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Abstract

Human metrology generally refers to the geometric measurements extracted from hu-

mans, such as height, chest circumference or foot length. It provides an important

soft biometric that can be used in challenging situations such as human identification

at a distance, where hard biometric traits cannot easily be acquired. In this work, we

first study the question of predictability and correlation in human metrology, using

the tools of entropy. We show that various human metrological features are highly

correlated with each other. Thus, partial or available measurements can be used to

predict other missing measurements. We then investigate the use of human metrology

for the prediction of other soft biometrics, viz. gender and weight. In particular, we

consider geometric measurements from the head, and those from the remaining parts

of the human body, and propose a copula-based model for their use in predicting

gender and weight. For gender prediction, the proposed copula-based model results

in a 0.7% misclassification rate using both body and head information, 1.0% using

only body information, and 12.2% using only head information on the CAESAR 1D

database [1] consisting of 2,369 subjects. For weight prediction, the proposed model

gives 0.01 mean absolute error (in the range 0 to 1) using both body and head infor-

mation, 0.01 using only body information, and 0.07 using only measurements from

the head. This leads to the assertion that human body metrology contains enough

information for reliable prediction of gender and weight. Furthermore, we investigate

the efficacy of the model in practical applications, where metrology data may be miss-

ing or severely contaminated by various sources of noise. The proposed copula-based

technique is observed to reduce the impact of noise on prediction performance.

We then study the question of whether face metrology and its use for reliable

gender prediction. A new method based solely on metrological information from fa-

cial landmarks is developed. In this work, metrological features are defined in terms

of normalized angle and distance measures, and computed based on a set of land-
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marks on facial images. The performance of the proposed metrology-based method is

compared with that of a state-of-the-art appearance-based method for gender classi-

fication. Results are reported on two standard face databases, namely, MUCT [110]

and XM2VTS [108] containing 276 and 295 visible spectrum images, respectively. The

metrology-based approach resulted in an accuracy of 86.83% on the MUCT database

and 82.83% on the XM2VTS database. This was slightly lower than that of the

appearance-based method by about 3.8% for the MUCT database and about 5.7%

for the XM2VTS database. However, results on the WVUM Multispectral database

consisting of 100 near infrared images and 100 multispectral images showed that the

metrology-based method outperformed the appearance-based method (87.00% vs.

82.00%).

Furthermore, we study the question of person recognition (classification and iden-

tification) via whole body metrology. Using CAESAR 1D database as baseline, we

simulate intra-class variation with various noise models. The experimental results in-

dicate that given enough number of features, our metrology-based recognition system

can have promising performance that is comparable to several recent state-of-the-art

recognition systems. We propose a non-parametric feature selection methodology,

called adapted k-nearest neighbor estimator, which does not rely on intra-class dis-

tribution of the query set. This leads to improved results over other nearest neighbor

estimators (as feature selection criteria) for moderate number of features.

Finally we quantify the discrimination capability of human metrology. Generally,

a biometric-based recognition technique relies on an assumption that the given bio-

metric is unique to an individual. However, the validity of this assumption is not yet

generally confirmed for most soft biometrics, such as human metrology. A scientific

basis for establishing the uniqueness of human metrology will not only quantify the

performance of an automatic recognition system, but will also result in the possible

admissibility of metrology-based identification technique in various areas such as the
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courts of law. Currently, only a few efforts have been made on theoretical studies of

the discrimination capability of given biometric traits, such as individuality of fin-

gerprints [120] and capacity of biometric systems [135]. We indicate the strengths

and weaknesses of each approach. Following the review of prior work, we propose two

schemes for theoretical analysis of the discrimination capability of human metrology.
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Chapter 1

Introduction

1.1 Overview

Soft biometric traits are those characteristics that provide some information about

an individual, but lack the distinctiveness and permanence to sufficiently differentiate

every pair of individuals [81]. Soft biometrics include physical or behavioral human

characteristics, such as gender, ethnicity, age, eye color, weight and gait. Unlike the

classical biometrics, also called “hard biometrics” such as fingerprint and iris, soft

biometrics are usually applied to complement the identity information provided by

hard biometrics. Can soft biometrics be solely used to distinguish individuals? What

is the discrimination capability of a given soft biometric system? That is, for a given

database, how many classes can the system successfully distinguish? To the best of

our knowledge, only a few efforts have been made to address these questions. Our

objective is to investigate whether a specific type of soft-biometrics, namely, human

metrology, can be used to classify individuals. In particular, we consider the use

of human metrology for the prediction of certain soft biometrics, including gender

and weight. In order to do so, a series of metrology based recognition techniques

are developed and their performances are evaluated both in a simulated environment
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and in practice. Further, we investigate the discrimination capability of general soft

biometric systems and human metrology in particular, from both a probabilistic and

an information capacity perspective.

1.2 The Problem

1.2.1 Whole Body Metrology

Human classification and identification is a challenging problem, with diverse appli-

cations. Biometrics has thus become an active research field with many unresolved

questions. For identification under confounding situations, such as night-time en-

vironments or identification at a distance, most traditional hard biometrics such as

fingerprints, face, and iris may not be readily available. There is also the problem of

poor quality for the video or image. An alternative is to exploit potential secondary

or soft biometric traits[80] that could be automatically extracted from such typically

poor quality video or images. Metrological features (such as human body shape,

anthropometric measurements, and geometrical features) and other soft biometrics

(such as gait, age, gender, weight, skin texture, etc), could be considered as evidence

of human identity when hard biometrics are not available.

Whole Body Information as A Soft Biometric

Whole body metrology can be extracted via security surveillance in building en-

trances, parking lot, restaurants, supermarkets, airports, etc. One application of

whole body metrology could be in gender and/or weight prediction. Gender predic-

tion is a fundamental task for both humans and machines. As many social activities

depend on precise gender identification, the problem has attracted considerable atten-

tion, and has been investigated from both psychological [17, 46] and computational

[21] perspectives. Although most existing work has focused on assessing gender using
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information from the human face[104, 66, 54], researchers also have considered using

whole body information for gender prediction. Li et al. [95] attempted to perform

gender classification using human gait. Cao et al. [19] studied the problem of gen-

der recognition using whole body images using a part-based representation and an

ensemble learning algorithm. They reported a 75.0% accuracy for predicting gender

from either the front view or back view.

Guo et al. [69] used biologically-inspired features in combination with manifold

learning techniques and achieved around 80% accuracy in gender prediction from

body. Collins et al. [28] investigated several popular image representation methods,

such as Histogram of Gradients (HOG), spatial pyramid HOG (PHOG) and bag of

words model, with the goal of finding effective human body appearance models for

gender prediction. Shan et al. [139] fused gait and face cues for automated gender

recognition based on canonical correlation analysis. Their work demonstrated that

the two sets of measurements from gait and face are complementary, resulting in

improved recognition accuracy at the feature level.

Though the above approaches show that automatic gender prediction from human

body is feasible, the methods are largely based on appearance or texture information.

Our work, on the other hand, utilizes a set of geometric measurements to predict

gender in the absence of textural details. A similar line of work was undertaken by

Adjeroh et al. in [4] where the problem of gender prediction from whole-body human

metrology was considered. However, in [4], the associations between different body

measurements were neither characterized nor utilized to improve prediction perfor-

mance. This work bridges this gap by introducing a novel copula-based prediction

model that exploits the association structure between different human metrological

features. In addition to gender prediction, the proposed model is also used to deduce

an individual’s weight from metrology. Weight prediction from metrology has been

previously studied by Adjeroh et al. [4] and Velardo and Dugelay [153].
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Whole Body Information for Human Recognition

The history of human metrology includes and spans various concepts such as cloth

design, ergonomics, epidemiology and medical anthropology. But it was not applied

to law enforcement until 1882, when a French police officer and biometrics researcher

Alphonse Bertillon created a an identification system based on physical measurements

of the human body, head and other personality characteristics [127]. Bertillon had

been thinking of a better way to identify offenders and maintain their criminal records.

He thought that it would be better to classify and file offender data according to their

body size and measurements instead of their names, which were different every time

they were arrested. Bertillon consulted the work of Lambert Quetelet, a Belgian

statistician and mathematician, who had calculated that the chances against two

people being roughly the same height were four to one. Bertillon figured that if more

body measurements were added to the equation, the likelihood that any two people

having the same dimensions would be rare. The uniqueness of human measurements

became the basis of his identification system known as anthropometry or Bertillonage.

The human measurements included standing height, sitting height, circumferences of

head, width of head (between the cheek bones), length of ears, arm span, left forearm,

left foot length, and length of left middle and little fingers [56]. He used the system

in 1884 to identify 241 offenders, and the system was quickly adopted widely by

American and British police forces.

In modern science, whole body metrology is not often used for human recognition.

Collins et al. established a baseline method for human identification based on body

shape and gait [29]. Hsin-Chun Tsai et al. [150] proposed a method that combines

height and face information for long distance human identification. Unlike the above

approaches, we study the question of whether or not human metrology can be solely

used for person recognition, which includes person classification and identification.
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1.2.2 Face Metrology

As mentioned in section 1.2.1, face information can also be used for gender prediction.

Introduced in the 1990’s, SEXNET was among the first automated systems capable

of performing gender identification using human faces [65]. Since then, a number of

studies investigated the problem as part of face recognition (FR). Modern FR systems

typically combine textural information from the face with facial geometry. Popular

examples include active appearance models (AAM) [94, 107], active shape models

(ASM) [30], local feature analysis [89], and elastic bunch graph matching[158]. In

such systems, the information about facial geometry is often extracted from specific

landmarks on the face. In this work, we investigate whether only topological infor-

mation extracted from facial landmarks can be used to perform gender classification

reliably and efficiently, whether operating in the visible spectrum, or in the near

infrared band.

Facial Landmarks in Gender Classification

There is still an on-going debate on whether facial landmarks (or information derived

from such landmarks) can be used for reliable determination of the gender of a given

individual. Farkas et al. [52] used 14 anatomical facial measurements to establish

the morphological structure in 25 ethnic groups in both genders. They studied data

measurements from 1470 subjects, aged 18 to 30 years, including 750 males and 720

females. The experimental results indicated that there exist a number of statistically

significant differences across ethnic groups. In fact, in a recent study on inter-ethnic

variability of facial dimensions, based on a review of the literature, Fang et al. [49]

reported that no significant difference could be observed between gender when using

neo-classical facial proportions, which include the heights and widths of the upper,

middle, and lower face. Although one could argue that the conclusions in the recent

report [49] clearly depend on the specific neo-classical facial proportions used, and

5



how measurements from the different ethnic groups were analyzed, it seems that there

is still no consensus on whether facial measurements can in fact reliably distinguish

between gender.

Our main goal in this work is to lay the above questions to rest.

1.2.3 Distinctiveness of Soft Biometrics

A fundamental requirement of any biometric recognition system is a specific human

trait, which should have several desirable properties such as universality, measura-

bility and uniqueness (or distinctiveness)[79]. Universality means every individual in

the considered population should possess the trait. Measurability means it should be

possible to acquire the biometric trait and transform it to digitized features without

causing undue inconvenience to the individual. Distinctiveness means the trait should

be sufficiently different across individuals in the population. For a given biometric,

its distinctiveness is very important in quantifying to what extent the biometric can

be relied upon to distinguish between individuals. However, compared to other prop-

erties, the distinctiveness is difficult to verify due to the huge number of individuals

in the world. Some biometric traits, such as fingerprints and iris, are generally con-

sidered as being unique to an individual based on empirical results. Recently, the

notion of individuality has been used to describe the uniqueness of fingerprint [120].

The related work on the individuality of several biometric traits have been studied

using different methods. These methods are described in section 5.1. However, the

underlying scientific basis for the distinctiveness of soft biometrics features is not yet

well developed.

The distinctiveness can be compromised by the poor quality of the features. In

practice, the obtained biometric information can be easily contaminated by various

types of noise. From an information theoretic perspective, the quality problem can be

considered as a noisy channel problem. The capacity of a channel describes the tight-
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est upper bound on the amount of distinguishable information that can be reliably

transmitted over the communication channel [34]. In Schmid and Nicolò’s work [135],

a parallel Gaussian channel model is adopted for analyzing the recognition capacity of

a biometric system. Here the input is the accurate feature with Gaussian distribution

and the noise is i.i.d. and also Gaussian. The statistics (such as mean and variance) of

the input and the noise are considered as known. The Gaussian assumption is rather

strong and might not always hold in practice. Yet, this work could provide a basis for

developing a capacity-based model for analyzing the distinctiveness of soft-biometric

traits.

1.3 Contributions

1.3.1 Classification and Prediction using Whole Body

Metrology

In general, the use of whole body metrology for deducing soft biometric traits has

several applications. In video-based surveillance systems, it may be easier to quickly

extract geometric measurements of the human body for classification, rather than

primary biometric traits such as face or iris. In recognition-at-a-distance applica-

tions, primary biometric traits may not be readily available thereby necessitating the

use of the dynamic geometry of the human body for identification. In applications

based on Microsoft Xbox Kinect, deducing gender or weight information from human

anthropometric measurements may be useful for enhancing perceived user experience.

The dissertation contributes to the study of prediction using whole-body metrol-

ogy in three ways. Firstly we investigate the issue of predictability and correlation in

human metrology, using information theoretic notions of uncertainty. Secondly, we

develop a copula-based gender and weight prediction model that accounts for asso-

ciations between geometric attributes of the human body. Thirdly, we evaluate the
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efficacy of the model on the CAESAR 1D database [1], both in the absence and pres-

ence of (simulated) noise. For gender prediction without noise impact, the proposed

model yield 0.7%, 1.0%, and 12.2% misclassification rate using whole body infor-

mation, body-only information and head-only information, respectively. For weight

prediction without noise impact, the proposed model gives 0.01, 0.01, and 0.07 mean

absolute error (in the range 0 to 1) using whole body information, body-only in-

formation and head-only information, respectively. This leads to the assertion that

human body metrology contains enough information for reliable prediction of gender

and weight. Furthermore, the proposed model is observed to reduce the noise impact

on prediction performance.

1.3.2 Classification using Face Metrology

We investigate whether topological information extracted from facial landmarks can

be used to efficiently perform gender prediction, and the experimental results show

that it does.

The main challenges related to facial metrology include (a) difficulty in precisely

localizing the landmark coordinates; (b) sensitivity of landmark localization to pose,

expression, and other variations; and (c) sparsity of information encoded in landmarks

for human identification. In spite of these challenges, landmarks from 2D faces can

provide important cues for problems related to human recognition. Following the pre-

vious study on predictability and correlation in whole body human metrology [4], in

this work we hypothesize that the information extracted from facial metrology alone

can be used for gender recognition or facial classification. We assume that facial land-

marks on a given face image are already provided and our research goal is to perform

gender classification based solely on the information provided by facial landmarks.

If gender classification can be successfully performed using these landmark points,

then investment can be made in automating the landmark detection process. The
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performance of our proposed facial metrology-based gender classification algorithm is

compared to a benchmark appearance-based technique, namely, the Local Binary Pat-

terns (LBP) method [5, 104]. The main contribution of our work is a demonstration

that the classification performance using solely facial metrology is comparable to that

of an appearance-based method when using either visible or near infrared (NIR) face

images. Thus, we illustrate that by using only weak features, i.e., facial metrological

features derived from facial landmarks, our approach results in only about 3.8-5.7%

lower classification rate (on two different face databases) compared to a benchmark

appearance-based method. On the other hand, using facial-metrology outperformed

the appearance-based method by about 5% on NIR images.

1.3.3 Recognition using Whole Body Metrology

In this work, we provide an answer to the question: can we perform person recog-

nition via human metrology? Using CAESAR 1D database as baseline, we simulate

intra-class variation using various noise models. We propose a non-parametric feature

selection methodology, called adapted k-nearest neighbor estimator, which does not

rely on the intra-class distribution of the query set. This leads to improved results over

other nearest neighbor estimators (as feature selection criteria) for moderate number

of features. We then apply the selected features for person recognition. The exper-

imental results indicate that given enough number of features, our metrology-based

recognition system can have promising performance that is comparable to several

recent state-of-the-art recognition systems.

1.3.4 Discrimination Capability of Human Metrology

In Chapter 5, we investigate the discrimination capability of soft biometric systems,

namely how many classes the system can successfully distinguish. Inspired by the

concept of individuality [120] and capacity [135], we first develop two schemes that
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can address the individuality of human metrology, or any other biometrics that can

be encoded as a collection of scalar numbers. Furthermore, our schemes are more

general and realistic: for the individuality, the distribution of the features are not

restricted. Also, the noise caused by small intra-class variation (errors) for each

feature is explicitly controlled. For capacity, a Poisson channel model is proposed to

analyze the recognition capacity of human metrology. Our study suggests that the

performance of such a metrology-based system depends more on the accuracy and

precision level of the ground truth or training set.

1.3.5 Publications Related to The Dissertation

1. Donald Adjeroh, Deng Cao, Marco Piccirilli, and Arun Ross. Predictability and

correlation in human metrology. In IEEE International Workshop on Informa-

tion Forensics and Security, 2010

2. Deng Cao, Cunjian Chen, Marco Piccirilli, Donald Adjeroh, Thirimachos

Bourlai, and Arun Ross. Can facial metrology predict gender? In IEEE

International Joint Conference on Biometrics, 2011

3. T. Bourlai, N. Kalka, D. Cao, B. Decann, Z. Jafri, F. Nicolo, C. Whitelam, J.

Zuo, D. Adjeroh, B. Cukic, J. Dawson, L. Hornak, A. Ross and N. A. Schmid,

Ascertaining Human Identity in Night Environments. Book Chapter in Dis-

tributed Video Sensor Networks, Springer, 2011

4. Deng Cao, Cunjian Chen, Donald Adjeroh, and Arun Ross. Predicting Gender

and Weight from Human Metrology using a Copula Model. In IEEE Biometrics:

Theory, Applications and Systems, 2012

5. Deng Cao, Cunjian Chen, Marco Piccirilli, Donald Adjeroh, Thirimachos

Bourlai, and Arun Ross. Gender Prediction via Facial Metrology. Submitted

to IEEE Information Forensics and Security, 2013
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6. Deng Cao and Donald Adjeroh, On the Individuality of Human Metrology,

Submitted to IEEE Transactions on Systems, Man, and Cybernetics, 2013

1.4 Organization

The dissertation is organized as follows. In Chapter 2, we presents a copula-based

model for predicting gender and weight from human metrology, including body-only

and head-only measurements. Chapter 3 introduces a fully automated system for gen-

der prediction using frontal face images. The performance of the proposed metrology-

based method is compared with that of a state-of-the-art appearance-based method,

namely, local binary pattern (LBP). The performance under cross-database and/or

cross-spectra conditions is also tested in practice. Chapter 4 gives initial person

recognition results using solely human metrology, based on a proposed novel feature

selection method called adapted k nearest neighbor estimator. Chapter 5 system-

atically investigates the problem of discrimination capability by formulating explicit

expressions of individuality and capacity of a given biometric system. Chapter 6

draws some conclusions and also describes possible directions for future work.
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Chapter 2

Whole Body Metrology for

Classification1

2.1 Background

2.1.1 Predictability and Correlation

In this chapter, we first study the problem of predictability and correlation in human

metrology. Our work is closely related to earlier work on single view metrology

[35, 68]; session biometrics using height measurements [102]; and to efforts on analysis

of human body shape and head sizes [6, 64, 16]. Other related work include general

efforts on whole-body modeling [72], soft biometrics [80], and analysis of human gait

[117, 74]. Our work differs from these in that none of the methods paid any specific

attention to whole-body human metrology, beyond height or head dimensions. Those

based on the CAESAR dataset [64, 6, 16] have all focused on the 3D data points.

Here, we use only the 1D measurements in the CAESAR dataset, with potential

1Part of the work reported in this chapter has been published in the following papers:
[1] Donald Adjeroh, Deng Cao, Marco Piccirilli, and Arun Ross. Predictability and correlation in
human metrology. In WIFS, 2010.
[2] Deng Cao, Cunjian Chen, Donald Adjeroh, and Arun Ross. Predicting Gender and Weight from
Human Metrology using a Copula Model. In BTAS, 2012.
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advantages in computation and automated acquisition from surveillance video. To

our knowledge, this is the first attempt at a detailed and formal study of predictability

and correlation in whole-body human metrology.

2.1.2 A General Prediction System

We then investigate the use of human metrology for the prediction of certain soft bio-

metrics, viz. gender and weight. In particular, we consider geometric measurements

from the head, and those from the remaining parts of the human body, and analyze

their potential in predicting gender and weight.

An end-to-end biometric prediction system has several discrete stages. In the first

stage (feature extraction), a person is characterized using a collection of biometric

traits known as features. These features need to be properly extracted from an

individual. In the second stage (feature representation), the raw features are

transformed into a new feature space, which is expected to be suitable for further

analysis. This stage usually involves various types of normalizations. In the third

stage (feature selection), certain techniques are used to reduce the dimension of

the feature space in order to enhance the generalization capability, or to speed up the

learning process. After this stage, the raw feature vector V = (x1, . . . , xn) becomes

V ′ = (x′1, . . . , x
′
m), where m ≤ n. In the final stage (feature prediction), V ′ is

sent to a classifier (for classification) or a regressor (for estimation). The output is a

discrete class for classification or a continuous value for regression.

In this chapter, we do not focus on feature extraction. We assume that a set of

features (measurements), referred to as the feature vector, is already provided. Our

goal is to analyze these features and develop a prediction model based on these fea-

tures. The input to our prediction system is a set of metrological features pertaining

to an individual. These features correspond to the head and the body. The output
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of the prediction system is the gender (classification) or weight (regression) of the

individual.

2.2 Statistics of Human Metrology

We first consider the general statistics of human metrology, using available data on

human body measurements.

2.2.1 Database

We used the Civilian American and European Surface Anthropometry Resource

(CAESAR) 1D database [1] with 2400 US & Canadaian civilians, ages 18-65. There

was an equal proportion of male and female subjects, and of people in the age ranges

18-29, 30-44, and 45-65. We used 43 human body measurements or attributes (see

Table A.1 in the appendix) along with gender and weight. Measurements are in mil-

limeters, while weight is in kilograms. After removal of samples with missing data, we

obtained 2369 samples (1119 males and 1250 females). We randomly select 2000 sam-

ples as training set, and the rest 369 samples are used for testing. We also selected

10 measurements (SET-10M) for closer observation and ease of presentation. The

measurements in SET-10M are as follows 1:arm length (AL); 2:armscye circum-

ference (AC); 3:chest circumference (CC); 4:head breadth (HB); 5:head

length (HL); 6:neck base circumference (NC); 7:shoulder breadth (SB);

8:stature (S); 9: waist circumference (WC); 10:weight (W). For each body

dimension, the individual measurement Xi is normalized to the [0 1] range:

Xi =
Xi −min{Xi}

max{Xi} −min{Xi}
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2.2.2 Statistics

Table 2.1 shows the summary statistics on the measurements in SET-10M, using the

2000 people in the training set. Though height (stature) is easier to acquire, and

has the largest values, it may not necessarily be the best for discriminating between

individuals. It has a relatively low coefficient of variation (third to last), and low

standard deviation for the normalized values (third to last). The circumferences,

which typically cannot be extracted from a 2D video sequence, have higher first order

entropy than one dimensional measures, such as height and shoulder breadth. This

makes a strong case for methods that can predict such body circumferences reliably.

