of the 40 

different markers.  

7.1.3 Linear regression 

Linear regression was the first type of regression analysis to be rigorously studied 

and used extensively in practical applications, because models that depend 

linearly on their unknown parameters are easier to fit than models that are 

non-linearly related to their parameters and because the statistical properties of the 

resulting estimators are easier to determine. Linear regression was used to predict 

attractiveness, and verified the linear regression results. 

In this research, the linear regression result was drawn using only 25 subjects’ 

motion and attractiveness data as samples, leaving 5 unused subjects to verify this 

method. This process was repeated eight additional times, each time using 

different sets of 25 sample subjects and 5 verification subjects. For each iteration, 

a different linear regression equation with two principal components was drawn 

from the 25 sample subjects, and the equation was verified using the 5 unused 

subjects. Then, the correlation between attractiveness ratings and marker 

speed/acceleration were analysed. In the end, which markers are important for 

determining gait attractiveness were analysed 

7.1.4 Fixing root method 

The fixing root method was introduced and applied in Chapter 5. Root is on the 

back at the upper middle of pelvis. There are some speed-related features about 

root that have been analysed for motion retargeting (Gleicher 1998), motion 

synthesis (Kwon & Shin 2005; Meredith & Maddock 2005), and animation (Chai 

& Hodgins 2007). Root was also used as a special external point to gait pose 

(Forbes & Fiume 2005). In this method, Root was considered to be virtually fixed, 

like all subjects walking on a treadmill, in order to better understand individual 

gait by analysing the relative motion of the body segments rather than the 

trajectory of entire moving body.  

Every markers' new coordinates was achieved by the following formula.  
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PCA and linear regression were performed on the gait data after the fixing root 

method to investigate which features should be extracted for gait attractiveness. 

Then, the difference was compared between the analyses derived from the use of 

all of the markers with the results using only the markers of the extracted features.  

7.2 Results 

7.2.1 Correlation of attractiveness ratings with marker 

speed/acceleration 

The correlation coefficients between attractiveness ratings attract and the marker 

speed matrix were obviously higher than the correlation coefficients between 

attract and the marker acceleration matrix.  

It is evident that the attractiveness ratings are more closely related to marker speed 

than to acceleration. The average correlation coefficient between attractiveness 

and the speed of the 40 markers was 0.64, with the highest value reaching 0.74, 

whilst the average correlation coefficient between attractiveness and the 

acceleration of the 40 markers was only 0.21, with the highest value only 0.47.  

Because attractiveness is correlated more with marker speed than with 

acceleration, the main concern in the following sections is the relationship 

between the attractiveness matrix attract and the marker speed matrix. 

7.2.2 Principal Component Analysis (PCA) and linear regression 

results 

In this section, 25 subjects were used as the data sample and left 5 subjects unused 

to verify the robustness of the method. Principal components were calculated by 

using the correlation matrix and every principal component was extracted with an 

eigenvalue over 1. The matrix 
__

S is the original data. SPSS extracted two principal 

components with eigenvalues of 33.24 and 4.86. The cumulative variance of these 
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two components reached 95.23% of the total variance. The first component 

captured 83.09% of the total variance, and the second captured 12.14% of the total 

variance. These high percentages indicated that these two components express the 

original variables well. The two extracted principal components are linear 

combinations of the 40 original variables, which are the markers’ average speed, 

401,
___

 jMs j . A coefficient matrix of these two principal components is 

shown in Table 7.2.  

Table 7.2 Component Matrix of markers in PCA 

Two principal components were named as Pc1 and Pc2, and was calculated to 

obtain two data sets:  

Component Matrix of markers in PCA 

Markers\coefficient C1 C2 Markers\coefficient C1 C2 

Top_Head 0.979 -0.007 Mid_Back 0.998 0.005 

FrontLeft_Head 0.989 -0.020 MidBack_Offset 0.998 0.015 

BackLeft_Head 0.991 -0.015 Low_Back 0.984 -0.050 

FrontRight_Head 0.988 0.022 Root 0.998 -0.002 

BackRight_Head 0.989 0.028 BackRight_Hip 0.998 -0.003 

Right_Shoulder 0.994 0.054 BackLeft_Hip 0.997 0.003 

Right_Bicep 0.983 0.157 FrontRight_Hip 0.998 -0.008 

Right_Elbow 0.764 -0.070 FrontLeft_Hip 0.997 0.008 

Right_Wrist 0.859 0.396 Right_Thigh 0.960 -0.242 

Right_Pinky 0.769 0.541 Right_Knee 0.894 -0.410 

Right_Thumb 0.795 0.514 Right_Ankle 0.761 -0.581 

Left_Shoulder 0.994 -0.040 Right_heel 0.705 -0.597 

Left_Bicep 0.986 -0.119 RightMid_Foot 0.795 -0.554 

Left_Elbow 0.962 -0.231 Right_Toe 0.842 -0.506 

Left_Wrist 0.868 -0.412 Left_Thigh 0.975 0.185 

Left_Pinky 0.824 -0.439 Left_Knee 0.880 0.430 

Left_Thumb 0.824 -0.446 Left_Ankle 0.710 0.685 

Top_Spine 0.997 0.008 Left_Heel 0.679 0.711 

FrontRight_Shoulder 0.996 0.031 LeftMid_Foot 0.729 0.657 

FrontLeft_Shoulder 0.996 -0.010 Left_Toe 0.771 0.603 
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where C1 is the coefficient matrix for Pc1, and C2 is the coefficient matrix for Pc2, 

as listed in Table 7.2.  

Then, linear regression was carried out between Pc1, Pc2, and attractiveness with 

Pc1 and Pc2 as independent variables and attractiveness attract as an induced 

variable. The regression results showed that attractiveness has no obvious linear 

relation with Pc1 and Pc2 because the coefficient values of Pc1 and Pc2 were too 

small compared with the constant coefficient. This result probably occurred 

because the scale of Pc1 and Pc2 is too large in comparison with the attractiveness 

rating values. Therefore, the regression method was improved by using ln(Pc1), 

ln(Pc2), and ln(attract) for the linear regression. The square of the multiple 

correlation coefficients is 0.564, and the standard error of the estimation is 0.113. 

Therefore, the regression equation is acceptable. The linear relationship among 

ln(Pc1), ln(Pc2) and ln(attract) was highly significant (P < 0.001). 

The regression equation can be expressed as follows,  

      )4.7(044.52ln003.01ln829.0_ln  PcPcvalueattract  

Combining equation (7.3) and (7.4), attract_value can be further expressed by the 

speed of the 40 markers as: 

  )5.7(044.5)2ln(003.0)1ln(829.0_ln
40

1

40

1

 
 j

jj

j

jj MsCMsCvalueattract

As equation (7.5) is only a more detailed expression of equation (7.4), in the 

following, equation (7.4) was used as an abbreviation of equation (7.5).  

According to equation (4), the unused 5 subjects’ data were employed to verify the 

regression function. The average error between the predicted attractiveness value 

by equation (7.4) and the real value was 9.27%. Equation (7.4) was also used to 

calculate the 25 subjects’ attractiveness values from the data sample one by one. 
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The average error between the real attractiveness value and the value calculated 

by equation (7.4) in the data sample was 8.56%. Note that these 25 subjects are 

the data sample from which equation (7.4) was derived. The average error 

difference for predicting a new, unknown gait motion was only 0.71%. 

To further test the robustness of this predicting method, the data sample and the 

unused subjects were substituted another eight times. Each time, five subjects 

were randomly withheld for verification, and the other 25 subjects comprised the 

data sample. After repeating this random verification procedure eight times, it is 

found the regression results to be very similar. Each time, first two principal 

components were extracted (only two were produced) from the 40 marker speed 

matrix. The eigenvalues were close to those of the original principal components, 

and the percentages of total variance explained by these two components were all 

above 90%. These results suggest that the markers have stable patterns regardless 

of sample differences. Furthermore, the resulting linear regression equations (7.6) 

to (7.13) were very similar to each other as well as to equation (7.4). 

      )6.7(525.52ln002.01ln879.0_ln  PcPcvalueattract  

      )7.7(520.52ln002.01ln875.0_ln  PcPcvalueattract  

      )8.7(892.42ln003.01ln815.0_ln  PcPcvalueattract  

      )9.7(391.52ln001.01ln862.0_ln  PcPcvalueattract  

      )10.7(677.52ln003.01ln891.0_ln  PcPcvalueattract  

      )11.7(081.52ln006.01ln833.0_ln  PcPcvalueattract  

      )12.7(244.52ln001.01ln850.0_ln  PcPcvalueattract  

      )13.7(756.42ln005.01ln802.0_ln  PcPcvalueattract  

The average error in predicting attractiveness in the eight additional verification 
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procedures was 8.58%, and the average error in calculating attractiveness from the 

data sample was 8.75% when both ln(Pc1) and ln(Pc2) were used in the linear 

regression. The results of these eight verification procedures are listed in Table 

7.3. 

 

verify 

time 

Regression including ln(Pc1) 

& ln(Pc2) 

Regression only including 

ln(Pc1) 

error in 

estimating 

data 

error in data 

sample 

error in 

estimating 

data 

error in data 

sample 

1 7.756% 9.089% 7.484% 9.287% 

2 5.445% 8.620% 5.654% 8.789% 

3 9.241% 8.581% 10.704% 8.711% 

4 8.090% 8.990% 8.424% 9.142% 

5 6.889% 9.240% 6.255% 9.571% 

6 10.980% 8.201% 10.485% 8.790% 

7 10.887% 8.800% 10.575% 8.762% 

8 9.379% 8.490% 10.455% 8.801% 

average 8.583% 8.751% 8.755% 8.982% 

Table 7.3 The verification results of the eight repeated analyses using different 

sample data and verification data 

7.2.3 PCA and linear regression on acceleration and attractiveness 

The same method was used to analyse the relationship between marker 

acceleration and gait attractiveness. The only difference in the analysis was that 

the data which corresponded to acceleration not speed. PCA were applied and 

every principal component with an eigenvalue over 1 were extracted. Nine 

principal components were extracted, which together explained 87.43% of the 

total variance. This value is less than the total variance that was explained by only 

two components. These nine components were named PCac1, PCac2,…, PCac9, 

and carried out linear regression between PCac1, PCac2, …, PCac9 and 

attractiveness with PCac1, PCac2, …, PCac9 as independent variables and 
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attractiveness as the induced variable. The regression results showed no obvious 

linear relationship between attract and iPCac . The linear regression between 

ln(PCac1), ln(PCac2), … , ln(PCac9) and ln(attract) showed the same result. 

These results suggested that gait acceleration is not related to gait attractiveness. 

7.2.4 Features for gait attractiveness 

Using the same method in Section 7.2.3, a linear regression equation was obtained 

between a subject's gait attractiveness and natural logarithm of the extracted 

principal components after the fixing root method. The only difference from the 

methodology described in section 7.2.3 is that previously 40 markers were used in 

matrix 
____

Ms  and extracted two principal components, whereas in this section, 39 

markers were used in matrix 
____

Ms  after the fixing root method and extracted 

seven principal components. An example of enter method linear regression is 

below:  

     

128.5)7ln(005.0)6ln(096.0)5ln(034.0

)4ln(006.0)3ln(004.02ln239.01ln758.0ln





PcPcPc

PcPcPcPcattract

(7.14) 

Five subjects were randomly selected to comprise the testing database, and the 

other 25 subjects were used as the data sample to obtain a linear regression 

equation similar to the equation above. The process was repeated 8 times. Three 

times it was not able to obtain effective linear regression results. Three times, 

good linear regression results were obtained using the stepwise method, shown by 

equations (7.15) and (7.17) as follows.  

    )15.7(762.32851.0  PcLnattractLn  

(The average error was 8.35% in the sample data and 5.57 % in the estimating 
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data.) 

    )16.7(878.22746.0  PcLnattractLn  

(The average error in the sample data was 10.03%, and the average error in the 

estimating data was 7.57 %.) 

    )17.7(400.22694.0  PcLnattractLn  

(The average error was 9.68% in the sample data and 9.97% in the estimating 

data.) 

On all other occasions, linear regression equations were still obtained, but the 

results were not acceptable. Errors in the verification database were above 15%. 

There was no stable linear relationship between the markers and attractiveness 

after fixing root. This result indicated that there were no Ln equations that could 

predict attractiveness value. However, although the regression results were not 

satisfactory, they still provided some useful clues. When using the stepwise 

method, all the linear regression equations related only to Pc2. This result suggests 

that Pc2 is highly related to attractiveness. In the coefficients of PCA2, it is found 

that the markers focused on the lower legs, including all of the markers on the 

lower legs (shown in Table 5.5, centre columns). These 10 markers were R/L knee, 

R/L ankle, R/L heel, R/L toe, and R/L mid_foot. These results suggested that the 

lower leg features could be extracted for gait attractiveness. 

7.2.5 Verification of lower leg features in gait for attractiveness 

To verify the correlation that was suggested in the previous section between lower 

leg motion and attractiveness values, the accuracy of predicting attractiveness 

values from the motions of all of the 40 markers was compared as opposed to just 
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ten markers from around the lower leg area only. The only difference is that ten 

markers were used from the lower legs without fixing root in 
____

Ms , whereas 40 

markers were used without fixing root as the database in Section 7.2.2. This time, 

two principal components were still extracted, which occupied over 97% of the 

total variance, and then used linear regression on the natural logarithm of these 

two principal components and natural logarithm of gait attractiveness. The 

resulting square of multiple correlation coefficients was 0.546, and the standard 

error of the estimation was 0.115; thus, the regression equation is acceptable. The 

linear relationship between ln(PCA1), ln(PCA2), and ln(attract) was highly 

significant, with a P (probability) value of regression below 0.001. One example 

of the regression equation is shown below.  

