15 research outputs found

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Design of Robust Memristor-Based Neuromorphic Circuits and Systems with Online Learning

    Get PDF
    Computing systems that are capable of performing human-like cognitive tasks have been an area of active research in the recent past. However, due to the bottleneck faced by the traditionally adopted von Neumann computing architecture, bio-inspired neural network style computing paradigm has seen a spike in research interest. Physical implementations of this paradigm of computing are known as neuromorphic systems. In the recent years, in the domain of neuromorphic systems, memristor based neuromorphic systems have gained increased attention from the research community due to the advantages offered by memristors such as their nanoscale size, nonvolatile nature and power efficient programming capability. However, these devices also suffer from a variety of non-ideal behaviors such as switching speed and threshold asymmetry, limited resolution and endurance that can have a detrimental impact on the operation of the systems employing these devices. This work aims to develop device-aware circuits that are robust in the face of such non-ideal properties. A bi-memristor synapse is first presented whose spike-timing-dependent plasticity (STDP) behavior can be precisely controlled on-chip and hence is shown to be robust. Later, a mixed-mode neuron is introduced that is amenable for use in conjunction with a range of memristors without needing to custom design it. These circuits are then used together to construct a memristive crossbar based system with supervised STDP learning to perform a pattern recognition application. The learning in the crossbar system is shown to be robust to the device-level issues owing to the robustness of the proposed circuits. Lastly, the proposed circuits are applied to build a liquid state machine based reservoir computing system. The reservoir used here is a spiking recurrent neural network generated using an evolutionary optimization algorithm and the readout layer is built with the crossbar system presented earlier, with STDP based online learning. A generalized framework for the hardware implementation of this system is proposed and it is shown that this liquid state machine is robust against device-level switching issues that would have otherwise impacted learning in the readout layer. Thereby, it is demonstrated that the proposed circuits along with their learning techniques can be used to build robust memristor-based neuromorphic systems with online learning

    Fast and Accurate Sparse Coding of Visual Stimuli with a Simple, Ultra-Low-Energy Spiking Architecture

    Get PDF
    Memristive crossbars have become a popular means for realizing unsupervised and supervised learning techniques. Often, to preserve mathematical rigor, the crossbar itself is separated from the neuron capacitors. In this work, we sought to simplify the design, removing extraneous components to consume significantly lower power at a minimal cost of accuracy. This work provides derivations for the design of such a network, named the Simple Spiking Locally Competitive Algorithm, or SSLCA, as well as CMOS designs and results on the CIFAR and MNIST datasets. Compared to a non-spiking model which scored 33% on CIFAR-10 with a single-layer classifier, this hardware scored 32% accuracy. When used with a state-of-the-art deep learning classifier, the non-spiking model achieved 82% and our simplified, spiking model achieved 80%, while compressing the input data by 79%. Compared to a previously proposed spiking model, our proposed hardware consumed 99% less energy to do the same work at 21 times the throughput. Accuracy held out with online learning to a write variance of 3% and a read variance of 40%. The proposed architecture\u27s excellent accuracy and significantly lower energy usage demonstrate the utility of our innovations. This work provides a means for extremely low-energy sparse coding in mobile devices, such as cellular phones, or for very sparse coding as is needed by self-driving cars or robotics that must integrate data from multiple, high-resolution sensors

    Algorithm/Architecture Co-Design for Low-Power Neuromorphic Computing

    Full text link
    The development of computing systems based on the conventional von Neumann architecture has slowed down in the past decade as complementary metal-oxide-semiconductor (CMOS) technology scaling becomes more and more difficult. To satisfy the ever-increasing demands in computing power, neuromorphic computing has emerged as an attractive alternative. This dissertation focuses on developing learning algorithm, hardware architecture, circuit components, and design methodologies for low-power neuromorphic computing that can be employed in various energy-constrained applications. A top-down approach is adopted in this research. Starting from the algorithm-architecture co-design, a hardware-friendly learning algorithm is developed for spiking neural networks (SNNs). The possibility of estimating gradients from spike timings is explored. The learning algorithm is developed for the ease of hardware implementation, as well as the compatibility with many well-established learning techniques developed for classic artificial neural networks (ANNs). An SNN hardware equipped with the proposed on-chip learning algorithm is implemented in CMOS technology. In this design, two unique features of SNNs, the event-driven computation and the inferring with a progressive precision, are leveraged to reduce the energy consumption. In addition to low-power SNN hardware, accelerators for ANNs are also presented to accelerate the adaptive dynamic programing algorithm. An efficient and flexible single-instruction-multiple-data architecture is proposed to exploit the inherent data-level parallelism in the inference and learning of ANNs. In addition, the accelerator is augmented with a virtual update technique, which helps improve the throughput and energy efficiency remarkably. Lastly, two techniques in the architecture-circuit level are introduced to mitigate the degraded reliability of the memory system in a neuromorphic hardware owing to the aggressively-scaled supply voltage and integration density. The first method uses on-chip feedback to compensate for the process variation and the second technique improves the throughput and energy efficiency of a conventional error-correction method.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144149/1/zhengn_1.pd

    Design of Resistive Synaptic Devices and Array Architectures for Neuromorphic Computing