Table 2.1: Summary statistics on human metrology. *Std2: std. deviation for [0 1]
normalized measures. CV: coeff. of variation; CRV coeff. of relative variation (See
Section 2.4).

Measure 1 (AL) 2 (AC) 3 (CC) 4 (HB) 5 (HL) 6 (NC) 7 (SB) 8 (S) 9 (WC) 10 (W)
Min 237 293 739 123 166 344 346 1248 557 39.9
Max 416 606 1574 204 228 598 658 2084 1702 181

Median 324 415 981 150 194 435 460 1707 836 73.9
Std 23.7 51.6 121.2 7.3 9.4 39.7 48.3 101.6 143.2 19.3

*Std2 0.07 0.12 0.12 0.05 0.05 0.09 0.10 0.06 0.17 0.25
CV 0.13 0.17 0.15 0.09 0.11 0.16 0.16 0.12 0.13 0.14

CRV 0.13 0.17 0.15 0.09 0.15 0.16 0.16 0.12 0.13 0.14
Entropy 6.54 7.56 8.60 4.85 5.23 7.15 7.46 8.46 8.77 8.07

Figure 2.1A shows the probability distribution for the measurements and the

scatter plots for pairs of measurements in SET-10M. The diagonal plots correspond

to the probability densities, while the off diagonals contain the scatter plots for the

corresponding pairs. The plots provide some idea on the nature of the measurements,

and the potential dependence and/or correlation between them. Figure 2.1B shows

the distribution of the ratio of the given measurement to the head length. This

captures the traditional notion of “number of heads” in say height. (Here head length

is the distance on a straight line from the glabella to the rearmost point on the skull).
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Figure 2.1: Statistics of human metrology. Top (A): Scatter plots and probability
density for the 10 selected measurements; Bottom (B): Ratio plots: Distribution of the
number of head lengths contained in other measurements, namely stature, shoulder
breadth, and waist circumference.

2.3 Correlation in Human Metrology

Our goal is to build statistical models that can predict human metrology in the event

of severe occlusion, missing body parts, poor segmentation, or other problems. In

this work, we intend to follow the principle of Occam’s Razor, which suggests the

smallest model with minimum number of predictors. Unnecessary predictors will add

noise to the estimation. Too many predictors may introduce redundancy and lead

to multicollinearity, with added computational cost. Figure 2.1, however, shows that

most of the measurements on the human body could be highly correlated. Thus, we

need to study the potential correlation between the measurements, and see how this

could be used in model building.
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Significant correlation between human metrological features has been observed.

For example, a tall person is likely to have long arms, long feet, and long fingers.

However, previous gender prediction models [4, 153, 38, 69] do not explicitly consider

the association between the features in the feature vector. Clearly, incorporating in-

formation on the association or correlation structure between human measurements is

likely to lead to improved prediction performance. To better understand the interac-

tion among different metrological features, we use a specific statistical tool. The term

association should be considered as statistical dependence. We do not use the

Pearson correlation coefficient since the linearity between features is not guaranteed.

We also avoid the Chi-square goodness of fit test, since it requires prior knowledge

of the distribution of samples (Here, a sample is a single feature vector). Instead, we

use a non-parametric test which does not rely on any assumptions on the distribution

of samples. The Kendall’s tau rank correlation coefficient [87] is selected as our tool.

Let (x1, y1), . . . , (xn, yn) be a be a set of joint observations from two random

variables X and Y , respectively, such that all the values of xi and yi are unique. A

pair of observations (xi, yi) and (xj, yj) are said to be concordant if both xi < xj and

yi < yj or if both xi > xj and yi > yj. They are said to be discordant, if xi > xj and

yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant

nor discordant. Let nc and nd be the number of concordant and discordant pairs,

respectively. Then, the Kendall’s tau correlation coefficient is defined as follows:

τ =
nc − nd

1
2
n(n− 1)

. (2.1)

If X and Y are independent, the coefficient would be approximately zero. The coeffi-

cient is 1 for complete agreement between X and Y and -1 for complete disagreement.

Figure 2.2 shows the absolute values of pairwise Kendall’s tau coefficients for the 43

anthropometric measures in the CAESAR 1D database [1]. The features themselves

are listed in Table A.1. The warmer color denotes a higher correlation and the cooler
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color denotes a lower correlation. The figure shows that significant associations do ex-

ist between pairwise features. The average absolute coefficient value between features

varies from 0.13 to 0.51.
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Figure 2.2: A display of the absolute values of the pairwise Kendall’s tau coefficients
between the 43 anthropometric measures found in the CAESAR database.

We wish to incorporate this association structure into our prediction model in

order to boost its performance. Thus, a novel copula-based prediction system is

proposed later in this chapter.

2.4 Predictability in Human Metrology

2.4.1 Uncertainty in Metrology

To investigate the potential predictability of human metrological data, we can use the

uncertainty in body dimensions. The issue of uncertainty is related to two important

questions with respect to human metrology as a soft biometric, namely: inter-class

variability and intra-class variability. These are related to the predictability of such

metrological features, and their identification capacity or discriminative ability. That

is, given the measurements of the same body part from several people, how easily can
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we predict the given measurement for a specific individual? Essentially, this question

is related to the uniqueness of the individual measurements to a given person. Or,

if the measurement is not unique, how many categories of people can it distinguish?

Taken on an individual basis, single measurements may not be very discriminative.

But when considered jointly, they may provide a reliable tool for grouping people into

several defined categories, and hence a method for human identity profiling. Here, we

focus on the issue of predictability of human metrology. This is more closely related

to the inter-class variability than intra-class variability.

The variance of a random variable gives an idea of the uncertainty of the variable.

We could assess the inter-class variability of the individual measurements using the

coefficient of variability CV (X) and the coefficient of relative variability CRV (X),

two simple measures related to the variance. For a given random variable X , these

are defined as follows:

CV (X) =
σX
µX

; CRV (X) =
σX

max{Xi} −min{Xi}

Perhaps, a better approach for studying the uncertainty of a random variable is

by use of entropy. Let X = x1, x2...xn be a sequence, with symbols from an alphabet

A . The entropy of the sequence is defined as:

H(X) = −
|A |∑
i=1

p(σi) log p(σi),

where p(σi) is the probability of the i-th symbol in the alphabet, A . Given that

our measurements are continuous variables, we can consider the differential entropy,

rather than the discrete entropy. Let X be be a continuous random variable with

probability density function p(x), and support set Ω = {x|p(x) > 0}. Assuming the

integral exist, the differential entropy is then given by:
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h(X) = −
∫

Ω

p(x) loge p(x)dx.

For Gaussian variables this becomes,

h(X) = −
∫

Ω

p(x) loge(
1

σ
√

2π
exp(−(x− µ)2

2σ2
))dx

= −
∫

Ω

p(x)(loge(
1

σ
√

2π
)− (x− µ)2

2σ2
)dx

This can be evaluated to obtain: h(X) = log2(
√

2πeσ) bits.

Thus, for Gaussian random variables, the differential entropy becomes a simple

function of the variance. For most of the measurements on human body dimensions,

the distribution can be approximated as Gaussian, and hence, the above can be

applied to get an idea of the differential entropy. The joint entropy between two

random variables shows the joint uncertainty between the two variables. Like the

case of discrete entropy, we can define the joint differential entropy for two continuous

random variables X and Y , with joint probability density function p(x, y):

h(X, Y ) = −
∫

Ω

p(x, y) log p(x, y)dxdy

The conditional differential entropy is given by:

h(X|Y ) = −
∫

Ω

p(x, y) log p(x|y)dxdy = h(X, Y )− h(Y )

The mutual information between two random variables tells us how much informa-

tion one contains about the other. A high mutual information implies some relative
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redundancy between the variables. The mutual information is given by:

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy

Equivalently, we can write:

I(X;Y ) = h(X)− h(X|Y ) = h(X) + h(Y )− h(X, Y ).

The differential entropy provides an upper bound on the discrete entropy. The

difference depends on the quantization step size used for the discretization step. In

general, using a quantization step size q to convert a continuous variable to a discrete

counterpart, we have the following relation between the discrete entropy and the

differential entropy: H(X) + log q → h(X) as q → 0.

This is particularly important for practical considerations, for instance, in our

problem of human metrology. The probability distributions are likely to be quantized

to discrete values before the entropy is computed. It is easy to extend the discussion

on entropy of the measurements to higher order models, beyond the second order. De-

pending on the underlying distribution, some of the integrals involved may not exist.

However, for some special cases, it may be possible to obtain close form solutions for

some of the quantities. For instance, for multivariate normal variables X1, X2..., Xn,

with mean vector µ, covariance matrix Σ, and probability density function

p(x) = (
1

(
√

2π)n|Σ|1/2
) exp(−1

2
(x− µ)TΣ−1(x− µ))

where |Σ| denotes the determinant of matrix Σ. The differential entropy can be

evaluated to get h(X1, X2, ..., Xn) = 1
2

log(2πe)n|Σ| bits. This is important. First,

the Gaussian distribution provides an upper bound for differential entropy. Further,

with several measurements of the same body dimension from many people, if we can
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establish that their joint distribution can be approximated by a multivariate normal

distribution, we can then compute their differential entropy by considering mainly

their covariance matrix. The joint entropy then provides us with some idea on the

ability of the measurements in distinguishing people (or at least in grouping people),

since effectively, we will expect that about 2h(X1,X2,...,Xn) people could be distinguished

using the measurements directly. Table 2.1 showed the summary statistics on human

metrology, including CV, CRV, and discrete entropy, as captured in the CAESAR

dataset. Figure 2.3 shows the entropy plots using different number of bins. Waist

circumference (measure 9 in Table 2.1) has the highest entropy with higher number

of bins, followed closely by chest circumference (measure 3).

Figure 2.3: Entropy plots for the measurements in SET-10M.

Figure 2.4 shows the joint entropies (a) and the mutual information (b) between

each pair of the 43 measurements, respectively. We observe that while a few mea-

surements carry much information about others (high mutual information), most of

the measurements contain relatively small portions of information about each other.
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Figure 2.4: The joint entropies (a) and the mutual information (b) between each pair
of the 43 measurements using 64 × 64 bins.

2.4.2 Comparing Prediction Models

We first apply multiple linear regression to the CESAER data. The general form is

as follows: 

y1

y2

...

yn


=



1 X11 · · · X1p

1 X21 X2p

...
...

. . .
...

1 Xn1 · · · Xnp





β0

β1

...

βp


+



ε1

ε2

...

εn


where y is the response variable, X is the input variable (also called predictor

variable) matrix, β is the parameter vector, ε is the error term, n is sample size and

p is the number of parameters, excluding the constant term. Or more compactly:

y = Xβ + ε

The least-square estimators of the elements in the parameter vector are obtained

using the relation:

β̂ = (XTX)−1XTy
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Since gender is a categorical variable, a logistic regression model is used to predict

it separately.

To check the goodness of fit, R2 , the coefficient of determination is computed:

R2 = 1−
∑

i(ŷi − yi)2∑
i(yi − ȳi)2

where yi yield values in the range 0 ≤ R2 ≤ 1, and provide a measure of the

proportion of variability in the response variable that is accounted for by the ex-

planatory variables. We construct a family of prediction models, defined based on

the order of the model, the number of variables involved, and the specific way in

which the variables are combined. For a maximum order of 2, with a maximum of 2

predictor variables, this will lead to a family of 31 models, each member denoted with

a binary code. For example, we have the following codes for three example members

of the family:

2-predictor full model (Model # 31; code : 111111) :

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2

1-predictor full model (Model # 7; code : 110100) :

y = β0 + β1x1 + β11x
2
1

2-predictor, partial model (Model #27, code : 111001) :

y = β0 + β1x1 + β2x2 + β12x1x2

We found that Model #31, the 2-repdictor full model produced the overall best

results.
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2.4.3 Human Metrology Predictability Network

Suppose we have various measurements available, and need to predict one or more

other measurements, an important question is how we can choose the best subset

of the measurements to be involved in the prediction. This is related to the issue

of variable selection in pattern recognition [115]. Intuitively, we should choose the

subset whose members have maximum correlation with the unknown measurement

to be predicted, or one that minimizes the prediction error. Selecting the seed mea-

surements using the first approach based on correlation can be performed using the

correlation graph. To perform prediction for an unknown measurement, say Y , we

involve only the measurements that share some edge with Y in the correlation graph,

essentially the members in the subset: XCG = {X| − T < τXY < T}, where T is the

threshold and τXY is the Kendall’s tau correlation coefficient between X and Y .

The second approach would be to use the measurements that minimize the error

when used to predict the unknown measurement. For each measurement X , we use

the prediction models to perform an initial estimation, using the other measurements,

and record the error that resulted. We then construct a bipartite graph whereby one

set of nodes are for the predicted measurements, and the other for the predictors. An

edge between a predictor node (say X ) and a predicted node (say Y ) indicates that

the error from the prediction was less than a threshold.

We repeated the above using the 2-predictor model, and generated quite some

interesting networks. Figure 2.5 shows an example for a threshold of MAE ≤ 0.04.

The key observation is that, for almost any given measurement, there is a set of

pairs of other measurements that can predict it to within the error threshold. In

most cases, there are several such pairs. The network therefore captures the overall

predictability in human metrology. For most measurements, we need at most three

hops to reach a node that can predict them to within the specified error threshold.

Different thresholds will lead to different network configurations.
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Figure 2.5: Predictability network in human metrology. Diamonds correspond to
the predicted nodes; circular nodes denote pairs of measurements involved in the
prediction. Number in a circular node denotes the index of the measurement pair
involved. Results are for the 2-predictor model using a threshold of MAE≤ 0.04.

2.5 Copula-based Prediction Model

In this section, we introduce a novel copula-based prediction model on gender and

weight that is robust to heavy noise. The key characteristic of the model is the feature

representation. We intend to construct a new feature type that have the following

properties: (1) It contains association information between original features (in our

case, the measurements); (2) It can be fused with the original raw features, and can

be handled as well as the raw features, by further processors such as a SVM classifier;

(3) The new feature representation should be optimized towards the corresponding
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class; (4) It should be robust to possible errors in a realistic manner, so that the

improved accuracy from association information will not be affected by minor errors

in the measurements.

The process of constructing the new feature type is described in details in the

following sections.

2.5.1 Bayesian Framework

Inspired by Kwitt et al [93], we construct the new feature type based on the class-

conditional joint probability density. Let 1, . . . ,M be a set of classes, and p(r)

be the corresponding probability density function (pdf) for r = 1, . . . ,M . Let

z = (z1, . . . , zB) be the B-dimensional feature vector in which the features may be

dependent on each other. Assume that we are to classify a sample based on the

evidence provided by z. An optimal decision rule is to choose the class that is most

probable given observation z. Define a function g(z)→ 1, . . . ,M that maps z to one

of M classes. This decision rule can be formulated as a Bayes classifier [59]:

g(z) = arg max
r
p(r|z). (2.2)

However the posterior probability p(r|z) is usually hard to obtain. So, we consider

Bayes’ theorem:

p(r|z) =
p(z|r)p(r)
p(z)

. (2.3)

We may reasonably assume that each feature vector belongs to one and only one of

the M classes with equal prior probability p(r). Thus, by Bayes theorem, Eqn (2.2)

can be rewritten as a maximum likelihood (ML):

g(z) = arg max
r
p(z|r). (2.4)
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In practice, p(z|r) can be estimated from a collection of training samples z1, . . . , zn

from class r. Also, a classifier such as Support Vector Machine (SVM) can be used

in lieu of Eqn (2.4) as is done in this work.

2.5.2 Copula Modeling

Our next objective is to compute the class-conditional likelihood p(z|r). In this work,

we choose the copula model to construct p(z|r), which offers two advantages. Firstly,

the copula representation does not require explicit mathematical relations between

features, which are usually unknown in practice. Instead, it relies on the study of

marginal distributions of components in z, which are substantially easier to obtain in

practice. Secondly, the copula construction does not constrain the choice of marginal

distributions, so the model can be adapted to different feature spaces.

Consider B uniform random variables, u1, . . . , uB, where ui ∈ [0, 1] for i =

1, . . . , B. Let u = (u1, . . . , uB). A copula is defined as follows:

C(u1, . . . , uB) = Pr(U1 ≤ u1, . . . , UB ≤ uB). (2.5)

Thus, by Sklar’s theorem [58], given a B-dimensional random vector z = (z1, . . . , zB),

there exists a B-dimensional copula C such that:

C (F1(z1), . . . , FB(zB)) = F (z1, . . . , zB), (2.6)

where Fi(zi), i = 1, . . . , B are marginal cumulative distribution functions (cdfs):

Fi(zi) = Pr(Zi ≤ zi), and F (z1, . . . , zB) is the joint cdf . If F1, . . . , FB are given

and they are continuous and non decreasing, we have [106]:

C(u) = F
(
F−1

1 (u1), . . . , F−1
B (uB)

)
, (2.7)
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where F−1
i (ui) denotes the inverse cdf of Fi. Eqn (2.7) is an important property of

copulas that allows us to utilize the information about the marginals. Figure 2.6

and Figure 2.7 show the mapping from original data (Sitting Acromial Height and

Ankle Circumference) to the unit square copula scale using a kernel estimator of the

cumulative distribution function.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
y

Figure 2.6: The scatter plot with marginal distributios for Sitting Acromial Height
(x) and Ankle Circumference (y).
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Figure 2.7: Transformed data in Figure 2.6 to the copula scale using the estimated
cdf .

If the joint density f of F exists, it can be written as the product of the copula

density c and the marginal densities [106, 93]:
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f(z) =
∂BC(u)

∂z1 . . . ∂zB
=

∂BC(u)

∂u1 . . . ∂uB

B∏
i=1

∂ui
∂zi

= c(u)
B∏
i=1

pi(zi). (2.8)

Assuming that the class labels are provided in the training data (in our case,

gender labels), the class-conditional copula density c(u|r) can be easily calculated

from Eqn (2.8) and has the form:

c(u|r) =
f(z|r)∏B
i=1 pi(zi|r)

. (2.9)

With enough training samples for each class, in Eqn (2.9), f(z|r) and pi(zi|r) for

all i can be estimated from the corresponding training samples for each r. Thus, the

association structure between B dependent features for a given class r is converted

to a single variable c(u|r). We denote c(u|r) as our new feature and refer to this as

the CFeature (C for copula). In our proposed algorithm, we do not consider a single

association matrix. Rather, we deduce multiple association matrices corresponding

to pairs of features. Consequently, we have multiple CFeatures corresponding to

these pairs. To distinguish the set of original measurement features from the set of

CFeatures, the former is referred to as MFeatures (M for metrology or measurement).

In practice, computing c(u|r) involves the estimation of the copula parameter matrix

Λr, which is defined by the copula type that is chosen. There are several copula types

possible: Gaussian copula, student t copula and various Archimedean copulas (e.g.,

Clayton, Frank, and Gumbel). For example, an Archimedean copula with Clayton

generator is defined in Eqn (2.10), where ψ is the generator, ψ−1 is the generator

inverse, and θ ∈ (0,∞) is the only parameter. Since we consider pairwise associations,

we can note that C(u) has two components.
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C(u) = ψθ
[
ψ−1(u1), ψ−1(u2)

]
, (2.10)

ψ(t) = (1 + t)−1/θ,

ψ−1(t) = t−θ − 1.

2.5.3 Estimation of Parameters

The copula parameter matrix Λr in the copula model should be correctly estimated so

that the probability of misclassification error is minimized. We use the local maximum

likelihood estimation (MLE) method [93] to estimate this for each CFeature. Note

there are two types of parameters: marginal parameters and copula parameters. To

estimate these parameters, we can use a two-step procedure called the Inference

Functions for Margins (IFMs) method [2]. Consider a pair of distinct features denoted

by subscripts, i and j. For a given set of independent and identically distributed

(iid) training samples, z1 = (z1
i , z

1
j ), . . . , z

n = (zni , z
n
j ), i, j ∈ {1, 2, . . . B}, the marginal

parameters θ̂i and θ̂j are first estimated. In the second step, we transform zi and zj

to their corresponding cumulative marginals Fi and Fj using the probability integral

transform (PIT) [128] and estimate the copula parameter Λ using MLE [73]:

Λ̂r = arg max
Λr

n∑
t=1

log c
(
F (zti ; θ̂i), F (ztj; θ̂j)|Λr

)
. (2.11)

Although Sklar’s theorem shows that a copula function always exists, Eqn (2.11)

does not always have an explicit expression [93]. In practice, Λ̂ can be obtained from

the training data using Matlab’s copulafit routine.

If a test vector z ∈ r, the copula density c(u|r) should be high, otherwise it should

be low. For gender prediction, since there are only two classes, we have one CFeature

vector. We choose pairwise associations instead of higher dimensional associations
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due to the consideration of the curse of dimensionality and error propagation. In

practice, an “outlier” feature should not be associated with too many other features.

To further reduce the redundancy and error propagation, a d-prime method [18] is

used for feature selection:

d
′

k =
µmk − µ

f
k√[

(σmk )2 + (σfk )2
]
/2

, (2.12)

where
(
µmk , µ

f
k

)
and

(
σmk , σ

f
k

)
are the mean values and standard deviations of the

distributions of the k-th CFeature given male (m) and female (f) classes, respectively.

The d-prime value should be high when the two distributions are well separated. Only

those CFeatures that are well separated between the two classes are selected. We set

an empirical value d
′
= 0.2 for all CFeatures in our experiments. The same procedure

is used to select the CFeatures for weight prediction.

Our approach can be summarized in the following steps:

1. Input: Consider a set of training samples (feature vectors). Each sample is a

B-dimensional feature vector (MFeatures).

2. Estimation: We first select K pairwise features, using d-prime method, from

each training sample. Note that the maximum value of K is
(
B
2

)
. These pairs

are used to construct K bivariate copulas. The copula parameter matrices are

estimated for each class using the training set (see Eqn (2.11)). We represent

this as Λ̂r = λ̂r1, . . . , λ̂
r
K , r = 1, . . . ,M . (See below, the procedure for feature

selection to reduce dimensionality).

3. Transformation: Given a test sample that has to be classified, we transform it

into M − 1 K-dimensional CFeature vectors c(u|r), r = 1, . . . ,M − 1 using the

estimated parameter matrices (see Eqn (2.9)).
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4. Classification: We concatenate these (M−1) CFeatures with the original MFea-

tures and input the combined feature vector (MFeatures + CFeatures) to a SVM

(that has been trained using training samples) for classification.

2.6 Experiments

The CAESAR 1D database [1] contains 1119 male and 1250 female subjects, and

43 measurements for each subject, after removing missing data. It also contains

two major attributes which we considered as ground truths: gender and weight.

500 randomly selected males and 500 randomly selected females are included in the

training set and the rest are included in the test set. For statistical validation, the

experiment is repeated in a Leave-T -Out manner 50 times with replacement. Here

T is the size of the test set. For classification purpose, we use lib-SVM classifier [22]

with RBF kernel (Eqn 2.13):

Ker(v1, v2) = exp(−||v1 − v2||2

2γ2
), (2.13)

where v1 and v2 are the feature vectors, and γ is the width of the basis function. For

gender prediction, the parameters we used are C = 2000 for soft margin [33], and

γ = 0.0001 for the width of the basis function. For weight prediction, we used a

nu-SVR regression scheme with the default parameter setting from lib-SVM (C = 1,

γ = 1/d), where d is the number of features.

