295 research outputs found

    Packing chromatic vertex-critical graphs

    Full text link
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that the vertex set of GG can be partitioned into sets ViV_i, i[k]i\in [k], where vertices in ViV_i are pairwise at distance at least i+1i+1. Packing chromatic vertex-critical graphs, χρ\chi_{\rho}-critical for short, are introduced as the graphs GG for which χρ(Gx)<χρ(G)\chi_{\rho}(G-x) < \chi_{\rho}(G) holds for every vertex xx of GG. If χρ(G)=k\chi_{\rho}(G) = k, then GG is kk-χρ\chi_{\rho}-critical. It is shown that if GG is χρ\chi_{\rho}-critical, then the set {χρ(G)χρ(Gx): xV(G)}\{\chi_{\rho}(G) - \chi_{\rho}(G-x):\ x\in V(G)\} can be almost arbitrary. The 33-χρ\chi_{\rho}-critical graphs are characterized, and 44-χρ\chi_{\rho}-critical graphs are characterized in the case when they contain a cycle of length at least 55 which is not congruent to 00 modulo 44. It is shown that for every integer k2k\ge 2 there exists a kk-χρ\chi_{\rho}-critical tree and that a kk-χρ\chi_{\rho}-critical caterpillar exists if and only if k7k\le 7. Cartesian products are also considered and in particular it is proved that if GG and HH are vertex-transitive graphs and diam(G)+diam(H)χρ(G){\rm diam(G)} + {\rm diam}(H) \le \chi_{\rho}(G), then GHG\,\square\, H is χρ\chi_{\rho}-critical

    Packing Chromatic Number of Distance Graphs

    Get PDF
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that vertices of GG can be partitioned into disjoint classes X1,...,XkX_1, ..., X_k where vertices in XiX_i have pairwise distance greater than ii. We study the packing chromatic number of infinite distance graphs G(Z,D)G(Z, D), i.e. graphs with the set ZZ of integers as vertex set and in which two distinct vertices i,jZi, j \in Z are adjacent if and only if ijD|i - j| \in D. In this paper we focus on distance graphs with D={1,t}D = \{1, t\}. We improve some results of Togni who initiated the study. It is shown that χρ(G(Z,D))35\chi_{\rho}(G(Z, D)) \leq 35 for sufficiently large odd tt and χρ(G(Z,D))56\chi_{\rho}(G(Z, D)) \leq 56 for sufficiently large even tt. We also give a lower bound 12 for t9t \geq 9 and tighten several gaps for χρ(G(Z,D))\chi_{\rho}(G(Z, D)) with small tt.Comment: 13 pages, 3 figure

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even

    Notes on complexity of packing coloring

    Get PDF
    A packing kk-coloring for some integer kk of a graph G=(V,E)G=(V,E) is a mapping φ:V{1,,k}\varphi:V\to\{1,\ldots,k\} such that any two vertices u,vu, v of color φ(u)=φ(v)\varphi(u)=\varphi(v) are in distance at least φ(u)+1\varphi(u)+1. This concept is motivated by frequency assignment problems. The \emph{packing chromatic number} of GG is the smallest kk such that there exists a packing kk-coloring of GG. Fiala and Golovach showed that determining the packing chromatic number for chordal graphs is \NP-complete for diameter exactly 5. While the problem is easy to solve for diameter 2, we show \NP-completeness for any diameter at least 3. Our reduction also shows that the packing chromatic number is hard to approximate within n1/2εn^{{1/2}-\varepsilon} for any ε>0\varepsilon > 0. In addition, we design an \FPT algorithm for interval graphs of bounded diameter. This leads us to exploring the problem of finding a partial coloring that maximizes the number of colored vertices.Comment: 9 pages, 2 figure

    Packing Coloring of Undirected and Oriented Generalized Theta Graphs

    Full text link
    The packing chromatic number χ\chi ρ\rho (G) of an undirected (resp. oriented) graph G is the smallest integer k such that its set of vertices V (G) can be partitioned into k disjoint subsets V 1,..., V k, in such a way that every two distinct vertices in V i are at distance (resp. directed distance) greater than i in G for every i, 1 \le i \le k. The generalized theta graph Θ\Theta {\ell} 1,...,{\ell}p consists in two end-vertices joined by p \ge 2 internally vertex-disjoint paths with respective lengths 1 \le {\ell} 1 \le . . . \le {\ell} p. We prove that the packing chromatic number of any undirected generalized theta graph lies between 3 and max{5, n 3 + 2}, where n 3 = |{i / 1 \le i \le p, {\ell} i = 3}|, and that both these bounds are tight. We then characterize undirected generalized theta graphs with packing chromatic number k for every k \ge 3. We also prove that the packing chromatic number of any oriented generalized theta graph lies between 2 and 5 and that both these bounds are tight.Comment: Revised version. Accepted for publication in Australas. J. Combi

    The packing chromatic number of the infinite square lattice is between 13 and 15

    Get PDF
    Using a SAT-solver on top of a partial previously-known solution we improve the upper bound of the packing chromatic number of the infinite square lattice from 17 to 15. We discuss the merits of SAT-solving for this kind of problem as well as compare the performance of different encodings. Further, we improve the lower bound from 12 to 13 again using a SAT-solver, demonstrating the versatility of this technology for our approach
    corecore