34,829 research outputs found

    FAST: Feature-Aware Student Knowledge Tracing

    Get PDF
    Various kinds of e-learning systems, such as Massively Open Online Courses and intelligent tutoring systems, are now producing amounts of feature-rich data from students solving items at different levels of proficiency over time. To analyze such data, researchers often use Knowledge Tracing [4], a 20-year old method that has become the de-facto standard for inferring student’s knowledge from performance data. Knowledge Tracing uses Hidden Markov Models (HMM) to estimate the latent cognitive state (student’s knowledge) from the student’s performance answering items. Since the original Knowledge Tracing formulation does not allow to model general features, a considerable amount of research has focused on ad-hoc modifications to the Knowledge Tracing algorithm to enable modeling a specific feature of interest. This has led to a plethora of different Knowledge Tracing reformulations for very specific purposes. For example, Pardos et al. [5] proposed a new model to measure the effect of students’ individual characteristics, Beck et al. [2] modified Knowledge Tracing to assess the effect of help in a tutor system, and Xu and Mostow [7] proposed a new model that allows measuring the effect of subskills. These ad hoc models are successful for their own specific purpose, but they do not generalize to arbitrary features. Other student modeling methods which allow more flexible features have been proposed. For example, Performance Factor Analysis [6] uses logistic regression to model arbitrary features, but unfortunately it does not make inferences of whether the student has learned a skill. We present FAST (Feature-Aware Student knowledge Tracing), a novel method that allows general features into Knowledge Tracing. FAST combines Performance Factor Analysis (logistic regression) with Knowledge Tracing, by leveraging on previous work on unsupervised learning with features [3]. Therefore, FAST is able to infer student’s knowledge, like Knowledge Tracing does, while also allowing for arbitrary features, like Performance Factor Analysis does. FAST allows general features into Knowledge Tracing by replacing the generative emission probabilities (often called guess and slip probabilities) with logistic regression [3], so that these probabilities can change with time to infer student’s knowledge. FAST allows arbitrary features to train the logistic regression model and the HMM jointly. Training the parameters simultaneously enables FAST to learn from the features. This differs from using regression to analyze the slip and guess probabilities [1]. To validate our approach, we use data collected from real students interacting with a tutor. We present experimental results comparing FAST with Knowledge Tracing and Performance Factor Analysis. We conduct experiments with our model using features like item difficulty, prior successes and failures of a student for the skill (or multiple skills) associated with the item, according to the formulation of Performance Factor Analysis

    Tracing a Route and Finding a Shortcut: The Working Memory, Motivational, and Personality Factors Involved

    Get PDF
    Wayfinding (WF) is the ability to move around efficiently and find the way from a starting point to a destination. It is a component of spatial navigation, a coordinate and goal-directed movement of one\u2019s self through the environment. In the present study, the relationship between WF tasks (route tracing and shortcut finding) and individual factors were explored with the hypothesis that WF tasks would be predicted by different types of cognitive, affective, motivational variables, and personality factors. A group of 116 university students (88 F.) were conducted along a route in a virtual environment and then asked first to trace the same route again, and then to find a shortcut between the start and end points. Several instruments assessing visuospatial working memory, mental rotation ability, self-efficacy, spatial anxiety, positive attitude to exploring, and personality traits were administered. The results showed that a latent spatial ability factor (measured with the visuospatial working memory and mental rotations tests) \u2013 controlled for gender \u2013 predicted route-tracing performance, while self-report measures of anxiety, efficacy, and pleasure in exploring, and some personality traits were more likely to predict shortcut-finding performance. We concluded that both personality and cognitive abilities affect WF performance, but differently, depending on the requirements of the task

    Towards Interpretable Deep Learning Models for Knowledge Tracing

    Full text link
    As an important technique for modeling the knowledge states of learners, the traditional knowledge tracing (KT) models have been widely used to support intelligent tutoring systems and MOOC platforms. Driven by the fast advancements of deep learning techniques, deep neural network has been recently adopted to design new KT models for achieving better prediction performance. However, the lack of interpretability of these models has painfully impeded their practical applications, as their outputs and working mechanisms suffer from the intransparent decision process and complex inner structures. We thus propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models. Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model by backpropagating the relevance from the model's output layer to its input layer. The experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions, and partially validate the computed relevance scores from both question level and concept level. We believe it can be a solid step towards fully interpreting the DLKT models and promote their practical applications in the education domain

    General Features in Knowledge Tracing to Model Multiple Subskills, Temporal Item Response Theory, and Expert Knowledge

    Get PDF
    Knowledge Tracing is the de-facto standard for inferring student knowledge from performance data. Unfortunately, it does not allow modeling the feature-rich data that is now possible to collect in modern digital learning environments. Because of this, many ad hoc Knowledge Tracing variants have been proposed to model a specific feature of interest. For example, variants have studied the effect of students’ individual characteristics, the effect of help in a tutor, and subskills. These ad hoc models are successful for their own specific purpose, but are specified to only model a single specific feature. We present FAST (Feature Aware Student knowledge Tracing), an efficient, novel method that allows integrating general features into Knowledge Tracing. We demonstrate FAST’s flexibility with three examples of feature sets that are relevant to a wide audience. We use features in FAST to model (i) multiple subskill tracing, (ii) a temporal Item Response Model implementation, and (iii) expert knowledge. We present empirical results using data collected from an Intelligent Tutoring System. We report that using features can improve up to 25% in classification performance of the task of predicting student performance. Moreover, for fitting and inferencing, FAST can be 300 times faster than models created in BNT-SM, a toolkit that facilitates the creation of ad hoc Knowledge Tracing variants

    RiPLE: Recommendation in Peer-Learning Environments Based on Knowledge Gaps and Interests

    Full text link
    Various forms of Peer-Learning Environments are increasingly being used in post-secondary education, often to help build repositories of student generated learning objects. However, large classes can result in an extensive repository, which can make it more challenging for students to search for suitable objects that both reflect their interests and address their knowledge gaps. Recommender Systems for Technology Enhanced Learning (RecSysTEL) offer a potential solution to this problem by providing sophisticated filtering techniques to help students to find the resources that they need in a timely manner. Here, a new RecSysTEL for Recommendation in Peer-Learning Environments (RiPLE) is presented. The approach uses a collaborative filtering algorithm based upon matrix factorization to create personalized recommendations for individual students that address their interests and their current knowledge gaps. The approach is validated using both synthetic and real data sets. The results are promising, indicating RiPLE is able to provide sensible personalized recommendations for both regular and cold-start users under reasonable assumptions about parameters and user behavior.Comment: 25 pages, 7 figures. The paper is accepted for publication in the Journal of Educational Data Minin
    • 

    corecore