We separate the 43 measurements into two clusters: body cluster and head cluster.

The reason for such a separation is to investigate if the measurements in the body

cluster and head cluster can be independently used to predict soft biometrics, and

to determine their variability in prediction performance. In practice, one of them

may not be available. For instance, a webcam surveillance system may not be able
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to capture the face (head) information, prompting the use of body information for

prediction.

The features in the two clusters are non-overlapping (see Table A.1). That is, in

each cluster, there is no measurement containing information or partial information

from the other cluster. For the head cluster, the sitting height and sitting eye height

are further combined into a single measure calculated as (sitting height - sitting

eye height). As a result, we have 35 measurements in the body cluster and 6

measurements in the head cluster.

We first observe how the prediction performance without CFeatures is affected by

noise. Recalling that our features have been normalized to the range [0, 1], we use

a threshold R = 3∗StdDev to describe the Gaussian noise; this means 99.7% of the

noise value will be in the range (−R,R). We use 7 different R values: 0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6. In this representation, R = 0 means no noise is added and R = 0.6

means a large Gaussian noise, which could be up to 60% of the maximum feature

value or more, is added.

Figure 2.8 shows the results for gender prediction using MFeatures. Here, perfor-

mance is measured using the misclassification rate.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

Gaussian Noise Range (3*std.dev.)

M
is

cl
as

si
fic

at
io

n 
R

at
e

Gender

 

 

All
Body
Head

Figure 2.8: Misclassification rate (%) for gender prediction at various noise levels
using MFeatures.
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Figure 2.9 shows the results for weight prediction using MFeatures. The perfor-

mance is measured using the mean absolute error (MAE).
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Figure 2.9: MAE for weight prediction at various noise levels using MFeatures.

Now we consider the pairwise CFeatures. In this work, an Archimedean copula

with Clayton generator is used (Eqn (2.10)). Compared to the more complex student

t copula, using Archimedean copula is computationally more efficient with almost the

same classification performance. Compared to the Gaussian copula, the Archimedean

copula yields more stable results, since the normality assumption is not always sat-

isfied in practice. Based on the feature selection process described previously, the

approximate number of CFeatures selected for gender and weight prediction is de-

scribed in Table 2.2. The exact number varies depending upon the training set used.

The results for gender prediction using the copula model are shown in Figure 2.10.

Corresponding results for weight prediction are shown in Figure 2.11. The results

show that the CFeatures lead to a significant improvement in performance, especially

when the noise is severe. We can also observe that not every possible pair of features

are selected by the copula model (see Table 2.2)

To study the effect of the number of MFeatures in the copula model, we manually

divide the 43 MFeatures into 3 categories by their measurability ranks (Table A.1).

The rank 1 features are usually 1D measures and are larger compared to other fea-
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Table 2.2: The number of MFeatures and CFeatures (numbers may vary depending
on different iterations) selected by the proposed algorithm in our experiments.

All Body Head

Gender
#MFeatures 43 35 6
#CFeatures 169 165 3

Weight
#MFeatures 43 35 6
#CFeatures 220 194 2
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Figure 2.10: Gender prediction using: (a) all features; (b) body features only; (c)
head features only.

tures. These include measurements such as stature and shoulder breadth. They are

relatively easy to extract in practice. The rank 2 features are usually 2D measures

such as chest circumference or head circumference. The rank 3 features are usually

hard to extract automatically, such as hand circumference, triceps skinfold, or foot

length. There are 25 features in rank 1, 10 in rank 2 and 8 in rank 3. We first

randomly select 5 MFeatures from rank 1, and use the copula model to generate the

corresponding CFeatures which are then input to the SVM. Next, we randomly select

10 features from the set of rank 1 features. We repeat this (i.e., increment number of
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Figure 2.11: Weight prediction using: (a) all features; (b) body features only; (c)
head features only.

features in steps of 5) until all 25 rank 1 features are selected. The next 5 features

are then chosen from rank 2, until all 10 rank 2 features are selected. Each step

is repeated 100 times with replacement for cross validation. In this experiment, we

choose the first 500 males and 500 females in the database for training, and used

the rest for testing. We do not use rank 3 features in this experiment, since they

are usually difficult to automatically extract. Note that for every set of MFeatures

selected, the corresponding set of CFeatures are computed using the proposed algo-

rithm. Figure 2.12 shows the results under maximum noise (R = 0.6). We see that

the performance of the copula model is affected by the number of features, especially

for weight prediction. Although the copula model generally leads to a better perfor-

mance, the maximum difference in performance relative to the original measurements

(MFeatures) occurred when the number of MFeatures is moderate (between 10 to 25).
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Figure 2.12: The performance using the copula model (MFeatures + CFeatures) under
maximum noise: (a) gender; (b) weight. Notice the significant differences between
the two plots in each figure around the regions with number of MFeatures between
10 to 25
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Table 2.3: Comparison of recent studies on gender prediction

Data #Subjects Method Perf. Ref.

FERET 2,409 Raw Pixels+Adaboost 7.0% [7]
FERET 994 SIFT+Bayesian 16.3% [149]
LFW 7,443 LBP+Adaboost 5.6% [138]
MUCT 276 Facial Metrology 13.2% [18]
CAESAR 2,369 Metrology+Linear Reg. 9.0% [4]
CAESAR 2,369 Metrology+SVM 0.6% Proposed

2.7 Discussion

Due to the effectiveness of using copula to characterize the interaction between vari-

ables, our model combines the characteristics of copula and SVM to boost the gender

and weight prediction performance on contaminated data. The results show that the

body measurements (without head measurements) can provide comparable perfor-

mance when using all the measures, including head measurements. The head cluster

has lower performance, which is reasonable, since it only contains 6 features. When

predicting with no noise or errors, we obtained a 0.63% misclassification rate for gen-

der using all measures, a 0.93% error rate using only the body cluster, and a 12.6%

error rate using only the head cluster. The above results are based on MFeatures

only. Table 2.3 shows a comparison with other recent studies on gender prediction.

Compared to previous work, precisely measured full body metrology (with no error

or noise) provides a significant performance improvement in gender prediction.

For weight prediction, we have a 0.0108 mean absolute error (MAE) using all mea-

sures, a 0.0110 MAE using only body cluster and a 0.0719 MAE using head cluster

only. To our knowledge, very little prior work has been done on automated weight

prediction. One related work by Velardo and Dugelay [153] showed a 5%∼10% error

rate on weight estimation, using 7 measurements from the NHANES [57] database.

Adjeroh et al’s work [4] showed a 0.028 MAE using all measures. Table 2.4 sum-
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Table 2.4: Comparison of recent studies on weight prediction

Data #Subjects Method Perf. Ref.

NHANES+Self-made dataset 28,000 Metrology+Linear Reg. 5%∼10% [153]
CAESAR 2,369 Metrology+Linear Reg. 0.028 MAE [4]
CAESAR 2,369 Metrology+SVM 0.0108 MAE Ours

marizes these results on weight prediction. However, the impact of noise was not

systematically considered in these previous studies.

The benefit of using the copula model is rather evident. Our study shows that the

impact of Gaussian noise is moderate, even under severe contamination. Note that

for the head cluster, the performance drops faster than the others: gender prediction

drops by 13.11% from the no-noise case to the highest noise case. Compared to the

head cluster, the body cluster shows a 9.04% drop in gender prediction, while using

all-measures shows an 8.48% drop in gender prediction. This implies that the extra

information provided by the association structure compensates for the effect of noise

in the measurements.

Ignoring the minor fluctuations due to randomness, the results show that using the

CFeatures has a positive impact, especially when the test set is severely contaminated.

Among the three clusters, the impact of CFeatures is most obvious when using the

head cluster (which has the least number of features). In our study, the Gaussian

noise is “evenly” assigned to all test features. Under this condition, one can argue

that the class-conditional probability density is unlikely to result in incorrect class

prediction unless both features are significantly shifted in the same “direction” into

an adjacent class due to noise. This property makes CFeatures less sensitive to noise

than MFeatures. If the error bound for certain measures are known, we could pair

features having low error bounds with features having high error bounds, so that the

impact of error can be further mitigated. This issue warrants a more careful further

study.

40



Chapter 3

Face Metrology for Classification1

In this chapter, we investigate the question of whether face metrology can be solely

used for gender classification. A full automated prediction model is developed and

the comparative performance is demonstrated.

3.1 Introduction

There are a number of studies that suggest significant variations in facial features

among genders and/or ethnic groups. Farkas et al. [52] report that, compared to

North American whites, Singaporean Chinese, Vietnamese and Thais have a wider

mandible in both males and females. Turkish males and females have greater biocular

width. Asian groups have wider nose width in both genders. Their study also showed

some evidence of differences between gender for a given ethnic group. For example,

the face width of Iranians and Turks was found to be similar to those of North Amer-

ican whites in males only. Greek females have greater nose height. Face width was

similar for North American caucasians and Singaporean Chinese females; however in

Singaporean Chinese males the face width was wider. Ibrahimagić-S̆eper et al. [77]

1Part of the work reported in this chapter has been published in the following paper: Deng Cao,
Cunjian Chen, Marco Piccirilli, Donald Adjeroh, Thirimachos Bourlai, and Arun Ross. Can facial
metrology predict gender? In IJCB, 2011.
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reported that male and females are significantly different in various anthropomet-

ric dimensions such as Frontotemporal-Frontotemporal width, Gonion-Gonion width,

Zygion-Zygion width and Trichion-Gnathion length. That is, males have larger face

dimensions than females. Note that, for the purpose of this study, the subjects were

sampled from a population of Zenica in Bosnia and Herzegovina. Osunwoke et al.

[119] reported 7 facial dimensions that are significantly different between gender for

Bini adults in Nigeria. These dimensions include face length and width, nose length

and width, bigonial breath, lip width and menton-subnasal length. Zhuang et al.

[167] proposed a multivariate analysis method to investigate possible anthropometric

differences among gender, ethnicity, and age groups using 18 facial measurements,

including height, weight and neck circumference, collected using traditional anthro-

pometric techniques. Their results showed statistically significant differences in facial

anthropometric dimensions between males and females.

Ferrario et al. [55] considered a database of images with 51 females and 57 males.

The subjects were all young white Caucasian dental students aged 20-27. Twelve (12)

anatomical landmarks are directly traced on the face of each subject with a black eye-

pencil, then all subjects are photographed with a standardized technique for frontal

views of the face. After that, a set of 22 standardized points (manual landmarks) is

traced on all images by the same operator. Even though gender classification was not

the main objective of the study, the paper showed that a global facial shape difference

exists between the genders. For example, the male faces tend to be generally more

rectangular, while the female faces tend to be more square-like.
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3.2 Related Work

Humans perceive gender not only based on the face, but also on the surrounding

context such as hair, clothing and skin tone [96, 19], gait [95] and body [19, 4].

Below, we provide a review on gender classification using face images.

The problem of gender classification based on human faces has been extensively

studied in the literature [114, 7]. There are two popular classifiers. The first was pro-

posed by Moghaddam et al. [114] where a Support Vector Machine (SVM) is utilized

for gender classification based on thumbnail face images. The second was presented

by Baluja et al. [7] who applied the Adaboost algorithm for gender classification.

Recently, due to the popularity of LBP in face recognition applications [5], Yang et

al. [162] used LBP histogram features for gender feature representation and the Ad-

aboost algorithm to learn the best local features for classification. Experiments were

performed to predict age, gender and ethnicity from face images. A similar approach

was earlier proposed in [146]. Other local descriptors have also been adopted for

gender classification. Wang et al. [154] proposed a gender recognition method us-

ing Scale Invariant Feature Transform (SIFT) descriptors and shape contexts. Once

again, Adaboost was used to select features from the SIFT and shape descriptors

and form a strong classifier. A recent overview on the topic of gender classification

from face images can be found in [104]. Among appearance-based descriptors that

encode gender information such as LBP [146], SIFT [149] and HOG [19], the LBP has

been observed to exhibit better discrimination capability while maintaining simplicity

[104].

Geometry features have also been used as a priori knowledge to help improve

classification performance [133, 161]. Gao and Ai [62] performed face-based gender

classification on consumer images acquired from a multi-ethnic face database. To

overcome the non-uniformity of pose, expression, and illumination changes, they pro-

posed the use of Active Shape Model (ASM) to normalize facial texture. The work
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concluded that the inclusion of ethnic labels can help improve gender classification

accuracy in a multiethnic environment.

There are a few approaches focused explicitly and solely on facial metrology as

a means for gender classification. Fellous [54] investigated the gender classification

problem using a set of 109 frontal images from 52 females and 57 males selected from

the ARPA/ARL and FERET databases. Each image has 256 × 256 pixels with 255

gray levels. 40 landmarks are manually extracted from each face image. Based on

these landmarks, 24 horizontal and vertical distances were calculated. Metric infor-

mation from the distances is used for gender classification and yielded a 90% accuracy

on a test set consisting of 57 images from 26 females and 31 males. Based on these

studies, one may be tempted to argue that gender information is embedded in the

landmark coordinates. Given the above results, one can pose a related question: do

pseudo-landmarks also contain reliable information about gender? In fact, pseudo-

landmarks are often used for registration purposes [9] in traditional face recognition.

The location of pesudo-landmarks may vary from user to user, or may vary in each

acquisition by the same observer. Thus, it is possible that pseudo-landmarks may

not be discriminative enough to clearly distinguish between gender. Burton et al.

[17] used an image data set with 91 male and 88 female faces, and computed various

geometric distances and ratios using key points in the images, including 3D distances

derived by a combination of full-face and profile images and used a discriminant func-

tion for performing gender classification. The method however could not approach

human performance in gender discrimination. In a similar work, Edelman et al. [46]

attempted to use neural networks and facial subregions for gender classification. Their

method achieved an accuracy of 66 - 78% on a database of 160 facial images (80 male,

80 female).

In our work, we take a more comprehensive look at the explicit use of facial ge-

ometry in solving the problem of gender classification. We use solely metrological
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information based on landmarks, which may or may not have an anatomical under-

pinning. In our approach, a combination of local information from a few landmarks is

used, rather than holistic information from all landmarks. To establish a base-line for

comparison with appearance-based methods, we use LBP in combination with SVM

to predict gender from face images.

We only consider face classification problems in this chapter. General face recog-

nition techniques are reviewed in [166, 165]. We consider our work to be more closely

related to earlier research by Shi et al. [141, 142] on face recognition using geometric

features, where they used ratio features computed from a few anatomical landmarks.

3.3 Facial Landmark Categories

Following Shi et al.[142], we can divide facial landmarks into three broad categories:

Type 1: anatomical landmarks; Type 2: manual image-based landmarks; and Type 3:

automatic landmarks. Face based anatomical landmarks are biologically meaningful

points defined as standard reference points on a human face or human head. They can

be located by careful inspection and palpation, and can be traced on the skin using

eye-pencils [55]. Thus, Type 1 landmarks involve face-based physical measurements

or markers on a real face using specialized measuring devices, such as tapes and

calipers. While they tend to be more abstract than other features of the skull (such

as protuberances or lines), anatomical landmarks are considered very important in

various scientific fields including cosmetic surgery, anthropology, and forensics [53,

51]. However, the main issue with the anatomical landmarks is that their manual

extraction requires expertise and subject cooperation. Furthermore, the number of

anatomical landmarks that can be extracted from a human face is rather limited.

Thus, the exclusive use of anatomical landmarks in face recognition is not usually

recommended.
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Type 2 landmarks are landmarks manually extracted from 2D face images, or 3D

face data. Measurements on these landmarks are not necessarily performed directly

using tapes and calipers on the human body. They are marked according to cer-

tain physical properties of a human face, such as the contour of the face, eyebrows,

mouth, etc. Compared to Type 1 landmarks, there are several factors that can lead

to additional errors in detecting Type 2 landmarks. Typical examples include face

distortion, pose, illumination, expression, and observer differences in manually local-

izing these landmarks. Even for the same face image, there could be variations if

landmark annotation is repeated multiple times by the same observer, or recorded

by different observers. Given these problems, Type 2 landmarks are generally less

accurate and less consistent than Type 1 landmarks.

Type 3 landmarks are landmarks obtained by automatic techniques, using geo-

metrical or mathematical properties of face images, such as extrema points and edges,

or through the use of certain machine learning algorithms, such as ASM [30]. To the

best of our knowledge, automatic landmarks are currently not as accurate as manual

landmarks [111], and at times could have significant location errors. In computer

vision research, manual landmarks are often considered as baseline ground truths for

evaluating the precision of automatic landmarks.

Collectively, we refer to Type 2 and Type 3 landmarks as pseudo-landmarks, since

their locations may not necessarily coincide with those of anatomical landmarks. Most

landmarks used in computer vision are, however, pseudo-landmarks. Compared to

anatomical landmarks, they are either already available in the database (for example,

XM2VTS database [108] and MUCT database [110] contain 2D face images with

manually annotated landmark points), or can be acquired using automatic detection

or manual annotation.
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3.4 Benefits of Facial Metrology

There are many advantages to the use of facial metrology. These include (i) Memory

Management: compared to texture-based information from face images, landmarks

require much less storage space, since we only need to store the coordinates of a lim-

ited number (∼ 102) of landmarks; (ii) Information Privacy: unlike the full face im-

age, landmark information can be safely stored, transported, and distributed without

potential violation of human privacy and confidentiality; (iii) Prediction of Missing

Information: topological features (face coordinates) can be either global or local to

specific facial regions. Thus, missing information can be approximately predicted, for

example, using statistical approaches [4]; (iv) Law Enforcement: useful information

from facial metrology could be used as forensic evidence in a court of law, where

admissibility of quantifiable evidence is a major consideration.

3.5 Gender Classification via Facial Metrology

3.5.1 Facial Landmarks in Databases

Since our work on facial metrology is based on facial landmarks, two well-known

databases with manually annotated landmarks were used, viz., MUCT [110] and

XM2VTS [108]. The definition of the landmarks in MUCT is similar to the one

used in XM2VTS, but face images in MUCT have 8 extra landmarks in the ocular

region. For each subject in each database, only the first frontal face image and the

corresponding landmark information were used for each subject. Figure 3.1 shows

two sample faces with numbered landmarks, one from each database. The numbering

system used in XM2VTS is the same as that of MUCT, except for the set of extra

landmarks used in MUCT (i.e.,#69 - #76). More details on the databases can be

found in the section on experiments.
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(a) (b)

Figure 3.1: Sample faces with numbered manual landmarks from XM2VTS (a) and
MUCT (b)

We first consider the spatial distribution of facial landmarks in the images in

the databases. Such a distribution could shed some light on the potential of using

landmarks for gender classification. Let n be the number of landmarks for each face.

The k-th face F k can be represented as a vector,

F k = (xk1, y
k
1), (xk1, y

k
1), . . . , (xki , y

k
i ), . . . , (xkn, y

k
n) (3.1)

where (xki , y
k
i ) is the Cartesian coordinate of the i-th landmark of F k, k =

1, 2, . . . ,M , M is the number of faces.

Active appearance models (AAM) [107] can be used to automatically localize the

facial landmarks. AAM imposes linear constrains on shape variation, and so an input

face (or shape) can be represented as the linear combination of N base faces,

F = F0 +
N∑
i=1

piFi. (3.2)
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Here, F0 is the mean face, Fi is the ith base face, and pi is the corresponding weight

vector for this face. The texture is defined as the pixel intensities that are within the

shape boundary. It can be defined as a vector of intensities A(x):

A(x) = A0(x) +
N∑
i=1

λiAi(x), (3.3)

where A0(x) is the mean texture and Ai(x) is the ith texture vector.

Unlike AAM, ASM seeks to only match the positions of the feature points, al-

though some models may incorporate the texture information as well. Such a model

is usually referred to as constrained AAM. The AAM fitting problem is usually defined

by a cost function, which tries to minimize the following:

r(p) = [Ai(x)− A0(x)]T [Ai(x)− A0(x)] , (3.4)

where, p are the parameters of the model, Ai is the ith texture vector and A0 is

the mean texture. This classical optimization problem can be solved in an iterative

manner. Matthews and Bakers [107] proposed a popular AAM fitting method within

the framework of the Lucas-Kanade algorithm [99]. But it cannot generalize well on

previously unseen subjects. Usually, the face detector is invoked first to provide a

coarse location for the initialization of ASM, then the model would iteratively fit the

face image until the convergence condition is satisfied.

In this work, we use the STASM library [111] for ASM fitting. Thus, we obtain

automatic landmarks from MUCT and XM2VTS visible spectrum databases, and

from WVUM Multispectral database [157]. Currently, the localization of feature

points using ASM is not accurate for face images with large pose changes. Since

our study is mainly constrained to near-frontal face images, the ASM is observed to

localize features with good accuracy.
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The illumination condition in the image may also affect the results of automatic

landmark extraction. Several image pre-processing methods can be used to improve

the image quality before automatic landmark extraction [140, 86]. However, these pre-

processing techniques are not used for metrology-based features in this study, since our

experimental analysis suggests that the quality of images is sufficient for automatic

landmark extraction. However, before using the LBP method (for appearance-based

gender recognition), histogram equalization was used to enhance the image contrast

in the spatial domain.

3.5.2 Alignment and Normalization

The raw landmark coordinates are sensitive to translation, scaling, and 2D rotation

caused by changes in the position and orientation of the camera, or of the subject (see

Figure 3.2(a)). Thus, it is necessary to accurately detect the face [13] and pre-align it

prior to landmark extraction. Alignment is done by applying an affine transformation

to each face image, which moves the origin to the midpoint between the pupils, and

rotates the image so that the line connecting the two pupils aligns with the horizontal

axis. Also, the variation caused by scaling or distance to the camera is reduced by

using the inter-eye distance as a reference measure (see Figure 3.2(b)).

After alignment, we determine if there are any significant difference in landmark

distribution between genders. To this end, we first normalize each landmark Lki =

(xki , y
k
i ) as follows:

x̂ki = µ(xi) + α

(
xki − µ(xi)

σ(xi)

)
(3.5)

ŷki = µ(yi) + α

(
yki − µ(yi)

σ(yi)

)
(3.6)

where α is a constant, (µ(xi), σ(xi)) and (µ(yi), σ(yi)) are the mean and standard-

deviation of the i-th landmark for the x and y coordinates, respectively.

50



Figure 3.2 shows the resulting landmark distribution. The analysis is based on

faces images in the XM2VTS database. Red crosses and red circles indicate the av-

erage landmark position across individuals for male subjects and female subjects,

respectively. The blue and green scatter points are normalized landmark coordinates

for each individual, with blue indicating male and green indicating female. As Fig-

ure 3.2 shows, some landmarks are significantly different between male and female

subjects, while others do not exhibit much difference. Those normalized landmark

positions with more separation between the male and female subjects are likely to lead

to a better gender classification performance. We observe that when α = 5, the nor-

malization does not significantly affect the landmark distribution (see Figure 3.2(c)).

As we reduce the value of α (e.g. at α = 1), the male and female distributions start

to become more clearly separated (see Figure 3.2(d)). At α = 0, the results will

correspond to the spatial distribution of landmarks for the average male face and the

average female face (see Figure 3.2(e)).