      )18.7(507.32ln003.01ln794.0_ln  PcaPcavalueattract  

To test the robustness of the above regression equation and to make a comparison 

with Section 7.2.2, the equation was verified eight times. Each time, five subjects 

were randomly selected to comprise the testing database and the other 25 subjects 

were used as the data sample. Each time, the resulting linear regression equations 

were very similar to each other as well as to equation (7.18). These results 

suggested that the lower leg markers had stable patterns with gait attractiveness. 

the results of using lower leg markers was compared with the results of using all 

40 markers from the entire body, and the results are listed in Table 7.4. 
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verify 

time 

Regression with 40 markers 
Regression with only leg 

markers 

error in 

estimating 

database 

error in data 

sample 

error in 

estimating 

database 

error in data 

sample 

1 7.76% 9.09% 7.49% 9.08% 

2 5.45% 8.62% 5.48% 8.63% 

3 9.24% 8.58% 8.71% 8.83% 

4 8.09% 8.99% 7.16% 9.15% 

5 6.89% 9.24% 5.74% 9.43% 

6 10.98% 8.20% 9.59% 8.66% 

7 10.89% 8.80% 8.98% 8.76% 

8 9.38% 8.49% 9.30% 8.72% 

average 8.58% 8.75% 7.81% 8.91% 

Table 7.4 Verification results comparing the use of all 40 markers and only leg 

markers 

The left part of Table 7.4 is the results of using all 40 markers, and the right part is 

the results of using ten markers around the lower leg area only. The results show 

that the error in the testing database was smaller using only the lower leg markers 

than for using all 40 markers for every verification. The average error in 

predicting attractiveness was only 7.81% when only the leg markers were used. 

The results of these comparisons show that using lower leg markers as features for 

gait attractiveness is adequate. 

7.3 Summary 

7.1 Attractiveness correlated positively with speed but was 

uncorrelated with acceleration 

Gait attractiveness is much more correlated with the average speed of each body 

segment in the gait cycle than with the average acceleration of each body segment 

in the gait cycle. The correlation coefficients between attractiveness and average 

speed of all 40 markers were much higher than those between attractiveness and 
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average acceleration. PCA extracted two principal components from the original 

data matrix, Ms , and the cumulative variance of these two components reached 

95.23% of the entire variance. This result signifies that these two components 

represent the original data matrix Ms  very well. Further regression analysis 

showed that there is an obvious linear relation among ln(Pc1), ln(Pc2), and 

ln(attract). In contrast, PCA extracted nine principal components from the original 

data matrix Macc with much lower eigenvalues, which explained less cumulative 

variance, and the regression analysis showed no linear relationship among 

ln(PCac1),… , ln(PCac9) and ln(attract). This sharp contrast in the analysis results 

strongly suggests that attractiveness is much more correlated with speed than with 

acceleration.  

The speed of different body segments has been considered a feature in gait 

analysis, especially with regard to age and gender identification (Nigg et al. 1994; 

Røislien et al. 2009; Menant et al. 2009a). Here, it is found that speed is also 

correlated with attractiveness.  

7.2 Linear equation of ln(PC1) and ln(PC2) predicted ln(attract 

value) with reasonable accuracy 

One of the main motivations for this research was to investigate whether there is a 

systematic relationship between the motions of individual body markers and 

attractiveness ratings. It is found that such a pattern does exist, and it can be 

expressed as a linear equation of the natural logarithm of attractiveness rating 

value, the natural logarithm of two principal components extracted from the 

40-marker speed matrix, and a constant (equation (7.4)). Principal components 

analysis (PCA) had been used for action recognition (Masoud & 
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Papanikolopoulos 2003), gait recognition (Troje 2002), and some motion data 

representations (Wu & Li 2009). Cho et al. (Cho et al. 2009) recently used a 

combination of PCA and linear discriminant analysis for medical applications of 

gait recognition. In this case, PCA and linear regression revealed the pattern 

between attractiveness ratings and individual marker speeds. The robustness of 

this method was further verified eight times by randomly substituting the subjects 

who composed the data sample and the verification group, a procedure which 

produced very similar results to the original analysis (equations (7.6)—(7.13)). 

This implies that for a specific subject group and a specific evaluator group, if 

PCA and linear regression are used to generate an equation similar to equation (4), 

then the gait attractiveness ratings of any further new subjects in this group can be 

predicted with reasonable accuracy (around 10%) based on their gait motion data.  

7.3 Features for gait attractiveness 

Using PCA and the linear regression method, it was found that PC2 is high related 

to gait attractiveness. The 10 markers with highest coefficients of PC2 are clearly 

located around the lower legs and feet. This result suggests that features can be 

extracted from the lower legs and feet to be used for gait attractiveness. 

To verify this, the effectiveness of predicting attractiveness in gait was compared 

by using leg and feet markers as opposed to by using all 40 markers in linear 

regression equations similar to (7.18). The leg and feet markers that used for 

features were the 10 markers with the highest coefficients of PC2: R/L knee, R/L 

ankle, R/L heel, R/L toe, and R/L mid_foot. The comparative analysis showed that 

the results could be predicted slightly better by using only lower leg and feet 

markers than by using all 40 markers. Thus, instead of using 40 markers, ten 
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markers from lower legs and feet can be used to fully represent and predict 

attractiveness values. The relationship between the movement of the lower legs 

and feet and attractiveness could not be revealed without the fixing root method.  

In next chapter, human seated motion will be investigated beyond gait with 

motion capture techniques.  
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Chapter 8 A study on Human Seated Motion  

As an extension of walking motion research, this chapter is aim to investigated 

human seated motion by comparing the seated motion on an Ergokinetic split seat 

chair and a standard chair. A special marker set was designed for this purpose.  

8.1 Method 

8.1.1 Data captured 

Data sample is 17 subjects. A custom marker set was used to analyze in greater 

detail the back motion of each participant. The custom marker set is composed of 

31 markers instead of the 40 marker set used for gait recording. A total of 8 

markers were placed on the back to investigate the hip, lower back and high back 

movement specially. The Custom marker set used is displayed in the Fig 2.3. 

A set of 8 workstation motion tasks were designed and introduced in Section 8.1.2. 

Each subject was asked to repeat the tasks again 4 times by different sitting 

position and different chair seated.  

Once whilst seated in the standard office chair with their back against lumber 

support (SOB). Once seated at the front of the standard office chair (SOF). Once 

whilst seated in the Ergokinetic split-seat chair with their back against lumber 

support (EGB). Once seated at the front of the Ergokinetic split-seat chair (EGF). 
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Fig. 2.3a Back view of marker locations for seated motion. (Evart 5.0 User's 

Maneual) 
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Fig. 2.3b Front view of marker locations for seated motion (Evart 5.0 User's 

Maneual) 
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Fig. 2.3c Side view of marker locations for seated motion (Evart 5.0 User's 

Maneual) 

 



 162 

8.1.2 Motion tasks 

8 motion tasks which were frequently used were selected in order maximise the 

number of subjects capable of being captured in the shorter capture time.  

1. Stand up and sit down in one cyclic motion. 

2. Lean as far to the left and then to the right without support. 

3. Reach to file cabinet (located behind/right to the participant). Due to the 

nature and size of a filling cabinet, camera line of site will be affected, due to this 

a suitable prop will be substituted maintaining the same height and reach 

properties.  

4. Reach to paper on the floor (front/left). 

5. Reach for a glass of water on desk (front/left to the participant), move it to 

your mouth, then place it back to the original position on desk.  

6. Reach for a telephone on desk (front/right to the participant), move it towards 

your ear, hold for 5 seconds, then return it to the original position on desk. 

7. Move a mouse in a square motion around the perimeter of a piece of white A4 

paper, taped to the desk top (whilst seated).  Two pieces of A4 paper will be 

placed to accommodate for right and left handed participants. 

8. Type at a keyboard (whilst seated). Participants will be asked to type 1 

paragraph of text displayed in front of them. 

8.1.3 Indicators definition 

Twenty joint angels were designed to compare the seated motion on Ergokenitic 

chair and standard chair. The Fig 8.2 showed the angles and their identification on 

the biomechanical model in the sagittal (first and third) and in the frontal second 

planes. 
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Fig. 8.1 Angle identification on biomechanical models: the first and third figure is 

angles in the sagittal plane, the second figure is angles in the frontal planes 

The definition of 20 joint and their abbreviations are listed below: 

Neck Flexion  (NF): the angle between the line of marker Top Head and Neck 

and the extension line of marker Neck and V.sacral. 

Left Mid Back Flexion  (MBFl) : the angle between line of marker L.Midback 

and L.Highback and the extension line of marker L.Midback and a virtual marker 

constructed by L.Asis and L.Psis. 

Right Mid Back Flexion (MBFr) the angle between line of marker R.Midback 

and R.Highback and the extension line of marker R.Midback and a virtual marker 

constructed by R.Asis and R.Psis. 

Left High Back Flexion   (HBFl) the angle between line of marker L.Highback 

LBEr 

HBF 

HF 

SF 

MBF 

NF 

KF 

EF 

HAl 

HADr 

HAr 

SAr SAl 

HADl 
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and L.Shoulder and the extension line of marker L.Lowback and L.Highback. 

Right High Back Flexion   (HBFr) the angle between line of marker 

R.Highback and R.Shoulder and the extension line of marker R.Lowback and 

R.Highback. 

Left Shoulder Flexion  (SFl) the angle between the line of marker L.Shoulder 

and L.Elbow and the line of marker L.Shoulder and L.Asis. 

Right Shoulder Flexion  (SFr) the angle between the line of marker R.Shoulder 

and L.Elbow and the line of marker L.Shoulder and R.Asis. 

Left Shoulder Abduction  (SAl) the angle between the line projected to body 

plane of marker L.Shoulder and L.Elbow and a virtual line which parallel to 

central body line. 

Right Shoulder Abduction  (SAr) the angle between the line projected to body 

plane of marker R.Shoulder and R.Elbow  and a virtual line which parallel to 

central body line on body plane. 

Left Elbow Flexion  (EFl) the angle between the line of marker L.Elbow and 

Left virtual wrist constructed by L.Radius and L.Ulna and the extension line of 

marker L.Shoulder and L.Elbow. 

Right Elbox Flexion (EFr) the angle between the line of marker R.Elbow and 

Right virtual wrist constructed by R.Radius and R.Ulna and the extension line of 

marker R.Shoulder and R.Elbow. 

Left Hip Flexion  (HFl) the angle between line of marker L.Lowback and a 

virtual marker constructed by L.Asis and L.Psis and the extension line of marker 

L.Knee and the virtual marker constructed by L.Asis and L.Psis.Right Hip Flexion 

 (HFr) the angle between line of marker R.Lowback and a virtual marker 

constructed by R.Asis and R.Psis and the extension line of marker R.Knee and the 

virtual marker constructed by R.Asis and R.Psis. 

Left Hip Abduction  (HAl) the angle between the line projected to body plane of 

marker L.Knee and the virtual marker constructed by L.Asis and L.Psis and a 

virtual line which parallel to central body line, when left leg moved outside of 

body.  

Right Hip Abduction  (HAr) ) the angle between the line projected to body 
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plane of marker R.Knee and the virtual marker constructed by R.Asis and R.Psis 

and a virtual line which parallel to central body line, when right leg moved outside 

of body. 

Left Hip Adduction  (HADl) the angle between the line projected to body plane 

of marker L.Knee and the virtual marker constructed by L.Asis and L.Psis and a 

virtual line which parallel to central body line, when left leg moved inside of 

body. 

Right Hip Adduction  (HADr) the angle between the line projected to body 

plane of marker R.Knee and the virtual marker constructed by R.Asis and R.Psis 

and a virtual line which parallel to central body line, when right leg moved inside 

of body. 

Left Knee Flexion  (KFl) the angle between the line of marker L.Knee and 

L.Heel and the extension line of marker L.Knee and L.High Thigh. 

Right Knee Flexion  (KFr) the angle between the line of marker R.Knee and 

R.Heel and the extension line of marker R.Knee and R.High Thigh. 

Right Mid Back Hyperextension  (MBEr) (Applicable for 3 motion task only) 

the angle between line of marker R.Midback and R.Highback and the extension 

line of marker R.Midback and a virtual marker constructed by R.Asis and R.Psis, 

when R.Highback move behind R.Midback. 

For each chair type and each workstation task, computations of the above angles 

were completed using the following steps: 

 Computation of the mean value, related standard deviations(SD), maximum 

value, and minimum value of a single subject; 

 Computation of the mean angles, SD of mean angles by averaging all the 17 

subjects.  

 Computation of the average maximum angles, and average minimum angles 

of all the 17 subjects. 

Finally, the obtained mean angles, SD, maximum angles, and minimum angles in 

motion tasks 1-8 of EGF, EGB, SOF and SOB were the basis for comparing the 

Ergokinetic chair and standard chair.  

For this purpose, denotations ‘<’ or ‘>’ = 2-4 degree in difference, ‘<<’ or ‘>>’ = 
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4-8 degree, and ‘<<<’ or ‘>>>’ = above 8 degree. 

8.2 Data Analysis 

Workstation motion task 1 

See table 1 in appendix 3 for full comparison of workstation motion task 1 in table 

form. There were not many common differences between the Ergokinetic chair 

and the standard office chair. However the mean angles of KFl and KFr.  

