research

Notes on complexity of packing coloring

Abstract

A packing kk-coloring for some integer kk of a graph G=(V,E)G=(V,E) is a mapping φ:V{1,,k}\varphi:V\to\{1,\ldots,k\} such that any two vertices u,vu, v of color φ(u)=φ(v)\varphi(u)=\varphi(v) are in distance at least φ(u)+1\varphi(u)+1. This concept is motivated by frequency assignment problems. The \emph{packing chromatic number} of GG is the smallest kk such that there exists a packing kk-coloring of GG. Fiala and Golovach showed that determining the packing chromatic number for chordal graphs is \NP-complete for diameter exactly 5. While the problem is easy to solve for diameter 2, we show \NP-completeness for any diameter at least 3. Our reduction also shows that the packing chromatic number is hard to approximate within n1/2εn^{{1/2}-\varepsilon} for any ε>0\varepsilon > 0. In addition, we design an \FPT algorithm for interval graphs of bounded diameter. This leads us to exploring the problem of finding a partial coloring that maximizes the number of colored vertices.Comment: 9 pages, 2 figure

    Similar works