3.5.3 Metrological Features

There are different ways to utilize the landmark information. We cannot directly use

the landmark coordinates, since they will be sensitive to translation, scaling, and 2D

rotation of face images. One could consider all distance ratios defined by sets of four

landmarks, or triangular features defined by any three non-collinear landmarks [142].

The issue here is computational complexity. The dimensionality of the feature space

will be Θ(n4) for complete distance ratios, and Θ(n3) for landmark triplets, where n

is the number of landmarks. An alternative is to consider simple Minkowski distances

between two arbitrary landmarks Lki = (xki , y
k
i ) and Lkj = (xkj , y

k
j ), given by:

Dk
ij =

(
(xki − xkj )p + (yki − ykj )p

) 1
p , (3.7)
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Figure 3.2: Spatial landmark distribution for the faces in XM2VTS database where x
axis and y axis indicate the spatial coordinates. The red cross and red circle indicate
average landmark positions across individual male and female subjects, respectively.
The blue and green scatter points are normalized landmark coordinates for each
individual: blue for male, green for female. (a): Without alignment; (b): After
alignment; (c)-(e): After alignment and normalization, i.e. using α=5 (c), using α=1
(d), and using α=0 (e).
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where p is the distance parameter. For a given p, the number of distances is thus Θ(n2

). In this work we have considered the Euclidean distance (p = 2). The distances

can be easily normalized to be scale-invariant by a reliable measure, such as inter-

eye distance. The resulting ratios are also invariant to translation and 2D rotation.

However, using only distance measures may not be reliable, since the orientation of

the distances may be significant as well. For example, two individuals may have the

same distance from the tip of the nose to the pupil, although one may have a longer

face and the other may have more widely separated eyes. To improve the reliability

of the features, we also use the horizontal angle subtended by each distance vector.

The horizontal angle Akij is computed from the pair-wise landmark coordinates:

Akij = tan−1

(
yki − ykj
xki − xkj

)
(3.8)

3.5.4 Entropy Analysis

In order to assess the usefulness of individual landmark points, we appeal to the

notion of measurement entropy. The entropy of a random variable X = {x1, x2, ...xn}

with a probability mass function p(x) is defined as

H(X) = −
n∑
i=1

p(xi) log2 p(xi). (3.9)

The joint entropy of a pair of random variables X = {x1, x2, ...xn} and Y =

{y1, y2, ...ym} with a joint distribution p(x, y) is defined by

H(X, Y ) = −
n∑
i=1

m∑
j=1

p(xi, yj) log2 p(xi, yj). (3.10)

The probability distributions are typically quantized to discrete values (bins) be-

fore the entropy is computed. In this work, we use 256 × 256 bins to compute the
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Table 3.1: Summary statistics on the entropy (in bits) of landmark coordinates (C),
entropy of Euclidean distances (D), entropy of horizontal angles (A), and joint entropy
of distances and angels (DA).

Database MUCT XM2VTS

Entropy C D A DA C D A DA
Mean 7.997 6.646 6.137 7.979 8.119 6.818 6.377 8.115
Max 8.065 7.123 7.065 8.072 8.149 7.160 7.154 8.170
Min 7.136 4.346 1.733 6.013 7.657 5.834 1.986 6.588
Std 0.143 0.300 0.950 0.125 0.081 0.119 0.860 0.065

joint entropy of pairwise landmark points, 256 bins to compute the entropy of Eu-

clidean distances and the entropy of horizontal angles, and 256×256 bins to compute

the joint entropy of distances and angles. The results (see Table 3.1) show that the

entropy (in bits) associated with landmark coordinates is quite high, indicating that

the landmark coordinates, or information derived from the coordinates could be the

basis for discriminating between individuals, or groups of individuals. However, we

may reasonably assume that the information also includes variations and possible

perturbations caused by minor changes in pose, camera position, or expression, or

by inconsistencies in localizing the landmark coordinates. These undesired effects are

partially neutralized by transforming the landmark coordinates into Euclidean dis-

tances and horizontal angles. We notice that the average entropy of landmark coor-

dinates is larger than that of distance, or angles, when treated individually. However,

it is not larger than their sum, implying that the angles and the distances are perhaps

capturing different types of discriminative information.

Figure 3.3(a)∼3.3(f) show the joint entropies (H), the mutual information (I) and

the absolute values of pairwise Kendall’s tau coefficients (τ) for the x-coordinates

and y-coordinates of the 76 manual landmarks in MUCT database, respectively. The

results show quit high entropy levels and moderate mutual information. We also

observe that the landmarks on face contour have relatively high correlation with the

landmarks in mouth region. Also the landmarks in mouth region have relatively high

correlation with each other. This might be caused by subjects’ expression (neutral

54



or smile). Notice that all subjects have the same y-coordinates for the pupils due to

the alignment.

3.5.5 Feature Ranking and Selection

One problem in using the distances is the amount of computations involved. Using all

pair-wise distances will lead to a very high dimensional feature space. For example,

there are 5,700 features (distances and angles) for the MUCT database. Another

problem is that the distance and angle measures may not always be robust. Some

features may not be useful for gender discrimination and some others may be sensitive

to errors caused by inconsistent landmark positions. Performance is expected to be

compromised if such features are not removed or their impact is minimized.

To handle these issues, we apply a simple, yet efficient and robust (to outliers),

d-prime-like scheme to rank the distances by their discrimination capabilities. For

each pair-wise distance, across all the faces in our training set (see Section 3.7), we

compute the d-prime as follows:

d
′

ij =
µ(DM

ij )− µ(DF
ij)√

([σ(DM
ij )]2 + [σ(DF

ij)]
2)/2

(3.11)

where
(
µ(DM

ij ), µ(DF
ij)
)

and
(
σ(DM

ij ), σ(DF
ij)
)

are the mean values and standard

deviations of the distance distributions between landmarks i and j, respectively, and

M and F denote the gender. Similarly, we compute the d-prime-like value for each

angular measurement. If the two distributions are well separated, the d-prime value

should be relatively high. Otherwise, the measure results in a high inter-class error

and should not be considered as a useful feature. The measures are then ranked in

decreasing order based on their d-prime values, which corresponds to a decreasing

order in their gender discrimination ability. Figure 3.4 shows two sample faces anno-

tated with the Top-20 ranked Euclidean distances and horizontal angels (the angels
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Figure 3.3: The joint entropies (H), the mutual information (I) and the absolute values
of pairwise Kendall’s tau coefficients (τ) for the x-coordinates and y-coordinates of
the 76 manual landmarks in MUCT database.
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are represented by their corresponding distances). Our results show that only a few

(generally less than one hundred) top-ranked features are needed for gender discrim-

ination purposes. Note that the specific d-prime ranking for a given measurement

could vary from database to database. However, the general trend is similar when

both datasets are used (see also Table 3.2 in Section 3.7.3).

(a) (b)

Figure 3.4: Metrological features ranked by their discrimination abilities (Eqn (3.11).
(a) Top 20 pairwise distances; (b) Top 20 horizontal angels. Sample faces are from
the XM2VTS database. Numbers on the edges indicate the d-prime ranking.

3.5.6 SVM Classifier

We tested and compared results using three classifiers: support vector machine

(SVM), k-nearest neighbor (KNN) and logistic models. We chose SVM for its su-

perior performance and speed. For the SVM, we used the Gaussian radial basis

function as the kernel:

K(u, v) = exp(−||u− v||
2

2γ2
) (3.12)

where u and v are the feature vectors, and γ is the width of the basis function. We

set γ=2. The SVM soft margin parameter C [33] is set to be 10.
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The experimental results suggest that among the thousands of metrology-based

features, only a few top-ranked features are significant for gender classification. How-

ever, the optimal number of features depends on the size and quality of the given

database. More measures may not necessarily improve gender classification perfor-

mance. Instead, too many measures may introduce more noise thereby compromising

the performance (see Figure 3.7 in Section 3.7 on experimental results).

3.6 Gender classification via Appearance

To compare our results with state-of-the-art approaches, the use of appearance-based

models for gender recognition was considered. In particular, we applied the LBP

operator on the same datasets as we used for the study of metrological features. The

basic LBP descriptor encodes micro-patterns of an image by thresholding 3×3 neigh-

borhoods based on the value of the center pixel and then transforming the converted

binary pattern sequence into a decimal value. It can be extended to accommodate

neighborhoods of different sizes to capture textures at multiple scales [118].

To utilize LBP method for the extraction of gender features from facial images, the

input image is first divided into non-overlapping blocks. Then, the spatial histogram

features from each block is calculated and concatenated to form a global descriptor.

Here, the LBP operator is denoted as LBP u2

P,R, where P refers to the number of equally

spaced points placed on a circle with radius R and u2 represents the uniform concept,

which accounts for most of the patterns observed in the experiment. For instance,

11001111 is considered to be a uniform pattern since it contains no more than 2-

bitwise transitions (1 to 0 and 0 to 1). When computing LBP histograms, every

uniform pattern has a separate bin (58 bins in total) and all the other non-uniform

patterns together have a single bin. In our experiments, the LBP u2

8,2 descriptor is

used. The image is resized to 126× 90, with each block consisting of 18× 15 pixels.
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The total number of blocks is, therefore, 7× 6 = 42. For each block, we use LBP to

extract 59 bin features, leading to a 2478-dimensional feature vector (see Figure 3.5).

In order to handle lighting variations, histogram equalization is applied to reduce the

illumination variation.

Block Division Histogram Representation

Figure 3.5: LBP gender feature representation. The face image is from MUCT
database [110].

To design the gender classifier (i.e., predictor), we used the SVM. The SVM classi-

fier is trained using a training set of labeled face images. The test sample is classified

according to the sign of y(s),

y(s) = wTφ(s) + b, (3.13)

where φ(s) denotes the transformation of the original feature-space and b is the bias.

w is the normal vector and determines the orientation of the hyper plane which is

generated during SVM training. For classification, we use the histogram intersection

kernel:

k(x, y) =
n∑
i=1

min(xi, yi), (3.14)

where xi and yi are the ith histogram bin for the feature vectors of x and y. The

histogram intersection kernel was observed to be much more effective for classification

than the linear or the RBF kernel when the LBP histogram features were used as

input. Therefore, it is adopted in our appearance-based gender classification scheme.
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3.7 Experiments

3.7.1 Datasets and Setup

The MUCT hand-marked face database with facial landmarks [110] was created by

researchers to generate data exhibiting diversity in pose, illumination, age, and eth-

nicity. We use 276 subjects from Category-A, consisting of 131 males and 145 females.

The first sample of each subject (the near-frontal face) is selected and used in our

experiments. Therefore, a total of 276 samples is used. The spatial resolution of raw

images is 480 × 640 pixels. Since the landmark positions for the eyes are provided,

for the appearance-based LBP method, the images are normalized and aligned based

on eye coordinates [42]. Further, for the LBP method, histogram equalization pre-

processing is used to reduce the effect of illumination. The final cropped image size

is set to be 130 × 150. For the LBP method, the images were resized to 126 × 90.

Sample images (before and after normalization) are shown in Figure 3.6.

Figure 3.6: Sample images from the MUCT database. Face images in the bottom row
correspond to the cropped and geometrically normalized images, after face detection
on the top row images.

The XM2VTS database [108] has 295 subjects. Each subject has one sample

selected. There are 160 males and 135 females. Similar to the MUCT samples, the

size of the cropped sample images is also 130× 150.
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To perform gender classification on the MUCT database, we randomly selected

50 males and 50 females for training. The remaining 176 samples were reserved for

testing. This partitioning exercise was repeated 50 times without replacement. For

XM2VTS, the same experimental design was applied, except the total number of test

samples in this case was 195.

For the metrology-based approach, the d-prime-like feature ranking is applied

separately on both the distance measures and the angle measures. Thus, we use both

top-ranked distances and top-ranked angles for the analysis.

3.7.2 Performance of Facial Metrology

Figure 3.7 shows the performance of the metrology-based method for gender classifi-

cation, using the proposed metrology-based features from facial landmarks. The per-

formance using distances and angles separately varied somewhat with the database.

In most cases, the performance on MUCT database is slightly better than that on

XM2VTS. Further, the distance measures performed generally better than the an-

gle measures. However, fusing the distance and angle measures at the feature level

generally improved classification performance, especially when the feature space is

small (less than 80 features). We observe that the metrology-based system can pro-

vide good results with only a few landmarks (around 10), suggesting that there is a

possibility of using a lower-dimensional space, and hence lower computational cost.

However, the experimental results did not indicate whether there exists an optimal

number or combination of features. Since a large feature space will not necessarily

lead to superior performance, we selected only the Top-10 ranked distances and the

Top-10 ranked angles for subsequent experiments 2.

2Ranking was performed based only on the d-prime formulation. Performance could be further
improved using standard feature selection methods, such as sequential forward (or backward) feature
selection [83, 126]. We did not apply any standard feature selection schemes for determining the
optimal set of features. Such an experiment maybe conducted in the future.
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Figure 3.7: Performance comparison using the Top 1-100 angles, Top 1-100 distances
and their fusion (2-200 features) in gender classification.

3.7.3 Landmark Discrimination Ability

The discussion so far has focused on the distance between pairs of landmarks, or

the angles formed by such distance vectors. We also evaluated the discrimination

capability of the individual landmarks. While we expect a landmark with a high dis-

crimination ability to be involved in distance or angle measures with an equally high

discrimination ability, this may not always be the case. An evaluation of the discrim-

ination ability of individual landmarks is important in identifying landmarks that are

major determinants of performance in a metrology-based method. Such landmarks

can then become the focus of a more concerted effort at automated landmark detec-

tion. Consider the distances between landmark pairs as a matrix. To determine the

discrimination ability of a single landmark, we simply compute the average d-prime

value between that landmark and all the other landmarks. For the i-th landmark Li,

we have:

d
′

i =
1

N − 1

∑
j 6=i

d
′

ij. (3.15)

We call d
′
i the marginal d-prime. We calculated the marginal d-prime values for

distances and for angles separately.
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Table 3.2 shows the Top-20 landmarks, ranked by their discrimination capability,

as determined by their marginal d-prime values. Figure 3.8 shows an annotated view

of the discrimination capability of the landmarks and their approximate regions on

the face. Our results indicate that from a distance-based perspective, the landmarks

on the face contour are crucial for gender classification. This is an important ob-

servation, especially given the original distribution of the landmarks on the face, as

was shown in Figure 3.2. The landmarks in the eye region tend to have a low dis-

crimination capability, perhaps due to the effect of the eyelids. The discrimination

capability of landmarks in the nose region varied with different databases, probably

due to the inconsistency in the annotation process. The landmarks in the mouth

region also showed a low discrimination capability, because their positions are sensi-

tive to the significant variability due to mouth expression. Overall, the top-ranking

distances (with higher gender-discrimination ability) tended to be vertically-oriented

measurements. Similar observations were reported in [55].

The angle-based marginal d-prime values are generally low, but they can still help

in improving the gender recognition performance, as was shown in Figure 3.7. For

the angular measurements, the landmarks on the face contour and in the eye region

seem to be more significant than landmarks in other facial regions for the problem of

facial metrology-based gender classification.

3.7.4 Comparative Performance

The experimental results show that facial metrology do have the potential to discrim-

inate between genders. To place the results of the facial metrology-based approach in

context, we compared it with the results obtained using an appearance-based method

for gender identification.
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Table 3.2: Top 20 landmarks ranked with respect to their discrimination ability using
distance (D) and angle (A) measures.

MUCT XM2VTS MUCT XM2VTS
Rank D A D A Rank D A D A

1 9 21 9 21 11 2 38 11 19
2 7 6 7 27 12 12 71 12 40
3 6 27 8 11 13 30 3 35 16
4 5 16 1 9 14 55 72 30 3
5 8 55 4 26 15 49 28 15 56
6 10 22 3 10 16 71 9 38 38
7 4 20 5 25 17 45 25 46 35
8 11 7 6 20 18 31 46 13 55
9 1 26 2 2 19 32 30 39 28

10 3 31 10 1 20 38 35 45 30
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Figure 3.8: Discrimination ability of individual landmarks (based on marginal d-prime
values), along with the approximate facial regions for the landmarks. (a) Distance-
based; (b) Angle-based.
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Table 3.3: Summary of the comparative performance results when using facial metrol-
ogy (top 10 landmarks) and appearance-based models in gender classification. The
summary statistics in this table are associated with the results in Figure 3.10.

Metrology-Based Appearance-Based

Classification Rate MUCT XM2VTS MUCT XM2VTS
Mean 0.8683 0.8283 0.9063 0.8856
Max 0.9091 0.8718 0.9489 0.9282
Min 0.8295 0.7692 0.8750 0.8462
Std 0.0217 0.0251 0.0168 0.0191

Metrology-Based vs. Appearance-Based

As shown in Table 3.3, the current performance of the metrology-based approach is

slightly lower than that of the appearance-based method. The major reason might

be due to the limited nature of the information encoded in the landmarks, and the

nontrivial human errors in the annotation process. Unlike in the classification of facial

expression [101], we do not have prior knowledge about what local facial regions

are most critical in determining gender. Yet, the performance of the metrology-

based approach (86.83 ± 2.17%, 82.83 ± 2.51%) was only slightly inferior to that of

the appearance-based method (90.63± 1.68%, 88.56± 1.91%) by about 3.8% for the

MUCT database, and about 5.7% for the XM2VTS database. Also, compared to

a 2478-dimensional feature space in LBP, the metrology-based method uses a 20-

dimensional feature space. Thus the execution time at the test stage of our metrology-

based method is lower than that of the LBP method: 0.02 ms vs. 1.8 ms per image

for MUCT database, and 0.03 ms vs. 1.7 ms for XM2VTS database.

Manual Landmarks vs Automated Landmarks

Motivated by the results on the manually annotated landmark positions, we repeated

our experiments on landmarks that were derived using automated methods, with

no human intervention. Specifically, we generated facial landmarks in an automatic

manner, using the ASM algorithm [111]. When using the automated method, we
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have to first answer some some important questions, such as: How close are the

automatic landmarks to manual landmarks? Do automated landmarks provide suf-

ficient information for gender classification? The first question can be answered by

computing the offset (in pixels) between the two types of landmarks. Here, we use

the Euclidean distance between the positions of the automated landmark and the

corresponding manual landmark as a measure of performance. As we can see from

Figure 3.9, the offsets for faces in the MUCT database are relatively smaller than

those from XM2VTS. This is not surprising though, since STASM used in the ASM

algorithm was trained on MUCT data. The offsets for the XM2VTS dataset could go

up to about 12 pixels. However, this result is still encouraging, especially considering

that the size of the original image is 480× 640 pixels.

0 20 40 60 80
0

2

4

6

8

10

12

Landmark IDs

O
ffs

et

 

 

MUCT
XM2VTS

Figure 3.9: Average offsets in pixels between automated landmarks and manual land-
marks.

The second question is answered by comparing the classification performance.

The result shows that the performance drops by about 1% using automatic land-

marks instead of manual landmarks on MUCT data, and by about 2% on XM2VTS

data (Figure 3.10). We conclude that facial metrology can be used as a completely

independent, yet fully automated, method for gender classification.
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Figure 3.10: Box plots showing comparative performance of manual and automatic
facial landmarks for metrology-based gender classification: A: Appearance based; B:
Using manual landmarks; C: Using automatic landmarks.

Cross-Database, Cross-Spectra Considerations

To test the performance of our metrology-based method under cross-database and/or

cross-spectra conditions, we use the WVUM Multispectral database [157] which con-

tains 50 subjects, (30 males and 20 females). Each subject has 2 near-frontal mul-

tispectral facial images and 2 NIR images (see Figure 3.11) of size 1392 × 1040. A

DuncanTech MS3100 camera was used to simultaneously capture four different wave-

length bands (R,G,B and IR). We performed two experiments. The first experiment

used all the images in the MUCT database (images in the visible spectrum) as the

training set (145 males and 131 females), and then used multispectral images (100

images from 50 subjects) for testing. In our second experiment, we used all the images

in the MUCT database as the training set, and the NIR images for testing. The two

experiments thus show how the proposed metrology-based methods can work under

cross-database considerations, where training is performed on one dataset, and test-

ing is done on another dataset, This is more often the case in practice. The second

experiment provides some idea on the performance of metrology-based methods on a

different imaging modality, namely near-infra red (NIR) sources.
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Table 3.4: Comparative performance on WVUM Multispectral Database
Multispectral Features Accuracy(All) Accuracy(M) Accuracy(F)
LBP+SVM 3717 83.00% 100% 57.50%
Metrology 20 83.00% 85.00% 80.00%

NIR Features Accuracy(All) Accuracy(M) Accuracy(F)
LBP+SVM 3717 82.00% 100% 55.00%
Metrology 20 87.00% 86.67% 87.50%

Table 3.4 shows the comparative performance on both tests. The facial-metrology

method gives a well-balanced performance, while the performance of the LBP method

appears to be highly biased towards male subjects. Perhaps, equally significantly,

we can observe the superior performance of facial metrology over the LBP method,

when testing on the NIR images. This is significant, which may be explained by the

fact that, under NIR, the textural information that is exploited by the LBP are not

as prominent as in visible light, while the facial metrology depends essentially on

landmark points on the face, which are easier to acquire under NIR (see [130, 23]).

We note that the results on cross-database and cross-spectra conditions are based on

fully automated landmarks.

Figure 3.11: Sample images from the WVUM Multispectral Database. Top: Multi-
spectral; Bottom: NIR
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3.8 Discussion

The results show that facial metrology can indeed be used for gender classification.

There are still several interesting open questions that need to be further studied.

A key question would be how to improve the performance of the metrology-based

method. How can the metrology-based method maintain its performance when con-

fronted with increasing database sizes, and more variabilities in the face, say due to

pose, expression, race, aging, etc? The above two questions might be effectively ad-

dressed by introducing a robust landmark detection technique, which can consistently

localize the position of the landmarks under such variations. Another question has

to do with the determination of the true capacity of facial metrology. To address

this question we may need to consider a model with separable noise, for example, a

3D facial model that captures the structure of facial pose and expression at a more

detailed level. The advantage of our proposed approach is that, due to its simplicity

and independence, it could be combined with other more accurate (yet more compu-

tationally expensive) methods to improve the overall recognition performance. The

performance difference in the challenging test on NIR using training data from other

spectra and other databases makes this case more poignant. This work is a good

starting point in addressing these questions, especially for gender classification, and

perhaps for the more general problem of face recognition.
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Chapter 4

Whole Body Metrology for

Recognition

4.1 Introduction

In Chapter 2 and Chpater 3, We studied the problem of whether or not human metrol-

ogy can be used for gender prediction. A more challenging follow-up question would

be: can we do person recognition via human metrology? To answer this question,

first we need to know whether or not human metrology is sufficiently different from

person to person. Figure 4.1 shows the probability density histogram of pairwise

Euclidean distances between 2,369 subjects (based on 43 manual measurements) in

the CAESAR 1D database [1]. The figure suggests that most of the people are well

separated in terms of such measures.

4.1.1 Remote Biometrics

Several different modalities such as fingerprints and iris have been used for person

recognition. Although the current state-of-the-art fingerprints and iris recognition

techniques have achieved very good accuracy [105, 20, 41], there is an explosion of
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Figure 4.1: Probability density histogram of the pairwise Euclidean distance between
2,369 subjects in CAESAR 1D database. The measurements are normalized to range
[0,1] using min-max normalization.

federal initiatives in the area of so-called remote biometric systems [45], which focus

on person recognition in more challenging scenarios than traditional circumstances.