;  ;  

The maximum of KF on the Ergokinetic chair is higher than on the standard chair, 

and the minimum of KF on the Ergokinetic chair is lower than on the standard 

chair. That means the available scale of knee flexion on the Ergokinetic chair is 

more than on the standard chair.  

Workstation motion task 2 

See table 2 in appendix 3 for full comparison of workstation motion task 2 in table 

form. In this action, shoulder flexion has a distinct difference when sitting at the 

front of chair. Shoulder flexion is close when sitting the back of chair. 

 ;  ;   

And, ;  ;   

Results showed that when participants twist their bodies, the arms get higher in 

location for EGF than in SOF. 

 

Workstation motion task 3 

See table 3 in appendix 3 for full comparison of workstation motion task 3 in table 

form.  In this action, there is a clear difference in posture of the back and hips 

between the Ergokinetic chair and standard chair. These differences however are 

less when sitting at the back of the chair than in the front of chair. 

; ; ; 

; ; 

; ; 
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These results suggest that subjects bend the mid back much more instead of 

bending hips in order to reach the file cabinet located to the back right of the 

Ergokinetic chair.  In summary Mid back bent more in the Ergokinetic chair than 

in standard chair, while the hips hips bend less in Ergokinetic chair than in 

standard chair. Specifically, hyperextension was computed for the right mid back. 

; ; 

Subjects had more hyperextension for the right mid back in the Ergokinetic chair 

than in the standard chair.  

The movement of higher back was almost identical with both chairs.  

; ; 

The Left shoulder flexion for EGF is 6 degrees more than SOF, 3 degrees more 

with EGB than on SOB. The right shoulder flexion was also similar between both 

chairs. 

It is similar phenomenon occurred in action 2. When a subject’s body was twisted, 

their shoulder flexion was of higher value in the Ergokinetic chair than in the 

standard chair.  

 

Workstation motion task 4 

See table 4 in appendix 3 for full comparison of workstation motion task 4 in table 

form.  For this motion, the hip flexion was relatively close in comparison 

however the hip abduction/adduction showed obvious differences between the two 

chairs.  

;  ; ;  

;  

; ;  ; 

;  

Hip adduction occurred when the knee moved towards the centre of the body. 

There were no static rules in hip abduction and adduction. The only thing that can 

be stated is that the hips have a wider varied scale in the Ergokinetic chair than in 

the standard chair. 
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;  ;  

;  ;   

The above shows that in general the subjects’ mid back bends more in EGF than in 

SOF, however subjects were almost the same in EGB and in SOB. 

The difference in high back and shoulder movement were minimal. Right shoulder 

flexion in EGF motions, was 3 degrees higher than in SOF motions. 

 

Workstation motion task 5 

See table 5 in appendix 3 for full comparison of workstation motion task 5 in table 

form.  In this action, the movement of the hips, mid back and high back were 

clearly different between the Ergokinetic chair and standard chair. 

; ;  

;  ;   

The same applied to high back flexion.  

; ; 

Similar to that shown in action 3, subjects bend their mid back and high back 

much more instead of bending hips in order to reach the glass of water on desk in 

the Ergonetic chair.  In this motion and motion 6, hip adduction was not 

accounted for, since there were very few subjects that had this angle. 

; 

When reaching for the glass, subjects right shoulder flexion was higher in EGF 

than in SOF, but close in EGB and SOB. 

 

Workstation motion task 6 

See table 6 in appendix 3 for full comparison of workstation motion task 6 in table 

form. Motion task 6 is very similar with motion task 5. 

; ;  

;  ;   

; ; ; 
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Mid back bends further in Ergokinetic chair than in standard chair, hips bend less 

in Ergokinetic chair than in standard chair. The left high back moved almost the 

same distance between both chairs. Right high back bends much more in EGF 

than in SOF, same in EGB and SOB.  

; ;  ;  

;   

Results show that subject’s knees moved more away from centre of the body in 

the Ergokinetic chair than in the standard chair. 

; 

It is an interesting and consistent rule that subjects had higher right shoulder 

flexion when they were getting something at left in the Ergokinetic chair than in 

standard chair, and had higher left shoulder flexion when they were getting 

something towards the right in the Ergokinetic chair than in the standard chair, 

excluding when they were picking something up from on the floor.   

 

Workstation motion task 7 

See table 7 in appendix 3 for full comparison of workstation motion task 7 in table 

form.. While moving the computer mouse on the desk with right hand, the left mid 

back flexion was higher when seated in the Ergokinetic chair than in the standard 

chair. 

; ;  

; ; ; 

Results also showed that the hip bent less in the Ergokinetic chair than in the 

standard chair whilst seated to towards the back of the chair. 

; ; ; ; 

Left shoulder flexion was increased in the Ergokinetic chair than in the standard 

chair while using the right hand to move the mouse. The right shoulder flexion 

was different however it had a higher value in EGF than in SOF, but had lower 

value in EGB than in SOB. 

; ;  ;  
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;   

Overall subject’s knees moved more away from the centre of the body in the 

Ergokinetic chair.  Results showed that there was more freedom about hip 

abduction in the Ergokinetic chair than in the standard chair. 

 

Workstation motion task 8 

See table 8 in appendix 3 for full comparison of workstation motion task 8 in table 

form. This action is very similar with just sitting in still motion. 

; ; 

; ;  

; ; ; 

Results showed that the hip bent less whilst seated in the Ergokinetic chair than in 

standard chair when sitting at the back of chair, but almost the same whilst seated 

in the front of chair. The right high back flexion had little difference when sitting 

in the front of chair. The left mid back bent more in EGF than in SOF, but the right 

mid back bent less in EGB than in SOB. 

; ; ; ; 

Left shoulder flexion had lower value in EGB than in SOB. Right shoulder flexion 

had higher value in EGF than in SOF, but had lower value in EGB than in SOB. 

; ;  ;  

;   

There were no clear distinction in shoulder flexion and hip abduction differences 

in action 8. One thing which can be stated is that most hip angles varied scale was 

wider in the Ergokinetic chair than in standard chair since most of maximum hip 

angles were higher in Ergokinetic chair than in standard chair. 

8.3 Results 

8 common workstation motion tasks were designed in order to investigate the 

human seated motion difference on Ergokinetic split seat chair in comparison with 
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a standard office chair. After analyzing all the results of 2
nd

 motion study, a clear 

difference the two chairs became apparent. After examination of all joint angles 

across the 8 workstation motion tasks, some common ground was summarized for 

the seated motion on the Ergokinetic chair. 

8.3.1 More HF, less MBF 

The main distinct difference between the Ergokinetc chair and the standard chair 

showed mainly at the hips, mid back and high back. Each of the above was 

affected by the different designs present in both chairs. Overall the subject’s hips 

bent less whilst completing the motion tasks seated in the Ergokinetic chair than in 

standard chair. Subjects were inclined to bend their mid backs and higher backs 

instead of their hips. This difference is very obvious in some actions which leads 

subjects to change their centre of gravity whilst reaching for the items on the desk 

(left/front or right/front), as well as something behind. The difference is more 

apparent when subjects sitting at the front of chair than sitting at the back of chair. 

8.3.2 Wider varied scale  

In some other motions, subjects showed wider varied scale about hip angles 

including hip abduction and hip adduction. In additional, subjects had almost the 

same hip flexion but very different hip abduction and adduction results when 

asked to pick an item up of the floor. Subjects have much more freedom about 

how they position their hips and legs in the Ergokinetic chair when completing 

these actions. 

8.3.3 Higher shoulder flexion 

Subjects have a higher shoulder flexion value in most actions. When twisting their 

body, left/right shoulder flexion were both higher. When reaching for a glass of 

water in the left front on desk, right shoulder flexion was higher in the Ergokinetic 

chair than in standard chair.  For the opposite type of motion, reaching to answer 

the telephone at the front right on the desk, the left shoulder flexion was higher in 

ergo chair than in standard chair. 
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Elbow and knee angles didn't have much difference between the chairs. .  

8.4 Summary 

According to the above analysis, the difference between seated motion on the 

Ergokinetic chair and standard office chair are clear. 

Subjects seated in the Ergokinetic chair are not required to bend their hips as 

much as needed to, in order to carry out the same motion in the standard office 

chair. When a change in centre of the gravity occurs, the Ergokinetic chair offers 

more support which protects the hips. Thus, the mid back bends instead of hips. 

The Ergokinetic chair offers greater support and motion advantages surrounding 

the hip area of the human body. 

Subjects seated on Ergokinetic chair also had more flexibility about hips and legs 

when completing general actions such as standing, typing etc.  

Subjects seated on Ergokinetic chair increase balance as subject gained a higher 

level of shoulder flexion on the opposite arm when completed the reaching 

workstation motion tasks. 

The results showed that the difference of seated motion between Ergokinetic chair 

and standard chair is more obvious when the subjects were seated towards the 

front of the chair, over sitting against the back lumber support. 

Little difference was noticed with elbow, knee and lower leg movements in seated 

motion between the Ergokinetic chair and standard office chair. 
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Chapter 9 Conclusion 

In this thesis, the main work encompassed gait identification and gait analysis of 

individuals. First, a novel approach for identifying individuals was proposed. This 

identification method achieved very high accuracy in a data sample with very 

similar subjects. Then, a solution was provided to the question: which of these 

features should be extracted to represent gait and why. A novel gait cycle and its 

corresponding phases were defined. The influence of gait features from the gait 

phases was investigated.  

In addition, the relationship between gait and attractiveness was analysed and a 

predictable model for gait attractiveness was built. The similarity and dissimilarity 

between the left and right sides of the body in gait were investigated. This 

research showed the most asymmetric body parts in each subjects’ in gait and 

revealed the common similarities and asymmetric appearances in gait among 

different subjects. 

As an extension of gait research, human seated motion was also investigated by 

comparing subjects seated in an Ergokinetic chair with those seated in a standard 

office chair using motion capture technique. A special set of markers were 

designed for the seated person to evaluate seated motion. 

The results were summarised in six fields: gait identification, gait feature analysis, 

gait cycle and phase analysis, similarity analysis in gait, gait attractiveness 

analysis, and the human seated motion on different chairs. 

9.1 Progress achieved in gait identification 

9.1.1 Novel gait features proposed 

A novel, effective set of gait features, which contained 14 angles and one ratio, 

was proposed to represent the gait of individuals. These 15 gait features were 

evaluated according to Consistence degree and Variation degree. Table 3.2 shows 

the Consistence degree and Variation degree of 15 gait features. The results 

showed that these gait features remained stable in different gait profiles of the 

same subjects but varied greatly for different people. Therefore, these 15 gait 
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features were suitable for individual identification. These identification results 

also showed that the new set of gait features are very suitable for gait 

identification. The features were able to describe gait features about individuals 

well.  

The influence of gait phases and similarities in gait were analysed using this set of 

gait features as well. Gait signatures were extracted from this set of gait features 

using three different methods, and the signatures yielded high accuracy in 

individual identification. This set of gait features included 14 angles and 1 ratio, 

which are listed in Table 3.1. 

Some features in this set have been utilised in previous research, such as elbow 

angles and knee angles. Some features in this set were proposed in this study, such 

as Wrist_shoulder_y/z, Heel_toe_y/z, and Wrist speed ratio. Angles were 

separated on the y-axis and z-axis to represent gait instead of only joint angles in 

this research. The following research about gait features also showed that these 

features described the individuality of gait. 

9.1.2 Normalized gait data as a database and Data sample with 

very similar subjects 

The gait data was normalized by gait cycle and linear interpolation. Each gait 

cycle had the same frame numbers after interpolation and the same starting 

posture. Interpolation and normalized gait data improved the accuracy of 

individual identification and significantly helped in the analysis of gait cycles and 

phases. 

The data sample in this paper included 35 subjects. The specific property of this 

data base is that it contained only young, male subjects. The gender and age 

effects played no part in identification. In a data sample contained very similar 

subjects, very high identification results were achieved. If the data sample were 

increased to include all subjects with different age and gender, the identification 

methods will prove even more efficient in theory. 
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9.1.3 High accuracy in identification results 

In this thesis, a systematic and practical method was proposed with high accuracy 

to identify individuals. The results of this identification procedure are better than 

previous reported literature. This method used k-NN algorithm as the 

distinguishing method, 15 gait features as represent method, and several different 

methods to extract gait signatures. Then the identification results were compared. 

The different methods were as follows: 

 Statistical method using (mean, SD of mean value) or (mean, SD of mean 

value, maximum, minimum) as gait signatures. 

 PCA method using coefficients on PCs of features as gait signatures. 

 Fourier expansion method using Fourier coefficients as gait signatures. 

The highest accuracy of identify was nearly 100% while using the average gait as 

the base gait, and the accuracy was above 95% while using the random one gait 

as the base gait. Table 3.3 in Chapter 3 shows the identification results. The 

accuracy is much higher than that reported previous research. The identification 

rate is about 75% in 114 subjects in (Foster et al. 2003), 82.5% in 74 subjects in 

(Wang et al. 2003). The statistics method achieved a very high identification rate 

using the simplest calculated dimension. The Fourier expansion method achieved 

the best result while using the random gait as the base gait. While using the 

average gait as the base gait, each of the three methods achieved a very high 

accuracy. 