    Get PDF
    abstract: Over the past few decades, the silicon complementary-metal-oxide-semiconductor (CMOS) technology has been greatly scaled down to achieve higher performance, density and lower power consumption. As the device dimension is approaching its fundamental physical limit, there is an increasing demand for exploration of emerging devices with distinct operating principles from conventional CMOS. In recent years, many efforts have been devoted in the research of next-generation emerging non-volatile memory (eNVM) technologies, such as resistive random access memory (RRAM) and phase change memory (PCM), to replace conventional digital memories (e.g. SRAM) for implementation of synapses in large-scale neuromorphic computing systems. Essentially being compact and “analog”, these eNVM devices in a crossbar array can compute vector-matrix multiplication in parallel, significantly speeding up the machine/deep learning algorithms. However, non-ideal eNVM device and array properties may hamper the learning accuracy. To quantify their impact, the sparse coding algorithm was used as a starting point, where the strategies to remedy the accuracy loss were proposed, and the circuit-level design trade-offs were also analyzed. At architecture level, the parallel “pseudo-crossbar” array to prevent the write disturbance issue was presented. The peripheral circuits to support various parallel array architectures were also designed. One key component is the read circuit that employs the principle of integrate-and-fire neuron model to convert the analog column current to digital output. However, the read circuit is not area-efficient, which was proposed to be replaced with a compact two-terminal oscillation neuron device that exhibits metal-insulator-transition phenomenon. To facilitate the design exploration, a circuit-level macro simulator “NeuroSim” was developed in C++ to estimate the area, latency, energy and leakage power of various neuromorphic architectures. NeuroSim provides a wide variety of design options at the circuit/device level. NeuroSim can be used alone or as a supporting module to provide circuit-level performance estimation in neural network algorithms. A 2-layer multilayer perceptron (MLP) simulator with integration of NeuroSim was demonstrated to evaluate both the learning accuracy and circuit-level performance metrics for the online learning and offline classification, as well as to study the impact of eNVM reliability issues such as data retention and write endurance on the learning performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Hardware Implementations of Spiking Neural Networks and Artificially Intelligent Systems

    Get PDF
    Artificial spiking neural networks are gaining increasing prominence due to their potential advantages over traditional, time-static artificial neural networks. Custom hardware implementations of spiking neural networks present many advantages over other implementation mediums. Two main topics are the focus of this work. Firstly, digital hardware implementations of spiking neurons and neuromorphic hardware are explored and presented. These implementations include novel implementations for lowered digital hardware requirements and reduced power consumption. The second section of this work proposes a novel method for selectively adding sparsity to a spiking neural network based on training set images for pattern recognition applications, thereby greatly reducing the inference time required in a digital hardware implementation

    Memristive Computing

    Get PDF
    Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.Siirretty Doriast

    Radioisotope identification with neuromorphic methodology: different solutions and evaluations

    Get PDF
    Early detection of radioisotopes plays an increasingly important role in the modern world. It allows the possibility of quick countermeasures when faced with potentially hazardous radioactive materials like dirty bombs, and nuclear leakage. This could secure the lives of the innocent in populated areas including airports, stadiums or ports. A light-weight compact handheld device could be used in this situation for the patrol team. However, the operating hours for these devices are normally constrained by the batteries they carry. More efficient al- gorithms or solutions are needed for this resource-constraint application to extend the battery life so that security patrol is not frequently interrupted by the recharge. Event-based processing is a novel technique that allows the computing unit to operate only when there is a key event while staying idle otherwise. Spiking neural network (SNN) is a promising candidate for event-based processing and also known as neuromorphic method- ology due to the biomimicry plausibility, which could be easily implemented and still offer comparable accuracy to its counterpart — artificial neural network (ANN), which is notoriously power-hungry. In this research work, it will be demonstrated that using SNN for radioisotope identification (RIID) is possible and capable of achieving the same or even better accuracy when compared with ANNs. Meanwhile, the power consumption of the proposed method on a field program- mable gate array (FPGA) shows that power reduction is highly significant compared with the old software implementation on a smartphone. The task has been delivered in two parts, we first attempted an unsupervised Spike-Timing- Dependent Plasticity (STDP) SNN implementation on SpiNNaker, an emulation platform for SNN. This demonstrates the capability of classifying radioisotopes using purely SNN compat- ible training methods and architecture. We then managed to implement a more complex bin-ratio ensemble SNN (BESNN) on FPGA with better performance. To achieve this implementation, a new SNN conversion method was created to facilitate the digital hardware implementation. This conversion flow allows the highly sparse weight matrix representation without sacrificing overall accuracy. In the meantime, the power consumption of the mentioned design has been characterised, which could be used to estimate the battery life of a handheld system while functioning. Even though this design has been validated on an FPGA, further squeeze for the power saving is possible if an application specific integrated circuits (ASIC) could be delivered. Furthermore, the analogue unit used in the design is a compromise given that the logarithm could not be done by a spiking neuron at the moment. This prevents an end-to-end application, which is preferred for higher integration and potentially more power conservation. According to our knowledge, applying neuromorphic methodology to address RIID represents uncharted territory, especially in the context of power characterisation, an aspect that has not been explored previously. This research work fills the gap that is present in the research field and also offers a functional low-power prototype for the handheld RIID device producer. This project pioneers the use of an event-based processing algorithm for radioisotope identi- fication, marking a significant advancement in the field. Leveraging Spiking Neural Networks (SNNs) on specialised hardware, the project establishes a comprehensive application flow, showcasing the efficacy and potential of SNNs in this domain. The implementation of an unsupervised STDP algorithm for radioisotope identification is also groundbreaking, introducing a local self-learning rule for complex tasks beyond handwritten digit recognition. Additionally, the bin-ratio ensemble project achieves remarkable accuracy, setting new bench- marks in the field. It represents the first ensemble SNN application in radioisotope identifica- tion, further enhanced by an innovative ANN-SNN conversion method with iterative pruning to reduce computational overhead. Furthermore, this research provides detailed insights into sparse SNN construction and char- acterises hardware implementation, shedding light on power and energy consumption con- siderations
    corecore