In particular, remote biometric systems are expected to provide law enforcement and

investigators the ability to ascertain the identity (1) of multiple people, (2) at a

distance, (3) in public space, (4) without notice and consent, and (5) in a continuous

and on-going manner [45]. Active topics in this area include gait recognition, face

recognition at a distance, multi-biometric systems, etc. [148].

Unlike gait recognition [117, 74] or face recognition at a distance [156, 103], whole-

body human metrology is a new modality that has not been well studied for person

recognition. Our work is related to previous methods that have studied single view

metrology [35, 68], session biometrics using height measurements [102], and human

head or body shape analysis [6, 64, 16]. Our approach differs from the above studies in
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two important aspects: (1) Instead of 3D points, we use only 1D measurements with

potential advantages in terms of less computational requirements and affordability,

and simpler automated extraction techniques. (2) A novel feature selection technique

is developed to further reduce the number of required measurements while preserving

the performance. This will lead to less computations at the matching stage. The

new feature selection method can also be applied to other problems beyond human

metrology.

4.1.2 A General Biometric Recognition System

Typically there are two different types of biometric recognition systems: verification

systems and identification systems. A verification system is responsible for answering

the question ”Is he/she the person who he/she claims to be?”, while an identification

system answers the question ”Who is this person?”. Note that to answer the above

questions, it is assumed that the person’s identity has already been established and

stored in a given database. Even though the verification problem is a one-to-one

problem and the identification problem is a one-to-many problem, the solution to

both problems relies on the same matching mechanism which measures the similarity

between two individuals.

Similar to a prediction system, an end-to-end biometric recognition system con-

sists of several stages. The first stage is feature extraction, in which a collection of

biometric traits (features) is extracted from an individual. The second stage is fea-

ture representation. In order to characterize an individual, the raw features are

transformed into a new feature space, which is expected to be more representative

for further analysis. A common transformation is normalization, which will adjust

the scale and location of each feature so that the contribution of each features to

the final decision is comparable. By doing so, the biometric traits extracted from

an individual can now be represented as a feature vector, e.g., X = (x1, . . . , xn) in
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which every feature value xi, i = 1, 2, . . . , n contains certain information about the

individual. The third stage is feature selection. The goal of feature selection is

to choose a minimal subset of the features, which will maintain or even improve the

system performance when compared with using all features. Thus, in this stage, the

feature vector X = (x1, . . . , xn) becomes X ′ = (x′1, . . . , x
′
m), where m ≤ n. The next

stage is the matching stage, in which the feature vector corresponding to a person

of interest, say X ′ (sometimes called query), is compared against those in the given

database (sometimes called templates) by using a matching score. For example, an

Euclidean distance between the query and a template can be computed and used as

a matching score. If the query and the template belong to to the same individual,

the obtained matching score is called a genuine score. If the query and the template

belong to two different individuals, the obtained matching score is called an imposter

score. Figure 4.2 shows the distribution of genuine and imposter scores in CAESAR

1D database when all the 43 features are used (m = 43).
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Figure 4.2: Distribution of genuine and imposter scores in CAESAR 1D database
when all the 43 features are used (m = 43).
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The final stage in recognition is the decision stage, where a person’s identity is

established based on the matching score. A threshold is used to decide whether to

accept or reject a match. Two types of errors could occur: a query from the same

individual as the template could be falsely rejected, or a query from a individual that

is different from the template could be falsely accepted. In the context of biomet-

ric verification, the performance of the system can be determined by reporting its

false accept rate (FAR) and false reject rate (FRR) at various thresholds. The plot

that summarizes these error rates is known as the Receiver Operating Characteristic

(ROC) curve. For an identification system with N enrolled identities, the output is

a set of identities corresponding to the top t matches (1 ≤ t ≤ N). Similar to the

verification system, The performance of the identification system is also established

based on the match score, and the rank-t identification rate Rt for different values

of t can be summarized using the Cumulative Match Characteristic (CMC) curve.

In particular, the value of rank-1 identification rate R1 is one of the most commonly

used metrics to compare different biometric identification systems [131]. The detailed

algorithms used at the different stages are described in Section 4.2.

4.2 Person Recognition via Metrology

4.2.1 Feature Extraction

As in Chapter 2, we do not focus on feature extraction in this chapter. We assume

that subjects’ features and their corresponding identities are already provided with

sufficient accuracy. In particular, we use CAESAR 1D database [1] to generate our

templates and queries. The templates are chosen from the 2369 subjects, in which

each template consists of a collection of raw features (manual body measurements).

In the original CAESAR database, each subject has one unique measurement set. The

selected templates with one measurement set (as ground truth) per subject consist of
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the training set (template set). In order to generate intra-class variation, independent

random noise is simulated and added to each subject multiple times. The second

dataset with artificial noise is then the test set (query set).

4.2.2 Feature Representation

In this study, a simple min-max normalization is applied to the new feature space:

xi =
xi −min{xi}

max{xi} −min{xi}
,

where xi is the ith feature in the new feature vector X = (x1, . . . , xi, . . . , xn). We

use min-max normalization for CAESAR database because (a) it is effective when the

minimum and the maximum values of the data are known or can be estimated; and

(b) it does not require the knowledge of the data distribution. Note that, min-max

normalization is sensitive to outliers. Large outliers are not expected in our experi-

ments due to the nature of the data. If large outliers are expected in the data, a more

robust normalization technique, such as median normalization [78] or tanh normal-

ization [82], can be considered as an better alternative to min-max normalization.

4.2.3 Feature Selection

Although only a limited number of measurements are available in our experiments, an

appropriate feature selection stage is still necessary for the following reasons: (1) The

complete feature set could be redundant due to the high correlation between feature

components as we indicated in Section 2.3, and feature selection can not only reduce

the computational complexity in the test process, but also reduce the workload during

the feature extraction stage. (2)A high level of noise could be involved in practice.

In that case, eliminating features with less information could lead to a more reliable
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result. Also, a system that requires less features is potentially more robust to missing-

data problem, and less computationally intensive at the matching stage.

In this work, a sequential forward selection technique is employed to perform

feature selection [50]. That is, starting with no features in the model, we check the

addition of each feature using a chosen model comparison criterion, add the feature (if

any) that improves the model the most, and repeating this process until the number

of desirable features is achieved, or no more feature improves the model. A key issue

here is how to choose a reasonable and effective criterion. In the following sections, a

number of feature selection criteria are evaluated and the reasons for choosing between

different criteria are examined.

Equal Error Rate Criterion

For person verification, the Equal Error Rate (EER) criterion is commonly used in

the biometric literature. However, it does not summarize the matching performance

across all matching thresholds [131]. More importantly, it is prone to over-fitting

the data [31]. In other words, it will often fit much better in training data than it

does on test data that is from a different distribution. Similar problem occurs when

rank-t identification rate is used as a selection criterion for person identification. For

CAESAR database, the statistics of intra-class variation are not provided. To apply

the EER criterion, the intra-class variation has to be artificially generated. However,

in practice, as a remote biometric, it is expected that a person’s metrological infor-

mation will be extracted from a distance using surveillance cameras. Due to possibly

complicated environmental factors and lack of prior knowledge, the intra-class varia-

tion caused by noise may remain unknown. As a consequence, the performance of the

system could largely vary upon different test sets. Although EER and rank-t criteria

may lead to very good accuracy, they are not particularly recommended for feature

selection without intra-class information.
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Entropy Criterion: Pairwise Joint Entropy

The over-fitting problem can be mitigated by constituting a more stiff selection cri-

terion. We develop a feature selection criterion that does not rely on intra-class

variation (noise) caused by complicated circumstances during the extraction stage.

Inspired by the concept of information gain in decision trees [112], we view the prob-

lem as that of choosing a subset of given size m among n possible features (m ≤ n),

in which the inter-class information provided by these m features is maximized. We

can establish such a criterion using the following algorithm:

1. Initialization: An empty pool P = {} for containing selected features and a

candidate list that includes all available features C = {x1, . . . , xn} are created.

At the beginning, a feature with the highest entropy, or a pre-selected feature

(e.g. stature) x1 is removed from the candidate list and added into the pool.

So we have P = {x1} and C = {x2, . . . , xn}.

2. Iteration: for i = |P | + 1 to n, the next feature to be added into the pool,

xadd, is chosen from the remaining candidate features in C:

xadd = arg max
x∈C

H(f). (4.1)

Here, H(f) is the joint entropy of all features in P plus the current candidate

xi from C:

H(f) = −
∫

Ω

f(X) ln f(X)dX, (4.2)

where f(X) is the joint probability density function (pdf) of feature vector X,

X = P ∪{xi}; dX = dx1 . . . dxi; and Ω is the region where the pdf f(X) exists.

The iteration runs n−|P | times until all possible candidates in C are considered.

xadd is then removed from C and added into P .
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3. Termination: The above process repeats until there are m features (1 ≤

m ≤ n) in the pool or no more feature improves the performance, e.g., P =

{x1, x4, x42} and C = {x2, x3, . . . , x43} − P .

One problem is that it is usually difficult to compute the joint entropy when i > 2

due to the complex or unknown form of f(X). An intuitive solution is to compute

average pairwise entropies among i features instead of the true joint entropy in the

pool. The candidate that yields the highest average pairwise entropies is then selected.

To apply this method, we can replace Eqn (4.2) in the above algorithm by:

H(f) = −1

i

n∑
j=n−(i−1)

∫ ∫
f(xi, xj) ln f(xi, xj)dxidxj, (4.3)

where f(xi, xj) is estimated by splitting training data into a number of equal-area

squares and counting number of features per square. The performance of a model

based on such criterion is described in the experimental section.

The running time complexity of pairwise joint entropy (PJE) based forward se-

lection can be estimated as follows: Assume the number of subjects in the training

set is N , and each subject has n features. Starting from zero features in the pool, the

forward selection tests O(n) possibilities in each iteration, until there are m(m ≤ n)

features in the pool (O(m) iterations). For each candidate, the PJE between the

candidate and every feature (O(m)) in the pool need to be considered. Assume a

table of PJE for all features is given, the complexity of forward selection process is

O(nm2). To compute the table of joint entropies, we estimate f(xi, xj) by using a

b×b (we assume b2 ∼ N) grid and counting number of features per square, which cost

O(N2 + b2) ∼ O(N2) time [32]. Since there are n2 pairs of joint entropies, the cost

of getting the table is O(n2N2). The overall time complexity of PJE based forward

selection is O(nm2 +n2N2). Compared to PJE criterion, the EER criterion requires

c copies for each subject, thus the size of the training set becomes Nc. In each iter-
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ation, we need to estimate the EER based on what is in the pool. The major cost

involves computing Euclidean distances between every two training samples, which is

O(N2c2m) time. Thus the overall time complexity of EER based forward selection

is O(nm2c2N2). This depends critically on the size of the database N , and will be

much worse than PJE based selection when n is not very large.

As for the space complexity of pairwise joint entropy (PJE) based forward se-

lection, assume that O(b2) ∼ O(N) space is used for the grid when estimating the

pairwise joint entropy; O(N2) space is used for the table that stores all pairwise

entropies; O(m)(m ≤ n) space is used for the pool P and O(n) space is used for

the candidate list C, the overall space complexity of PJE based forward selection

is then O(N2 + n). EER based forward selection will require more space, if we as-

sume O(N2c2) space is used to store genuine and imposter scores; O(m) space is

used when computing the Euclidean distance between two samples; O(T ) space is

used to store FARs and FRRs under T different thresholds (O(T ) ∼ O(N)); and

O(m) + O(n) ∼ O(n) space is used for the pool P and the candidate list C. The

overall space complexity of EER based forward selection is then O(N2c2 + n).

Entropy Criterion: k-Nearest Neighbor Estimators of Entropy

When we use pairwise joint entropy criterion, the mutual information among three or

more features is ignored. In high dimensional feature space with possibly significant

correlation between features, this method may not be able to capture the nature

of the data accurately. Kozachenko and Leonenko [90] proposed a nearest neighbor

estimator of entropy, given by:

ĤN =
m

N

N∑
i=1

ln ρi + ln
πm/2

Γ(m/2 + 1)
+ γ + ln(N − 1), (4.4)

where ρi = min‖Xi −Xj‖, j ∈ 1, . . . , N, j 6= i is the nearest neighbor of Xi and

γ = 0.5772 is the Euler’s constant. Singh et al. [143] extended the estimator using
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k-nearest neighbors where k is a fixed integer (Eqn 4.5). Mnatsakanov et al. [113]

studied kn-nearest neighbor entropy estimators for a variable kn that varies upon

sample size N , as well as upon different data distributions. Since the above proposed

estimators were shown to be asymptotically unbiased and consistent, it is reasonable

to assume the entropy estimators to be more close to the true joint entropy and thus

would be better alternatives than pairwise joint entropy criterion.

In this work, we first consider k-nearest neighbor estimator (KNNE) because it

is a general form of nearest neighbor estimator, which does not require the knowledge

of the data distribution. To apply KNNE, we replace Eqn (4.2) in our algorithm by

ĤN
k (f) =

m

N

N∑
i=1

lnRi,k,N + ln
πm/2

Γ(m/2 + 1)
−Ψ(k) + lnN, (4.5)

where Ri,k,N is the Euclidean distance from point Xi to its kth nearest neighbor,

Ψ(k) = Γ′(k)/Γ(k) is the digamma function. The performance of a model based on

such criterion is described in the experimental section.

The major cost of obtaining ĤN
k is the computation of N terms of Ri,k,N ’s,

which is O(mN2). The overall time complexity of KNNE based forward selection is

O(nm2N2). For space complexity, assume that O(N) space is used to store distances

between Xi and its neighbors when computing ĤN
k , and the remaining space require-

ment of KNNE criterion is similar to that of PJE criterion. Thus the overall space

complexity is O(N2 + n).

Entropy Criterion: Adapted k-Nearest Neighbor Estimators of Entropy

Although it is suggested that larger values of k are better for a more accurate esti-

mator, in practice the choice of k is an issue. Singh et al. showed that the estimator

achieved highest accuracy at k = 4 [143]. It remains unknown whether or not k = 4

is the best choice for every database. Considering that the choice of k could be af-
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fected by fluctuations in the training data, we intend to design a more conservative

estimator that would be more robust under small fluctuations. Note that in Eqn 4.5,

the estimate of pdf f(Xi) is given by:

f̂(Xi) =
kΓ(m/2 + 1)

Nπm/2Rm
i,k,N

, i = 1, . . . , N. (4.6)

We can mitigate the fluctuation of the value of f(Xi) by letting:

k = ka = arg min
k∈D
‖Ri,k,N −Ravg‖, (4.7)

where D = {1, . . . , K} and Ravg = 1
K

∑K
k=1Ri,k,N . That is, to estimate f(Xi) for a

given feature vector Xi, the choice of k depends on the average distance between Xi

and its first K nearest neighbors. This is significant, as previous approaches [90, 143]

have chosen a single value of K. The kth nearest neighbor that is closest to the

average of Xi’s first K nearest neighbors will be selected for the calculation of the

entropy estimator. We substitute ka into Eqn 4.5 and obtain an adapted k-nearest

neighbor estimator (KaNNE):

ĤN
ka(f) =

m

N

N∑
i=1

lnRi,ka,N −
1

N

N∑
i=1

Ψ(ka) + ln
πm/2

Γ(m/2 + 1)
+ lnN. (4.8)

Note that the asymptotic unbiasedness and consistency of the k-nearest neighbor

estimator does not change upon the k value. Since in the adapted k-nearest neighbor

estimator, the k value for each feature vector is adaptively computed based on the

average of first K nearest neighbors, the asymptotic unbiasedness and consistency of

ĤN
ka

still hold. In the experimental section, the performance of a model based on the

adapted k-nearest neighbor estimator is compared with other models.

Since computing ĤN
ka

does not require major extra cost than computing ĤN
k (sim-

ply an extra O(K) cost per iteration), the overall time complexity of KaNNE based
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forward selection is O(nm2N2), and the overall space complexity is O(N2 +n). When

n is not large, KNNE and KaNNE criteria are comparable with with PJE criterion,

but less expensive than EER criterion in terms of time complexity. PJE, KNNE

and KaNNE have similar space complexity.

4.2.4 Matching

In this work, the matching score is defined by the Euclidean distance between the

query vector X and a template vector Y . We use Euclidean distance because it is a

simple, nonparametric merit that does not rely on specific data distribution. More

importantly, Euclidean distance is commonly used as a matching score for other

biometrics in the literature. Since an optimal matching score definition for human

metrology is yet to be discovered, using a common performance merit makes our

results more comparable to different biometric systems.

4.2.5 Decision

In this work, the performance of a verification system is determined by using the

ROC curve. The ROC curve indicates the FAR’s and FRR’s at various thresholds.

The FAR/FRR error rates that are most close to the EER lines are to be reported.

For an identification system with N templates, the performance is determined by the

rank-t identification rate Rt in the CMC curve. The values of rank-1 identification

rate and T value when RT = 100 are to be reported.

4.3 Experiments

We use a random subset of 100 subjects from CAESAR 1D database [1] as our training

set. Each subject has 43 manual measurements that are assumed to be sufficiently

accurate. We also assume that in practice, the measurements would be extracted
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using long-distance security surveillance systems. Thus the subjects’ weight feature

is currently not included in the feature space. The test set is generated by adding

independent random noise zi to each normalized feature xi from selected subjects, so

we have xi ← xi + zi. We generate 9 copies for each subject, so the size of the test

set is 900 and the total sample size in the experiment is 1000. Two types of noise

models are simulated in order to generate intra-class variations: (1) Gaussian noise

zi ∼ Gaussian(0, (0.2/3)2); (2)Uniform noisezi ∼ Uniform(−0.1, 0.1). We consider

a relatively high (around 20%) noise level, because currently it is difficult to extract

accurate body measurements from individuals at a distance. When we start forward

feature selection, the stature is used as the first selected feature. Person verification

and identification are separately considered in this work. Unless otherwise indicated,

the experimental results shown below are based on the average of 10 repetitions with

random choice of noise to insure reliable outcomes.

4.3.1 Verification

We compare verification system performance based on different feature selection cri-

teria against number of features: PJE=pairwise joint entropy, KNNE=k-nearest

neighbor estimator, KaNNE=adapted k-nearest neighbor estimator. For PJE, we

use a 64 × 64 grid when estimating the pairwise joint entropies. For KaNNE, we

use K = 5 to compute ka in Eqn 4.7. Comparison of system performance based

on different feature selection criteria against 10, 20, 30 and 40 features is shown in

Figure 4.3 (Gaussian noise) and Figure 4.4 (Uniform noise). We observe that using

40 features, KaNNE performance is very close to that of using all the 43 features

with no feature selection.

When the number of selected features m is larger than 10, our experiments sug-

gest that the adapted k-nearest neighbor estimator generally leads to more promising

outcomes than other feature selection criteria. A more detailed report on the per-
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Figure 4.3: Comparison of verification system performance under Gaussian noise
Gaussian(0, (0.2/3)2) based on different feature selection criteria against (a) 10, (b)
20, (c) 30 and (d) 40 features. The performance without feature selection (using all
the 43 features) is shown in blue dash lines.
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Figure 4.4: Comparison of verification system performance under Uniform noise
Uniform(−0.1, 0.1) based on different feature selection criteria against (a) 10, (b) 20,
(c) 30 and (d) 40 features. As a reference, the performance without feature selection
(using all the 43 features) is shown in blue dash lines.
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Table 4.1: Comparison of verification system performance under (a) Gaussian noise
and (b) Uniform noise based on KaNNE against 10, 20, 30, 40, 43 features.

Noise Gaussian(0, (0.2/3)2) Uniform(−0.1, 0.1)

#Features Threshold FAR/FRR Threshold FAR/FRR
10 20 0.09/0.09 17 0.05/0.05
20 17 0.06/0.06 13 0.02/0.04
30 16 0.05/0.03 12 0.02/0.02
40 14 0.04/0.04 11 0.02/0.02
43 14 0.04/0.03 11 0.01/0.02

formance of our verification system can be found in Table 4.1. The prioritization of

the features based on KaNNE in a forward selection scenario is shown in Table A.1.

Note that the priorities of features may still vary upon different data sets.

In practice, some measurements may not be easily extracted. Thus it will be

of interest to see how the system performance would be without the access to all

measurements. Recall that in Chapter 2, we manually divide the 43 original mea-

surements into 3 categories by their measurability ranks (Table A.1). There are 25

Category 1 features which are usually 1D measures and are larger compared to other

features, such as stature and shoulder breadth. Compared to other measurements, it

should be relatively easier to extract the category 1 features in practice. We test the

system performance under the assumption that only Category 1 features are avail-

able. The outcomes under Gaussian noise Gaussian(0, (0.2/3)2) and Uniform noise

Uniform(−0.1, 0.1) against 5, 10, 20, 25 features are shown in Figure 4.5. A more

detailed report can be found in Table 4.2. The priorities of the features based on 25

Category 1 features are listed in Table A.1.

Compensating for Missing Measurements

Assume we have a system, in which there are more features available in the training set

than in the test set. Can we utilize the information in the training set to compensate

for the missing information in the test set? We know that a SVM prediction model
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Figure 4.5: Comparison of verification system performance under (a) Gaussian noise
Gaussian(0, (0.2/3)2) and (b) Uniform noise Uniform(−0.1, 0.1) based on KaNNE
against 10, 20 and 25 Category 1 features. The performance when using all the 43
features is shown in blue dash lines.

Table 4.2: Comparison of verification system performance under (a) Gaussian noise
and (b) Uniform noise based on KaNNE against 5,10, 20, and 25 Category 1 features.

Noise Gaussian(0, (0.2/3)2) Uniform(−0.1, 0.1)

#Features Threshold FAR/FRR Threshold FAR/FRR
10 19 0.12/0.10 16 0.07/0.06
20 16 0.07/0.10 13 0.05/0.03
25 15 0.08/0.06 11 0.04/0.03

25+17 (predicted) 11 0.05/0.07 9 0.03/0.03

as described in Chapter 2 can be used to estimate the valued of the features that

are not available in the test set. Assuming all the 43 features are available in the

training set while only 25 Category 1 features are available in the test set, we compare

the system performance between using 25 Category 1 features only and using 25

Category 1 features plus estimated 17 features. Each feature that does not exist in

the test set is estimated by all 25 Category 1 features that do. Here, we use lib-

SVM library with nu-SVR regression type and RBF kernel (C = 1, γ = 1/d, where

d is the number of features. See Eqn 2.13) for prediction. The experimental results

indicate that, if certain features are missing in the test set, using estimated features as
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substitutions can improve the system performance. However, using estimated features

does not yield better results than using actual features under a given noise condition

in Figure 4.6.
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Figure 4.6: Comparison of verification system performance between with and with-
out prediction under (a) Gaussian noise Gaussian(0, (0.2/3)2) and (b) Uniform noise
Uniform(−0.1, 0.1). The comparison is based on 25 Category 1 features. The per-
formance when using all the 43 features is shown in blue dash lines.

Cross-Subject Verification Performance

In the above experiment, the subjects are the same between the training set and test

set. We would like to see whether or not the KaNNE criterion can generally lead

to superior system performance on any subject. Another question is, if the prior

knowledge of the inter-class variation is given, can we utilize it to achieve better

accuracy? Both questions can be answered by choosing different subjects between

training set and test set and adding EER criterion in comparing with other criteria.