In general, the identification results that used the average gait of the subjects as 

the base gait were better than the results that used the random gait of the subjects 

as the base gait. In addition, using average gait as the base gait can also increase 

the correct identification rate when the subjects is not in the data sample compared 

with using random gait as the base gait.  
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9.2 Progress achieved in gait analysis regarding gait 

features 

9.2.1 Mathematical tools for evaluating gait features 

To evaluate the gait features using a quantitative method, two indicators were 

designed to evaluate gait features. These two indicators were proposed as 

'Consistence degree' and 'Variation degree'. Consistence degree evaluated whether 

the gait feature remained stable in different gaits for the same subject. Variation 

degree evaluated whether the gait feature was noticeably different for different 

people. If a gait feature is suitable for distinguishing individuals, it should have a 

noticeable difference for different people while remaining stable among different 

gaits for the same subject.  

The set of gait features in this thesis were evaluated by these two indicators. These 

gait features all had a high Variation degree and a high Consistence degree.  

9.2.2 The importance of different gait features in the gait cycle 

To provide a solution to the question of which features should be extracted to 

represent gait, the average gait of 70 gait cycles was analysed via PCA, as 

described in Chapter 5. Four principle components were extracted. Pc1 is a 

composite indicator of the gait cycle and focused on features on y-axis and Wrist 

speed ratio. Pc2 focused on features on z-axis and Right elbow. Pc3 is an indicator 

that focused on left Knee, left elbow, and left Wrist_shoulder_z. Pc4 focused on 

Head_Topspine and Topspine_Root. 

Thus, features on y-axis have higher importance in gait than features on z-axis. 

Wrist speed ratio is important in gait. Head_Topspine and Topspine_Root angle 

are relatively independent of other gait features. These results show the varying 

importance of gait features in the gait cycle and provided a simplified structure to 

represent gait for identification. 
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9.2.3 The significance of relative motion from different body 

segments by the fixing root method 

In a separate study, PCA and the fixing root method were used to investigate the 

relative motion of different body segments in order to answer the question of 

which features should be extracted to represent gait. By the fixing root method, 

the influence of walking speed was removed, and gait data were fully focused on 

the related movement of each body segment. Therefore, this method provided a 

greater chance for identifying natural gait features. 

PCA were applied on gait after the fixing root method. In Pc1, the three variables 

with largest coefficients were concentrated on the lower left arm, which were 

followed by other variables located around left shoulder. In Pc2, all 10 variables 

on the lower legs and feet corresponded to the largest coefficients. However, in 

Pc3, all four variables on the hip corresponded to the largest coefficients, which 

were followed by the variable Midback_offset. The remaining variables with 

coefficients equal to or less than 0.31 were ignored. The PCA results in this study 

provided a simplified structure for revealing the most important 

features/characteristics of gait, which were found to be movements of the left 

lower arm, the lower legs, and the hip. The method provided an analytical 

solution for choosing the motion of left lower arm, the lower legs and feet, and the 

hip as features for gait recognition. 

9.3 Progress achieved in the analysis of gait cycles and 

phases 

9.3.1 Novel gait phases and gait cycle definition 

A novel dividing method of gait phases and gait cycle was provided in this 

research with a clear statement of definition. Gait phases were divided by two feet 

as they corresponded to the stance phase or the swing phase, instead of tracking 

the movement of the same feet, as reported in previous research. The traditional 

gait phases were constructed by the stance phase of one foot and the swing phase 

of the same foot by the two different criteria: the variation of the supporting leg in 
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the stance phase and the variation of swing in the swing phase. It is difficult to 

analyse the corresponding movement of each support leg and swing leg by this 

division of gait phases because the phases in the Right single support phase are 

not symmetrical with the phases in the Left single support phase.  

The gait cycle that was used in this research encompasses the left toe off posture 

to the next left toe off posture. The gait cycles were divided into eight gait phases 

by the following definitions. 

 1. Left initial swing: begins at the left toe off posture and ends at the posture 

at which the maximum left knee flexion occurs. 

 2. Left mid-swing phase: begins at the posture at which the maximum left 

knee flexion occurs and ends at the posture at which the left tibia is vertical or 

perpendicular to the ground. 

 3. Left initial contact phase: begins at the posture at which the left tibia is 

vertical or perpendicular to the ground and ends at the posture at which the 

left heel makes initial contact with the ground. 

 4. Right pre-swing phase (Double support phase): begins at the posture at 

which the left heel initial contact ground and ends at the right toe off posture.  

 5. Right initial swing phase: begins at the right toe off posture and ends at the 

posture at which the maximum right knee flexion occurs. 

 6. Right mid-swing phase: begins at the posture at which the maximum right 

knee flexion occurs and ends at the posture at which the right tibia is vertical 

or perpendicular to the ground. 

 7. Right initial contact phase: begins at the posture at which the right tibia is 

vertical or perpendicular to the ground and ends at the posture at which the 

right heel initial contact ground. 

 8. Left pre-swing phase (Double support phase): begins at the posture at 

which the right heel initial contact ground and ends at the left toe off posture. 

The difference between this method and the previous method is the gait phases in 

the single support phase. The Right single support phase is divided by the 

variation of the left leg's swing. Therefore, the phases in the Right single support 

phase correspond to phases in the Left single support phase (Right swing phase). 
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By this method of dividing gait phases, the gait cycle is symmetrical from the 

middle of the cycle. This method is appropriate not only for comparing the body 

movement of the corresponding stance/swing phase of the two feet but also for 

analysing the similarity in gait between the left body and the right body. These 

eight phases constructed two half symmetrical cycles of the swing/stance leg. 

9.3.2 Two indicators for evaluating the influence from gait phases 

The two indicators  minmax ,PP  and )__( minmax, PFPF  were proposed to 

evaluate the influence on gait features from the gait phases.  minmax ,PP  signify 

the phase number with the maximum value for feature i and the phases number 

with the minimum value for feature i. )__( minmax, PFPF  refers to the percentage 

of a gait phase completed when maxFr  and minFr occur. maxFr  and minFr  are 

the frame number with maximum iF  and the frame number with minimum iF , 

respectively. 

9.3.3 The different influences on gait features from gait phases 

In this research, the influences on gait features from gait phases were analysed. 

Two findings can be summarised from this research. Arm-related features were 

less influenced by the gait phases than leg-related features. Features on y-axis 

were less influenced by gait phases than features on z-axis. Therefore, arm-related 

features have more freedom/individuality than leg-related features, and gait 

features on y-axis have more freedom/individuality than gait features on z-axis. 

These findings are consistent with the PCA results of average gait described in 

Section 9.2. Gait features on y-axis were affected more by gait than gait features 

on z-axis. 

9.3.4 Differences in the length of gait phases for different subjects 

Detailed and exact data of the length of gait phases were obtained for 35 subjects. 

The average gait phase lengths of the single support phase and the double support 

phase were nearly with the previous data. The gait phase lengths of individuals 

differed greatly. The gait phase lengths varied much more in phases 6, 7, 2, and 3 
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than in phases 1 and 5, which showed that the postures where the tibia is vertical 

or perpendicular to the ground varied greatly for different subjects in the gait cycle. 

The posture at which the maximum knee flexion occurred varied less for different 

subjects in the gait cycle. The variation of double support phase length was 

between the variations of these two postures.  

9.4 Progress achieved in similarity analysis in gait 

9.4.1 Gait half cycle length difference 

Based on the research in Chapter 4, one gait cycle was divided into two half 

cycles. The first half cycle comprised phase 1 to phase 4 and was denoted cycle 1. 

It was constructed by the Right single support phase and the following double 

support phase. The second half cycle comprised phase 5 to phase 8 and was 

denoted cycle 2. It was constructed by the Left single support phase and the 

following double support phase. 

There were 74.29% of the 35 subjects for which cycle 1 was longer than cycle 2. 

The average length of cycle 1 was 1.44% longer than cycle 2. The difference 

between cycle 1 and cycle 2 varied from -8.93% to 7.2% of the gait cycle. 

9.4.2 Evaluation of similarity and asymmetry in gait 

The similarity and asymmetry was investigated between the left body and the right 

body movement in gait. The similarity/asymmetry between the left and right body 

was analysed by comparing the appearance of body parts while performing the 

same function. Therefore, it was calculated according to four components: leg 

movement of the swing leg, leg movement of the support leg, arm movement 

while the opposite leg was the support leg, and arm movement while leg of the 

same side was the support leg.  

Eleven indicators of comparison were used in Chapter 6. Left 1 refers to the left 

feature in cycle 1, and right 2 refers to the right feature in cycle 2. Knee angle (left 

2: right 1) was not considered because there was not much difference in the 

support phase.  
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The similarity/asymmetry of the leg movement of the swing leg was described by 

indicators 3, 4, and 6. The similarity/asymmetry of the leg movement of the 

support leg was described by indicators 5 and 7. The similarity/asymmetry of arm 

movement while the opposite leg was the support leg was described by indicators 

1, 8, and 10. The similarity/asymmetry of arm movement while the leg of the 

same side was the support leg was described by indicators 2, 9 and 11. 

9.4.3 Similarity/asymmetry of body part movement in gait 

In general, elbow movement (while the opposite leg was the support leg), wrist 

movement on the y-axis (when both the opposite and same-side leg was the 

support leg), and foot movement on y-axis (for both the swing leg and the support 

leg) usually showed an asymmetry in the gait cycle.  

Elbow movement while the leg of the same side was the support leg, wrist 

movement on the z-axis (when both the opposite and same-side leg was the 

support leg), foot movement on z-axis (for both the swing leg and the support leg), 

and knee movement showed a high similarity in gait cycle. 

In addition, wrist movement on the y-axis was more asymmetric than foot 

movement on the y-axis. 

For different subjects, the similarity/asymmetry appearance varied very little for 

the Knee and Heel_toe_z features (almost all had a high positive correlation), 

varied highly for Wrist_shoulder_y, elbow, Heel_toe_y, and Wrist_shoulder_z 

when the opposite leg was the support leg (ranging from a high negative 

correlation to high positive correlation), and varied from no correlation to a high 

negative correlation for Wrist_shoulder_z when the leg of the same side was the 

support leg. 

9.4.4 The most asymmetric body parts in gait for individuals 

The most asymmetric body part in gait was investigated for 35 subjects. Table 6.4 

and Table 6.5 show each subject's data and the summarised data. Table 6.5 shows 

the numbers of subjects with the most asymmetric body parts and the 

corresponding feature, and the percentage of all 35 subjects.  
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Wrist movement on the y-axis while same-side leg is support leg, elbow movement 

while the opposite leg is the support leg, and wrist movement on the y-axis while 

the opposite leg is the support leg are the most possible asymmetric body part in 

gait.  

Foot movement of the swing leg on the y-axis, and foot movement of the support 

leg on the y-axis are the body parts least likely to be asymmetric in gait.  

There were no subjects for whom the most asymmetric body part in gait was Knee, 

Heel_toe_z, or Wrist_shoulder_z (left 2: right 1). 

In summary, body movement on the y-axis (Wrist_shoulder_y and Heel_toe_y), 

and Elbow movement while the opposite leg is the support leg have a high 

possibility of being the most asymmetry body part in gait. 

9.5 Progress achieved in gait attractiveness 

9.5.1 Predictable gait attractiveness value with reasonable 

accuracy  

Here, a predictable model for gait attractiveness based on markers' average 

speeds derived via PCA and linear regression is proposed. This research is a 

continuation of previous research on the relationship between walking speed and 

walkers' status (Schmitt & Atzwanger 1995; Chiu & Wang 2007). Although speed 

is not a suitable feature for identification individuals because it is too easy to 

change or fake, speed is still a very useful feature which reflects much information 

from gait such as walker's age, emotion. A systematic relationship between the 

motions of individual body markers and attractiveness rating was found. This 

relationship can be expressed as a linear equation of the natural logarithm of the 

attractiveness rating value, the natural logarithm of two principal components 

extracted from the 40-marker speed matrix and a constant (such as equation (7.4)).  

      )4.7(044.52ln003.01ln829.0_ln  PcPcvalueattract  

PCA and linear regression revealed the pattern between attractiveness rating and 

individual marker speed. The robustness of this method was further verified eight 

times by randomly substituting the subjects who composed the data sample and 
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the verification group, a procedure that produced very similar results to the 

original analysis. The average error in predicting attractiveness in the eight 

additional verification procedures was 8.58%, and the average error in 

calculating attractiveness from the data sample was 8.75%.  

These results imply that for a specific subject group and a specific evaluator group, 

if PCA and linear regression are used to generate an equation similar to equation 

(4), then the gait attractiveness ratings of any further new subjects in this group 

can be predicted with reasonable accuracy (around 10%) based on their gait 

motion data. 

9.5.2 Attractiveness correlated positively with speed but was 

uncorrelated with acceleration 

Gait attractiveness was much more correlated with the average speed of each 

body segment than with the average acceleration of each body segment in gait. 

The correlation coefficients between attractiveness and average speed of all of the 

40 markers are much higher than those between attractiveness and average 

acceleration. The PCA results on marker speeds and marker accelerations also 

verified these results. PCA extracted two principal components from the marker 

speeds, with the cumulative variance reaching 95.23% of the total variance. In 

contrast, PCA extracted nine principal components from marker acceleration, with 

cumulative variance reaching 87.43% of the total variance. Furthermore, the 

regression results show no obvious linear relationship between attract and these 

nice principle components, and no linear relationship between ln(attract) and 

ln(PCac1), ln(PCac2), … , ln(PCac9).  