To apply EER criterion, the training set is generated using 100 subjects and 9 copies

per subject for each subject with artificial independent random noise from certain

distribution. The test set is generated using another 100 subjects and 900 simulated

copies from same noise distribution. The experimental results are based on the aver-
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age of 10 repetitions with random choice of test subjects. The comparison of system

performance based on the different feature selection criteria against 10, 20, 30 and

40 features is shown in Figure 4.7 (Gaussian noise) and Figure 4.8 (Uniform noise).

It is expected that EER criterion will lead to the best performance due to the ideal

setup (training set and test set have identical intra-class distribution). However the

experimental results do not always support such expectation. On the other hand,

the KaNNE criterion is still better than other entropy based criteria. For Gaussian

noise, KaNNE (with > 20 features) is better than using all original features. We can

observe that under this more challenging test with more than 20 selected features,

the proposed KaNNE performs significantly better than using all the 43 features

without feature selection.

4.3.2 Identification

In this work, an identification system is similar to a verification system. The ver-

ification system only verifies the identity of the query using one claimed template,

while the identification system will compare the query with every template across the

database. We use the same strategy to generate the matching score as in the above

verification system. Under such condition, the CMC curve does not offer any addi-

tional information beyond the FAR and FRR information (ROC curve) [11]. Thus,

the same framework for a verification system, including the proposed feature selection

criterion KaNNE, can be directly applied on the identification problem as well. Thus

we test the performance of an identification system using the same selected feature

sets based on KaNNE (which have already been computed and tested in a verification

system), as well as the same subjects and noise levels. The performance is measured

using standard CMC curves when using 43 available features (see Figure 4.9). A

more detailed report on our identification system can be found in Table 4.3. From

Table 4.3 and Figure 4.9, we can see that using 30 or more selected features leads
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Figure 4.7: Comparison of cross-subject verification system performance under Gaus-
sian noise Gaussian(0, (0.2/3)2) based on different feature selection criteria against
(a) 10, (b) 20, (c) 30 and (d) 40 features. The performance without feature selection
(using all the 43 features) is shown in blue dash lines.
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Figure 4.8: Comparison of cross-subject verification system performance under Uni-
form noise Uniform(−0.1, 0.1) based on different feature selection criteria against
(a) 10,(b) 20,(c) 30 and (d) 40 features. As a reference, the performance without
feature selection (using all the 43 features) is shown in blue dash lines.
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Table 4.3: Comparison of identification system performance under (a) Gaussian noise
and (b) Uniform noise based on KaNNE against 10, 20, 30, 40, 43 features. R1 is
the rank-1 identification rate, while T is the value when RT = 100.

Noise Gaussian(0, (0.2/3)2) Uniform(−0.1, 0.1)

#Features R1 T (when RT = 100) R1 T
10 82.98 26 89.98 8
20 96.67 10 99.07 5
30 99.11 3 99.78 3
40 99.62 3 99.91 2

43 (all) 99.82 2 100.00 1

to results that are very similar to using all the 43 features. This is significant given

the expected improvement in computational cost at the matching stage, and hence

system response time.
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Figure 4.9: Comparison of identification system performance under (a) Gaussian noise
Gaussian(0, (0.2/3)2) and (b) Uniform noise Uniform(−0.1, 0.1) based on KaNNE
against 10, 20, 30 and 40 features. As a reference, the performance without feature
selection (using all the 43 features) is shown in blue dash lines.

A similar analysis is applied on Category 1 features. The CMC curve (Figure 4.10)

and a detailed report (Table 4.4) are shown as well.
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Figure 4.10: Comparison of identification system performance under (a) Gaussian
noise Gaussian(0, (0.2/3)2) and (b) Uniform noise Uniform(−0.1, 0.1) based on
KaNNE against 10, 20, and 25 features. Note that performance using all the 43
features is shown in blue dash lines.

Table 4.4: Comparison of identification system performance under (a) Gaussian noise
and (b) Uniform noise based on KaNNE against 10, 20,and 25 Category 1 features.
R1 is the rank-1 identification rate, while T is the value when RT reaches 100.

Noise Gaussian(0, (0.2/3)2) Uniform(−0.1, 0.1)

#Features R1 T (when RT = 100) R1 T
10 77.13 26 85.40 9
20 93.53 10 97.44 9
25 95.67 9 98.47 6

Impact of Noise Levels

We are also interested in the system performance under different noise levels. In

Figure 4.11, the noise level (nl) is changing from 0 to 0.5 (x-axes) and the performance

is measured by rank-1 identification rates (y-axes). Note that there are two different

noise levels tested, Gaussian noise and Uniform noise, respectively. And each use a

different way to define noise level.
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Figure 4.11: System performance under different noise levels (nl): (a) Gaussian noise
Gaussian(0, (nl/3)2) and (b) Uniform noise Uniform(−nl, nl) based on KaNNE
against 10, 20, 30 and 40 features. The performance without feature selection (using
all the 43 features) is shown in blue dash lines.

4.3.3 Computational Time

We use a Dell XPS15Z laptop for our experiments. The laptop is equipped with Intel

Core i5 2.3G CPU, 6GB memory, and Windows 7 operation system. All programs

are written and executed using MATLAB R2011a. The training set has 100 samples

and the test set has 900 samples. The training set is used for feature selection and

the test set is used for verification and identification. All feature selection criteria

are applied to a candidate list containing n = 43 features. The forward selection

algorithm starts with one feature (Stature) and terminates when m = 40 features

are selected. The computational time related to different feature selection criteria,

verification, and identification are shown in Table 4.5. We observe that the EER

criterion is the least efficient criterion, as expected. The results also suggest that

the proposed KaNNE criterion is just as efficient as the KNNE criterion, and more

efficient than the PJE criterion, if the table of joint entropies is not pre-computed.
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Table 4.5: Computational time related to different techniques: feature selection cri-
teria, verification, and identification. For PJE, 1.6 seconds is used to generate the
table of joint entropies.

Technique EER PJE KNNE KaNNE Verification Identification
Time (in seconds) 710.6 0.01+1.6 0.01 0.01 0.8 0.3

Table 4.6: Comparison between metrology-based recognition system against recent
recognition systems using other biometrics.

Modality Data (sample size) Performance Year Ref.

Fingerprint NIST (6,000) R1 = 94% 2009 [116]
Multimodal (Fingerprint and Face) NIST (517) R1 = 100% 2009 [116]
Face LFW (13,233) EER ' 15% 2009 [91]
Gait CASIA-C (153) R1 = 80.7%− 99.0% 2009 [92]
Periocular FRGC (2,272) R1 = 87.32% 2011 [122]
Metrology (43 Features) CAESAR (1,000) R1 = 99.8%/100% 2013 Ours
Metrology (30 Features) CAESAR (1,000) R1 = 99.1%/99.8% 2013 Ours
Metrology (25 Category 1 Features) CAESAR (1,000) R1 = 95.7%/98.5% 2013 Ours

4.4 Conclusion

This work provides initial person recognition results using solely human metrology.

Using CAESAR 1D database as baseline, we simulate intra-class variation with con-

siderable noise level. The system performance is tested from verification and iden-

tification prospective. The experimental results indicate that given enough number

of features, our metrology-based recognition system can have promising performance

that is comparable to several recent state-of-the-art recognition systems (see Ta-

ble 4.6). We also propose a non-parametric feature selection criterion, KaNNE,

which does not rely on intra-class distribution of the query set. KaNNE leads to

more promising outcomes than other nearest neighbor estimators (as feature selection

criteria) when number of features is larger than 10.
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Chapter 5

Discrimination Capability of

Human Metrology

The previous chapters have considered the use of human metrology in prediction,

classification and recognition, including empirical performance evaluation. In this

chapter, we quantify the theoretical discrimination capability of human metrology.

A scientific basis for establishing the uniqueness of human metrology will not only

quantify the performance of an automatic recognition system, but will also result in

the admissibility of metrology identification technique in various areas such as the

court of law. We develop several schemes to establish the limit of human metrology

in recognition. We investigate two general approaches, one based on individuality

model and the other based on channel capacity.

5.1 Related Work on Individuality Approach

5.1.1 Individuality of Fingerprints

The fingerprint individuality problem was first addressed by Galton in 1892 [60],

which is defined as the probability of a specific fingerprint configuration. Galton
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assumed that a full fingerprint can be covered by 24 independent square regions

on average, each spanning 6 ridges. He further assumed 1/2 to be the probability to

reconstruct any region by looking at the surrounding ridges; 1/16 to be the probability

of occurrence of a specific fingerprint type; 1/256 to be the probability of occurrence

of the correct number of ridges entering and exiting each of the 24 regions. Thus, the

probability of a particular fingerprint configuration is:

P =
1

16
× 1

256
× 1

16
×
(

1

2

)24

= 1.45× 10−11. (5.1)

A number of subsequent models [71, 155, 36, 70] consider the probability of a

particular fingerprint configuration based on the number of minutiae features n, and

a fixed probability of their occurrence p. Assuming complete independence between

the minutiae points, this gives:

P = pn (5.2)

Different p and n are used in different models. Although the above models are

rather straight forward, a significant weakness is that they are based on ideal condi-

tions, where the realistic problems such as partial matching and intra-class variations

are not considered.

In Pankanti and Jain’s work[120], the individuality is described in a more realistic

manner: for a given input fingerprint containing n minutiae points, the individuality

is the probability that an arbitrary fingerprint in a database containing m minutiae

will have exactly q corresponding minutiae with the input (Eqn 5.3). It is easy

to deduce that if there are q or more matches, the two fingerprints are considered

sufficiently similar and thus should belong to the same person.

P (M,m, n, q) =

min(m,n)∑
ρ=q

((
m
ρ

)(
M−m
n−ρ

)(
M
n

) ×
(
ρ

q

)
lq(1− l)ρ−q

)
. (5.3)
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In Eqn 5.3, M = A/C, where A is total area of overlap and C is the area of

tolerance (Figure 5.1). l is the probability of two position-matched minutiae having

a similar direction.

Figure 5.1: Parameters used in defining fingerprint individuality [120]. When an
input fingerprint is matched with a template, an alignment is first established.

One weakness of Pankanti and Jain’s work is that the assumption of uniform

distribution of minutiae features may not always be satisfied in practice. This problem

is later addressed by Dass et al. [39], using a family of finite mixture models which

better represent clusters of features observed in fingerprint images compared to the

uniform distribution. The estimates of fingerprint individuality are obtained using

the probability of a random correspondence (PRC), which is defined as follows: Let

Q denote the query fingerprint image and T denote the template fingerprint image.

Let m be the total number of minutiae points in Q and n be the total number of

minutiae points in T . Let pm be the probability of a random minutiae feature from

T matching one of the m minutiae features of Q. Then the PRC is the probability of

obtaining exactly k matches between Q and T (Eqn 5.4):
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PRC =

(
n

k

)
pkm(1− pm)n−k. (5.4)

A small PRC value indicates it is unlikely that the query and template fingerprint

image belong to the same person. To calculate PRC, pm has to be properly estimated

based on the statistical distribution of the template database.

Another weakness of Pankanti’s work is that it does not consider all possible dis-

criminatory information that is embedded in fingerprints. Only ridge endings and

ridge bifurcations are considered. Other level of fingerprint features, such as pattern

type (Level 1) and pores (Level 3), are not included. In a later study, Chen and

Jain [26] develop a more complex model to incorporate all three levels of fingerprint

features. The correlation between features and the feature distribution are also con-

sidered. However, in above related work, the image quality is not explicitly taken

into account for individuality.

5.1.2 Individuality of Iris

Iris is considered extremely individual [40, 41]. However, the individuality of iris is

currently not well defined or quantified [129]. Unlike fingerprint, the iris information

is usually represented as 2D binary code, called Iris Code. Two such codes can

then be compared using certain distance measures (Hamming distance, Euclidean

distance, etc). To address the individuality of iris, Yoon et al. [163] proposed a

dichotomy solution, which transforms the distances into two categories: intra-class

distances and inter-class distances. That is, given two Iris Codes, they either belong

to the same person (thus their distance is intra-class) or not (thus their distance

is inter-class). Regardless of the types of features, the feature distance vectors are

numeric values that can be sent to a proper classifier for recognition. 11 models based

on different features, distance types and classifiers are applied and compared, which
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provide a strong background for future study. Unfortunately, the key question ”what

is the individuality of iris” is not explicitly answered.

Daugman [41] suggests that the iris recognition system could yield a zero false-

match rate, on a large database that contains 632,500 iris images of 316,250 persons

spanning 152 countries. However, this rate is predicated on high quality iris images,

which are obtained under strict supervision. In practice, the image quality can be

affected by various factors, which becomes a major concern that is related to the

discrimination capability of an iris recognition system. In Kalka et al.’s work [85],

the effect of various quality factors was analyzed, including de-focus blur, off-angle,

occlusion/specular reflection, lighting, and iris resolution. A fully automated iris im-

age quality evaluation block is developed to estimate the factors. This work shows

that after removing the poor-quality images selected by their quality metric, a con-

siderable improvement in recognition performance is achieved. They further provided

an upper bound on the computational complexity required to evaluate the quality of

a single image.

Kalka’s work shows that the performance of an iris recognition system can be

compromised by the image quality. Thus, to build a realistic model for the individu-

ality of iris, the error impact should be taken into account. This interesting problem

is still open for future study.

5.1.3 Individuality of Face

Unnikrishnan [152] used the notion of unusual features to study individuality in face

recognition. Here, an unusual feature is defined as a feature whose metrics lie below

the 5th or above the 95th percentiles for that feature. Those features could be nose

length, inter pupillary distance, inter-alar width, upper lip length, shape of forehead,

prominence of the chin, etc. Note that they are shape features, not appearance

features. He further indicated that a face with 100 independent features will have 10
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unusual features on average. It is easy to compute the probability of a particular face

configuration with 10 unusual features:

P = 0.0510 = 9.8× 10−14. (5.5)

That is, the combination of these 10 unusual features can distinguish 1013 different

faces. Perrett et al. [124] even identify 224 shape features on the frontal face. If all

these features are acquirable by an automatic identification system, then this system

can distinguish 1029 faces.

Although Unnikrishnan’s work represents very promising results, it is still prelim-

inary. The critical fact is that, when referred to face recognition, the facial features

are usually not extracted from actual faces, but from 2D face images. Several is-

sues need to be addressed before we can develop a realistic face individuality model:

(1) Although there are many effective facial feature extraction techniques, no stan-

dard organization is currently established to group the facial information into feature

categories. (2) The quality of image can be significantly compromised by pose, il-

lumination, expression, and aging. (3) The dependence between facial features may

not be negligible.

Klare and Jain [88] proposed a taxonomy which groups facial features into 3 levels:

Level 1 features are those global features of a face that can be extracted from low

resolution face images (< 30 inter-pupilary pixel distance (IPD)), such as gender,

ethnicity and general age group. Level 2 features are features that are explicit to face

recognition and require more detailed face observations. These features are local and

usually only relevant in face recognition, including features extracted using elastic

bunch graph matching (EBGM) [159], local binary patterns (LBP) [5], SIFT feature

descriptors [98, 109], metrological features [18], and so on. Level 3 features contain
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micro level features on the face such as scars and facial marks [121]. Klare’s work

may serve as a prior to the studies on the individuality of facial features.

In the past two decades, a number of preprocessing methods have been developed

to improve image quality. Blanz and Vetter [10] proposed a 3D morphable model that

allows users to adjust the initial alignment between the input 2D image and the 3D

morphable facial model, then change the pose of the input image to frontal and set the

illumination to ideal ambient condition. The model is trained by a set of face images

to learn the distribution of 3D facial shape and texture in a parameterized feature

space. Gao et al. [61] proposed a pose normalization approach based on fitting active

appearance models (AAM). In this work, profile faces with different rotation angles

in depth were warped into shape-free frontal view faces. Bronstein et al. [14] present

a 3D face recognition approach that is invariant to expressions. Their algorithm is a

representation of the facial surface that is invariant to isometric deformations. Chen

and Lovell [24] proposed a face recognition method which is robust to illumination

and expression. In this work, adaptive principal component analysis (APCA) is used

to construct a subspace of image representation, then warps the subspace according to

inter-class and intra-class sample covariance, respectively. Park et al. [123] proposed

a generative 3D aging model to simulate the facial aging process. In this work, the

input image is projected into the parametric 3D aging pattern space. A new face

image at target age is then simulated. For low-resolution face images, Bourlai et

al. [12] proposed a method that applies a number of tools such as image filtering,

linear de-noising, and thresholding-based nonlinear de-noising methods to enhance the

quality of low resolution images. All these preprocessing methods can considerably

improve the recognition accuracy.

In data analysis, we often assume that the data is drawn independently and iden-

tically from a certain distribution. However this assumption is not always true in

practice. Sometimes we can accept an approximate independence. Sometimes, the
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dependence can not be ignored. In that case we usually have two options. The first

option is to eliminate the effect of dependence either by applying a de-correlation

method [135], or by considering an informative feature subset, which involves a fea-

ture selection problem that can be solved in various ways [145, 18]. The second option

is to incorporate the dependence information into the applied model. For fingerprint

analysis, Dass et al. [39] proposed a mixture model in which minutiae are first clus-

tered and then independently modeled in each cluster. A similar approach is applied

by Chen et al. [26] when developing a mixture model based on 5 major fingerprint

classes to evaluate fingerprint individuality. R. Kwitt et al. [93] proposed a joint sta-

tistical model for texture image retrieval problem, in which a copula-based method

is applied to capture the associations among coefficients. These methods may be

adapted for studies that involve different type of features.

5.2 Related Work on Channel Capacity Approach

One may argue that in Unnikrishnan’s work [152], a specific number of rare features

may not be guaranteed for each individual. Alternatively, if we represent each feature

using a binary symbol (such as ‘long (1)’ or ‘short(0)’), and consider each feature as

i.i.d. Bernoulli random variables over the population with Pr(fi = 1) = 0.5 for

i = 1, 2, . . . , n, then the probability of a particular face configuration is 1/2n. That

means 8.59 × 109 individuals (which is more than the world population), can be

distinguished using 33 features.

In practice, however, most human faces are remarkably similar, which means the

variations in the relative sizes and distances among these features could be subtle.

However the embedded noise in the face information could be overwhelming due to the

large variations in pose, illumination, expression, occlusion, camera parameters, and

background. Similar problem can apply to other biometrics, such as measurements on
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the human body. Thus, to study the general performance of a biometric system, we

need to address a more challenging problem: the impact of the noise. This problem

can be addressed by adopting the concept of capacity from information theory.

5.2.1 Communication Channel and Capacity

In information theory, a communication channel (or channel), refers to a physical or

logical transmission medium that can be used to transfer an information signal from

one or more transmitters to one or more receivers. The transfer process is subject

to uncontrollable ambient noise and the imperfection of the signalling process itself.

The communication will not be successful unless the transmitter and receiver agree on

what was sent. In information theory, the channel has a very important characteristic,

called channel capacity, which is defined as the tightest upper bound on the amount

of information that can be reliably transmitted over a communication channel. A

channel is said to be memoryless if the probability distribution of the output depends

only on the current input and is conditionally independent of previous channel inputs

or outputs. The channel capacity of a memoryless channel is defined as [34]

C = max
p(x)

I(X;Y ), (5.6)

where I(X;Y ) is the mutual information of the input X and output Y and the

maximum is taken over all possible input distributions. The mutual information is

given by:

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (5.7)

or equivalently,

I(X;Y ) = h(X)− h(X|Y ) = h(X) + h(Y )− h(X, Y ). (5.8)
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5.2.2 Recognition Capacity

The noise problem in a biometric authentication system can be considered as a noisy

channel problem. The noise comes either from the errors that are inevitably involved

during the feature extraction process, or from intended behaviors [151] such as spoof-

ing. Thus, after a noisy feature extraction process, the subject is represented by

a series of features. These features are further used to distinguish subjects. The

quality, complexity, and variability of the features can be attributed to a recognition

channel introduced and characterized by Schmid and O’Sullivan in [136, 137]. Sim-

ilar to a communication channel, a recognition channel is also characterized by its

capacity, called recognition capacity. The recognition capacity of a biometric system

is considered as the maximum number of classes that can be successfully recognized

asymptotically with probability of recognition error close to zero when the number of

informative samples gets large. To achieve the expression of recognition capacity, the

feature extraction process is modeled using a parallel Gaussian channel. In Schmid

and Nicolò’s work [135], the input X = (x1, . . . , xn) is considered as a set of indepen-

dent features, which is obtained by feature selection and a de-correlation operation,

such as PCA (Principal component analysis) [3] or ICA (Independent Component

Analysis) [76]. Assume there is additive i.i.d. Gaussian noise zi ∼ Gaussian(0, Ni)

generated by the environment for each xi (i = 1, . . . , n). It is also assumed that zi

is independent from xi and zi is independent from zj when i 6= j. Finally, let the

output be Y = (y1, . . . , yn). The original parallel Gaussian channel capacity for X is

given by [34]:

C = max∑
E[x2]≤P

I(xi; yi) =
n∑
i=1

1

2
log2(1 +

Pi
Ni

) bits, (5.9)

where Pi = E[x2
i ], P =

∑
Pi are the power constraints. The equality is achieved if

xi ∼ Gaussian(0, Pi) for each i. Schmid and Nicolò [135] used a variation of the
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channel capacity in Eqn 5.9 to derive the recognition capacity density for a biometric

system based on PCA-encoding (Eqn 5.10):

C =
n∑
i=1

1

2n
log2(1 +

λi
Ni

) bits, (5.10)

where the input X is encoded as a series of principal components and λi is the

ith eigenvalue in the principal component analysis. Other efforts on channel capacity

applications include Barni et al.’s watermark channel analysis [8] and Wyner’s photon

channel analysis[160].

5.3 Distinctiveness of Soft Biometrics

Soft biometric traits are those characteristics that provide some information about the

individual, but lack the distinctiveness and permanence to sufficiently differentiate

any two individuals [81]. Soft biometric traits include gender, ethnicity, age, eye color,

hair color, weight, etc.

Jain et al. showed that 3 soft biometrics (gender, ethnicity and height) can im-

prove fingerprint recognition by around 6% [81]. Other soft biometrics such as freckle,

mole, scar, pockmark, skin color and wrinkle can also improve the face-recognition

performance of a state-of-the-art commercial matcher [121]. Scheirer et al. show that

the collection of 10 soft biometrics and 10 context attributes can boost the face iden-

tification system over the baseline by over 30% [134]. Furthermore, the possibility for

human recognition based solely on a bag of soft biometric traits has been studied and

promising preliminary results are shown by Dantcheva et al.[38]. Kumar et al. [91]

also showed the collection of 65 attributes that are extracted from face images can

be used as a stand alone feature model. Compared to the current state-of-the-art for

the Labeled Faces in the Wild (LFW) data base, this model reduces the error rates

by 23.92% in face verification.

106



One strength of the attribute traits is that they contain additional discriminatory

information other than primary traits such as fingerprints and iris. The attributes are

usually binary values, which means the computational time and space based on the

attributes will be small. However, the measurability of a large number of attributes

will be low. The automatic extraction of the attributes still remains a challenge. A

large training sample may be required, which will be expensive and time consuming

to collect.

How can we establish the discrimination ability of a soft biometric system? There

are number of terms related to discrimination ability, such as individuality [120],

recognition capacity [135], reliability [37], etc. To the best of our knowledge, only

a few efforts have been made in theoretical study of the discrimination ability of

given biometric traits. And the discrimination capability of soft biometric systems

is currently neither well defined nor systematically studied. Given the characteristic

of soft biometric traits, instead of trying to address the discrimination capability of

single soft biometric trait, it may be more reasonable to consider the discrimination

capability of a collection of a number of soft biometrics. In other words, our goal

is to investigate whether a given number of features (not necessarily soft biometric

features) is sufficient to distinguish individuals.

How can we address the discrimination capability of a biometric system? Even

though we currently do not have a standard for measuring the individuality of soft

biometrics, we observe that PRC [39] can be considered as a generic formulation for

soft biometric traits, if the p in Eqn 5.4 is given and the feature set satisfies all or

part of the following assumptions: (1) The features are scalar variables; (2) A match

between two features is always aligned. That is, xi will only be compared with yi

for all i; (3) All matches are independent and equally likely; (4) All features are

sufficiently accurate and, as a consequence, no uncertainty should be associated with

a match based on the quality of features. Based on these assumptions, we develop two
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schemes to analyze the individuality of soft-biometric traits, which will be investigated

in Section 5.5.

Schmid et al.’s capacity driven approach [135] could be adapted to certain biomet-

ric systems, for example, body measurements. However, this approach does not give

the tightest upper bound if the feature distribution is not Gaussian. Unfortunately, in

practice, the distribution of some soft biometric traits, such as gender and ethnicity,

are not continuous, and thus are not Gaussian. Also, the distribution of some mea-

surements might have long tails. Another issue is that the Gaussian channel requires

Gaussian noise, while in practice we might need to handle non-Gaussian or unknown

noise. Thus, we consider a different formulation using Poisson channel, which will be

investigated in Section 5.6.

Another relevant consideration proposed by Dantcheva et al. [37] is the notion

of reliability of a multi-trait soft biometric system (SBS). In practice, it is possible

that the subjects will share similar facial and body characteristics. This is called

cross subject interference. The reliability of a SBS captures the probability of false

identification of a randomly chosen person out of a random set of N subjects. If

we denote the number of categories by ρ, the feature space by v = (v1, . . . , vN),

the number of non-empty categories by F (v) (Obviously, we have 1 ≤ F (v) ≤ N),

the reliability is modeled by the probability P (F ) that a randomly drawn N -tuple

of people will have F active categories out of a total of min{ρ,N} possible active

categories (Eqn 5.11):

P (F ) =
FN−F

(ρ− F )!(N − F )!
∑N

i=1
iN−i

(N−i)!(ρ−i)!

. (5.11)

Given ρ and N , the reliability of authentication averaged over the subjects in v is

a function only of the number of non-empty categories F (v), and independent of the

distribution of categories.
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5.4 Correlation Problem

5.4.1 Ideal Case

In ideal condition, the given database contains noise-free independent features only.

The recognition capacity or the number of classes that can be successfully distin-

guished will then be:

2h(x1,...,xn) = 2
∑n

i=1 h(xi), (5.12)

and

h(xi) =
J∑
j=1

p(xji )× log2(p(xji )), (5.13)

where h(xi) is the entropy of feature xi with possible values x1
i , . . . , x

J
i and probability

mass function p(x). If we assume the 43 anthropometric measures in the CAESAR

1D database [1] are noise-free and jointly normally distributed, we can apply PCA on

the database and obtain its independent principal component representation. We can

then substitute the principal components into Eqn 5.12 to compute the recognition

capacity. The experiment results show that the average entropy of one principal

component is 4.87 and thus the recognition capacity is 2209.49.

In practice, the recognition capacity would not be so high, because usually the

given database will contain certain level of noise and the features are not independent

of each other. For example, the CAESAR database [1] could have low level noise due

to the measuring process. Also, the measurements are not independent variables

[4]. In this work, we intend to address the dependence problem by pre-processing

techniques, and use the proposed model to address the noise problem.

5.4.2 De-correlation

In some cases, significant correlation is observed between features in the given

database [4]. If we assume independent features in our framework for discrimination
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capability, it is necessary to apply de-correlation on the correlated features. If the

data distribution is Gaussian, we can apply PCA to de-correlate the data. After

PCA, the principal components are uncorrelated and independent. When the data

is non-Gaussian, the statistical independence could be obtained using ICA. The

key process in ICA is nonlinear de-correlation. There are a number of ways to

define a suitable nonlinear function and more details can be found in [76]. A fast

fixed-point algorithm can be used to compute the independent components [75, 2].

The algorithm converges, for example, when a quadratic (or skew) nonlinearity or a

tanh nonlinearity is applied. Figure 5.2 shows the comparison between the Kendall’

tau correlation (see Section 2.3) map for the original features and and that for the

de-correlated features. Note that when using ICA, the dimension may be reduced

due to the singularity of the covariance matrix.

5.5 Methodology for Individuality

5.5.1 Scheme 1: Binomial Model

Following [120] and [39], we can formulate the individuality of human metrology

as the probability of getting k matches among n feature pairs for two given feature

vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn). Here an individual is described by a

feature vector. We define a match:

mi =

 1 if δ(xi, yi) ≤ εi

0 if δ(xi, yi) > εi,
(5.14)

where i = 1, 2, . . . , n, εi is the tolerance term for the ith match, and δ(xi, yi) is the

distance function. In this work we use the simple form δ(xi, yi) = |xi − yi|.

In scheme 1, we claim that the measurements in CAESAR database [1] satisfies

all the four assumptions in Section 5.3. Assumption (1) is satisfied because the
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(a) (b)

(c) (d)

Figure 5.2: Comparing Kendall’s tau correlation color maps between (a) original
features, (b) principal components space, (c) ICA using quadratic nonlinearity and
(d) ICA using tanh nonlinearity. Notice that the white spots in the figures are caused
by near-zero correlation values.
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original data is represented by scalar numbers (length and weight). Assumption

(2) is satisfied by assuming all the feature values are correctly matched with the

corresponding feature names. To maintain assumption (3), we could apply PCA or

ICA on the original feature space to obtain the synthetic features that are statistically

independent of each other. Note that the dimensionality of the feature space might

be reduced due to the singularity of the covariance matrix. We assume that the

manual measurements are sufficiently accurate and can be used as our baseline. Thus,

assumption (4) is also satisfied.

Based on our definition and assumptions, the matches are Bernoulli random vari-

ables. Assumption (4) implies a small intra-class variation, thus we can reasonably

let ε be fixed for all i. The probability of getting one successful match, we call it

matching rate, is then

p = Pr(δ(xi, yi) ≤ ε). (5.15)

We can normalize every feature in the range [τmin, τmax]. If each feature follows a

uniform distribution, by letting τmin = 0, τmax = 1, we have

p =
ε

τmax − τmin
=

ε

1− 0
= ε. (5.16)

Similarly, if each feature follows a Gaussian distribution, the probability of getting

one successful match between a pair of feature vectors will be:

p =
1

2

[
1 + erf

(
ε− µ√

2σ2

)]
, (5.17)

where µ and σ2 are the mean and variance of the normal distribution. If we consider a

standardized normal distribution with zero mean and unit variance, Eqn 5.17 becomes

p =
1

2

[
1 + erf

(
ε√
2

)]
. (5.18)

112



Thus the probability of getting exactly k matches among n feature pairs is bino-

mial, i.e.,

f(n, p, k) =

(
n

k

)
pk(1− p)n−k. (5.19)

The probability of getting less than or equal to k matches is

F (n, p, k) = Pr(K ≤ k) =
k∑
i=0

(
n

i

)
pi(1− p)n−i. (5.20)

For example, if we have 40 measurements and the data is normalized in [0,1], with

a 0.05 tolerance, the probability that we have exactly 40 matches is 9.1× 10−53. The

probability that we have more than (but not equal) 30 matches is 8.2× 10−33. If we

consider more than 30 matching features as yielding one reliable identification, then

the number of classes (individuals) that can be distinguished is 1
8.2×10−33 = 1.22×1032.

Figure 5.3 shows F (n, p, k) based on various values of n, k and p. The results show

that if we allow a higher error tolerance (which leads to a higher matching rate), we

need more matches to achieve a reliable identification.

5.5.2 Scheme 2: Poisson Binomial Model

In a more challenging case, for example, in using face metrology to distinguish between

individuals, the measurements are usually extracted from face images. The quality

of the extracted face measurements is usually not as good as the manual body mea-

surements, since face images could have high level of noise or variation caused by

pose, illumination, expression, 2D distortion or extraction technique used. In Cao et

al’s work [18], thousands of distances and angles based on 68 or 76 facial landmarks

are extracted. The angles can be considered statistically independent of distances

and thus can be normalized to [τmin, τmax]. However, the strong dependence among

distances or among angles can not be easily eliminated by PCA or ICA de-correlation

due to the potentially high level of noise.

113



0

10

20

30

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

n

p=0.05

k

F

(a)

0

10

20

30

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

n

p=0.1

k

F

(b)

0

10

20

30

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

n

p=0.2

k

F

(c)

0

10

20

30

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

n

p=0.4

k

F

(d)

Figure 5.3: F (n, p, k) based on: (a) p = 0.05, (b) p = 0.10, (c) p = 0.20 and (d)
p = 0.40.

Thus, in Scheme 2, we claim that assumption (3) and (4) are not satisfied for

some raw features, while assumption (1)-(2) remain valid. Although a strong feature

selection method could remove most of the low-quality features [18], it also potentially

reduces the overall discrimination information. Can we do better? One way is to

relax the restriction on matching rate p, by assigning a specific p to each feature.

Consequently, the individuality or the probability of getting exactly k matches among
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n feature pairs becomes Poisson binomial:

f(n, p1, . . . , pn, k) =
∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj), (5.21)

where Fk is the set of all subsets of k integers that can be selected from S = 1, 2, ..., n,

Ac = S\A is the complement of A.

The probability of getting less than or equal to k matches is

F (n, p1, . . . , pn, k) =
k∑
l=0

∑
A∈Fl

∏
i∈A

pi
∏
j∈Ac

(1− pj). (5.22)

We now need to compute the pi’s, the matching rates. Note that, since the

matching rate is no longer fixed for all features, the tolerance terms εi’s are also

variables. Our strategy is to cluster the match of two or more dependent features

and consider them as a single joint match, until all the joint matches that remain

in consideration are mutually independent. A simple yet powerful k-mean clustering

method could be used to achieve this purpose.

Let us consider the case of clustering two features (clustering more features can be

computed recursively). Let xi, xj be two dependent features from a test individual,

and yi and yj be the corresponding features from a individual in the gallery. Eqn 5.14

becomes

mij =

 1 if δ(xi, yi) ≤ εi and δ(xj, yj) ≤ εj

0 Otherwise,
(5.23)

Then the probability of getting a successful match is the joint probability

p = Pr(δ(xi, yi) ≤ εi, δ(xj, yj) ≤ εj). (5.24)

We can use copula to represent the joint probability (see also Section 2.5). Let

xi and xj be random variables with continuous marginal cumulative distribution
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functions (cdf ′s) F (xi) and G(xj), respectively. By Sklar’s theorem [144], their joint

cdf J(xi, xj) can be written as a copula C:

J(x, y) = C(F (xi), G(xj)). (5.25)

Assume the distance function has the form δ(xi, yi) = |xi − yi|, we can rewrite

Eqn 5.24 as:

p = C(F (xi + εi), G(xj + εj))− C(F (xi − εi), G(xj − εj)), (5.26)

where the copula C and its parameters are either given, or can be estimated using

experimental data. Here, we suggest the use of the Archimedean copula family, since

(1) most Archimedean copulas admit an explicit formula for C and are efficient in

complexity; and (2) Archimedean copulas support high dimensional structures. A

copula C is called Archimedean if it has the representation

C(u, v) = ψ(ψ−1(u) + ψ−1(v)), (5.27)

where ψ is called a generator. ψ is d-monotone on [0,∞).

For example, the Clayton generator [27] is given by

ψ(t) = (1 + θt)−1/θ, ψ−1(t) = t−θ − 1. (5.28)

and the Gumbel generator [67] is given by

ψ(t) = exp(−t1/θ), ψ−1(t) = (− ln(t))θ. (5.29)

After we obtain the matching rates, the individuality can be computed from

Eqn 5.21.
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5.5.3 Experimental Results

Due to the lack of the information on the noise level on any specific measurement, we

only test the performance of an identification system based on the Binomial model

in this work. As in Chapter 4, We use the same random subset of 100 subjects

from CAESAR 1D database [1] as our training set. Each subject has 43 manual

measurements. Each feature xi in the training set is normalized to [0,1] using min-

max normalization. Two types of noise models are simulated in order to generate

intra-class variations: (1) Gaussian noise zi ∼ Gaussian(0, (0.2/3)2); (2)Uniform

noisezi ∼ Uniform(−0.1, 0.1). 9 copies are generated for each subject, so the size of

the test set is 900 and the total sample size in the experiment is 1000.

Non-Euclidean Distance Measure

In Chapter 4, we used Euclidean distance measure as matching score. In this exper-

iment, in order to be consistent with the formulation of the individuality, we define

the matching score between a query vector X = (x1, . . . , xn) and a template vector

Y = (y1, . . . , yn) as follows:

s =
n∑
i=1

mi, (5.30)

where mi is defined by Eqn 5.14 with δ(xi, yi) = |xi− yi|. s is also known as Thresh-

olded absolute distance (TAD) [131].

Since we are considering a Binomial model, the tolerance terms in Eqn 5.14 is

identical for each feature. Thus we have ε = εi for all i. To specify ε, we com-

pare the verification system performance using various ε values under both Gaussian

Gaussian(0, (0.2/3)2) noise and Uniform noise Uniform(−0.1, 0.1) and the results

are shown in Figure 5.4. It is suggested that the system is not sensitive to the tol-

erance term when it changes from 0.001 to 0.02. Above 0.02 a larger tolerance term

leads to worse performance. The system performance drastically drops when the
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tolerance term is set to be zero. Also, using TAD instead of Euclidean distance as

matching score will not significantly change the system performance.
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Figure 5.4: Comparison of verification system performance using min-max normal-
ization and different tolerance term ε under (a) Gaussian noise Gaussian(0, (0.2/3)2)
and (b) Uniform noise Uniform(−0.1, 0.1). The comparison is based on all 43 fea-
tures.

Z-score Normalization

Considering the fact that the distributions of most measurements in CAESAR 1D

database are approximately Gaussian, we also apply z-score normalization:

xi =
xi − µ
σ

, (5.31)

where µ is the mean and σ is the standard deviation of the training set, respectively.

We compare the verification system performance using different ε values under Gaus-

sian Gaussian(0, 0.42) noise and Uniform noise Uniform(−0.6, 0.6). Since most of

the original measurements should be in range [-3,3], the noise level retains approx-

imately 20% in both cases. The experimental results that are shown in Figure 5.5

suggest that the system is not sensitive to the tolerance term when it changes from

0.01 to 0.2. Above 0.2 a larger tolerance term leads to worse performance. The system

118



performance drastically drops when the tolerance term is set to be zero. We observe

that z-score normalization leads to better system performance than min-max normal-

ization. However, we should be careful when using z-score normalization, because it

is only optimal when the original data distribution is Gaussian. If the original data

is not Gaussian distributed, z-score normalization can not retain the original data

distribution [82]. Also, since z-score normalization does not guarantee a common

numerical range [82], the simulated noise level tends to be slightly less than 20% in

our experiment.
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Figure 5.5: Comparison of verification system performance using z-score normaliza-
tion and different tolerance term ε under (a) Gaussian noise Gaussian(0, 0.42) and
(b) Uniform noise Uniform(−0.6, 0.6). The comparison is based on all 43 features.

Identification Performance

We then test the performance of an identification system using KaNNE feature

selection criterion that was introduced in Section 4.2.3. Figure 5.6 shows the sys-

tem performance with respect to (a) min-max normalization under Gaussian noise

Gaussian(0, (0.2/3)2) and ε = 0.02; (b) min-max normalization under Uniform noise

Uniform(−0.1, 0.1) and ε = 0.01; (c) z-score normalization under Gaussian noise

Gaussian(0, 0.42) and ε = 0.1; and (d) z-score normalization under Uniform noise
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Uniform(−0.6, 0.6) and ε = 0.05. A more detailed performance report can be found

in Table 5.1. The experimental results indicate that there is no significant difference

between Euclidean distance and TAD in terms of identification accuracy. And in our

case, z-score normalization outperform min-max normalization and leads to better

system performance.
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Figure 5.6: Comparison of identification system performance with respect to (a)
min-max normalization under Gaussian noise Gaussian(0, (0.2/3)2) and ε = 0.02;
(b) min-max normalization under Uniform noise Uniform(−0.1, 0.1) and ε = 0.01;
(c) z-score normalization under Gaussian noise Gaussian(0, 0.42) and ε = 0.1; and
(d) z-score normalization under Uniform noise Uniform(−0.6, 0.6) and ε = 0.05.
Experiments are based on KaNNE feature selection criterion against 10, 20, 30 and
40 features. The performance without feature selection (using all 43 features) is shown
in blue dash lines.
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Table 5.1: Comparison of identification system performance with respect to different
normalization and noise types indicated in Figure 5.6. Experiments are based on
KaNNE against 10, 20, 30, 40, and 43 features. R1 is the rank-1 identification rate,
while T is the value when RT = 100.

min-max & Gaussian min-max & Uniform z-score & Gaussian z-score & Uniform

#Features R1 T R1 T R1 T R1 T
10 82.00 13 87.16 8 90.00 10 93.37 7
20 96.24 8 97.56 6 99.04 7 99.50 3
30 98.60 5 99.31 5 99.82 4 99.87 2
40 99.33 4 99.53 3 99.96 3 99.93 2
43 99.84 4 99.96 2 99.98 2 100.00 1

5.5.4 Discussion

Scheme 1 has several advantages: (1) The noise caused by slight intra-class variation

or small possible errors is explicitly controlled by the tolerance term ε; (2) The number

of independent/reliable features is explicitly controlled by k; (3) It is flexible for

different data distributions by switching the formulation of p.

Scheme 2 is a more general version of Scheme 1. When p1 = p2 = · · · = p, it is

reduced to Scheme 1.

Our current challenge is that, the copula model can only cluster a limited number

of dependent features (two in general) and have to discard additional highly correlated

features. In some cases, de-correlation or feature selection might be considered as

helpful pre-processing.

We also need to consider the computational cost. The major cost involves comput-

ing the probability of getting at most n matches for one pair of individuals. In scheme

1, if the marginal distribution is known, the computational cost for Eqn 5.15 is O(1).

If the marginal distribution is unknown, p has to be estimated from the template

database. Assume the database contains N templates, the cost for estimating p is in

O(N). The operation time for Eqn 5.19 is O(n×k) using dynamic programming, and
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there are O(k) terms in the summation in Eqn 5.20, thus the overall cost for getting

at most n matches will be:

 O(n× k2) if p is known

O(N) +O(n× k2) if p is unknown.
(5.32)

In Scheme 2, if all the marginal distributions are known, the computational cost

for getting all the pi’s is O(n). If all the marginal distributions are unknown, the cost

for estimating all pi’s is at least O(n×N). After a complete set of pi’s is obtained, we

can then compute Eqn 5.21, which requires us to sum n!
(n−k)!k!

terms. However, Chen

and Liu showed that this type of summation can be done in O(n×k) operations [25].

Considering that the number of terms in the first summation on the right hand side

in Eqn 5.22 is O(k), the overall cost for getting at most n matches is:

 O(n) +O(n× k2) ∼ O(n× k2) if all pi’s are known

O(n×N) +O(n× k2) ∼ O(n(N + k2)) if all pi’s are unknown.
(5.33)

Will the unusual features be more significant in human recognition than usual

features? We can loosely address this question by utilizing the Chernoff bound, which

is used to bound the success probability of majority agreement for n i.i.d.events. Let

fi be be independent Bernoulli random variables in (0, 1) for i = 1, 2, . . . , n, each

having probability p > 1/2 for outcome 1. A feature value is considered unusual

when its metrics lie below the (1−p)
2

th percentile or above the (1+p)
2

th percentile for

that feature. We further define the following:

fi =

 1 if fi belongs to a specific individual (or class)

0 otherwise,
(5.34)
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The probability of simultaneous occurrence of more than n/2 of the events fi = 1 has

an exact value P which has the upper bound:

P ≤ 1− e−2n(p−1/2)2 ; (5.35)

How many features do we need to extract to be confident to recognize a specific

individual or class in a given database? It depends on p, which indicates how biased

the features are. Figure 5.7 shows the Chernoff bound against feature number n

with several different p values. For example, we can guess the answer with at most

P = 0.8647 accuracy using 100 features, when these features are slightly biased

(p = 0.6). We can achieve the same accuracy using 25 features when p = 0.7, or

using only 6 features when p = 0.9. Note that we use the same p for each feature

for a simple model. It is clear though, if the selected features are very unusual, the

number of required features for accurate recognition will be significantly reduced.
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Figure 5.7: Chernoff bound against feature number n with different p.

123



5.6 Methodology for Capacity

5.6.1 Gaussian Channel Model

In this section, we study the discrimination ability of a soft biometric system from a

capacity perspective. Inspired by Schmid’s capacity approach [135], we can directly

recall Eqn 5.9 to describe the discrimination capability of a soft biometric system:

C =
n∑
i=1

1

2
log2(1 +

Pi
Ni

) bits.

We do not use a capacity density expression here, because the noise level may vary

upon different features. We can call Eqn 5.9 as recognition capacity of a soft bio-

metric system. Depending on the value of C, a recognition system should be able to

distinguish 2C individuals per feature. However in practice, we may face two chal-

lenges when using such a model: (1) The basic assumptions of a Gaussian channel

may not always be satisfied. That is, the noise distribution may not be Gaussian,

and/or the data distribution (before noise) may not be Gaussian. In that case, a

Gaussian channel model will be compromised. (2) We may be restricted by the accu-

racy and precision of the devices we use for measuring. High level of noise might be

involved when we attempt to extract certain soft biometric features, especially when

the subject is at a distance. As a consequence, even through the measurements could

be continuous numbers, what is recorded could be discrete numbers. For example,

a person’s hight might actual be 188.567945 . . . centimeters, but what is recorded

could be 188 centimeters, or 19 decimeters, or 2 meters, or even simply a integer that

indicates ‘tall’. Note that, a discrete representation of features could be less accurate

yet still captures the key characteristic of the measurements.
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5.6.2 Poisson Channel Model

In order to address the above issues, we introduce a new channel model for studying

the recognition capacity of human metrology. To establish such a model, we assume

that the given database has the following properties: (1) The templates should be

accurate enough to reflect the true values of the measurements of the subjects. This

goal could be achieved by applying a supervised enrollment process. (2) The true

values of the measurements should be non-negative real numbers. While after noise

contamination, the measured outcomes are non-negative integers. This goal could be

achieved with a thoughtful feature representation. Based on the above assumptions,

we first establish the model for one single feature, and then extend it to multiple

features. The channel we propose is a single-input single-output (SISO) Poisson

channel. Recall that, a channel takes an input from a transmitter and produces a

random output at the receiver according to a probability distribution conditioned on

the input. A Poisson channel is a discrete memoryless channel (DMC) with input

X and output Y , where X is a non-negative real variable and Y is a non-negative

discrete variable. The conditional probability Pr(Y = y|X = x) follows a poisson

distribution, which predicts the degree of spread around a known average rate of

occurrence [15]:

Pr(Y = y|X = x) = e−(x+λ) (x+ λ)y

y!
, (5.36)

where λ is a non-negative constant called the dark current. The input x is a deter-

ministic function (or rate function) in a non-homogeneous spatial Poisson process,

where x takes the value on a one-dimension space V = (0, A). Note that the poisson

process does not have to be homogeneous. That is, we can use x = x(t) to represent

the value of x at position t. Based on our model assumption, the true values of the

measurements from the subjects should be stored in the templates. The output are
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the counts of the number of events inside each non-overlapping finite space-slot of V

which are also independent to each other.