9.5.3 Using lower leg and feet features as gait features for 

attractiveness 

Via PCA and the linear regression method, it was found that features can be 

extracted from the lower legs and feet for gait attractiveness. The effectiveness of 

predicting the results of gait attractiveness using only ten lower leg and feet 

markers was compared as opposed to using all 40 markers. The comparative 

analysis showed that the results could be predicted slightly better by only using 
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the lower leg and feet markers than by using all 40 markers. The average error 

decreased from 8.58% to 7.81%. This result signifies that instead of using 40 

markers, ten markers from the lower legs and feet can be used to fully represent 

and predict attractiveness values. Comparing the results revealed the effectiveness 

of the features for gait attractiveness that chosen by fixing root method and PCA.  

The relationship between the movement of the lower legs and feet and 

attractiveness could not be revealed without the fixing root method. The method 

of fixing root revealed more information on gait by utilising the relative motion 

from different body segments. 

9.6 Progress achieved in seated motion 

9.6.1 A systemic evaluation process for Ergokinetic chairs  

A new set of markers, 8 common workstation motion tasks and 20 joint angles, 

were proposed to evaluate human seated motion after the analysis of walking 

motion. The seated motion of 17 subjects was compared between the subjects 

sitting on an Ergokinetic chair and a standard chair. The Ergokinetic chair is a 

newly designed chair with a split seat.  

9.6.2 Differences in the seated motion between Ergokinetic chairs 

and standard office chairs 

A noticeable difference between seated motions on the different chairs was found.  

Subjects seated on the Ergokinetic chair were not required to bend their hips as 

much as is typically needed to carry out the same motion in a standard office 

chair. When a change in the centre of the gravity occurs, the Ergokinetic chair 

offers greater support, which protects the hips. Thus, the mid-back bends instead 

of the hips. The Ergokinetic chair offers greater support and motion advantages 

surrounding the hip area of the human body. 

Subjects seated on the Ergokinetic chair also had more flexibility around the hips 

and legs when completing general actions, such as standing and typing.  

Subjects seated on the Ergokinetic chair exhibited increased balance, as they 
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gained a higher level of shoulder flexion on the opposite arm when completing the 

reaching workstation motion tasks. 

The results showed that the difference in seated motion between the Ergokinetic 

chair and the standard chair was more obvious when the subjects were seated 

towards the front of the chair rather than sitting against the back lumber support. 

Little difference was noticed in elbow, knee, and lower leg movements during 

seated motion between the Ergokinetic chair and the standard office chair. 

9.7 Future work 

Research in this area has many possible applications in security. Most previous 

research related with gait in regard to security focused only on 2D image data 

acquired via security cameras. More research based on 3D data recorded by 

motion capture systems has recently emerged. Normally, motion captured 

databases, which have been used in previous research for identifying individuals, 

only contain several tens of subjects, whereas 2D databases could have over 

several hundreds of subjects. It is obvious that 3D data includes more complete 

and accurate data compared with 2D data. The database contained 35 subjects, 

which is sufficient for this study, although a larger database would be more helpful 

in practice for future research.  

In this thesis, two main aims were completed: gait identification, and analysis of 

gait features for identification which answer the question of which of the extracted 

features represent gait and why. The identification results were achieved with high 

accuracy in a data sample with very similar subjects. It suggests that this 

identification method is very effective and successful. Two indicators were 

proposed to evaluate gait features whether are suitable for identification. The 

minor aims of gait attractiveness analysis and similarity analysis in gait were also 

completed. In addition, an extra task related to human seated motion was 

completed.  

This period of gait research has been completed. There are numerous continuing 

research studies based on the current results. For example, my 15 gait features 

were shown to describe gait well. The fixing root method and PCA analysis 

suggested that the features derived from the left lower arms, the lower legs, and 
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the hips should be used. Then, the number of features needed by only retaining the 

gait features could be minimised related to the left lower arms, the lower legs, and 

the hips from the 15 features. This procedure shortens the computing time for 

analysing large gait databases. This study is only one possible avenue of continued 

research. Gait identification is still in a starting stage. A complete approach of gait 

included the represent method, the analysis method, and the distinguish method. 

In the future, analysis method could be improved by focusing on improved signal 

processing methods. The distinguish method could also be improved. k-NN 

algorithm was chosen because of the ease of application and the limitations of the 

small database. However, a self-training model could be realised if a larger 

database is acquired. After the analysis of gait attractiveness and fluctuating, it 

was begun to consider that whether attractiveness or asymmetry could be included 

as gait features for identification. Would these features significantly increase the 

accuracy rate to provide useful information or waste computing time by 

generating superfluous information? These are interesting questions that provide 

avenues for future work. 

In addition, there are factors regarding the space of the gait data that may be 

improved. Although 35 subjects is not a small database compared with other gait 

analyses based on the motion capture system. In theory, research results could 

greatly differ when the database is enlarged to hundreds or even thousands 

subjects. In additional, the multi-gait cycles of one subject were captured at 

different times within same day, which is a limitation of the experimental 

environment. A more realistic application for the future would be to capture gait 

on different days for one subject. 

Gait identification has attracted increasingly more attention recently and has 

substantial potential for application in many areas. 
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Appendices 

Appendix 1: A list of gait features in previous research 

Table 1 Gait features related to medical research 

features articles Published year 

Stride length 

Gait classification in children with cerebral palsy by Bayesian approach 2009 

Reliability of diabetic patients’ gait parameters in a challenging environment 2008 

Automated feature assessment in instrumented gait analysis 2006 

Cadence Gait classification in children with cerebral palsy by Bayesian approach 2009 

Leg length Gait classification in children with cerebral palsy by Bayesian approach 2009 

Joint angle 
Evaluation of clinical spasticity assessment in Cerebral palsy using inertial sensors 2009 

Automated feature assessment in instrumented gait analysis 2006 

Hip angle Evaluation of clinical spasticity assessment in Cerebral palsy using inertial sensors 2009 

Knee angle Evaluation of clinical spasticity assessment in Cerebral palsy using inertial sensors 2009 

Shank angle 
Differences in gait complexity and variability between children with and without 

Developmental Coordination Disorder 
2009 

asymmety of gait cycles 
Differences in gait complexity and variability between children with and without 

Developmental Coordination Disorder 
2009 

Velocity Reliability of diabetic patients’ gait parameters in a challenging environment 2008 

Gait cycle time Reliability of diabetic patients’ gait parameters in a challenging environment 2008 

Stance phase Reliability of diabetic patients’ gait parameters in a challenging environment 2008 

Double support time 

Reliability of diabetic patients’ gait parameters in a challenging environment 2008 

Characterising the clinical and biomechanical features of severely deformed feet in 

rheumatoid arthritis 
2008 

Sagittal shank Reliability of diabetic patients’ gait parameters in a challenging environment 2008 
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Thigh and knee range Reliability of diabetic patients’ gait parameters in a challenging environment 2008 

Abduction moment at the knee 

during gait 

Detecting differences between asymptomatic and osteoarthritic gait is influenced by 

changing the knee adduction moment model 
2008 

lower limb joint On the expression of joint moments during gait 2007 

Sagittal plane 
On the expression of joint moments during gait 2007 

The effect of total knee replacement surgery on gait stability 2008 

hip abduction 
Femoroacetabular impingement alters hip and pelvic biomechanics during gait Walking 

biomechanics of FAI 
2009 

Sagittal ROM(range of motion) 
Femoroacetabular impingement alters hip and pelvic biomechanics during gait Walking 

biomechanics of FAI 
2009 

pelvic frontal ROM 
Femoroacetabular impingement alters hip and pelvic biomechanics during gait Walking 

biomechanics of FAI 
2009 

Gait speed 
Characterising the clinical and biomechanical features of severely deformed feet in 

rheumatoid arthritis 
2008 

joint motion trajectories Extracting a diagnostic gait signature 2008 

sagittal angles of the hip, knee, 

and ankle joints 
Extracting a diagnostic gait signature 2008 

Hip flexion Automated feature assessment in instrumented gait analysis 2006 

left and 

right boundaries on silhouettes 
A vision-based analysis system for gait recognition in patients with Parkinson’s disease 2009 
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Table 2 Gait features related to age research 

features articles Published year 

Time to last foot contact Rapid gait termmination: Effects of age, walker surfaces and footwear 2009 

Total stopping time Rapid gait termmination: Effects of age, walker surfaces and footwear 2009 

Stopping distance Rapid gait termmination: Effects of age, walker surfaces and footwear 2009 

Number of steps to stop Rapid gait termmination: Effects of age, walker surfaces and footwear 2009 

Step length 

Rapid gait termmination: Effects of age, walker surfaces and footwear 2009 

Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Gait kinematics of age-stratified hip replacement patients—A large scale, long-term 

follow-up study 
2008 

Temporal and spatial features of gait in older adults transitioning to frailty 2004 

Step width 

Rapid gait termmination: Effects of age, walker surfaces and footwear 2009 

Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

velocity 

Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Gait kinematics of age-stratified hip replacement patients—A large scale, long-term 

follow-up study 
2008 
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Temporal and spatial features of gait in older adults transitioning to frailty 2004 

cadence 
Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Double-support time 

Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Temporal and spatial features of gait in older adults transitioning to frailty 2004 

Heel horizontal velocity 
Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Shoe-floor angle at heel 

contact 

Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Toe clearance at mid-swing 
Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and 

older people 
2009 

Range of hip 

flexion/extension 

Gait kinematics of age-stratified hip replacement patients—A large scale, long-term 

follow-up study 
2008 

Range of knee 

flexion/extension 

Gait kinematics of age-stratified hip replacement patients—A large scale, long-term 

follow-up study 
2008 

Gait characteristics as a function of age and gender 1994 

Maximum hip extension 
Gait kinematics of age-stratified hip replacement patients—A large scale, long-term 

follow-up study 
2008 

Range of hip abduction 
Gait kinematics of age-stratified hip replacement patients—A large scale, long-term 

follow-up study 
2008 
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Gait speed 
Temporal and spatial features of gait in older adults transitioning to frailty 2004 

Gait characteristics as a function of age and gender 1994 

Stance Temporal and spatial features of gait in older adults transitioning to frailty 2004 

swing Temporal and spatial features of gait in older adults transitioning to frailty 2004 

Ankle joint complexes Gait characteristics as a function of age and gender 1994 

pelvis Age-related changes in upper body adaptation to walking speed in human locomotion 2005 

Head Age-related changes in upper body adaptation to walking speed in human locomotion 2005 

Amplitude of segmental Age-related changes in upper body adaptation to walking speed in human locomotion 2005 

joint rotations Age-related changes in upper body adaptation to walking speed in human locomotion 2005 

 

 

 

 

 



 202 

Table 3 Gait features related to gender research 

features articles Published year 

Height 

Gender differences in three dimensional gait analysis data from 98 healthy Korean adults 

 

2004 

 

Leg length 

Cadence 

Pelvic width 

Speed 

Step width 

Stride length 

Hip joints 

Knee joints 

Gait curve 
Simultaneous estimation of effects of gender, age and walking speed on kinematic gait data 

 
2009 Hip rotation 

Foot progression angle 

shoulder–hip ratio 
Temporal and spatial actors in gait perception that influence gender recognition 1978 

A biomechanical invariant for gait perception 1978 

center-of-moment 
Temporal and spatial actors in gait perception that influence gender recognition 1978 

A biomechanical invariant for gait perception 1978 

Shoulder sway Gender discrimination in biological motion displays based on dynamic cues 1994 

LBP (Local Binary 

Pattern) 

Combining appearance and motion for face and gender recognition from videos 2009 

Gender Recognition Using a Min-Max Modular Support Vector Machine 2005 

Fusing gait and face cues for human gender recognition 2008 

silhouettes Fusing gait and face cues for human gender recognition 2008 
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1D: Gait features related to identification 

 

features articles 
Published 

year 

Composite energy features: clusters of energy 

filters (based on 2D image) 

Motion representation using composite energy features(Dosil et al. 

2008) 
2008 

Silhouettes (2D) 

Automatic gait recognition using area-based metrics(Foster et al. 2003) 2003 

Frontal-view gait recognition by intra- and inter-frame rectangle size 

distribution(Barnich & Van Droogenbroeck 2009) 
2009 

Gait recognition using linear time normalization(Boulgourisa et al. 

2006) 
2006 

Silhouette Analysis-Based Gait Recognition for Human 

Identification(Liang et al. 2003) 
2003 

Body component-wise in silhouettes(2D 

image) 

Human gait recognition based on matching of body 

components(Boulgouris & Chi 2007) 
2007 

Feature image(2D image) 
A method for human action recognition(Masoud & Papanikolopoulos 

2003) 
2003 

Clothes, footwear, walking surface, emotion 

condition(2D image) 

Gait Recognition: A challenging signal processing technology for 

biometric identification(Boulgouris et al. 2005) 
2005 

Walking speed(2D image) 
Gait Recognition: A challenging signal processing technology for 

biometric identification(Boulgouris et al. 2005) 
2005 

silhouette templates(based on 2D image) 
Human gait recognition by the fusion of motion and static 

spatio-temporal templates (Lam et al. 2007) 
2007 

Hip flexion in swing 
Uphill and downhill walking in unilateral lower limb 

amputees(Vrieling et al. 2008) 
2008 

velocity 

Uphill and downhill walking in unilateral lower limb 

amputees(Vrieling et al. 2008) 
2008 

An application of neural networks for distinguishing gait patterns on 1997 
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the basis of hip-knee joint angle diagrams 

Lower limb joint angles 
Uphill and downhill walking in unilateral lower limb 

amputees(Vrieling et al. 2008) 
2008 

Pelvic rotation 

Coordination of leg swing, thorax rotations, and pelvis rotations during 

gait: The organisation of total body angular momentum(Bruijn et al. 

2008) 

2008 

thorax 

Coordination of leg swing, thorax rotations, and pelvis rotations during 

gait: The organisation of total body angular momentum(Bruijn et al. 

2008) 

2008 

Arm swing Arm constraint and walking in healthy adults 2007 

Hip-knee angles 

An application of neural networks for distinguishing gait patterns on 

the basis of hip-knee joint angle diagrams 
1997 

Automatic extraction and description of human gait models for 

recognition purposes 
2003 

15 markers(no special features) 
Decomposing biological motion: A framework for analysis and 

synthesis of human gait patterns 
2002 

Motion trajectory 
Flexible signature descriptions for adaptive motion trajectory 

representation, perception and recognition 
2009 

upper leg 
Automatic extraction and description of human gait models for 

recognition purposes 
2003 

Torso length, upper arm length, lower arm 

length, thigh length, calf length, and foot 

length (based on 2D image silhouettes) 

Performance prediction for individual recognition by gait 2005 
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Appendix 2: Figures for gait featur es within six different gait files for the same subject  

 

 
Fig. 1 Head_Topspine angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes 

angles degree. 
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Fig. 2 Topspine_Root angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes 

angles degree. (The curves on Fig. 1 and Fig. 2 showed waves because the y axis was limited to an interval within 15 degrees.) 
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Fig. 3 Left elbow angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes angles 

degree. 
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Fig. 4 Right elbow angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes 

angles degree. 
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Fig. 5 Left knee angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes angles 

degree. 
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Fig. 6 Right knee angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes angles 

degree. 



 211 

 

Fig. 7 Left Heel_toe_y angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes 

angles degree. 
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Fig. 8 Right Heel_toe_y angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes 

angles degree 
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Fig. 9 Left Heel_toe_z angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes 

angles degree 
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Fig. 10 Right Heel_toe_z angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis 

denotes angles degree 
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Fig. 11 Left Wrist_shoulder_y angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis 

denotes angles degree 
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Fig. 12 Right Wrist_shoulder_y angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis 

denotes angles degree 
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Fig. 13 Left Wrist_shoulder_z angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis 

denotes angles degree 
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Fig. 14 Right Wrist_shoulder_z angle curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis 

denotes angles degree 
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Fig. 15 Wrist speed ratio curve for six different gait cycles for the same subject (id 1 to id 7): x axis denotes frame numbers, y axis denotes ratio
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Appendix 3: Some )__( minmax, PFPF distribution tables for 

gait features  

Table 1 )__( minmax, PFPF distribution Wrist_shoulder_y angles 

id 
Left Wrist_shoulder_y angle Right Wrist_shoulder_y angle 

P_max P_min F_P max 
F_P 

min 
P_max P_min F_P max F_P min 

1 2 7 50.83% 56.29% 6 1 31.67% 0.00% 

2 3 7 48.32% 37.18% 6 8 46.25% 54.67% 

3 1 6 0.00% 98.92% 4 8 89.01% 91.70% 

4 8 4 23.19% 49.59% 4 8 49.59% 30.80% 

5 8 4 57.77% 56.11% 4 8 36.65% 36.41% 

6 8 2 80.18% 38.89% 6 2 45.42% 58.55% 

7 2 4 37.12% 50.52% 6 3 81.42% 41.03% 

8 2 6 84.21% 56.33% 4 1 70.34% 50.00% 

9 1 6 0.00% 34.53% 2 6 72.01% 83.09% 

10 3 8 81.02% 16.53% 4 6 44.63% 30.59% 

11 2 6 89.27% 75.36% 6 2 58.57% 65.05% 

12 3 1 42.11% 0.00% 5 2 16.28% 32.66% 

13 3 7 72.90% 42.38% 4 1 71.12% 0.00% 

14 8 4 0.52% 88.94% 7 3 55.38% 73.81% 

15 3 7 37.42% 25.64% 6 1 15.53% 85.21% 

16 8 5 60.19% 67.19% 5 2 16.41% 65.31% 

17 2 5 37.30% 0.00% 4 8 28.23% 99.57% 

18 2 6 60.32% 26.07% 6 2 38.96% 26.98% 

19 2 7 83.33% 10.00% 6 2 62.23% 48.67% 

20 2 6 87.31% 79.44% 6 2 55.21% 40.56% 

21 2 6 73.31% 55.52% 6 2 49.29% 21.96% 

22 2 6 80.00% 49.57% 6 2 43.59% 7.33% 

23 8 4 24.87% 56.87% 4 1 45.50% 0.00% 

24 8 4 51.04% 80.00% 4 8 57.07% 88.02% 

25 8 4 60.43% 75.84% 4 8 36.52% 80.00% 

26 8 4 55.22% 86.21% 4 8 47.41% 66.67% 

27 8 4 62.50% 92.52% 4 1 60.75% 0.00% 

28 8 5 56.60% 5.74% 4 8 52.19% 85.53% 

29 5 7 25.74% 86.67% 3 1 5.76% 0.00% 

30 8 4 71.03% 50.23% 4 8 69.01% 99.53% 

31 1 6 0.00% 45.51% 4 8 47.80% 80.18% 

32 2 5 81.27% 99.12% 6 8 44.79% 99.58% 

33 1 6 0.00% 82.69% 1 8 0.00% 99.49% 

34 1 5 28.57% 11.11% 4 1 60.91% 85.71% 

35 3 6 77.98% 31.38% 1 3 0.00% 77.98% 
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Table 2 )__( minmax, PFPF distribution Wrist_shoulder_z angles  

id 
Left Wrist_shoulder_z angle Right Wrist_shoulder_z angle 

P_max P_min F_P max F_P min P_max P_min F_P max F_P min 

1 7 4 35.33% 59.17% 2 8 65.42% 45.29% 

2 7 2 62.18% 98.20% 3 8 48.32% 0.00% 

3 7 3 50.33% 52.76% 3 7 72.86% 63.58% 

4 7 4 56.43% 15.70% 4 7 7.44% 85.00% 

5 8 4 4.85% 46.61% 3 1 95.77% 0.00% 

6 8 5 29.96% 22.41% 3 7 10.46% 66.18% 

7 6 4 98.99% 58.76% 2 8 75.11% 50.00% 

8 8 1 5.13% 0.00% 3 8 89.02% 5.13% 

9 6 4 97.12% 25.60% 3 6 14.42% 62.23% 

10 4 8 35.12% 16.94% 1 4 0.00% 7.44% 

11 8 4 24.07% 3.98% 4 1 3.59% 0.00% 

12 7 4 98.73% 35.62% 3 7 98.95% 84.71% 

13 7 3 72.85% 87.74% 4 1 1.72% 0.00% 

14 7 1 21.51% 0.00% 3 7 73.81% 55.38% 

15 7 4 90.38% 20.56% 8 3 100.00% 37.42% 

16 7 3 73.38% 65.00% 3 7 51.88% 17.53% 

17 6 2 80.52% 99.06% 2 7 92.79% 94.44% 

18 6 3 97.24% 55.70% 2 6 87.30% 90.80% 

19 6 3 96.20% 86.49% 3 6 11.71% 79.35% 

20 6 3 92.11% 54.76% 2 6 94.43% 85.63% 

21 6 3 98.58% 62.18% 2 6 95.61% 98.58% 

22 6 3 93.16% 74.80% 3 6 39.02% 99.15% 

23 7 4 98.21% 11.37% 3 8 81.60% 11.64% 

24 8 4 2.60% 0.49% 3 8 65.44% 14.58% 

25 8 3 11.91% 96.83% 3 8 59.52% 31.49% 

26 7 4 77.32% 18.53% 3 8 77.57% 10.95% 

27 8 4 16.53% 6.54% 3 8 43.30% 6.85% 

28 7 4 80.88% 21.93% 4 7 1.32% 97.79% 

29 7 3 53.33% 64.03% 3 8 92.81% 5.58% 

30 7 3 50.00% 65.74% 4 8 1.41% 4.21% 

31 6 8 10.30% 66.52% 2 8 51.88% 40.09% 

32 6 4 95.40% 6.16% 2 6 86.98% 95.09% 

33 8 3 5.05% 87.59% 4 1 3.47% 0.00% 

34 7 2 59.29% 77.00% 3 1 61.38% 0.00% 

35 7 4 82.20% 0.00% 3 1 99.08% 0.00% 
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Table 3 )__( minmax, PFPF distribution of Wrist speed ratio (left/right) 

id 
Wrist speed ratio 

P_max P_min F_P max F_P min 

1 4 8 67.08% 69.96% 

2 4 1 81.36% 43.88% 

3 6 8 28.67% 85.06% 

4 6 2 7.52% 13.36% 

5 6 2 69.29% 13.28% 

6 4 8 95.95% 95.15% 

7 6 8 13.51% 44.21% 

8 6 8 3.67% 77.95% 

9 5 8 97.54% 85.38% 

10 6 1 0.91% 51.59% 

11 5 2 73.56% 9.34% 

12 6 2 33.73% 51.76% 

13 6 1 3.19% 27.83% 

14 6 8 58.20% 80.73% 

15 5 8 83.33% 94.32% 

16 5 2 50.00% 35.20% 

17 4 8 66.94% 73.08% 

18 5 1 17.53% 62.99% 

19 6 1 16.30% 76.03% 

20 5 1 17.12% 16.45% 

21 4 1 83.49% 46.71% 

22 5 1 47.45% 74.34% 

23 6 2 12.89% 17.50% 

24 6 2 4.66% 27.37% 

25 6 2 7.40% 20.85% 

26 6 2 1.30% 21.01% 

27 5 2 94.52% 23.28% 

28 6 2 14.94% 32.04% 

29 6 2 13.21% 16.02% 

30 6 8 10.44% 96.73% 

31 4 6 35.12% 91.69% 

32 4 8 63.51% 66.53% 

33 6 2 20.51% 21.77% 

34 6 2 12.63% 8.36% 

35 6 2 20.34% 5.57% 
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Appendix 4: Comparison results of motion tasks  

Table 1 – Workstation Motion Task 1  
 

average SD max min average SD max min average SD max min average SD max min

Neck Flexion 19.00 7.99 49.26 0.44 16.66 7.16 50.66 0.21 17.69 8.02 54.83 0.72 17.03 7.52 54.11 0.16

Lowback Flexion-Left 33.83 9.59 54.57 4.72 31.93 9.51 55.49 4.97 34.13 9.39 60.22 4.24 33.92 9.15 57.85 4.92

Lowback Flexion-Right 46.99 8.98 77.24 16.72 46.57 9.48 78.36 15.63 47.48 8.01 74.10 19.91 48.51 9.07 76.01 15.54

Highback Flexion-Left 49.56 11.60 74.59 24.42 52.44 10.93 74.02 26.54 49.08 10.48 73.71 21.58 49.84 11.34 80.13 22.12

Highback Flexion-Right 55.24 9.28 82.74 31.88 55.29 6.48 68.88 29.27 53.17 6.60 71.59 26.30 54.24 6.62 76.83 25.52

Shoulder Flexion-Left 26.42 11.93 78.70 5.06 24.48 9.18 67.45 6.03 25.82 4.58 63.89 10.36 23.77 4.60 55.13 6.29

Shoulder Flexion-Right 29.56 10.49 78.65 7.32 27.70 8.28 64.32 7.86 28.59 4.29 57.48 9.40 27.69 5.50 49.44 10.66

Shoulder Abduction-Left 21.47 6.89 66.05 0.68 19.19 4.58 46.82 2.65 23.13 7.10 74.10 2.49 21.09 5.48 66.39 0.00

Shoulder Abduction-Right 22.78 7.07 65.76 4.51 20.21 5.39 50.20 4.23 24.86 6.77 80.61 4.98 22.69 5.89 64.57 6.03

Elbow Flexiion-Left 66.27 13.57 126.94 37.59 65.94 13.44 127.41 36.90 68.81 13.77 125.43 35.32 68.85 14.47 125.58 32.33

Elbow Flexiion-Right 63.52 13.32 118.80 34.43 62.00 12.97 120.59 34.68 65.90 12.14 120.56 34.42 65.70 12.86 121.80 31.49

Hip Flexion-Left 34.45 4.73 79.37 1.01 34.41 4.38 82.04 0.33 35.93 4.94 85.65 0.72 35.59 4.41 87.34 0.23

Hip Flexion-Right 34.32 6.02 80.53 0.11 33.82 5.13 85.86 0.37 35.44 6.68 86.52 0.72 35.16 5.74 88.37 0.11

Hip Abduction-Left 12.17 8.27 69.55 0.01 10.46 7.51 60.98 0.00 10.87 7.22 58.84 0.00 10.71 8.10 63.56 0.00

Hip Abduction-Right 9.52 7.08 57.96 0.00 8.55 4.61 34.89 0.00 8.91 5.10 43.23 0.00 9.13 7.09 43.52 0.00

Hip Adduction-Left 1.93 1.86 8.41 0.00 2.16 3.19 20.20 0.00 2.20 2.52 15.69 0.01 1.91 1.58 12.95 0.00

Hip Adduction-Right 3.58 4.76 26.36 0.00 3.74 4.28 23.82 0.00 3.54 4.62 23.97 0.01 4.53 5.19 30.52 0.00

Knee Flexion-Left 57.25 5.95 106.60 3.27 60.17 9.97 103.80 5.19 54.27 6.52 100.52 2.95 57.61 6.31 98.27 11.68