In our case, the input x is the true value of the measurement (or the expected value

of a measurement with minimum error that we can possibly achieve). In other words,

x is the ground truth that has been stored in a template. For instance, x could be the

manual measurement obtained from a person by a medical expert, without the affect

of clothing. The output y is a discrete value of the measurement that is extracted

under unpredictable ambient noise. For example, y could be a measurement obtained

from some footage of a surveillance camera, where the value of the measurement is

affected by the distance, the view angle, the motion of the subject, the clothing and

the resolution of the camera. In theory, the most possible value of y is the discrete

value that is closest to x. However the actual extracted value of y is essentially

random. We also need to define the output space W = (0, T ) where W is divided into

a finite number of equal-length slots. The length and number of slots can be adjusted

based on the accuracy and precision of the extraction process. If the measurements

are extracted under poor conditions, we could reasonably define less number of slots,

and vice versa. This strategy allows certain resilience to noisy data by dropping the

small variation of the features that is most likely caused by noise.

Now we start to compute the capacity of the Poisson channel. There are two

typical power constraints on channel capacity:

Pr(X > A) = 0, (5.37)

and

E[X] ≤ αA, (5.38)

where 0 < A ≤ ∞ is the peak-power constraint and αA > 0 (0 < α < 1) is the

average-power constraint. The capacity of the channel is denoted by C(A, λ, α). It
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was first computed by Kabanov [84] and Davis [43] using martingale techniques.

More recently, a more elementary and intuitively appealing method was developed

by Wyner [160], who showed that C(A, λ, α) can be achieved by dividing the channel

into small time-slots. In our case, the possible values of the measurement are divided

into small space-slots (or simply slots) and the formulation remains unchanged. In

particular, he first discretize the input X, which is the set of all possible values of

a specific measurement, into small slots of size ∆. Second, the input is restricted to

either A or 0 for each slot (This can be done by rounding up any non-zero input to

A, or using a threshold). The receiver produces 0 if there is no count in the slot, or

1 if there is one or more counts (more than one counting is considered rare because

of the small slot assumption). Then the channel reduces to a two-input two-output

DMC and its transition probability can be approximated as:

Pr(1|x) =

 λ∆e−λ∆ if x = 0

(A+ λ)∆e−(A+λ∆) if x = A,
(5.39)

Let the capacity of the above channel be C∆. Our target channel capacity

C(A, λ, α) is given by

C(A, λ, α) = lim
∆→0

C∆

∆
. (5.40)

When A, λ, α are given, C(A, λ, α) can be computed following Wyner [160]:

C(A, λ, α) = A[q(1+s) loge(1+s)+s(1−q) loge(s)−(q+s) loge(q+s)] nats, (5.41)

where s = λ
A

, q = min{α, q0}, q0 = (1+s)1+s

sse
− s, and loge stands for natural logarithm.

Now we consider the extreme cases: (1) When s = 0 (no dark current), we have

C(A, λ, α) = Aq loge
1

q
nats, (5.42)
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where q = min{α, e−1}.

(2) When s→∞, we have

C(A, λ, α) =
Aq(1− q)

2s
+O(

1

s2
) nats, (5.43)

where q = min{α, 1/2}.

For our study, we may reasonably let s = 0 since without input there will be no

output. If we normalize the data in (0, 1) using min-max normalization and multiply

the data by A, then naturally the peak-power constrain becomes A and α becomes

0.5. Eqn 5.42 then becomes

C(A, λ = 0, α = 0.5) = Ae−1 loge e = Ae−1 nats. (5.44)

Note that Eqn 5.44 gives the capacity for one feature only. To extend the formula

to multiple features, we need to establish a multiple Poisson channel model. However,

to the best of our knowledge, there is no close form for the capacity of dependent

multiple Poisson channels. To simplify the underlying mathematics of our model,

parallel Poisson channels are considered as a reasonable alternative. Note that to

apply a parallel Poisson channel model, we need to assume that features are inde-

pendent of each other, and the noise on different features are also independent. In

practice, such an assumption may not be realistic. Thus, a de-correlation process

could be used for generating synthetic independent features. Since the data is con-

sidered non-Gaussian, an ICA method that is mentioned in Section 5.4.2 could be

applied. We do not further study the de-correlation topic in this work though. When

using parallel Poisson channel model, the capacity is simply the sum capacity of n

independent SISO Poisson channels [63] (given α = 0.5 and no dark current):

Cp({A1, . . . , An}, λ = 0, α = 0.5) =
n∑
i=1

Aie
−1 loge e = e−1

n∑
i=1

Ai nats. (5.45)
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For example, if we have m(m ≤ n) features after de-correlation and A = A1 =

. . . = An, a capacity of Ame−1 is achieved. The maximum number of people that

could be distinguished will then be bound by eAme
−1

.

5.6.3 Model Comparison

Compared to a Gaussian channel model [135], the Poisson channel model has the

following characteristics: (1) Most importantly, Eqn 5.36 does not require a specific

distribution of x or ambient noise on x. (2) Poisson channel is most often invoked for

rare events, which implies that such a model is more suitable for data with high level

of noise.

Both models will be affected by the data quality. For the Gaussian channel

model, the recognition capacity is affected by the signal-to-noise ratio (SNR) de-

fined in Eqn 5.46. A larger SNR will correspond to a higher recognition capacity.

When there is no noise, we have SNR → ∞ and Eqn 5.9 suggests a infinitely large

recognition capacity. Figure 5.8 shows the relationship between SNR and recognition

capacity (per feature) using Gaussian channel model.

SNR =
1

n

n∑
i=1

Pi
Ni

. (5.46)

For Poisson Channel model, the recognition capacity is affected by the value of A,

which essentially depends on the accuracy and precision of the output. A higher A

value indicates a higher capacity and implies more possible output values. Figure 5.9

shows a plot of the Poisson channel capacity (per feature) against A values.

It is difficult to say which model is superior than the other, because they are based

on different assumptions. However, we should note that when the number of features

are equal in both models, the capacity of a Gaussian channel model depends on the

noise level of the test set, while the capacity of a Poisson channel model depends

129



10
0

10
1

10
2

10
3

0

1

2

3

4

5

SNR

R
ec

og
ni

tio
n 

C
ap

ac
ity

 (
bi

ts
)

Gaussian Channel Model

Figure 5.8: Recognition capacity (per feature) against SNR using Gaussian channel
model.
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Figure 5.9: Poisson channel capacity (per feature) against A.
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on the precision level of the training set. When peak-power constrain A increases,

the capacity of a Poisson channel model also increases. Assume that in a Gaussian

channel model, the power constrain P = E[x2] = 0.52 and the noise level=0.2, then

the capacity (per feature) is 2.92 bits. When A = 10, the capacity of a Poisson

channel model (per feature) is 3.68 nats. When A = 100, the capacity (per feature)

of a Poisson channel model is 36.8, which is larger than that of a Gaussian channel

model with noise level nl = 10−10. It seems that larger capacity would lead to better

system performance, but in practice it may not be true. In Section 5.6.4, we will

further study how the performance of an identification system under Poisson noise

will be affected by the value of A.

5.6.4 Experimental Results

The performance of an identification system based on Poisson channel model is tested

in this work. As in Chapter 4, We use the same random subset of 100 subjects

from CAESAR 1D database [1] as our training set. Each subject has 43 manual

measurements. Each feature xi in the training set is first normalized to [0,1] using

min-max normalization, and multiplied by a given peak-power constrain Ai. The

average value of xi is then 0.5×A, which indicates α = 0.5. In this study we assume

A = A1 = . . . = An, thus the range of the entire training set becomes (0, A). The test

set is generated according to Poisson distribution conditioned with expected value xi.

That is, the output is a non-negative integer fluctuating around an average value xi.

9 copies are generated for each subject, so the size of the test set is 900 and the total

sample size in the experiment is 1000. The experimental setup in this work is similar to

the setup in Section 4.3.2, we use min-max normalization, KaNNE feature selection

criterion and Euclidean distance as matching score. The major difference is that the

data is now contaminated by Poisson noise instead of Gaussian or Uniform noise.

Figure 5.10 shows the system performance with respect to (a) A = 10; (b)A = 50;
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(c) A = 100 and (d) A = 200. A more detailed performance report can be found in

Table 5.2.
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Figure 5.10: Comparison of identification system performance under Poisson noise
with respect to (a) A = 10; (b)A = 50; (c) A = 100 and (d) A = 200. Experiments
are based on KaNNE feature selection criterion against 10, 20, 30 and 40 features.
The performance without feature selection (using all 43 features) is shown in blue
dash lines.

5.6.5 Discussion

The first observation from the experimental results is that we can not directly compare

the capacity of a Poisson channel model with the capacity of a Gaussian model.

Because even when A takes some large value, e.g., A = 100, the system performance
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Table 5.2: Comparison of identification system performance under Poisson noise with
respect to A=10, 50, 100 and 200. Experiments are based on KaNNE against 10,
20, 30, 40, and 43 features. R1 is the rank-1 identification rate, while T is the value
when RT = 100.

Noise A = 10 A = 50 A = 100 A = 200

#Features R1 T (when RT = 100) R1 T R1 T R1 T
10 21.96 88 70.02 36 88.38 15 97.67 4
20 36.09 86 89.13 18 98.40 8 99.96 2
30 46.29 51 95.87 7 99.67 3 100.00 1
40 53.18 46 97.49 7 99.82 2 100.00 1
43 56.87 41 98.49 7 99.98 2 100.00 1

under Poisson noise is just slightly better than that under Gaussian noise when nl =

0.2. The second and more important observation, is that the system performance of

a Poisson channel model will be affected by the value of A. In practice, the choice

of A depends on the accuracy of the measuring method that is used to obtain the

training data. For a given measurement Xi, we suggest that the corresponding value

of Ai can be calculated as follows:

Ai =
max{Xi} −min{Xi}

acci
, (5.47)

where acci is the accuracy of the measuring method that is used to obtain Xi in the

training set. For instance, assume that we measure the stature using a tape and we

are confident that the accuracy of our measuring method is up to 1 centimeter. After

measured all subjects in the training set, we observe that the value of stature varies

from 150 centimeters to 200 centimeters. Using Eqn 5.47, we then have Ai = 50. If

we improve the accuracy of the measuring method from 1 centimeter to 0.5 centimeter

by using more advanced measuring instrument, we can increase A from 50 to 100, and

so on. Since ensuring one training set to be highly accurate is usually more accessible

than ensuring all test sets to be highly accurate, our study suggests that generating
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a template database with high accuracy could be a reasonable (and less expensive)

alternative to upgrading all surveillance devices in a large area of interest.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Whole Body Metrology

In this work we investigate the use of human metrology. We first consider the whole

body metrology and its subsets, head metrology and body metrology below neck, for

the prediction of two soft biometrics: gender and weight. Experiments are performed

using CAESAR 1D database [1] which contains 1119 male and 1250 female subjects

after removing missing data. For each subject, the number of manual measurements

considered for whole body, body under neck and head are 43, 35 and 6, respectively.

For gender prediction, the proposed model results in a 0.7% misclassification rate

using whole body information, 1.0% using only body (under neck) information, and

12.2% using only head information. For weight prediction, the proposed model gives

0.01 mean absolute error (in the range 0 to 1) using whole body information, 0.01

using only body (under neck) information, and 0.07 using only head information. This

leads to the assertion that human body metrology contains enough information for

reliable prediction of gender and weight. We further study the efficacy of the model in

practical applications, where metrology data may be missing or severely contaminated

135



by various sources of noise. A novel copula-based technique is proposed to reduce the

impact of noise on prediction performance. We observe that the copula-based model

will boost the performance in general, especially when the noise is severe.

We also study the question of person recognition via whole body metrology. We

test the performance of a verification system, as well as an identification system, using

the same methodology. The experimental results based on CAESAR 1D database in-

dicate that given enough number of features, our metrology-based recognition system

can have promising performance that is comparable to several recent state-of-the-art

recognition systems. A novel non-parametric feature selection criterion KaNNE is

developed in our work, which leads to more accurate outcomes when the number of

features is larger than 10. Our experimental results also suggest that the missing

information in the test set can be compensated by the information in the training

set.

Face Metrology

We consider face metrology for the prediction of gender. A new metrology-based

method is developed, which solely relies on metrological information from facial land-

marks that can be manually or automatically extracted from face images. The

performance of the proposed metrology-based method is compared with that of a

state-of-the-art appearance-based method for gender classification. Results are re-

ported on MUCT, XM2VTS and WVUM databases, respectively. The performance

of the metrology-based approach was slightly lower than that of the appearance-based

method by about 3.8% for the MUCT database and about 5.7% for the XM2VTS

database. However, results on the WVUM database showed that the metrology-based

method outperformed the appearance-based method (87% vs. 82%) on NIR images.
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Discrimination Capability

Finally, we investigate the discrimination capability of the human metrology from in-

dividuality and capacity perspectives. Following the review of prior work, we propose

several models to quantify the discrimination capability of the given biometric system.

The dependence problem and the noise problem are considered in these models. In

particular, a binomial model and a Poisson binomial model are developed to address

the individuality, and a Poisson channel model is developed to address the recognition

capacity. Note that the proposed models are suitable not only for human metrology,

but also for any recognition system on noisy features that can be de-correlated or

clustered.

6.2 Future Work

We briefly describe some potential future work, based on the material presented in

this dissertation.

Noise Issue

Currently, our study of a human metrology based biometric system is based on CAE-

SAR 1D database, in which the ambient noise is simulated based on certain simple

distributions. However, in practice, the ambient noise could be more complex. To fur-

ther study the accuracy of a human metrology based biometric system, or study the

discrimination capability of such a system in a more realistic manner, a database that

can provide both the ground truth and whole body images at a distance is necessary.

Missing Data

In practice, missing data is expected when features can only be extracted under poor

conditions, such as long distance or low illumination. In such cases, certain data
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may be either completely missing or too noisy to be useful. In our study, Support

Vector Regression is applied to predict the missing data. However, the regression

model predicts the most likely value of missing data but does not supply uncertainty

about that value. This could cause an over-fitting problem. In future work, other

imputation techniques that will add proper error terms to the estimation, such as

Stochastic regression[47] or Multiple imputation[132], can be considered as better

alternatives.

Matching Score

Although the Euclidean distance is simple and commonly used as a matching score,

we may also consider other ways to generate matching scores. For instance, the

Mahalanobis distance will take into account the correlations of the features and is

scale-invariant. Thus it can be considered when the correlation between features

can not be ignored and covariance matrix can be estimated. Another issue is that

unusual features are not emphasized by the Euclidean distance. Even though one or

a few unusual feature(s) should make a subject very different from other subjects, the

contribution of the unusual feature(s) could be diluted by the cumulative effect of all

other features. Thus, a more resilient distance measure can be investigated in future

study.

Scaling Problem

we did not focus on feature extraction in this dissertation. However, in practice, raw

measurements are usually sensitive to scaling (as well as other geometric transforma-

tions). To resolve the problem of constructing matches among subjects of unknown

scale, a scale-invariant feature representation is necessary. Such a representation is

not currently considered in our recognition system or individuality/capacity analysis.

In future work, scale-invariant feature representation of 2D images or 3D images [48],
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for instance, these based on scale-space theory [97] can be studied to reinforce our

recognition system and discrimination capability models.

Ethnicity Classification

There has been increasing attention for ethnicity classification in recent years. For

instance, Ding et al. [44] proposed a face-based ethnicity classification method using

boosted local texture and shape descriptions from 3D face models; Lyle et al. [100]

proposed a periocular-based gender and ethnicity classification technique using local

appearance features extracted from the periocular region images; Zhang et al. [164]

proposed a gait-based ethnicity classification method using multi-view fusion. How-

ever, there appears to be little prior work in the area of metrology-based ethnicity

classification. We tested our metrology-based model introduced in Chapter 3 for eth-

nicity classification and the preliminary results show that our current method can

perform at a correct classification rate of about 80%. A future question is how to

increase the accuracy of the classification system, possibly by fusing metrology infor-

mation and appearance information. Also, whole body metrology can be considered

as another modality for ethnicity classification.

Association between Features

There are many different ways to represent the features other than using the mea-

surements directly. For example, the copula-based features (CFeatures) introduced

in Chapter 2 can be considered as an alternative feature representation. Also, in hu-

man history, there are many references about human body ratios in art, engineering

or medicine, suggesting that certain body ratios can provide significant individual

information. In Leonardo da Vinci’s famous drawing Vitruvian Man, from below

the chin to the top of the head is one-eighth of the height; the maximum width of

the shoulders is a quarter of the height; the distance from the elbow to the armpit
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is one-eighth of the height; the foot is one-seventh of the height of a man; and the

palm is one-twenty-fourth of the height [125]. Although it was reported that certain

human body ratios tend to be canonical[147], significant variation exists among dif-

ferent gender, age and ethnicity. And it can be easily observed that many possible

body ratios vary on actual individuals. For example, we can consider the following

body ratio features:

rAB =
A

A+B
, (6.1)

where A and B are two measurements from CAESAR database. Then the num-

ber of possible combinations in a database with n features is of size O(n2). We can

concatenate the direct measurements and other feature representation, such as the

CFeatures and/or the ratios together to yield a new feature space, which could provid-

ing richer information than merely direct measurements. Currently, our preliminary

results show that such a simple concatenation does not increase the accuracy of the

system. Thus, a future question is how to mitigate the error impact caused by com-

bining noisy features and utilize the association information between features more

efficiently so that the system performance can be improved.
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Appendix A

Measurements in CAESAR

Database

The original 43 measurements (excluding gender and weight) and their properties in

the CAESAR 1D database are shown in the following Table A.1. The Measurability

category column approximately indicates how difficult it is to automatically extract

a measurement. That is, category 1 is for easy measurements; category 2 is for mod-

erate measurements and category 3 is for difficult measurements. For the Cluster

column, the measurements represented in red belong to the head cluster (H). The

measurements represented in black belong to the body cluster (B). The others, rep-

resented in green, do not specifically belong to the body or the head, but are overall

measurements (O). The KaNNE rank gives the priorities of the features in forward

selection in the verification system and identification system, based on our proposed

adapted k-nearest neighbor estimator. KaNNE rank I gives the priorities among

all 43 measurements, while KaNNE rank II gives the priorities among category 1

measurements (25 measurements).
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Table A.1: The original 43 measurements (excluding gender and weight) and their
properties in the CAESAR 1D database.

No. Measurement Measurability  
Category 

Cluster KaNNE 
Rank I 

KaNNE 
Rank II 

1 Acromial Height, Sitting (mm) 1 B 22 6 
2 Ankle Circumference (mm) 3 B 32  
3 Spine-to-Shoulder (mm) 1 B 23 12 
4 Spine-to-Elbow (mm) 1 B 35 23 
5 Arm Length (Spine to Wrist) (mm) 1 B 41 18 
6 Arm Length (Shoulder to Wrist) (mm) 1 B 33 22 
7 Arm Length (Shoulder to Elbow) (mm) 1 B 11 11 
8 Armscye Circumference (mm) 2 B 20  
9 Bizygomatic Breadth (mm) 1 H  4 2 

10 Chest Circumference (mm) 2 B 14  
11 Buttock-Knee Length (mm) 1 B 13 5 
12 Chest Girth at Scye mm) 1 B 39 17 
13 Crotch Height (mm) 1 B  9 7 
14 Elbow Height, Sitting (mm) 2 B  7  
15 Eye Height, Sitting (mm) 1 B 26 19 
16 Face Length (mm) 1 H  3 4 

17 Foot Length (mm) 3 B 12  

18 Hand Circumference (mm) 3 B  8  

19 Hand Length (mm) 3 B 24  

20 Head Breadth (mm) 1 H 21 13 
21 Head Circumference (mm) 2 H 17  

22 Head Length (mm) 1 H  5 3 
23 Hip Breadth, Sitting (mm) 1 B 27 10 

24 Hip Circumference, Maximum (mm) 2 B 37  
25 Hip Circ Max Height (mm) 2 B 36  

26 Knee Height (mm) 1 B 40 25 

27 Neck Base Circumference (mm) 2 B 15  

28 Shoulder Breadth (mm) 1 B 34 21 

29 Sitting Height (mm) 1 O 30 14 
30 Stature (mm) 1 O  1 1 
31 Subscapular Skinfold (mm) 3 B  2  

32 Thigh Circumference (mm) 2 B 18  

33 Thigh Circumference Max Sitting (mm) 2 B 31  

34 Thumb Tip Reach (mm) 1 B 38 24 
35 TTR 1 (mm) 1 B 25 9 
36 TTR 2 (mm) 1 B 16 20 

37 TTR 3 (mm) 1 B 28 15 
38 Triceps Skinfold (mm) 3 B  6  
39 Total Crotch Length  (mm) 3 B 10  

40 Vertical Trunk Circumference (mm) 3 B 43  
41 Waist Circumference, Pref (mm) 2 B 42  
42 Waist Front Length (mm) 1 B 29 8 
43 Waist Height, Preferred (mm) 1 B 19 16 
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[5] T. Ahonen, A. Hadid, and M. Pietikäinen. Face description with local binary
patterns: Application to face recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 28(12):2037–41, 2006.

[6] B. Allen, B. Curless, and Z. Popović. The space of all body shapes: recon-
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tation invariant texture classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24:971–987, 2002.

[119] E. A. Osunwoke, F. S. Amah-Tariah, O. Obia, I. M. Ekere, and O. Ede. Sexual
dimorphism in facial dimensions of the Binis of South-Southern Nigeria. Asian
Journal of Medical Sciences, 3(2):71–73, 2011.

[120] S. Pankanti and A. K. Jain. On the individuality of fingerprints. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24, 2002.

[121] U. Park and A. K. Jain. Face matching and retrieval using soft biometrics.
Information Forensics and Security, 5(3):406–415, 2010.

[122] U. Park, R. R. Jillela, A. Ross, and A. K. Jain. Periocular biometrics in the
visible spectrum. Information Forensics and Security, 2011.

[123] U. Park, Y. Tong, and A.K. Jain. Age invariant face recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(5):947–954, 2010.

[124] D. I. Perrett, K. A. May, and S. Yoshikawa. Facial shape and judgements of
female attractiveness. Nature, 368:239–242, 1994.

[125] V. Pollio. On symmetry: In temples and in the human body. In Ten Books on
Architecture, Book III, chapter 1. Gutenberg.org, 2006. Translated by Morris
Hicky Morgan.
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