Knee Flexion-Right 67.12 6.52 113.22 17.61 69.37 8.92 111.70 20.11 63.64 7.02 108.88 16.76 66.70 6.72 106.39 19.01

EGF SOF EGB SOB
Angles
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Table 2 – Workstation Motion Task 2  
 

 

average SD max min average SD max min average SD max min average SD max min

Neck Flexion 20.55 9.29 55.29 0.37 19.69 7.03 45.59 2.55 23.65 10.28 63.80 2.43 23.08 10.09 61.11 2.30

Lowback Flexion-Left 38.59 9.33 77.63 19.10 34.67 8.94 70.07 14.16 40.45 8.19 76.71 15.98 38.71 7.95 73.70 13.29

Lowback Flexion-Right 52.93 9.26 77.13 26.18 51.73 9.80 83.84 22.49 53.91 8.46 85.94 31.84 54.82 9.43 87.96 25.27

Highback Flexion-Left 51.97 12.26 81.35 28.31 51.69 10.00 76.05 30.40 51.53 11.20 77.50 28.40 52.18 11.55 84.27 29.67

Highback Flexion-Right 57.40 8.55 84.11 40.54 55.53 6.59 73.25 38.21 55.98 6.59 78.11 40.25 56.89 5.58 74.03 40.00

Shoulder Flexion-Left 27.24 12.11 70.33 7.93 21.87 6.15 39.82 3.75 25.49 7.49 62.35 5.85 23.81 7.10 50.21 5.13

Shoulder Flexion-Right 29.68 11.80 66.69 7.50 25.84 7.09 48.48 10.10 27.62 8.15 52.89 11.32 27.22 7.82 51.17 4.71

Shoulder Abduction-Left 25.16 5.99 71.80 0.00 25.89 6.08 72.09 0.00 25.97 7.51 79.24 0.00 26.28 6.14 79.31 0.00

Shoulder Abduction-Right 25.51 6.57 77.35 0.01 24.44 5.01 72.87 0.00 25.50 7.33 87.11 0.01 25.56 5.46 71.72 0.00

Elbow Flexiion-Left 73.97 20.46 121.24 34.16 70.30 17.44 114.91 37.07 75.64 20.86 128.89 33.99 73.62 19.36 123.45 36.42

Elbow Flexiion-Right 70.10 18.99 117.98 32.16 69.78 17.85 121.07 31.93 72.50 20.23 129.01 32.63 71.56 20.18 122.80 30.55

Hip Flexion-Left 30.36 9.35 73.33 6.62 30.18 7.34 53.37 8.38 29.26 12.54 92.82 4.01 29.71 8.49 66.28 9.18

Hip Flexion-Right 30.74 8.91 63.25 11.34 29.97 6.69 54.90 12.11 29.05 12.94 69.31 4.77 28.74 8.68 61.00 2.17

Hip Abduction-Left 28.44 14.97 92.09 0.03 26.07 13.21 69.18 0.00 27.43 15.64 74.21 0.00 26.30 14.74 81.52 0.01

Hip Abduction-Right 26.26 12.68 77.97 0.03 26.36 11.92 59.58 0.02 24.10 14.40 75.06 0.00 26.84 15.32 74.81 0.00

Hip Adduction-Left 10.38 7.56 30.74 0.01 11.21 5.70 34.79 0.02 4.36 4.39 16.12 0.01 7.73 7.12 39.16 0.02

Hip Adduction-Right 15.53 7.14 39.11 0.04 10.04 8.57 39.71 0.00 10.44 7.92 39.83 0.01 15.86 5.83 53.89 0.02

Knee Flexion-Left 91.80 7.00 111.46 74.80 90.75 7.47 109.07 67.72 86.59 6.17 103.82 71.07 87.65 6.89 101.30 65.96

Knee Flexion-Right 100.40 5.91 118.65 83.00 98.45 7.44 114.83 75.88 95.12 5.88 115.45 78.81 95.23 6.47 115.39 69.06

EGF SOF EGB SOB
Angles
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Table 3 – Workstation Motion Task 3  
 

 

 

average SD( of average) max min average SD max min average SD max min average SD max min

Neck Flexion 24.48 7.47 49.33 1.84 21.59 6.93 37.58 1.47 25.08 7.09 51.28 5.49 24.72 7.55 40.62 5.25

Lowback Flexion-Left 40.04 11.23 63.40 10.06 33.99 10.79 51.49 6.77 37.67 11.04 59.42 7.63 34.24 11.57 58.28 7.13

Lowback Flexion-Right 49.89 8.09 73.81 22.47 47.60 8.14 73.58 28.71 48.16 8.45 77.78 31.15 47.99 7.14 63.94 24.84

Highback Flexion-Left 47.10 12.73 74.25 26.25 47.22 12.10 72.77 24.19 47.92 13.59 74.59 24.88 48.20 12.94 81.01 25.67

Highback Flexion-Right 54.20 9.21 82.33 31.02 51.87 7.30 72.31 32.94 53.22 7.66 82.70 22.78 53.59 7.82 74.68 34.85

Shoulder Flexion-Left 30.47 20.61 127.82 5.48 24.62 7.98 50.24 5.65 27.04 8.39 52.82 4.68 25.59 8.06 45.64 4.72

Shoulder Flexion-Right 62.51 9.70 108.13 6.70 63.00 9.68 112.52 11.07 61.72 9.31 106.71 9.52 62.64 8.51 109.34 6.11

Shoulder Abduction-Left 28.45 12.80 85.39 0.06 25.74 9.36 50.20 0.02 24.83 9.58 51.33 0.02 26.82 9.93 53.04 0.00

Shoulder Abduction-Right 39.27 12.81 94.11 0.02 41.12 14.93 103.95 0.13 43.07 11.64 102.43 3.52 44.09 12.04 103.46 4.45

Elbow Flexiion-Left 67.58 16.85 123.71 28.41 65.57 16.58 103.29 29.93 75.25 21.76 130.39 30.89 68.78 17.57 125.48 29.56

Elbow Flexiion-Right 69.48 10.57 136.66 33.31 67.63 12.62 142.36 36.03 75.27 12.54 149.47 37.07 71.42 14.25 145.27 35.89

Hip Flexion-Left 23.93 10.86 58.06 3.80 27.24 8.48 61.61 7.46 24.97 13.25 68.15 0.25 26.35 10.20 60.21 3.08

Hip Flexion-Right 24.74 9.05 54.83 2.88 28.55 7.11 49.47 11.94 24.94 11.05 55.32 4.93 28.22 9.42 55.21 9.82

Hip Abduction-Left 30.78 15.73 74.37 0.06 23.93 16.16 69.16 0.01 26.25 15.12 70.73 0.02 23.70 12.26 60.87 0.01

Hip Abduction-Right 25.04 12.74 58.06 0.00 29.29 12.88 61.59 0.01 29.55 13.88 56.87 0.05 30.72 15.01 59.37 0.03

Hip Adduction-Left 8.38 7.56 33.23 0.02 7.61 5.75 25.79 0.01 12.42 13.56 46.93 0.01 10.39 10.08 42.86 0.00

Hip Adduction-Right 6.46 8.21 36.45 0.00 8.80 8.94 42.65 0.05 20.85 11.52 39.40 0.11 11.96 11.43 41.95 0.02

Knee Flexion-Left 90.26 7.18 107.59 74.74 89.03 7.53 104.17 73.22 88.15 5.54 101.30 76.42 89.00 6.08 100.68 75.16

Knee Flexion-Right 100.26 7.95 115.06 76.41 96.47 8.84 110.77 78.18 94.75 7.07 109.42 71.11 94.94 6.85 114.10 80.89

Lowback Hyperextension-Right46.01 6.95 60.34 20.84 41.18 6.72 53.25 23.42 43.35 9.80 64.92 30.78 38.80 6.17 53.08 23.32

EGF SOF EGB SOB
Angles
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Table 4 – Workstation Motion Task 4  
 

 

 

average SD( of average) max min average SD max min average SD max min average SD max min

Neck Flexion 21.59 7.40 43.45 1.76 19.98 7.72 48.05 0.41 21.12 8.03 46.74 0.42 20.29 7.82 48.26 0.06

Lowback Flexion-Left 54.47 10.97 81.23 19.05 50.51 11.44 83.02 3.67 53.12 11.33 81.62 2.93 51.73 11.11 80.90 4.76

Lowback Flexion-Right 55.96 9.50 78.59 31.47 53.95 10.16 77.65 26.15 56.12 9.33 76.23 28.97 55.63 8.82 72.81 28.98

Highback Flexion-Left 43.34 10.39 75.29 16.67 42.85 10.15 75.45 14.90 44.11 13.64 83.31 15.00 41.60 12.23 82.95 15.19

Highback Flexion-Right 57.58 8.29 82.72 40.26 55.90 6.18 70.34 40.59 56.74 6.91 73.16 40.55 56.10 5.54 71.98 40.66

Shoulder Flexion-Left 42.40 8.77 77.44 3.39 40.09 5.63 76.09 6.78 43.09 9.50 82.02 10.07 41.88 6.12 73.19 5.32

Shoulder Flexion-Right 33.82 12.06 80.39 10.66 30.04 5.70 46.73 11.55 34.42 12.81 93.56 11.76 32.78 7.09 53.99 8.13

Shoulder Abduction-Left 15.73 10.31 87.75 0.00 13.14 4.83 43.55 0.00 17.27 12.07 93.30 0.02 15.82 5.74 50.07 0.03

Shoulder Abduction-Right 50.87 15.65 125.49 3.75 50.83 7.92 113.14 6.75 49.79 13.60 115.75 6.23 52.99 13.13 134.44 4.11

Elbow Flexiion-Left 62.45 11.09 115.47 37.88 63.53 10.22 125.43 37.73 67.17 13.85 135.58 41.09 63.81 9.60 127.62 36.92

Elbow Flexiion-Right 79.35 17.11 110.46 40.54 81.66 17.74 116.61 39.19 81.81 18.65 119.33 37.41 84.93 20.02 116.26 40.83

Hip Flexion-Left 51.21 9.11 103.81 11.82 51.84 11.53 110.83 14.59 53.31 12.70 115.20 2.40 54.83 9.80 108.64 15.56

Hip Flexion-Right 43.86 8.24 75.57 13.13 43.37 7.70 76.36 11.96 44.26 9.44 76.88 4.28 45.68 8.27 79.17 10.33

Hip Abduction-Left 27.20 16.22 79.04 0.04 21.74 14.25 63.63 0.04 21.71 17.14 72.76 0.01 18.54 14.60 63.52 0.01

Hip Abduction-Right 26.37 11.81 59.10 0.06 27.35 8.58 52.13 0.06 25.08 9.94 44.46 0.03 27.30 12.59 55.36 0.01

Hip Adduction-Left 8.61 10.37 43.49 0.02 14.84 7.95 40.53 0.02 7.77 7.85 38.31 0.01 9.22 6.50 39.98 0.00

Hip Adduction-Right 15.63 5.74 28.57 0.06 6.39 5.21 22.18 0.00 16.70 1.72 25.08 0.26 9.40 6.18 25.16 0.09

Knee Flexion-Left 92.30 8.42 113.13 74.44 91.40 8.60 103.97 72.88 88.10 6.91 106.47 73.88 89.00 7.16 105.16 72.09

Knee Flexion-Right 96.32 7.38 113.55 76.44 92.80 8.95 107.73 66.74 91.50 6.24 108.75 74.52 90.88 7.62 103.61 67.83

EGF SOF EGB SOB
Angles
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Table 5 – Workstation Motion Task 5  
 

 

 

average SD( of average) max min average SD max min average SD max min average SD max min

Neck Flexion 20.73 6.02 38.34 5.70 20.72 6.74 44.13 6.23 21.34 7.33 38.68 3.20 21.77 6.62 39.77 2.56

Lowback Flexion-Left 42.58 8.52 68.04 17.29 40.19 8.81 63.57 13.10 42.80 8.93 68.73 17.63 41.67 9.63 67.17 10.93

Lowback Flexion-Right 51.78 5.24 73.15 34.10 48.17 8.02 65.54 13.82 50.44 6.55 71.98 33.54 50.54 7.35 69.47 32.38

Highback Flexion-Left 40.66 11.43 70.29 19.50 38.69 8.82 70.19 17.63 39.92 9.26 73.54 20.04 39.57 9.31 77.62 16.60

Highback Flexion-Right 57.65 7.65 79.61 40.72 55.73 7.26 66.33 38.14 57.53 6.80 72.32 41.77 56.19 7.18 73.98 39.23

Shoulder Flexion-Left 50.13 5.77 69.61 11.64 49.82 5.40 70.35 9.95 49.56 4.79 71.82 9.67 49.54 4.43 71.69 9.04

Shoulder Flexion-Right 35.96 14.36 101.30 14.77 30.83 5.90 45.69 8.12 33.04 5.65 45.42 13.12 31.94 6.19 71.17 18.12

Shoulder Abduction-Left 39.06 5.96 71.44 2.12 39.22 6.70 71.78 2.31 39.81 6.01 74.99 2.20 39.41 5.27 74.67 0.08

Shoulder Abduction-Right 26.60 8.74 74.59 9.08 25.59 6.12 40.21 5.86 25.54 5.75 42.34 4.77 25.79 7.10 67.53 9.39

Elbow Flexiion-Left 97.55 6.73 157.29 45.31 97.66 6.46 159.13 47.05 99.48 6.76 160.25 42.04 95.71 6.02 157.47 40.03

Elbow Flexiion-Right 89.13 20.72 150.59 43.65 90.07 16.31 120.16 38.07 93.69 16.20 127.51 45.69 83.16 18.10 125.31 43.84

Hip Flexion-Left 34.89 8.11 65.46 11.19 36.50 8.58 64.46 15.03 35.27 9.20 69.83 12.33 37.44 7.59 69.64 3.87

Hip Flexion-Right 29.68 8.14 53.17 6.14 32.48 8.23 57.10 11.89 30.31 9.42 53.29 6.97 32.85 6.95 55.09 10.75

Hip Abduction-Left 26.30 15.56 64.42 0.00 23.73 12.32 53.22 0.00 24.94 16.59 64.37 0.00 24.15 16.25 70.10 0.00

Hip Abduction-Right 24.74 13.55 55.97 0.07 22.90 11.43 50.57 0.01 22.61 12.90 48.29 0.00 25.54 12.69 56.18 0.06

Hip Adduction-Left 7.34 6.18 20.59 0.01 8.39 6.36 20.94 0.00 3.91 4.53 16.82 0.00 8.75 4.88 24.65 0.01

Hip Adduction-Right 8.17 6.90 18.06 0.01 2.73 2.53 8.11 0.05 7.87 9.74 22.54 0.00 9.93 10.52 22.08 0.03

Knee Flexion-Left 94.11 9.32 108.67 72.84 93.32 8.17 107.58 78.22 87.22 7.67 100.60 69.50 89.26 6.49 99.83 74.52

Knee Flexion-Right 100.03 9.24 113.73 80.04 97.57 6.66 107.30 83.56 94.33 7.40 104.00 75.88 93.39 7.30 102.44 71.22

EGF SOF EGB SOB
Angles
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Table 6 – Workstation Motion Task 6  
 

 

 

average SD( of average) max min average SD max min average SD max min average SD max min

Neck Flexion 19.67 6.29 38.34 1.60 18.52 6.56 36.34 0.31 19.24 6.09 39.20 0.21 17.70 6.10 43.09 0.22

Lowback Flexion-Left 35.75 8.81 55.48 19.46 33.08 8.19 48.52 11.91 35.51 9.25 52.85 14.71 34.07 8.15 52.98 15.95

Lowback Flexion-Right 60.26 8.75 80.48 34.77 58.56 10.06 82.07 25.70 59.71 9.18 78.41 32.92 57.82 14.01 86.45 13.60

Highback Flexion-Left 51.71 10.62 71.21 29.91 51.04 10.41 71.68 30.54 51.71 10.98 74.88 31.15 51.73 11.41 69.50 29.34

Highback Flexion-Right 44.23 11.92 85.12 20.15 40.97 6.69 70.39 22.00 41.29 6.67 73.26 18.62 40.92 6.03 71.56 21.32

Shoulder Flexion-Left 30.77 14.70 85.73 10.62 26.49 5.13 44.59 14.67 27.86 6.17 50.00 10.41 26.82 7.48 48.21 7.61

Shoulder Flexion-Right 50.03 5.32 73.53 15.36 49.43 4.23 70.12 11.20 48.84 4.10 75.20 13.74 51.56 5.27 76.73 14.26

Shoulder Abduction-Left 20.90 7.77 43.42 4.21 19.34 6.51 40.79 1.71 20.54 6.88 45.10 4.30 21.04 7.82 41.40 3.66

Shoulder Abduction-Right 34.31 6.40 60.81 2.28 34.32 7.36 66.76 8.55 35.43 5.27 60.95 3.71 36.35 5.96 64.16 7.01

Elbow Flexiion-Left 89.65 22.73 144.09 42.00 91.85 15.20 134.93 42.66 88.67 19.50 124.77 39.58 89.58 17.34 120.83 40.08

Elbow Flexiion-Right 96.85 5.83 157.24 47.00 98.25 8.00 157.79 45.30 95.51 5.43 156.94 45.41 95.90 7.47 157.54 43.53

Hip Flexion-Left 34.18 8.12 54.72 8.61 35.29 7.91 59.51 16.34 35.93 8.33 57.40 12.82 37.45 8.36 60.94 8.29

Hip Flexion-Right 35.86 8.00 69.13 6.90 36.78 8.36 69.78 13.48 36.61 9.23 70.70 9.16 39.07 8.31 69.15 10.43

Hip Abduction-Left 26.38 15.35 70.23 0.00 20.59 13.55 55.15 0.01 22.43 14.81 67.86 0.00 19.48 14.20 62.51 0.00

Hip Abduction-Right 25.79 14.51 59.05 0.00 22.20 12.34 47.42 0.00 23.57 11.79 51.12 0.03 25.35 14.49 61.59 0.01

Hip Adduction-Left 4.48 3.15 12.51 0.02 6.91 4.71 17.00 0.03 4.90 4.09 16.16 0.01 5.88 3.08 20.36 0.01

Hip Adduction-Right 8.47 6.21 18.38 0.00 7.21 1.22 16.47 0.01 8.56 8.59 19.89 0.03 13.19 2.32 23.03 0.01

Knee Flexion-Left 93.46 9.69 109.86 71.99 92.94 8.80 110.84 78.03 87.07 7.50 102.77 69.12 88.48 6.12 100.26 75.06

Knee Flexion-Right 100.56 9.00 113.63 81.65 98.75 7.47 112.60 85.82 94.66 7.52 105.39 78.23 93.91 7.24 104.87 74.10

Angles
EGF SOF EGB SOB
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Table 7 – Workstation Motion Task 7  
 

 

 

 

average SD( of average) max min average SD max min average SD max min average SD max min

Neck Flexion 28.22 7.36 43.71 2.16 27.04 6.48 43.38 2.24 28.23 6.03 45.51 10.08 27.72 7.00 43.94 3.20

Lowback Flexion-Left 36.67 9.76 55.40 19.49 33.36 9.79 49.51 11.48 36.01 9.94 54.02 17.10 33.40 9.27 50.44 12.94

Lowback Flexion-Right 54.40 8.18 71.15 35.33 53.56 8.46 73.82 30.87 55.43 10.40 84.00 32.29 56.87 9.36 81.29 35.83

Highback Flexion-Left 51.85 11.66 71.91 30.83 51.01 11.30 69.04 29.18 52.55 12.11 71.42 28.86 53.23 12.29 69.46 28.86

Highback Flexion-Right 51.25 9.46 81.06 28.92 48.86 5.97 69.52 27.17 49.24 6.13 72.45 32.64 48.53 6.04 72.27 29.45

Shoulder Flexion-Left 30.02 13.66 83.73 10.68 27.02 7.11 46.09 11.05 27.39 7.52 40.14 11.22 25.91 7.34 49.21 9.74

Shoulder Flexion-Right 39.59 7.17 63.85 19.08 36.48 3.64 52.44 9.70 36.57 3.94 54.26 14.42 38.65 4.76 60.50 19.55

Shoulder Abduction-Left 21.17 7.43 42.89 6.05 21.33 6.92 38.05 2.32 20.90 7.72 33.73 4.06 21.49 7.57 49.47 3.26

Shoulder Abduction-Right 33.87 5.29 50.75 10.15 32.49 5.28 54.04 9.36 33.04 5.08 51.69 5.33 33.50 6.17 55.16 10.39

Elbow Flexiion-Left 88.50 23.06 129.50 37.76 93.29 16.46 134.08 46.47 89.62 19.10 117.61 40.28 86.55 17.68 124.99 35.83

Elbow Flexiion-Right 85.07 7.49 128.59 46.86 83.61 5.61 129.14 46.88 82.37 8.41 125.38 42.39 81.07 7.74 126.77 43.72

Hip Flexion-Left 30.70 9.45 51.45 12.28 31.27 8.13 48.60 18.17 30.06 9.40 51.84 12.30 32.08 8.66 46.17 13.57

Hip Flexion-Right 29.97 9.03 56.11 10.45 31.06 8.17 54.94 14.94 29.55 10.58 56.93 7.04 31.91 9.03 53.17 9.58

Hip Abduction-Left 28.68 14.61 64.18 1.99 23.89 13.86 56.19 0.00 27.17 17.22 65.43 0.01 25.60 15.06 60.85 0.00

Hip Abduction-Right 25.53 14.48 55.85 0.01 23.54 10.30 45.79 0.06 25.86 10.70 44.22 3.97 26.68 13.12 54.63 0.01

Hip Adduction-Left 16.04 17.31 38.10 2.30 5.48 2.29 8.89 0.00 3.44 1.39 13.24 0.01 3.80 2.69 11.87 0.02

Hip Adduction-Right 7.70 7.16 19.43 0.01 5.11 2.83 10.50 0.03 11.50 8.30 21.28 1.76 9.28 9.26 21.46 0.02

Knee Flexion-Left 93.73 9.47 110.22 71.55 93.38 9.13 110.50 78.10 87.20 7.45 98.23 69.32 88.50 6.31 98.00 71.66

Knee Flexion-Right 101.20 9.01 113.83 82.11 99.35 7.62 113.72 86.75 94.97 7.51 103.66 78.29 94.24 7.14 103.74 74.33

EGF SOF EGB SOB
Angles
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Table 8 – Workstation Motion Task 8  
 

 

 

average SD( of average) max min average SD max min average SD max min average SD max min

Neck Flexion 32.43 9.04 53.07 14.26 35.57 7.16 51.89 22.31 32.09 8.74 50.11 17.76 31.36 7.83 50.29 7.95

Lowback Flexion-Left 38.48 9.42 59.49 23.17 36.73 8.54 51.93 21.88 38.64 10.40 61.02 22.10 38.71 10.08 59.71 18.46

Lowback Flexion-Right 54.68 9.60 69.32 33.92 53.62 10.10 70.48 28.72 55.80 11.33 73.36 35.96 57.06 11.30 75.00 34.93

Highback Flexion-Left 44.63 11.61 64.88 24.68 44.22 10.48 60.55 26.80 44.70 11.15 62.56 26.57 43.41 11.58 62.15 23.05

Highback Flexion-Right 49.14 9.75 79.86 28.81 47.05 6.02 59.39 34.15 46.82 6.40 63.69 28.24 45.74 6.60 60.28 26.68

Shoulder Flexion-Left 32.82 9.92 63.29 18.94 30.70 6.29 43.19 16.31 30.30 6.24 44.44 20.21 32.39 8.19 48.07 14.35

Shoulder Flexion-Right 26.43 11.19 66.53 14.17 24.21 5.83 41.84 13.41 23.82 4.46 45.99 16.46 27.61 6.59 46.71 12.79

Shoulder Abduction-Left 22.08 7.72 37.90 3.95 21.14 6.95 37.71 1.79 20.72 6.61 37.21 6.61 21.83 8.33 45.02 5.37

Shoulder Abduction-Right 20.82 7.02 40.49 10.80 21.29 7.20 43.60 5.07 19.17 6.48 40.26 7.95 21.24 8.12 45.84 7.80

Elbow Flexiion-Left 99.69 8.55 124.75 86.11 100.42 7.93 125.97 81.93 97.03 8.12 116.05 81.76 96.24 10.16 119.69 75.54

Elbow Flexiion-Right 95.93 9.25 114.16 82.05 96.25 8.35 115.52 76.32 93.62 8.90 112.02 72.82 93.29 10.52 116.67 71.40

Hip Flexion-Left 33.98 9.17 52.51 22.07 35.05 9.37 55.02 21.25 34.94 9.98 55.81 16.44 37.01 8.84 50.01 18.51

Hip Flexion-Right 30.23 7.80 48.06 14.00 31.35 8.69 52.05 17.73 30.21 9.61 52.24 11.18 33.48 8.86 50.60 14.00

Hip Abduction-Left 26.34 14.15 56.13 2.26 23.24 13.35 54.49 2.59 25.26 17.31 58.58 0.00 24.90 11.40 43.86 5.22

Hip Abduction-Right 27.04 12.73 50.57 3.58 23.17 11.25 45.07 0.00 25.39 10.25 39.61 6.49 29.54 11.62 54.24 8.10

Hip Adduction-Left 15.75 16.34 36.75 4.75 8.05 2.79 12.62 5.33 5.92 3.45 10.00 0.00 7.64 5.23 16.43 1.70

Hip Adduction-Right 8.72 8.26 18.57 2.45 5.00 6.19 10.22 0.00 12.24 9.20 20.02 5.36 10.76 7.26 16.17 4.08

Knee Flexion-Left 94.44 9.33 108.24 72.59 94.90 11.06 124.68 79.24 87.75 7.44 97.27 70.16 89.10 6.61 98.63 71.65

Knee Flexion-Right 99.12 8.76 113.80 81.96 98.85 9.60 124.51 82.01 93.68 7.49 103.23 77.33 92.89 7.26 101.89 73.59

EGF SOF EGB SOB
Angles

 
 

 

 

 



 231 

Appendix 5: Some examples of seated motion 

    

(a) Hip Flexion (left);       (b) Hip Flexion (right);    (c) Midback Flexion (left);  (d) Midback Flexion (right); (e) Shoulder Flexion (left); (f) Shoulder Flexion (Right)                                     

x axis denotes frame numbers, y axis denotes degree. Blue curve- Ergokinetic chair ; Red curve- Standard Office Chair. 

(a)-(c): graphical examples to showing that Hip Flexion less, and mid back flexion is higher in the Ergokinetic chair than in the standard 

office chair in workstation motion task 5.  

(d)-(f): is an example showing shoulder flexion to be higher at the side opposite to which the participant reaches for an item on the desk.  

(e): is SFl for action 6 (reach for something right/front). (f): is SFr for action 5 (reach for something left/front).  

 


